~ Revue
d'Histoire des
Mathématiques

Fermat’s method of quadrature

Jaume Paradis & Josep Pla & Pelegri Viader

Tome 14 Fascicule 1 2 O O 33

SOCIETE MATHEMATIQUE DE FRANCE

Publiée avec le concours du Ministére de la culture et de la communication (DGLFLF) et du Centre national de la recherche scienti que




REVUE D’HISTOIRE DES MATHEMATIQUES

REDACTION

Rédactrice en chef :
Jeanne Peiffer

Rédacteur en chef adjoint :
Philippe Nabonnand

Membres du Comité de
rédaction :

Michel Armatte
Liliane Beaulieu
Bruno Belhoste
Alain Bernard

Jean Celeyrette
Olivier Darrigol
Anne-Marie Décaillot
Marie-José Durand-Richard
Etienne Ghys
Christian Gilain

Jens Hoyrup

Agathe Keller

Karen Parshall
Dominique Tournes

Secrétariat :

Nathalie Christiaén

Société Mathématique de France
Institut Henri Poincaré

11, rue Pierre et Marie Curie
75231 Paris Cedex 05

TéL: (33) 01 44 27 67 99

Fax : (33) 01 40 46 90 96

Mél : revues@smf.ens.fr

Url : http//smf .emath.fr/

Directeur de la publication :
Stéphane Jaffard

COMITE DE LECTURE

P.Abgrall . ... ........... France
J. Barrow-Greene . . . . Grande-Bretagne
U. Bottazzini . . ... .......... Italie
J.-P. Bourguignon . . . . ... ... France
A. Brigaglia . . . ............. Italie
B.Bru ................. France
P.Cartier . ........... ... France
J-L.Chabert . . ........... France
F. Charette ... ........... France
K.Chemla............... France
P.Crépel ............... France
F.DeGandt.............. France
S.Demidov . .. ............ Russie
M.Epple ............. Allemagne
N.Ermolaéva. . ............ Russie
H.Gispert. .. ............ France
C. Goldstein . ............ France
J-Gray ........... Grande-Bretagne
E.Knobloch . .......... Allemagne
T.Lévy . . ... ... oo France
J.Liatzen. .. ........... Danemark
A Malet . ............. Catalogne
I Pantin................ France
I.Passeron .............. France
D.Rowe .............. Allemagne
C.Sasaki................. Japon
K. Saito ................. Japon
SR.Sarma ................ Inde
E.Scholz . ............ Allemagne
S.Stigler. . ............ Etats-Unis
B.Vitrac................ France

Périodicité :
Tarifs 2008 :
prix au numéro : 36 €.

La Revue publie deux fascicules par an, de 150 pages chacun environ.

prix public Europe : 65 €; prix public hors Europe : 74 €;

Des conditions spéciales sont accordées aux membres de la SMF.

Diffusion :

