
REVUE FRANÇAISE D’AUTOMATIQUE, INFORMATIQUE,
RECHERCHE OPÉRATIONNELLE. RECHERCHE OPÉRATIONNELLE

LEON S. LASDON

RICHARD L. FOX

MARGERY W. RATNER
Nonlinear optimization using the generalized
reduced gradient method
Revue française d’automatique, informatique, recherche opé-
rationnelle. Recherche opérationnelle, tome 8, no V3 (1974),
p. 73-103
<http://www.numdam.org/item?id=RO_1974__8_3_73_0>

© AFCET, 1974, tous droits réservés.

L’accès aux archives de la revue « Revue française d’automatique, in-
formatique, recherche opérationnelle. Recherche opérationnelle » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/
conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RO_1974__8_3_73_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R.A.LR.O.
(8* année, novembre 1974, V-3, p. 73 à 104)

NONLINEAR OPTIMIZATION USING
THE-GENERALIZED

REDUCED GRADIENT METHOD (*)

by Léon S. LÀSDON, Richard L. Fox and Margery W. RATNER

Abstract. — This paper describes the principles and logic o f a System of computer
programs for solving nonlinear optimization problems using a Generalized Reduced Gradient
Algorithm, The work is based on earlier work of Âbadie (2). Since this paper was written,
many changes have been made in the logic, and significant computational expérience has
been obtained* We hope to report on this in a later paper.

1. INTRODUCTION

Generalized Reduced Gradient methods are algorithms for solving non-
linear programs of gênerai structure. This paper discusses the basic principles
of GRG, and constructs a spécifie GRG algorithm. The logic of a computer
program implementing this algorithm is presented by means of flow charts
and discussion. A numerical example is given to illustrate the functioning of
this program.

2. BASIC IDEAS OF GRG

The nonlinear program to be solved is assumed to have the form

minimize f(X) (1)
subject to gt(X) = 0 , / = 1, •.., m (2)

lt < X% < ut , i= 1,...» n (3)

(1) This report was prepared as part of the activities of the Department of Opérations
Research, School of Management and the Solid Mechanics, Structures, and Mechanical
Design Division, School of Engineering, Case Western Reserve University (under Con-
tract N0014-67-A-0404-0010 with the Office of Naval Research). Reproduction in whole
or part is permitted for any purpose by the United States Government.

Technical Memorandum No. 325.
(2) The authors are indebted to Jean Abadie for his many helpful suggestions.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle, n° nov. 1974, V-3.

74 L. S. LASDON, R. L. FOX AND M. W, RATNER

where X is w-vector and ui9 lt are given lower and upper bounds ut > lt. We
assume m < n since, in most cases, m ^ n implies an infeasible problem or
one with a unique solution, The form (l)-(3) is completely gênerai, since
inequality constraints may always be transformed to equalities, as in (2), by
the addition of slack variables. The vector X contains as components both
the « natural » variables of the problem and these slacks.

The fundamental idea of GRG is to use the equalities (2) to express m of
the variables, called basic variables, in terms of the remaining n-m nonbasic
variables. TMs is also the way the Simplex Method of linear programming
opérâtes. Let ï b e a feasible point and let y be the vector of basic variables
and x the nonbasic at X, so that X is partitioned as

X = 0>,x)?f = (j,x) (4)

and the equalities (3) can be written

g(y>x) = o (5)

where
g = (gu ***>gm) (6)

Assume that the objective ƒ and constraint functions gt are differentiable.
Then, by the implicit function theorem, in order that the équations (5) have
a solution y(x) for all x in some neighborhood of x, it is sufficient that the m X m
basis matrix Bgfdy, evaluated at X, be nonsingular*

Assume that it is. Then the objective may be expressed as a function of x
only :

x) (7)

and the nonlinear program is transformed, at least for x close to x, to a reduced
problem with only upper and lower bounds :

minimize F(x) (8)

subject to
INB < * < um (9)

where lNB and uNB are the vectors of bounds for x. GRG solves the original
problem (l)-(3) by solving a séquence of problems of the form (8)-(9). Such
problems may be solved by simple modifications of unconstrained minimization
algorithms.

Fof the reduced problem (8)-(9) to yield useful results, it is necessary that x
be free to vary about the current point 3c. Of course, the bounds (9) restrict x,
but it is easy to move x in directions which keep these bounds satisfied. The
bounds on the basic variables, however, pose a more serious problem. If some
components of y are at their bounds, then even a slight change in x from x may

Revue Française d9Automatique, Informatique et Recherche Opérationnelle

GENERALIZED REDUCED GRADIENT METHOD 75

cause some bound to be violated. To guarantee that this cannot .happen, and
tp insure the existence of the function y{x)> we assume that the following
condition holds :

Nondegeneracy Assumption

At any point X satisfying (2)-(3), there exists a partition of X into m basic
variables y and n-m nonbasic variables x such that

h<y<uB (10)

where lB and uB are the vector of bounds on y and

B — dg/dy is nonsingular (11)

This assumption is quite mild, as we show later.

Consider now starting from the feasible point Zwith basic variables y and
nonbasic variables x, and attempting to solve the reduced problem (8)-(9).
By (7), to evaluate the objective F(x), we must know the values of the basic
variables y(x). Of course, except for linear and a few nonlinear cases, the
function y(pc) cannot be determined in closed form. However, y(x) can be com-
puted for any given x by an itérative method which solves the equalities (5).
Hence a procedure for solving the reduced problem starting from Xo s X, is

(0) set i = 0.

(1) Substitute xt into (5) and détermine the corresponding values for y, yi9

by an itérative method for solving nonlinear équations.

(2) Détermine a direction of motion, du for the nonbasic variables x.

(3) Choose a step size af such that

= Xt + CLidi

This is often done by solving the one dimensional search problem

minimize F(xt + adt)

with a restricted such that xt + <xdt satisfies the bounds on x. This one dimen-
sional search will require repeated applications of step (1) to evaluate F for
various a values.

(4) Test the current point Xt = (yi9 xt) for optimality. If not optimal,
set i — i+l and return to (1).

If, in step (1), the value of one or more components of yt exceed their
bounds, the itérative procedure must be interrupted. For simplicity, assume
only one basic variable violâtes a bound. Then this variable must be made
nonbasic and some component of x which is not on a bound is made basic.
After this change of basis, we have a new function y(x)9 a new function F(x),

n° novembre 1974, V-3.