SMF, Maison de la SMF, B.P. 67, 13274 Marseille Cedex 9

AMS, P.O. Box 6248, Providence, Rhode Island 02940 USA

© SMF N° ISSN : 1262-022X

Maquette couverture : Armelle Stosskopf


http//smf.emath.fr/

Revue d’histoire des mathématiques
14 (2008), p. 5-51

FERMAT’S METHOD OF QUADRATURE

JAUME PARADIS, JoSEP PLA & PELEGRI VIADER

ABSTRACT. — The Treatise on Quadrature of Fermat (c. 1659), besides con-
taining the first known proof of the computation of the area under a higher
parabola, fx""”/"dx, or under a higher hyperbola, fx_’”/"dx—with the appro-
priate limits of integration in each case—has a second part which was mostly
unnoticed by Fermat’s contemporaries. This second part of the Treatise is
obscure and difficult to read. In it Fermat reduced the quadrature of a great
number of algebraic curves in implicit form to the quadrature of known curves:
the higher parabolas and hyperbolas of the first part of the paper. Others, he
reduced to the quadrature of the circle. We shall see how the clever use of two
procedures, quite novel at the time: the change of variables and a particular
case of the formula of integration by parts, provide Fermat with the necessary
tools to square—quite easily—as well-known curves as the folium of Descartes,
the cissoid of Diocles or the witch of Agnesi.
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RisuME (La méthode de Fermat pour les quadratures). — Le Traité des quadra-
tures de Fermat (vers 1659), contient, outre la premiére démonstration connue
du calcul de l’aire sous une parabole supérieure, jx"’m/”dx, ou sous une hy-

perbole supérieure, J'x’m/"dx—avec les limites d’intégration correspondants a
chaque cas—, une seconde partie qui est passée presque inapercue aux yeux de
ses contemporains. Cette partie du Traité est obscure et difficile a lire. Fermaty
réduit la quadrature d’un grand nombre de courbes algébriques données sous
forme implicite a la quadrature connue de certaines courbes: les paraboles et
hyperboles de la premiére partie de son article. D’autres quadratures sont ob-
tenues par réduction a la quadrature du cercle. Nous verrons comment 'usage
intelligent de deux procédés, assez nouveaux a lI’¢époque, le changement de va-
riables et un cas particulier de la formule d’intégration par parties, en fait un
outil pour quarrer—assez facilement—des courbes aussi fameuses que le fo-
lium de Descartes, la cissoide de Diocles et la cubique (sorciére) d’Agnesi.

1. INTRODUCTION

One of the last papers of Fermat is devoted to the quadrature (in the
sense of finding the area of a plane region enclosed by a curve and some
other lines) of a wide family of algebraic curves, among which the best
known and more widely treated by historians are the “higher parabolas”,

that is curves with equations of the form y = x/"

, with m, n integers and
m/n > 0 and “higher hyperbolas”, with the same equation but with m/n <
0,# —1. This is done in the first part of Fermat’s paper. The second part
is concerned with the reduction of the quadrature of some curves to the
quadrature of others. The paper was written around 1659 and has quite a

lengthy title:

On the transformation and alteration of local equations for the purpose of
variously comparing curvilinear figures among themselves or to rectilinear fig-
ures, to which is attached the use of geometric proportions in squaring an infi-
nite number of parabolas and hyperbolas. [Translation by Mahoney, Mahoney
1994, p. 245].

This long title, understandably enough, has been abridged to Treatise on
Quadratures [ibid].

1 De equationum localium transmutatione et emendatione ad multimodam curvilineorum in-
ter se vel cum rectilineis comparationem, cui annectitur proportionis geometrice in quadrandis
infinitis parabolis et hyperbolis usus [Fermat c. 1659, p. 255].
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It was published in 1679 as part of the collected works of Fermat edited
by his son, Clément-Samuel [Fermat 1679, pp. 44-57].

Prior to the Treatise, Fermat had done some work on quadratures. He
had tried, unsuccessfully, to square the cycloid * and some correspondence
with Cavalieri and Torricelli proves that he had already been working on
the problem of quadratures at the end of the 1630’s and early 1640’s, see
[Mahoney 1994, p. 244].

A description of the contents of the Treatise can be found in two impor-
tant works: Zeuthen’s [1895] and Mahoney’s [1994]. Mahoney’s is a book
published originally in 1973 with a second printing in 1994 and can be con-
sidered as the current obliged reference on Fermat’s mathematical work.