76 L. S. LASDON, R. L. FOX AND M. W. RATNER

and a new reduced problem. These ideas are illustrated geometrically in
Figure 2.1. The initial point X is on the curve g2(X) = 0. We have taken the

j On this curve
1 basics are (X2.>

Basis change :
Xj goes to zero

On this curve
bàsics are (X3 , X-,)

(Initial feasibie
/point X

On X2 axis
basics are (X2 ,X4)

The constraints
Q^ (X 1 ,X 2) - X3 = 0

92 ! X 1 - X 2 J ~ X4 = °
Xj>o, i = l 4

Détermine the -shaded feasibie région

Figure 2.1
Séquence of Basis Changes

basic variables as (x39 xx), although the only variable that cannot be basic
is x49 since it is at lower bound of zero. The objective of the first reduced
problem is F1(x29 x4), which is just the objective ƒ as measured on the curve
g2 = 0. It is possible that the algorithm minimizing Fx might release x4 from
its lower bound of zero, in which case we would move interior to g2 = 0.
Assume, for purposes of illustration, that this does not happen. Then we move
along g2 = 0 as indicated by the arrow until we hit the curve gx = 0. At this
point the slack for gl9 x3, goes to zero. Since it is basic, it must leave the basis,
to be replaced by one of the nonbasics, x2 or JC4. Since x4 is zero, x2 becomes
basic. Now we have a new objective, F2(x3, x4), with x3 and x4 at lower bound
of zero. The algorithm optimizing F2 will détermine that, if either x3 or JC4

is released from its lower bound, F2 can be decreased. Assume x4 is released
from its bound (actually x3 and x4 might both be released from their bounds).
Then the algorithm will begin to minimize F29 which is simply ƒ as measured
along the curve g± = 0. Motion is towards the x2 axis. Upon reaching it,

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

GENERALIZED REDUCED GRADIENT METHOD 77

xx becomes zero, and another basis change occurs, with xt becoming nonbasic
and X4 becoming basic. Then optimization of the new function F3(xu x3) will
terminate at the constrained optimum of ƒ

The Reduced Gradient

GRG can be implemented without using derivatives of ƒ or the gt. This
requires methods for solving nonlinear équations and for minimizing non-
ïinear functions subject to bounds which do not use derivatives. Although
such methods exist, there are a much greater variety which do require deriva-
tives. The efficiency of these is better understood, and their use in large pro-
blems is better established.

Hence we concern ourselves from now on with GRG algorithms which
require first derivatives of/and g.

In minimizing F using derivatives, we must have a formula for VF. F is
guaranteed to be differentiable if ƒ and g are, and if àg/dy is nonsingular,
since then the implicit function y(pc) is differentiable. By (7)

3F/3*; = 3//3x, + (3f/dyf dy/Sx, (12)

To evaluate dy/dxi9 use the fact that, if

gj(y(x), *) = 0 , j = l , . . . , m

for ail x in some neighborhood of x, then

dgj/dXi - 0 = (dgj/dyf dyfdXi + 3 ^ / 3 ^ , 7 = 1 , ..., m

or, in matrix form
(dg/dy) dy/dXi + dg/dxt = 0

Since (dgfdy) is nonsingular at X
1 , s B'1 dgjdx, (13)

Using (13) in (12)

BF/dxt - 3ƒldxt - (Bf/ByfB-x dgkSxt (14)
Let

n^tff/dyfB-1 (15)

As is shown later, the m-vector -rc is the Kuhn-Tucker multiplier vector
for the constraints g. Using (15), the components of VF are

3F/3JC£ = 3 f/dxt — TCT dgfiXi (16)

Equation (16) reduces to the formula for the relative cost factors in linear
programming [1] if/and ail gt are linear. Then, 3//3^| = cu dfjdy = cü (the

n° novembre 1974, Y-3.

7 8 L. S. LASDÖN, R. L. FOX AND M. W. RATNER

objective coefficients of the basic variables) and dgjdxt = Pu the column of
constraint coefficients for xt. The vector 7c is the simplex multiplier vector.

Relation of Reduced Gradient Formula and Kuhn-Tucker Conditions

If X is optimal for (l)-(3), and if the gradients of all binding constramts
of X are independent (see [2]), then the Kuhn-Tucker conditions hold at X
To write these, let 7t be a Lagrange multiplier vector for the equalities (2),
and a and (3 be multipliers for the lower and upper bound constraints respecti-
vely. The Lagrangian for (l)-(3) is

L = f + ng + ÖL(I — X) + $(X—n)

The Kuhn-Tucker conditions, written in terms of y and x, are

BLfëy = d/IQy + wS — o , + p, = 0 (17)

dL/dx - df/dx + ndg/dx _ «x + px = 0 (18)

a > 0, P > 0 (19)

a(/ — x) = P(x — 7u) = 0 (20)

where &y, $y are subvectors of a and (3 corresponding to the basic variables y,
and similarlyfora^, (3x.If Xis optimal, there exist vectors S. öc, p which, together
with X, satisfy (17)-(20). Since y is strictly between its bounds, (20) implies

S = % = 0

Then (17) implies

so the vector it in (15) is the multiplier vector for the equalities (2).

Then (18) may be written

= Kx-px (21)

The left hand side of (21) is simply the reduced gradient, VF(x). To relate (21)
to the problem (8)-(9), if xt is strictly between its bounds then ocx< = px< = 0
by (20), so

t = 0 (22)

If xt at lower bound then pxi — 0 so

QFfdXi = ocXi > 0 (23)

while if JC£ is at upper bound, onxt = 0 so

8F/8x, - - p X i ^ 0 (24)

Revue Française cTAutomatique, Informatique et Recherche Opérationnelle

GENIRALÏZED REDUCED GRADIENT METHOD 79

But (22)-(24) are just the optimality conditions for the reduced problem
(8)-(9). Hence the Kuhn-Tucker conditions for (l)-(3) may be viewed as opti-
mality conditions for the reduced problem (8)-(9), and TX in the formula for
the reduced gradient is the Kuhn-Tucker multiplier vector. This vector is
useful for sensitivity analysis, and GRG provides it as a by-product of its
eomputations.

Relation of Nondegeneracy Assumption and Luenberger
Constraint Qualification

Let X° be an optimal solution to (l)-(3). Luenberger [2] has shown that
a sufficient condition for the Kuhn-Tucker conditions to hold at X° is that the
gradients of all binding constraints be linearly independent.

Assume that this is the case. Then, at most n of the 2n + m constraints (l)-(3)
can be binding at X°. Since all m of the equalities (2) are binding, at most n-m
of the constraints (3) can be binding, i.e at most n-m of the variables X%

can be at a bound. Hence there will be at least m variables X% satisfying
/i < Xf < ut. Consider now the Jacobian matrix of the binding constraints
evaluated by X°. If all variables not at bounds are grouped together, this
Jacobian has the structure

k > m variables
not on bounds

m equality rows j

n — k bounds rows \ o

n — k variables
on bounds

Since this matrix must have all m + (n — k) rows linearly independent, it
must have this same number of independent columns. Since the « — k rightmost
columns are independent, the submatrix j j must contain m independent
columns. Let B° be a nonsingular m x m submatrix chosen from j J, and let y
be the m-vector of variables associated with the columns of B°, with x the
vector of the remaining n — m variables. Then lB < y° < uB and B° is non-
singular.

That is, the nondegeneracy assumption stated earlier is true at X°, so it is
implied by Luenbergers constraint qualification. This information is useful,
since Luenbergers qualification appears to be satisfied at the optimum, indeed
at all feasible points, of all but a few pathological nonlinear programs. However,
problems can arise where the binding constraint gradients become nearly
dependent, and then B becomes nearly singular, and its inversion and other
opérations with it become numerically unstable. A computer program imple-
menting GRG must test for this near-singularity and attempt to correct it if
it occurs.

n° novembre 1974, V-3.

8 0 L. S. LASDON, R. L. FOX AND M. W. RATNER

3. A GRG ALGORITHM

In this section we decribe the GRG algorithm developed during the period
Nov. 1972-Nov. 1973. The major différences between this algorithm and the
procedure described by Abadie in [3] and [4] are :

1. The algorithm works only with the currently active constraints. Since,
in most problems, not all constraints are active, this can ease computations
considerably. The basis matrix has a row for each active constraint, and changes
size as constraints are encountered or dropped. Gradients of inactive constraints
are not required, a significant advantage in problems with many constraints.

2. The algorithm used to optimize the objective on each constraint inter-
section is the Davidon-Fletcher-Powell (DFP) method [3], modified to account
for upper and lower bounds. This should yield more rapid convergence than
the gradient or conjugate gradient procedures used by Abadie.

3. A new procedure has been constructed for deciding whether to incor-
porate a constraint into the current constraint basis. The constraint is incor-
porated if the one-dimensional minimum currently being sought is on the
boundary of the current constraint intersection. Mechanisms for determining
this efficiently in the context of GRG have been developed.

4. A new basis change procedure is used. In [2], Abadie makes a basis
change if a basic variable violâtes one of its bounds during the Newton itéra-
tion. This can lead to « false » basis changes if the Newton algorithm is not
converging, or is converging but not monotonically. We wait until the Newton
algorithm has converged, then treat the violated bound as a newly encountered
constraint, and apply the procedures in (3) above. This insures that the objective
value after a basis change is lower than all previous values (this is not true in
Abadies realization).

5. The one-dimensional search is the core of the algorithm and is crucial
to its efficiency. We have adopted the algorithm described in [6] to operate
within GRG. This procedure is the result of many years of development, and
computational results using it in unconstrained minimization have been
excellent.

We new present and discuss flow charts of our GRG algorithm and, in this
context, discuss the above ideas in more detail. The algorithm currently requires
a feasible starting point. Work during the next year will include designing a
phase I procedure, which will find a feasible point or détermine that noneexists.

Let X — (yl x) be a feasible point for the constraints (2)-(3). Further,
suppose that the first mx constraints are equalities, and the remaining m2 are
inequalities, with mi + m2 = m. That is, the constraints may be written :

gi(X) = 0, / = 1,..., mx

0, i=mx + 1 «

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

GENERALIZED REDUCED GRADIENT METHOD 81

We define the index set of binding constraints at X as

IBC = { i | gi(X) = 0 }

The surface defined by a set of active constraints will be called the constraint
intersection, S :

GRG moves from one such surface to another as new constraints become
binding and previously binding constraints become positive. In our realization
of GRG, while on a particular constraint intersection, we ignore the positive
constraints, except for evaluating them at each point to check that they are
still positive. The constraint basis at X contains a row for each index in IBC.
Since the slacks of binding constraints are zero (i.e. at lower bounds), there
will never be any slacks in the basis. If there are NB binding constraints,
the NB basic variables are all chosen from the n « natural » variables, Xu ..., Xn,
while the n nonbasics are the remaining n — NB natural variables, plus the NB
slacks of the binding constraints.

Use of Goldfarb Variable Metric Algorithm

Since GRG requires at least partial solution of A number of reduced pro-
blems of the form (8)-(9), each algorithm for solving süch problems leads to
a variant of GRG. The choice of algorithm is critical, since once GRG appro-
aches an optimum, and no more basis changes occur, its convergence rate
is that of the algorithm selected. It would be foolish to use the method of
steepest descent, as its convergence rate is at best geometrie, with a very small
convergence ratio for problems whose Hessian at the optimum is badly condi-
tioned [2]. The conjugate gradient method used by Abadie is superlinearly
convergent [2], but many computational experiments have shown it to be
considerably slower in practice (in terms of number of itérations) than methods
of the variable metric class [2]. For this reason, we have chosen the variable
metric method of Goldfarb [5], simplified for the special case of bounded
variables, to solve the reduced problems.

The flow chart entitled « Main GRG Program » illustrâtes our adaptation
of Goldfarbs algorithm. The algorithm is very much as described in [5], but
simplified for the special case of bounded variables (see [7]). The flow chart
is almost exactly as it would be if the only constraints present were the bounds
on the nonbasic variables. All the logic required to deal with the nonlinear
constraints (2) is in the one dimensional search subroutine on page 2 of the
chart. The algorithm chooses search directions by the formula

where Ht is an n X n symmetrie positive semi-definite matrix. This matrix
projects any vector onto the bounds, i.e, for any vector v, Hv is zero in the ztb

n° novembre 1974, V-3.

8 2 L. S. LASDON, R. L. FOX AND M. W. RATNER

position if xt is at a bound. The initialization in block 1, page 1, and the upda-
ting of block 3, page 2 (which forces row and column r of H to zero when xr

hits a bound) guarantee that H always has this property. The algorithm will
minimize a positive definite quadratic objective, subject to upper and lower
bounds, in a finite number of itérations. If at the optimum, nt < n of the
variables are at their bounds, then, once these variables reach their bounds,
the optimal values of the remaining ones will be found in at most n — nx itéra-
tions. Further, the nonzero rows and columns of H form a positive definite
matrix which will converge (in the case of quadratic objective) to the inverse
Hessian of the function of « — n1 variables formed by replacing the n1 variables
at bounds by the values of those bounds.

Block 2, page 1 of the flow chart, is performed as follows : The Kuhn-
Tucker multiplier for the lower bound constraint on xt is X? = dF/dxh and for
the upper bound X" = — dF/dx^ If xt is at lower (upper) bound and Xj(X?)
is négative, then .Fcan be decreased by increasing (decreasing) xu i.e. by moving
away from the bound. In our program, from all variables at bounds whose
multipliers are négative, we choose the variable with the multiplier of largest
absolute value. If this value is larger than twice ||^|| (where || || indicates
Euclidean norm), we allow this variable to leave its bound by setting the
corresponding diagonal element of H (currently zero) to one. This causes ||</f||
to increase. We then test the remaining bounded variables for négative multi-
pliers, and repeat the above procedure. The test against \dt\ insures that we
do not leave a constraint subspace until ||^|| becomes « small enough ». This
helps to prevent zigzagging where we constantly leave and then return to the
same subspace.

Goldfarbs algorithm provides search directions for the one dimensional
search subroutine, in which the variables of the problem are assigned new
values. This subroutine finds a first local minimum for the problem

minimize F(x + &d)

where F is the reduced objective, x the initial values of the nonbasic variables,
and d the search direction. The itération subscript, /, has been dropped for
convenience. The direction d is always a direction of descent, i.e.

dTVF(x) < 0

The procedure starts with a search for three a values, A, B, and C, which
satisfy

0 < A < B < C

F(x + Ad)> F(x + Bd)

and
F(x + Cd)> F(x + Bd)

Revue Française d'Automatique, Informatique ei Recherche Opérationnelle

GENERALIZED REDUCED GRADIENT METHOD 8 3

Then the interval [A, C] contains a local minimum of F(x + ad). In block 18
of page 1 of the one dimensional search flow chart, a quadratic is passed
through A, B and C, with its minimum at D. On page 3 of the flow chart,
the points A, B, C, D are used to initiate an itérative cubic interpolation process
which yields the final oc value.