In 1644, according to [Zeuthen 1895, pp. 41-45], Fermat was already
in possession of the proof of the computation of the quadrature on [0, 0]
of the parabolas with equation §™y" = b"x™, with m,n positive integers,
and b a given constant. * This was precisely the year in which Fermat sent
his results to Cavalieri via father Mersenne. The complete transcription of
his work on quadrature into the Tieatise must have taken place after 1657,
most likely in 1659 [Mahoney 1994, pp. 244-245, 421], [Zeuthen 1895, p.
45]. In that same year he included the quadrature on [, c0) of the higher
hyperbolas x™y" = §"*" m > n," using an appropriate partition of the
coordinate axes with the help of geometrical progressions. The details can
be found in [Mahoney 1994, pp. 245-254], [Bos et al. 1980; Boyer 1945;
Katz 1993]. Respect this part of the Treatise we have nothing new to say. It
has been thoroughly studied for its great importance within the history of
integration since it goes apace with the research of other mathematicians
of the 17t century as Pascal, Cavalieri, Torricelli, Wallis, Barrow, etc. who

were working on the problem of the integration of x" .

2 Thisis a problem that Wallis solves in his Tractatus duo. Prior de cycloide [...] (1659)
using his method of “interpolation by analogy”, see [Whiteside 1961, pp. 242-243].
The first to square the cycloid was Roberval in 1634 in his Traité des indivisibles, (first
published in Paris 1693), see [Walker 1932].

3  Fermat multiplies each side of the equation by the constant b raised to the neces-
sary power in order to maintain the homogeneity of dimensions. See later note 15.
4 With the exception xy = b2,
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Fermat, after having squared the higher parabolas and hyperbolas, tack-

les the second part of the Treatise and says: °

Itis remarkable how the theory just presented [the quadrature of the higher
parabolas and hyperbolas] can help to advance the work on quadratures since
it allows for the easy quadrature of an infinity of curves which no geometer, nei-
ther ancient nor modern, has thought of; this will be summarized in some brief

rules. ©

Itis precisely about this second part that we think our article adds some-
thing to the existing literature. The excellent contributions of Zeuthen
[1895] and Mahoney [1994], despite highlighting the importance of the
Treatise, cannot devote much space to it since their aim is much broader.
Therefore their treatment of the second part of the Tireatise is rather de-
scriptive and does not unravel the logical thread that conducts all the
examples presented by Fermat. Zeuthen describes quite accurately the
method and each of the individual examples but he neither delves into
the method’s more delicate aspects nor considers the examples as a whole.
Moreover, he does not pay any attention to the question of the limits of
integration, which are almost completely disregarded by Fermat. As far as
the method and its details are concerned, Mahoney is more thorough but
he does not look into all the examples.

In section 2 we have a look at the mathematical context in which Fer-
mat’s method was immersed. As we will see, the method, for different rea-
sons, was completely unnoticed. In section 3 we undertake the revision
of the basis of Fermat’s method which consists of his proof of the linear
character of the squaring of sums of parabolas and hyperbolas. Section
4 is devoted to the two instruments of Fermat’s method: a particular in-
stance of what we call today the formula of integration by parts (we call
this result the General Theorem) and the change of variables. Sections 5 to 8
are devoted to the core of Fermat’s paper: the first quadratures beyond the

higher parabolas and hyperbolas (section 5); the quadrature of the folium

5 All translations into English of Fermat’s quotations are the authors’.

6 Ex supradictis mirum quantam opus tetragonismicum consequator accessionem: infinite
enim exinde figure, curvis contente de quibus nihil adhuc nec veteribus nec novis geometris in
mentem venit, facillimam sortiuntur quadraturam; quod in quasdam regulas breviter contra-

hemus [Fermat c. 1659, pp. 266-267].
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of Descartes as the firstimportant example of the power of his method (sec-
tion 6); the quadrature of the witch of Agnesi and the cissoid of Diocles
(section 7). In appendix A we reconstruct this last quadrature since Fer-
mat only mentions in passing that it can be carried out in a similar way to
the quadrature of Agnesi’s curve. This reconstruction is important because
the quadrature of the cissoid reduces to the quadrature of an odd power
of the ordinates of a circle, that is to say, the area under the graph of a
function like y = Vb2 — x2, (odd m). This is precisely what is done in sec-
tion 8. Section 9, finally, studies the last example presented by Fermat, a
rather involved quadrature that requires several iterations of his method.
Lastly, some concluding remarks are offered in section 10 followed by four

mathematical appendixes.

2. MATHEMATICAL CONTEXT

Henk Bos, [1989] or [1993, p. 1], talking about recognition and wonder
as the “ingredients” that make history an interesting subject of study said:

The unexpected, the essentially different nature of occurrences in the past
excites the interest and raises the expectation that something can be discovered
and learned.

For us, the second part of Fermat’s Treatise has a much greater interest
than the first since, using Bos’ description, it awakes in us a feeling of won-

der. In Mahoney’s words:

In this second part, Fermat grouped together all his mathematical forces—
his analytic geometry, his method of maxima and minima, his method of tan-
gents, and his direct quadrature of the higher parabolas and hyperbolas—to
construct a brilliant “reduction analysis” for the quadrature of curves [Mahoney
1994, p. 254].

These words reflect the importance of this second part where Fermat
develops a true “method” in order to reduce the quadrature of a wide class
of algebraic curves to known quadratures among the higher parabolas and
hyperbolas as well as the reduction of the quadrature of other curves to
the quadrature of a circle. These procedures constitute one of the most

interesting lines of research of Fermat’s and their success can be attested
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by the quadrature of some well-known curves: the folium of Descartes, the
witch of Agnesi (the versiera or versaria), and the cissoid of Diocles. 7 Both
Zeuthen and Mahoney coincide in pointing out that the words transmuta-

tion and alteration in the title of the Treatise clearly show two things:

1) that the Treatise’s goal was much more ambitious than the simple
quadrature of parabolas and hyperbolas of its first part, and

2) that Fermat was imitating Viete who in his De Zquationum recognitione
et emendatione (published posthumously in 1615) had studied the solubil-
ity of algebraic equations with the help of their “transmutation” and “al-
teration”. Fermat wanted to do the same with the algebraic equations of

curves to determine their “quadrability”.

Notwithstanding these two points in mind, a first reading of the second
part of the Treatise leaves the reader with the impression that Fermat treats
the quadrature of a few particular curves in a disconnected and confused
way. Hence, the hasty reader tends to disregard this part of the paper as a
simple speculation without great actual importance. This is probably what
happened to Huygens when he read the Tieatise the year it was published,
1679. In a letter to Leibniz he says talking of the Treatise:

[...]1]J ai recherché la dessus ce que me souvenois d’avoir vu dans les ceuvres
posthumes de Mr. Fermat [ Varia Opera], mais ce Traité est imprimé avec tant de
fautes, et de plus si obscur, et avec des demonstrations suspectes d’erreur que
je n’en ai pas scu profiter. [Letter of Huygens to Leibniz, 1 September 1691,
Huygens 1905, p. 132].

Whether the difficulties of Huygens had to do with the first or the sec-

ond part of the paper, is not clear as he does not mention it. 8

7 The quadrature of some of these curves is by no means trivial even with our mod-
ern integration techniques, see [Paradis et al. 2004].

8 As one of the referees pointed out, the Latin original of the Treatise contains also
quite a number of mistakes and errors. Thus, Huygens, after reading a few pages
could already have been deterred from continuing. However, it is worth noting that
the quoted letter addresses the problem of the squaring of the catenaria. In the Acta
eruditorum of May and June 1691, both Leibniz and Johann Bernoulli had published
the quadrature of the catenaria alongside with other results concerning this curve.
Huygens confesses that, by his own means, he had been unable to reach these results
and he concludes that it must be “votre nouvelle facon de calculer, qui vous offre, a ce qu’il
semble, des veritez, que vous n’avez pas méme cherchées”, [Huygens 1905, p. 129]. Huygens

says he had been able to reduce the construction of the catenaria to the quadrature of
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In our opinion the Treatise, and specifically its second part, is not the
confused piece of work Huygens suggests. We hope to show that the whole
of the Treatise possesses great depth of thought and the presentation, once
understood, shows the great internal coherence of the ideas considered
(see the quotation on page 8). It is worth mentioning that the Treatise
passed unnoticed by Fermat’s contemporaries,” possibly because it was
not divulged before its publication. Fermat probably wrote it in response
to Wallis’s Arithmetica infinitorum of 1656 but there is no mention of it in
any of Wallis’s later papers or correspondence, see [Mahoney 1994, p.
244].