The logic on the first two pages of the flow chart locates the points A, B, C.
In doing this, the choice of initial step size, a0, (block 1, page 1), is important.
With Goldfarbs algorithm or other variable metric methods, a0 is set equal
to the optimal a value from the previous search except when this causes too
large a change in the variables. The theoretical basis for this is that, as a variable
metric converges, the optimal a values should converge to 1, the optimal step
for Newton's Method. Hence the previous optimal step is a good approximation
to the current one. This must be modified when the method is restarted, for
example when a new constraint is encountered or the basis is changed, since
then an optimal step much less than unity is generally taken. Hence, we require
that the change in any nonbasic variable larger than 10"3 in absolute value
not exceed .05 times its value, while the change in any variable smaller than 10~3

in absolute value cannot exceed 0.1. If the largest oc value meeting these condi-
tions is a1, then, at itération /, a0 is given by

a0 = min (<*!_!, a1)

The loop 2, 3, 4, 5 halves the step size until a value FB < FA is achieved,
or until SLPFLG = 0. The variable SLPFLG is initialized at zero in subrou-
tine NEWG and is set to unity in block 3 of the NEWG flow chart if a new
constraint has been encountered and the minimum along d is interior to that
constraint. The test in block 6 of the one dimensional search flow chart is false
only if the step size has been halved at least once in 2, 3, 4, 5, in which case KI
is the function value corresponding to C. The test in block 7 prevents the
subroutine from trying to pass a quadratic through 3 points which are too
widely separated in function value. It also insures that the subroutine will eut
back the step size if a large function value is returned by block 3. This is used
to force a cutback when the NEWTON algorithm in block 3 does not converge,
by setting FB to 1030. The test on FC in block 12 has the same purpose. If KI
is too large, then block 8 générâtes a new C point 1/3 of the distance from B
to C Then the loop 8, 9, 10, 11, 12 is traversed until FC is not too large.

With R = 0 (which occurs if and only if (a) a Kl or FC which was too large
has never been generated, or (b) SLPFLG = 0, the loop 10-14 transforms the
points, A, B, C in figure 3.1 (a) into those shown in figure 3.1 (b). The step size
is doubled each time until the points A9 B, C bracket the minimum. If Kl or FC
ever becomes too large, or if SLPFLG = 1, R is set to 1 (block 9). Then (10)-(14)
transforms points as shown in figures 3.2 (a) thru 3.2 (c). Instead of doubling
the step, a constant incrément, B — A, is added. Since FC may have been

n° novembre 1974, V-3.

F ii

o
o

o
t l . I

A 0 C A B

(a)

A B C

(a)

Figure 3.1

A 6 C'

Figure 3.2

Delete

I I I J_

(b)

A B D E C

(a) -End point deleted

• a

B-A

A B C

(C)

-Cubic

J !

.new E
point

(b) -New 4 point pattern

Figure 3.3
Eliminating End Point in Cubic Fit

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

GENERALIZED REDUCED GRADIENT METHOD 8 5

set to 1030 when NEWTON did not converge in block 11, there must be a
provision for resetting R to 0 when 3 steps of size (C-B)/3 have been taken.
This is accomplished by blocks 15, 16, and 17.

The quadratic interpolation in block 18 yields a fourth point» D, with
function value FM, somewhere between A and C. In block 19, a cubic poly-
nomial is passed through the 4 points FA, FB, FC, FM, and its minimum is
located at the point E, The optimality tests in block 20 are passed if the percent
différence between (a) the F values at the current and previous interpolated
points and (b) the values of F and the cubic at E are sufficiently small. Cur-
rently € = 10" 4. In block 21 the usual situation is as shown in figures 3.3 (à)
and 3.3 (6). Removal of an end point leaves 4 points which bracket the minimum
and these are used in the next cubic fit. If a bracket cannot be formed by
removal of an end point, the highest end point is discarded and a new cubic
fit is performed. Such a situation is shown in figure 3.4.

A E B O C a

Figure 3.4

If the optimality test in block 20 is passed, and the point E is less than 5,
then E is accepted as optimal. Otherwise, F is evaluated at öc in block 22. If its
value there is smaller than F(x), â is returned. If not, and FC > FB, the qua-
dratic interpolation block is entered; otherwise, the subroutine terminâtes
with an error message.

The blocks in the one dimensional search flow chart labeled « Evaluate
F(x + ad) » are where the basic variables are changed in response to changes
in the nonbasics. As shown in the accompanying flow chart, this block con-
tains 2 subroutines. Subroutine REDOBJ uses a Newton itération to find new
values for the basic variables y, given the values 5c + ad for the nonbasics.
It also checks for violations of currently nonbinding constraints and of bounds
on basic variables, using subroutine BSCHNG to deal with these bounds.

Subroutine NEWG décides whether or not to stay on a newly encountered
constraint. We now proceed to discuss these subroutines.

Subroutine REDOBJ (REDuced OBJective) is the first routine discussed

n° novembre 1974, V-3.

86 L. S. LASDON, R. L. FOX AND M. W. RATNER

thus far that is not very similar to a procedure for unconstrained minimization.
lts input is a vector of nonbasic variables x = x + ad, where a is the current
trial value of the step size, and 3c is the vector of nonbasic variables at the
start of the one dimensional search. It solves the System of NB nonlinear
équations

+ *d) = 0 , /€IBC

for the NB basic variables y. As in [3] and [4], this is done using the pseudo-
Newton algorithm

, * = 0, 1,...

where gB is the vector of binding constraints.
The algorithm is called pseudo-Newton because B~x is not re-evaluated

at each step of the algorithm, as in the standard Newton method. When oc is
given its first trial value in a particular one dimensional search, X is equal to
the feasible point X with which we began the search. As long as Newton
converges, X remains equal to X, at least until the search is over. If Newton
fails to converge, Zmay be set equal to the most recent feasible point, and B'1

is recomputed.
To explain blocks 1 and 2 on page 1 of the REDOBJ flow chart, consider

the tangent plane to the constraint surface at X. This is the set of all vectors (a, b)
satisfying

= 0

where all partial derivative matrices are evaluated at X. In GRG, the change
in x, b, is given by

The corresponding vector a is called the tangent vector, v. Since any scale
factor multiplying v is unimportant, we may as well take a = 1, yielding

v = (dgfdy)-l(Bgl5x)d (25)

In our program, v is computed at Xy the initial point of the one dimensional
search. This vector is used to find initial values, yOi by the formula

as illustrated in figure 3.5. Using these initial values, Newton finds the feasible
point Xx, Then, at Xu v is not recomputed. The old v is used, but emanating
now from Xu to yield the next set of initial values as

y o = J>i + 0*2 — a i >

Revue Française (FAutomatique, Informatique et Recherche Opérationnelle

GENERALIZED REDUCED GRADIENT METHOD 87

Using these, Newton finds the point X2 of figure 3.5. This procedure is
repeated until Newton fails to converge (or until the one dimensional search
is over), whereupon v is recomputed at the last feasible point.