Later, in the 1680’s, when the Treatise was published, the interest
aroused in the scientific community was also very little. Without a deeper
analysis it is difficult to account for this lack of interest but we dare point
out a few—rather obvious—reasons why this was so. First, the scientific

focus was placed on the calculus of Newton and Leibniz, which was flower-

10

ing with great force at the time '’ and whose emphasis was on the relation

between area and derivative. ! Fermat’s methods, algebraic and geomet-
ric, based on the comparison of the quadrature of two algebraic curves

related by a change of variable, were far from the trend of thought of this

the curve of equation x2y%+a?y®> = a* and he was now able to see, thanks to the papers
of Leibniz and Bernoulli, that the quadrature of this last curve reduced to that of the
common hyperbola but he could not work out how that could be done. This makes us
think that Huygens had read enough of the Treatise to have reached the second part
and have been baffled by it.

9 At the end of his note [Aubry 1912], Aubry remarks that Fermat’s “ingenious pro-
cedure of variable substitution as well as his concern to avoid radicals, both in the
tracing of tangents and in the quadratures, have had a certain influence on Leibniz
and on the updating of his Nova methodus” [our translation], but he does not substan-
tiate his assertion and we have not been able to find any evidence of it. Despite the
existence of the Treatise and the extant correspondence Fermat—Cavalieri on integra-
tion, Andersen [1985] says: “Fermat never disclosed his ideas about the foundation
of arithmetical integration”. She does not mention any influence between both math-
ematicians’ ideas on integration. We are of the opinion that the question deserves a
little more attention but this is not the place to study it.

10 Tt is interesting to keep in mind the date of the first—unpublished—paper of
Newton, “The October 1666 Tract on Fluxions”, see [Edwards 1979, pp. 191 and ff.].
11 This relationship had been established by Barrow in his Lectiones Geometrice, Lon-
don 1670. Before that, perhaps in 1645 (see [Itard & Dedron 1959]), Roberval had
had an intuition of the same result.
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new calculus. Second, Fermat’s style is very laconic and, as he was wont to,
did not devote much effort or space in making his ideas more comprehen-
sible for the reader. ' Even in the cases he solves he does not bother in
making the calculations explicit and he limits himself to a mere descrip-
tion of how to reach the desired quadrature. Third, Fermat’s method of
quadrature could only be used on a very particular class of curves with a
known algebraic equation and did not apply to the more frequent (and
trendy) curves of the time: the quadratrix, cycloid, spiral of Archimedes,
etc. Also, Fermat, contrarily to the rest of authors of the time, did not even
refer to infinitesimal quantities, the germ of the new calculus. Finally,
the technique of the change of variables, with all certainty, was something
new, difficult to grasp and, consequently, suspicious of leading to errors.

Before Fermat and Descartes, curves had no equation. They were de-
scribed by their geometric properties. Consequently the “typical” prob-
lems of the tracing of tangents, the obtention of maxima and minima and
the quadrature of regions enclosed by curves were carried out using the
specific properties of each curve and the language of these calculations was
the language of proportions.