J Y

Tangent Vector, V

Figure 3.5

Tangent Vector Estimate of Basic Variables

Both this logic and the logic of computing B~l have the objective of compu-
ting derivatives of/and the binding gu and of inverting B, only when absolutely
necessary. If Newton converges at each point of a one dimensional search,
then no derivatives or matrix inversions are required during the search.

Newton is considered to have converged if the condition

NORMG- max \gt(Xt)\ < EPSNEWT
teiBc

is met within ITLIM itérations. Currently (using single précision arithmetic;
8 décimal digits), EPSNEWT = 10" 4 and ITLIM = 10. If NORMG has not
decreased in any set of 5 consécutive itérations (or the above condition is not
met in 10 itérations) Newton has not converged, and the 2 alternatives on
page 1 are tried, in an effort to achieve convergence.

The first alternative is tried if the gradients of the objective and the binding
constraints have not yet been computed at the last feasible point, XPREV.
These gradients are evaluated, and an approximation to the true B~l at XPREV
is computed, using the current B~l (evaluated at some earlier feasible point)
and the partial derivatives evaluated at XPREV. This approximate inverse is
computed as follows :

n° novembre 1974, V-3.

88 L. S. LASDON, R. L. FOX AND M. W. RATNER

Let B be the basis matrix evaluated at XPREV, and Bö1 the basis inverse
evaluated at some other point. The approximation to B~l is based on the
identity

= BO(I-B;\BO-B)) (26)

Let
A = Bö\B0 — B) (27)

Then, taking the inverse of both sides of (25) yields

B-x=(J—ArxBZx (28)

If the points at which Bo and B are evaluated are sufficiently close together,
the norm of A will be less than unity, and (ƒ— A)"1 can be expanded in a power
series :

(I—A)-1=I+A+A2 + ... (29)

This series can be used to approximate the Newton correction

S = B'lG (30)

where G is the vector of binding constraints. Using (28) and (29) in (30) yields

The ith order approximation to 8, 8h is obtained by truncating the series
expansion above at the term Al :

The vectors St may be determined recursively as follows

= S o

In gênerai
$J+1 = 80 +

or using the définition of A in (27)

> - 0 , 1 , . . . , / (31)

Returning to alternative 1 on page 2 of the flow chart, this alternative is
implemented by choosing the order of approximation i(i ^ 1) and, within the

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

GENERÀLIZED REDUCED GRADIENT METHQD 8 9

Newton subroutine, approximating S as 8t using the recursion (31). For i = 1,
this is the approximation suggested by Abadie in [3J-|4].

If, after trying alternative 1, Newton again faiîs to converge, alternative 2
is tried. This alternative computes the true B~l at XPREV, uses it in (25) to
compute a new tangent vector, and returns to the Newton subroutine. If Newton
still faiîs to converge, the final alternative is tried : the objective is set to a very
large value (1030), and we leave subroutine REDOBJ, returning to the one
dimensional search subroutine. The large objective value will cause the search
subroutine to decrease a. This will occur either in block 3 of block 11 of the
subroutine. This cutback procedure will continue until Newton converges.
This must happen eventually, since Newton will converge if the initial point
is close enough to the solution.

Once Newton has converged, we check the positive gt constraints to see
if any are now binding or violated. Let the point Newton has obtained be

i=(K^) , x + ad)

where
y)^0 , i€lBC

Assume that some nonbinding constraints are violated;

$ 0 , I€IVC

The program attempts to find the point at which the first nonbinding
constraint went to zero. That is, we wish to find the smallest value of oc, a*,
such that ail constraints in IBC are binding, exactly one constraint from IVC
is binding, and ail other constraints in IVC are positive. Hence oc* satisfies

, i + a<0 = 0 , z€lBC (32)

and
ii(y(&) > x + ad) > O

where ke IVC. This is illustrated in figure 3.6 where IVC = (2,3), k = 2.

Of course, the index k is not known in advance, so linear interpolation is
used in block 3, page 2, to estimate the values of a* and k. The Jacobian
for (32), / , is

B

ww t

n° novembre 1974, V-3.

Previous Feasibie
Point , XPREV

X + ocd

Figure 3.6
Finding First Violated Constraint

F U + Otd)

Caselr ,
a2 Min (a*,OEb)

F (X +Otd)

Case 2 a

a2
- Case 2 b

Figure 3.7
Behavior of Reduced Objective at Intersection with New Constraint

Revue Française d*Automatique* Informatique et Recherche Opérationnelle

GEN3RALIZED REDUCED GRADIENT METHOD 91

where

and s is an NB component column vector whose éléments are (dgt/ôx)Td
for i € IBC. Since / involves only adding a border to the current basis matrix,
B, its inverse is easily computed if B"1 is known. In our program, the border
vectors w, s, t are evaluated at the last feasible point, XPREV, and, as a first
try, the current B"1 is used, even if it was evaluated at a point other than
XPREV. The resulting / " l may be a kind of «hybrid», but if Newton converges,
an inversion of B has been saved. Looking at figure 3.6, since Newton converged
to X, using the current B~l and starting fróm XPREV, one would expect it to
converge to the point X*, which is closer to XPREV» even though an additional
constraint has been added. If Newton fails to converge, the same three alter-
natives as before (with minor modifications, see block 5, page 3) are tried,
until convergence is achieved. Then the remaining constraints in IVC are
checked to see if they are positive. If one or more are négative, then the linear
interpolation estimate of which constraint was violated first was in error.
We go back to the linear interpolation block, as the first step toward finding
a new value of oc*. This cycle may be repeated a number of times, but the
séquence of a* values should decrease. If not, the procedure is not working
and we stop with an error message. Otherwise, we leave this section of code
with k as the index of a new binding constraint and a* as the a value at which
this constraint is binding.

The last major task in REDOBJ is to deal with any basic variables which
have violated their bounds. This occurs in subroutine BSCHNG (block 4,
page 2 of REDOBJ flow chart). Turning to its flow chart, the first action (block 1,
page 1) is to check if any bounds on basic variables have been violated. Note
that, if any gt constraints had been violated, the basic variables are now equal
to their values at the point X* = 0>*, x + v?d). For example, in figure 3.6,
the y value at X* might be below its lower bound. If some basic variables do
violate their bounds, we proceed through essentially the same logic as is used
in dealing with violated gt constraints. The result is a value of a, ad, such that
all components of Xa&) except one are strictly between their bounds, with that
one, Xh equal to one of its bound values. Then, after storing the current
feasible point as XPREV, we leave subroutine REDOBJ.

The next subroutine encountered in evaluating the reduced objective is
NEWG. If a new gt constraint and/or a bound on a basic variable has been
made binding in REDOBJ, NEWG décides whether or not it should remain
binding. The behavior of the objective F(x) is the determining factor. Using
figure 3.6 as an example, if the one dimensional minimum of F occurs for a less
than a*, then the new constraint g2 is not made binding. The one dimensional
minimum lies in the current constraint intersection, so the step size is reduced,

n° novembre 1974, V-3.

9 2 L. S. LASDON, R. L. FOX AND M. W. RATNER

and the search for an optimal a continues. If, however, F is still decreasing
at a*, the one dimensional minimum is on the boundary of the current cons-
traint intersection. The new constraint g2 is made binding and the one dimen-
sional search terminâtes. If both a bound on a basic variable and a new gt

constraint become binding in REDOBJ, this logic still applies, but with a*
replaced by min (oc*, a&).

The program has been designed to make these décisions without using
derivatives. If in block 1, page 1, the objective at min (a*, <x&) is larger than
that at the last feasible point, then the new constraint is not added. This is
case 1 of figure 3.7, If the objective is smâller, then we must détermine if case 2a
or case 2b of figure 3.7 hôlds. The reduced objective is evaluated at a point
nine-tenths of the distance between the last feasible a value and min (oc*, ocd).
If the objective value there is smaller than that at min (oc*, afc), case 2b is assu-
med to hold and the new constraint is not added. Otherwise case 2 a holds.
Either a new constraint is added or the basis is changed, after which we return
to the start of the main GRG program with a new reduced problem to solve.

The new constraint incorporation or basis change is carried out in sub-
routine CONSBS. The input to this subroutine is a list of indices of variables,
the candidate list. In block 2 of the NEWG flow chart, this list is set equal to
the current list of basic variables. Then CONSBS is called. The outputs of
CONSBS are (a) a new list of binding constraint indices (b) a new list of basic
variable indices and (c) a new basis inverse, called BINV in the flow chart of
CONSBS. On page 1 of this flow chart, the array IREM contains the list of
rows which remain to be pivoted in. This is initialized in block 1. The subrou-
tine opérâtes in 2 modes, indicated by the variable MODE. When MODE = 1,
CONSBS will choose pivot columns from whatever candidate list was input
to it. If a basis inverse could not be constructed from columns in this candidate
list, or if the original candidate list included all variables (NCAND = 2V,
block 2), MODE is set to 2, and CONSBS will choose pivot columns from the
list of all admissable columns. A column is admissable if its variable is farther
than EPSBOUNDS (currently 10" 5) from its nearest bound, and if it has not
yet been pivoted in.

The main loop of CONSBS begins at block 3. A pivot row is chosen as
IROW in block 4. The choice of ISV in block 5 is motivated by the désire to
have basic variables as far from their bounds as possible, so thàt fewer basis
changes will be required. The other criterion influencing the choice of basic
variables is that the basis matrix should be well-conditioned. We try to insure
this by choosing as a prospective pivot column that index, ƒ, in ISV yielding

max |TAB(IROW,/)|
jreisv

This is done in block 6.1f the element chosen passes 2 tests we pivot on it
(block 8), transforming the Jacobian and entering that column into 2T"1. The

Revue Française d* Automatique, Informatique et Recherche Opérationnelle

GENERA1XZED REDUCED GRACIENT METHOD 9 3

column pivoted in is marked inadmissable (block 7), and the procedure is
repeated for each binding constraint until either B~l has been constructed
(JVbranch, block 9) or the candidate list has been exhausted (Fbranch, block 10).

The two tests that a pivot element muét pass are (a)its absolute value must
be larger than EPSPIVOT (currently 10" 6) and (b) the absolute value of thé
ratio of all other éléments in the pivot column to the pivot element must be
less than RTOL (currently 100). The first test insures that we do not pivot
on an element that is essentially zero, wtiile the second protects against the
génération of éléments of large absolute v^lue in B~K Suçh values are sympto-
matic of ill-conditioned basis matrices. If either test is failed while MODE = 1,
we simply do not pivot in the current row, and move on to the next one.

If, when mode 1 terminâtes, B~l has not yet been constructed, we attempt
to complete its construction by considering columns not in the original candi-
date list. Mode 2 is entered at marker 5 of the flow chart. In block 11, the
candidate list, ICAND, is reset to the set of all remaining admissable columns,
MODE is set to 2, and we return to the start of the main itérative loop. If, in
this second phase, a pivot element fails the absolute value test, we temporarily
mark all columns in ISV inadmissable (by setting their indicator inthelGNORE
array to 1, in block 12) and choose a new ISV array. If all admissable matrix
éléments in a row fail the absolute value test, the matrix is considered to be
singular. If a pivot element fails the ratio test in mode 2, it is deleted from ISV
in block 13, and the ISV element with second largest absolute value is tried,
and so on. If all fail, we set ISKIP = 1 in block 14, which causes us to pivot
on the element originally selected, ignoring the ratio test.

4. A NUMERICAL EXAMPLE

Consider the problem
minimize F(X) = (Xx — l)2 + (X2 — 0.8)2

subject to

Xx > 0 , 0 < X2 < 0.8 , -X3 ^ 0 , X4 ^ 0 , X5 ^ 0

where Z3, X4, X5 are slack variables. The feasible région for this problem is
graphed in figure 4,1, along with contours of constant value of the objective,
The constrained optimum is on the surface G2 = 0 at the point Xx = 0.894,
X2 = 0.8. The starting point is Xx = 0.6, X2 = 0.4, which lies on the line
g3 =• 0, and X2 is the initial basic variable.

a'° novembre 1974, V-3.

9 4 Lk Si LASDONi Ri Li FOX AND M. W. RATNER

Hénce
y = X29 x = (xu:x2) = (XuXs), IT * = 1

The objective of the first reduced problem, F(x)9 is obtained by solving g3

fpr X2, yielding
X2 = 1 .+ %S %1

and substituting this into ƒ, yielding,

F{x)^(Xt- l)2 + (0.2 + X5 - Xt)
2

whose gradient at x = (0.6, 0) is

VF(x) = (dFI8xu dF/Bx2) = (0, — 0.8)

Since Xs is at lower bound, the initial H matrix is (see block 1, page 1,
main GRG program flow chart)

- (i o)
so

In block 2, page 1 of the main GRG program, we check if X5 should be
released from its lower bóünd. Since the Kuhn-Tucker multiplier for this
bound is négative :

Xf
2 = 3F/3JC2 = — 0.8

x2 s X$ is released from its lower bound. The new H is

H==\0 1

so now
d = — HVF=z (0,0.8)

and we enter the one-dimensional search subroutine with 5 = + oo.
This initial one dimensional search varies Xx and X5 according to

Xt = Ö.6

so we move along the vertical line shown in figure 4.1. The initial step size is
chosen to limit the percent change in any variable to less than 5 % or, if a
variable is zero, to limit the absolute change in such variables to be less than 0.1.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

GENERALIZED REDUCED GRADIENT M1THOD 95

This latter criterion applies here, since only X2 is changing» and its initial value
is zero. Hence, the initial a, a0, is chosen such that

0.8<xo = 0.1

1.0

0 8

0,6

0 4

0,2

\

X
, \
~* X 6,

— X 3JT
x si4

- / X 21

— / Star*/

/ \ \ f 1 1 1

* //
/

/

\

\
\

i i

9 2 -0

/

y 0

.0065
-F- 0.009

\

M3 {Optimal)

s/93-O

l \ l

or

0,2 0,4 0,6 0,8

Figure 4.1
Example Problem

a0 = 0.125

t .o

The séquence of a and objective values generated by the one dimensional
search is :

0
0.125
0.250

objective

0.32
0.25
0.20

The séquence of points generated is shown as points 1, 2, 3 in figure 4.L
For a = 0.250, Xt = X% = 0.6, which lies on the constraint gt = 0. The fact

n° novembre 1974, V-3.