After Fermat and Descartes—and we could even include Viete in the
same lot—algebraic language is introduced and curves can be studied

13 This allows a more methodic treatment of

through their equations.
the problems just mentioned and allows a certain classification of curves:
algebraic and non-algebraic. Among the algebraic ones, the easiest to
treat are, obviously, those expressible as a sum of monomials ax”. Fermat,
though, in the Treatise, develops a method of his own to tackle the quadra-
ture of some of the algebraic curves whose equations are more involved,
that is to say, with sumands of the form ax"y™. This is precisely an implicit
polynomial equation. The treatment of curves with an implicit polynomial

equation was carefully avoided by the 17" century mathematicians. '* In

12 Thisis typical of Fermat’s writings. See [Mahoney 1994, p. 25].

13 But even after analytic geometry was introduced, it took some time before the
equation of a curve was considered enough to “know” it: the construction of the
points of the curve required an accurate geometrical procedure to satisfy the feeling
of real knowledge of it, see [Bos 1987].

14 There are a few exceptions as in the case of the Fermat-Descartes controversy
about the tangents to the folium.
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the problem of the tangents, the first geometer that studies the question
in the case of a curve with an implicit polynomial equation is Sluse gen-
eralizing a method of Hudde for the explicit case, see [Katz 1993, pp.
433-434] and, for more details, [Rosenfeld 1928].

This was in perfect tune of the worries at the 1650’s (see [Baron 1987,
pp. 122-135; 151-156; 205-213]) but as Fermat did not publish his results

in this field, as we have already mentioned, the Tieatise passed unnoticed.

3. FERMAT’S APPROACH

In the second part of the Treatise, after having—in the first—shown how
to square higher parabolas and hyperbolas, Fermat begins by stating that
the quadrature of a curve whose equation is the addition or subtraction of
different expressions can be squared by the addition or subtraction of the

quadrature of each separate summand.

Let us consider a curve whose property leads to the following equation '°

[

(It is seen at once that this curve is a circle.)

We can reduce the power of the unknown ¢* to a root through a division

(application '® or parabolism). We can indeed write ¢? = bu, as we are free to

equate the product of the unknown u and the constant b to the square of the

15 Fermat used, following Viéte, vowels for the unknowns. He uses A and E to stand
for our usual x and y. In their French translation [Tannery & Henry 1891-1912], Tan-
nery and Henry used @ and ¢ instead. They also use other lowercase vowels: o instead
of Y, i instead of I, and o instead of O. We will follow their notation in our translations
into English but in our comments and appendixes we will use x and y in the present
meaning of the abscissa axis and ordinate axis respectively. This is done in order to
make the paper more readable. However we will keep the dimensional homogeneity
that Fermat maintains in all his equations: all the monomials of an algebraic expres-
sion must have the same degree in order to be added or subtracted. This is essentially
Viete’s Homogeneity Law, [Viete 1646, chap. 3, pp. 2-4]. Thus, we will normally use
b—raised to the necessary powers—as a constant that will help us to abide by Viete’s
law. Fermat follows Viéte very closely on this point, not only as a formal requirement
but also, as we will see, as a tool that will help him in his calculations. To know more
about the Law of Homogeneity see [Freguglia 1999].

16 On the sense of the term application see later note 24.
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unknown e¢. We will then have
¥ — % = bu.

But the term bu can decompose in as many terms as those present in the other
side of the equation, affecting each one of these terms of the same signs as the
corresponding terms of the other side. Let us then write

bu = bi — bo,
always representing, following Viéte, the unknowns by vowels. We will have
b — a? = bi — bo.

Let us equate each one of the terms of one side to the corresponding one in the
other side. We will obtain

b?> =bi fromwhich i=2b will be given,
—d®=_t or a®=bo.

The extremity of the line o will be on a primary parabola. Thus, in this case, ev-
erything can be reduced to a square. If we order 7 all the ¢> on a given straight

19 20

line, '® they become '? a rectilinear solid, given and known.

17 Tannery and Henry translate order instead of apply. We will stick to this transla-
tion. Later they use the expression ordered sum. See notes 19 and 24.
18 The interval on which we sum.
19 Tannery and Henry use the word sum to denote the result of the operation. Later,
Fermat uses the word aggregatum and further on, the word sum.
20 Sit curva cujus proprietas det @quationem sequentem:

Bg. — Aq. equale Eq.
(apparet autem statim hanc curvam esse circulum); certum est potestatem ignotam, Eq., posse
reduci, per applicationem seu parabolismum, ad latus.
Possumus enim supponere

Eq. @quariB inU,

quum sit liberum quantitatem ignotam U, in notam B ductam, equare quadrato E etiam in-

gnole.
Hoc posito,

Bq. — Aq. equabitur B in U;
homogeneum autem B in U ex tot quantitatibus homogeneis componi potest quot sunt in parte
@quationis correlativa; iisdemque signis hujusmodi homogenea debent notari. Supponatur igi-
tur
BinU equariB inl —BinY;

ex more enim Vieteo, vocales semper pro quantitatibus ignotis sumimus; ergo

Bg. — Aq. equaturB inl — B inY.



FERMAT’S METHOD OF QUADRATURE 15

Fermat’s next example performs the same decomposition to the curve
with equation x® +bx® = y3. With these two examples, Fermat has just told
us that the sum of all the powers of an ordinate y, when y" = Y a;x', can

be carried out summing each one of the parabolas of the right hand side,

If there are several terms in the equation, each formed with different pow-
ers of one or the other unknowns, they will generally be treated with the same
method by legitimate reductions. ?!

The same can be made when this right hand side is made of hyperbolas

or a sum of parabolas and hyperbolas,

[...] but we obtain not less quadratures by dyeresis, °? with the help of hy-
perbolas, either on their own or in combination with parabolas.

He then presents two examples, one that combines parabolas and hy-

perbolas,
b8 + 6%x + «8
2 _
(1) Y=
and the other using only hyperbolas,
b5 _ .6
2) P="0"
x

Aquentur singula membra partis unius singulis membris partis alterius: sit nempe
Bg. equaleB inl;

ergo dabitur

1 @qualis B.
Aquatur deinde
—Aq., —BinY,
hoc est
Aq., BinY;

erit extremum punctum recteY ad parabolem primariam. Omnia igitur in hoc casu ad quadra-
tum reduci possunt, ideoque, si omnia E quadrata ad rectam lineam datam applices, fiet
solidum rectilineum datum et cognitum [Fermat c. 1659, p. 267-268].

21 Si sint plura in equationibus membra, imo et sub plerisque utriusque quantitatis ignote
gradibus involuta, ad eamdem ut plurimum methodum, reductionum legitimarum ope, poterunt
aptari [Fermat c. 1659, p. 268].

22 The quadrature by means of parabolas is called syneresis.

23 [...] sed non minus quadrationum ferax est opus per diceresim, quod per hyperbolas, aut
solas aut parabolis mixtas, commode parites expeditur [Fermat c. 1659, p. 269].
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The technique is the same in all cases. If we are interested in calculating
the ordered sum>* of the y™, we “linearize” y" through the term b1y, that
is to say, we effect the change of variable y" = 5"~ 'u, and then introduce
as many new variables as necessary. For example in the case of the curve

with equation (1), the new variables are 0,¢ and o:
y% = bu = bo + bi + bo,

which equated term to term with the right-hand side of (1) provide three
new curves: two hyperbolas,

» = x45, bt = xsi,
and one parabola
X% = bo.