96 L. S. LÀSDON, R. L. FOX ÂND M. W. RATNER

tÜat gi has become binding is detected in block 6, page 2 of REDOBJ. Since
the reduced objective is lower at oc = 0.250 tîjan at the previous point, the
N branch is taken in block 1 of NEWG. The reduced objective is computed
at oc == 0.2375, and since its value there, 0.2041, is larger than the? value at
a = 0.250, the one dimensional minimum over the interval [0,0.250] is assumed
to occur at a = 0.250, Le. case 2a of figure 3.7 holds. A new basis is cons-
tructed in subroutine CONSBS, which yields

IBC = { 1 }
basic variable y = X2

nonbasic variables x = (xl5 x2) = (Xl5 X3)

Control is then transferred back to point (5), page 1, of the main GRG
flow chart, and the second major itération begins.

Since X^ is at lower bound, H is set to

'l 0)
lo oj

ff :=

The reduced gradient at x = (0.6, 0) is

VF =(—1.2,0.4)
so

No variables are released from their bounds, 5 = + oó, and the one dimen-
sional search begins, varying the nonbasics according to

X,x = 0.6 + 1.2a

This corresponds to motion along the line gt — 0. The séquence of a and
objective values generated is

a

0
0.025
0.05
0.10

0.20

objective

0.2
0.1658
0.1352
0.0848

X2 < 0.8
violated

Revue Française d'Automatique, Informatique et Recherche, Opérationnelle

GENERALIZED REDUCED GRADIENT METHOD 97

Figure 4.1 shows the corresponding values of Xx and X2 as points 5 thru 8,
The last a value, a = 0.20, yields Xx =0.84, X2 = 0.84, which violâtes the
upper ^bound on X2. This is deteçted in REDOBJ by subroutine BSCHNG,
which attempts to satisfy the upper bound by solving the system

gi(y> x + *d) = 0.6 + L2a — X2 = 0

X2 = 0.8

which yields a = 0.166, corresponding to point 9 of figure 4.1. The objective
value at point 9 is 0.0400, which is smaller than the value of .0848 at the last
feasible point, point 7. Hencé, in NEWG, we take the N brarich in block 1,
and eyaluate F at a = 0.160 in the nexi block, (point 10, figure 4.1) yielding
F = F = 0.0433. This is larger than the value at point 9, so 9 is accepted as the
minimum, and subroutine CONSBS is çalled. This yields a new set of basic
variables, and a new basis as follows :

IBC = { 1 }
basic variables y = Xx

nonbasic variables x = (X2, X3)

After leaving CONSBS, we return to page 1 of the main GRG flow chart
to begin the third major itération.

Since both nonbasic variables are at upper bounds, H is set to the zero
matrix. To obtain the current reduced objective, we solve the binding constraint
for the basic variable in terms of the nonbasic :

so
Xi = X2 -f- X3

Substituting the above into the objective yields the reduced objective as

F(x) = (X2 + Z 3 — l)2 + (X2 — 0.8)2

whose gradient at X2 = 0.8, Xz — 0 is

VF=(—0.4, —0.4)

In block 2, page 1 of the main GRG program, X3 has a négative multiplier
with value — 0.4, so it is released from its lower bound.

H is set to

n° novembre 1974, V-3.

98 L. S. LASDON, R. Lv FOX AND M, W. RATNER

and the search direction is
rf=_JïVF= (0,0.4)

We begin the one dimensional search» with the nonbasics varied according to

X2 = 0.8
X, = 0 + (0.4)oc

The oc and objective values generated by this search are

a

0
0.16
0.32

objective

0.04
0.018

g2 violated

The corresponding values of Xt and X2 are shown as points 11 and 12 in
figure 4.1. Subroutine REDOBJ detects the violation of g2, and attempts to
make g2 binding by solving the System

gi(y> x + ocd) = Xt — 0.8 — 0.4a = 0

g2(y, x + ad) ^—Xf + 0.8 = 0

This is accomplished in one itération of Newton's method, starting from
iüitial values

(Xl9v) = (0.893, 0.234)

(computed in block 3, page 2 of REDOBJ), with inverse Jacobian

1 —
— 1.728

- 0 . 4] " * [0 — 0 .
0 J " [—2.50 — 1,

— 0.578
44

The final values are Xt = 0.894, oc = 0.236 which corresponds tó point 13
of figure 4.1. The objective value at that point is 0.0111, which is lower than the
value at the last feasible point, point 11. Hence, in NEWG, the abjective is
evaluated at point 14, which is 0.9 of the distance between points; 11 and 13,
corresponding to a = 0.2285. The value there is F = 0.0117, which is larger
than the value at point 13, so subroutine CONSBS is called to construct a
new basis. The results are

IBC = {2}
basic variables y — Xx

nonbasic variables x — (X2, X4)
B~l = — 0.5590

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

GENERALIZED REDUCBD - GRADIENT METHOD 9 9

Returning to page 1 of the main GRG program flow chart, the reduced
gradient is

VJP=(—O;118, 0.118)

Since X2 is at upper bound and XA at lower bound, the Kuhn-Tucker
multipliers for these bounds are

- 0 . 1 1 8

Since both are positive, point 13 is optimal.

REFERENCES

[1] DANTZIG G. B., Linear Programming and Extensions, Princeton University Press,
Princeton, NJ., 1963, pp. 94-95.

[2] LUENBERGER D., Introduction to Linear and Nonlinear Programming, Addison-
Wesley, 1973.

[3] ABADIE J, and CARPENTIER J., « Generalization of the Wolfe Reduced Gradient
Method to the Case of Nonlinear Constraints» in Optimization, R. Ketcher,
Ed., Academie Press, 1969, pp. 37-47.

[4] ABADIE J., « Application of the GRG Algorithm to Optimal Control Problems »
in Nonlinear and Integer Programming, J. Abadie, Ed., North Holland Publishing
Co., 1972, pp. 191-211.

[5] GOLDFARB D., Extension of Davidons Variable Metric Method to Maximization
Under Linear Inequality and Equality Constraints, SIAM J. Appl. Math, Vol. 17,
No. 4, July 1969.

[6] LASDON L. S., FOX R., TAMIR A. and RATNER M., An Efficient One Dimensional
Search Procedure, Report No. 54, Division of Solid Mechanics, Structures, and
Mechanical Design, Case Western Reserve University, June 1973.

[7] HÜCKFELDT V., Nonlinear Optimizatïon with Upper and Lower Bounds, Technical
Memorandum No. 194, Opérations Research Department, Case Western Reserve
University, Cleveland, Ohio, April 1971.

ö novembre 1974, V-3.

100 L. S. LASDON, R. L. FOXvAND-M;* W. .RATNER

TABLEAU I

Subroutinc CONSBS

j Inicialize : BÎNV*- identity mains
j ICT — 0, f Stap •«- 0, IGNORE (Q = O, f « \,.... Af j

!
Détermine indices of currently bindtnj
constraints. S'fj = number or binding

I Computc gradients of binding constraints
| store in array TAB

iMark any variable wilhin EPSBOUNDS of]
| eitlier of its bounds inadmissabie I

\IROW ^ !REM{iCT)\

©
Select (up to) 5 admissabk candidate
variables with IGNORE (/) = 0 which are
farthest from their bounds. Store

idices in array ISV. Let NSV = nuniber
of indicts in ISV.

Scan row 1R0W of TAB. From columns
with indices in JSV, piek one with
element of largest absolute value. Let
element value =• PIV, column index « ICOL

Subroutine CONSBS"

BD

Mark ICOL inadmissable
store ICOL in list of basic
variables in position !R0W

©
Pivot on TAB (IROW, iCOL)
update ail admissable
rolumns of TAB and
;olumns of B/NV Go back and

reconslruct ÎSV

(Any rows
to pivot in

Construct index set of nonbasic
variabtes : those noL in list of
basics, plus sfacks- for binding
constraints

Subroutinc CONSBS

Set up for
Mode 2

NREM •*- number of rows not yet pivoted

IREM <- ïist of row indices not yet
pivoted in

(CAND *-
iVCANO —

list of
numbe

ttil admissabk variables
r of indices in WAND

(2) opposite

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

GENERALIZED:REDUCED GRADIENT METHOD 101

TABLEAU II

Subroutme REDOBJf

^
[Computc tangent vector, v |

®-

ingent vector, t

®
Compute initial values for basic variables, y,
using tangent vector, v, with base point,
Jr7»)t£K, the last feasible point obtained

ICall NEWTON : atterapt to compute new
values for basic variables

Try final alternative
set' objective value to
10". Will cause 1 dj-
mensiohal search to eut
back step

Try alternative 2
compute exact B'l

at XPREV, if not

Try alternative I :
gradients of binding cons-
traints with respect to basic
variables at XPREV, if not
alrcady done

I Compute new U
gent vector, f

©
AAny

I Compute approximate S~i

XPREV using first order
Taylor series expansion

| Compute new tangent vector, 1

begin check for violated
constraints and violated
bounds on basic variables

nonbinding coastraints bindingN

/'Any nonbinding constraints"
yviolated at cnrrent point

©

k *~ index of
new binding
constraint

®
Use linear interpolation between current
and previous values, of violated cons-
traints to estimate « value at which first
one goes to zero. Let « value ,'«= K*,
constraint index = k

Call Subroutinc
BSCHNG : checks
for violated bounds
on basic vartables

Add a as new basic variable with initial
value «*, Add gk as new binding cons-
traint. Compute initial values for other
basic variables '

I Compute inverse Jacobian for augmented
system by adding border to current B~* j

opposite

Subroutine REDOBJ

i
| Call NEWTON |

-<NEWTON Converged^

Try same 3 alternatives
to force convergence as
are used on page 1.
Only différence is that,
in alternative 2, S~} is
computed at a point on
the tangent plane corres-
ponding to the tangent
vector estimate of the
basic variables.

>y constraints v
current point

B^-i—('Current a. less thaoN
its previous value J

Subroutine BSCHNG

CStart)

©

©-
(Any bounds on basic variables violated'

* r̂ Y

Use linear interpolation between XPREV
and X to estimate a value at whïch first
basic variable reaches a bound.a value = K»,
index of variable = /

Construct augmented System of binding
constraints. New basic variable'is a. New
constraint is X{l) = bound value

I' Compute inverse Jacobian for
augmented system by adding border to B~'\

n° novembre 1974, V-3.

102 L. S. LASDON, R. L. FOX AND M. W. RATNER

TABLEAU III

One Dimensional Scarch ©
start with

= currtnt values of variables = (x, y), with
nonbasics, y = basics

= initial step size, d — current scarch direction
= maximum allowablc step size

[Ëvahiate F{x + «d) = FC\

© y
(SWFLG = I or FC too large>

Move 3 point pattern
ahead one step ;

FA +-F3
FBt~FC
C*- 2 * B — M * A

@
\CTR *- CTR + 1 1

One Dimcnsional Search

start cubic
interpolation

^

}Evaluate f f f + «rf) = FM]

Fit cubic through current 4 points
and find relative minimum at £
and value at minimum, FQ

[Evaluate FÇc + *d) = t

' t
\FM+-FE\

and
\}{FE — F&IFE\ < 6

y
t Return with optimal) ^

Eliminate one of end points to
yeiid 4 point bracketing
pattern

quadratic interpolation

Flowchart for « Evaluate fff -f «4>»

(Ster?)

jnbasic variables, x, by
1 jt *- 'x + qrf J

Cal! subroutine REDOBJ :

Attempu to find new values for basic variables, y.
ir sucecssful, checks for violations of non binding
constraints and of bounds on basic variables. If any
found, roakes one binding

Call subrouüne NEWG :

If some non binding constraint was made binding
in REDOBJ, décides whether or not to stav on k or
to move back away.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle

GENERALIZED REDUCED GRADIENT METHOD 103

TABLEAU IV

a ORG Program

o*-initial X, i-*~Q
yo+- initial basîc variables
x**- initial non basic variables
COttSFLG+-0

f71 > lSet /f matrix to identity, except diagonal]
V * r ^ 1 éléments zero for var lab] « at bounds I

ra (Compme gradients of objective and binding f
V ^ * jcomtraints at X, Compute B~' =• Qg/ô>r».|

| Computc VfT*.)|

©
Check whether any components of x should
be iclcased Trom their bounds : îf só release
tkem by setting the corresponding diagonal
éléments of H to unity

ICompute a =3 largest K such that f
x, + «4 salisfics all bounds |

1f

Optimality test : are Kuhn-Tucker conditions
satisficd to within EPSTOP

or
Is percentage change in objective !ew than
EPSTOP for NSTOP consécutive itérations

Call One Dimensional Search Subroutitic : coraputes new a value,
«(, and new X vector Xl+l —. X, + tx^. It may transfer to start of
program if basis changes or new constraint is encountered.

® t * Vhas hit a bo
some non basic variable

bound

Let je, be the variable hitting a
bound and lel tf, be column r
of H.
Update Af by

One dimensional search termi-
nated without any new constraints
being encountered. Computc gra-
dients of objective and binding
coDstraints at XitrX

I Compute B~l at
Compute Vfï^ (+

Subroutine NEWG

(StâTT)

/T>Jcw constraint encounteretTN
(or oound on baste variable
Vviolated in REDOBJ

\sio\w

constraint encountered " \
and bound on basic variable)
Aiolated /

If new constraint was encountered
first (i.e. «• < «»), set LV= 0, where
LV = index of basic variable at its bound

(Is current objective value, Fe?
• than previous one

Compute reduced objective
at a point slightly less
than min (*•, a.)
value there is F

don'tadd new
traint If

CFLG = I, set C
to current « value
otherwisc, set B t
this value

opposite

Call subroutine CONSBS. This wUl
compute a new B~l with a row
for each binding constraint, and a
new set of basic variables

CONSFLG • - 1
Return to point (3)
of main GW program

. p a g e l

n° novembre 1974, V-3.