The ordered sum of the y? of the original curve can be found through the
“ordered sums” of the ordinates of the variables o, and o referred to the
quadrable hyperbolas and parabola, i.e. their quadrature. It is important
to notice that Fermat makes no comment about the limits of summation of
all those expressions. When squaring a parabola, he takes as dase the inter-
val [0, b] and when squaring a hyperbola, in order to compute the area be-
tween the hyperbola and its asymptote (the axis) he takes as base the inter-
val [b, 0o]. In this sense, the example we have presented is a little confusing

as the presence of both curves in the same quadrature will certainly present

24 Ordered sum are the words Tannery and Henry use to translate the “application in
order” of Fermat. We must recall that Fermat sees the problem of the quadrature of
a curve as a purely geometrical problem that can be solved with the help of algebra.
Hence the geometrical language he uses and his geometrical way of thinking. The
idea is to sum the ordinates thinking of the area to calculate as the result of putting to-
gether all the ordinates that correspond to the curve in question. In that sense, he
reminds us of Cavalieri, with whom he often used to interchange letters, and thus it is
not strange that their language resembles. The actual influence of Cavalieri’s method
of indivisibles on Fermat has not been thoroughly studied. Neither Giusti [1980] nor
Andersen [1985, p. 358], mention any evidence of any influence. One should point
out, though, that their summing methods were entirely different. Fermat, when he
speaks of summing ordinates ordered on a given base, understands the sum of an infinity
of small rectangles—as the first part of the Treatise has clearly shown—, whereas Cav-
alieri’s sums of ordinates are a more ambiguous geometrical idea. Mahoney [1994,
pp- 255-256] translates sum of all the ordinates on a given line as apply all the ordinates to
a given line and discusses at length the use of the word “application” in this new con-
text. We refer the interested reader to this work.
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problems with the limits of summation. Fermat completely ignores this ob-
jection but later, when he applies the method, he never mixes parabolas
and hyperbolas. *°

4. THE INSTRUMENTS OF FERMAT’S METHOD

After the result of the previous section, which can be described as the
“linearity of the summing operation” (the quadrature of a sum is the sum
of the quadratures of the summands), Fermat turns to the first essential

element in his method of quadratures. We will call it the General Theorem:

Let ABDN be any curve [see Fig. 1 ] with base HN and diameter HA. Let CB,
FD be the ordinates on the diameter and BG, DE the ordinates on the base. Let

Al
\\\
C B
N\
0 \
S \\
F e D
e PN
yd \
H ¢ E N
FIGURE 1.

us assume that the ordinates decrease constantly from the base to the summit,
as shown in Fig. 1; thatis to say HN > FD; FD > CB and so on.

The figure formed by the squares of HN, FD, CB, ordered on the line AH, %%
that is to say, the solid

CBZ X CA+ .-+ FD2 X FC+ ...+ NH2 x HF + - ..

25 Tannery and Henry in their Latin version of the Treatise insert a footnote in this
sense, see [Fermat c. 1659, p. 268].

26 When Fermat says, “on the line AH” he means the summation on the interval
[A,H].
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is always equal to the figure formed by the rectangles BG x GH, DE x EH , dou-
bled and ordered on the base HN, 27 that is to say, the solid
2BG-GH -GH + ---+2DE - EH - EG + - - -

assuming both series of terms unlimited. As for the other powers of the ordi-
nates, the reduction of the terms on the diameter to the terms on the base is
carried out with the same ease; and this observation leads to the quadrature of
an infinity of curves unknown till today. *®

If AH = b and HN = d, Fermat’s result, in modern notation would

b d
J xQdy:QJ- xy dx.
0 0

He also states the result for the case of the sum of the cubes, x?’, and the
4

b d | b d
f xgdy:?»J xzydx; J x4dy:4J xgydx.
0 0 0 0

As the reader can see at once, the General Theorem consists of a geometrical

amount to

bi-squares, x

result equivalent in modern language to the following equation, nothing

but an application of the formula of integration by parts (we regain the

d b
J Yy dx = nj YLy dy
0 0

27  Fermat uses the expression “on the base” or “on the diameter” to indicate, first,

usual role of x and y):

the axis on which the infinite partition has to be considered, that is, the modern dx
and dy; second, it is his reference to the interval on which to carry the summation.
28  Sit in quarta figura curva quelibet ABDN, cujus basis HN, diameter HA, applicate ad
diametrum CB, FD, et applicate ad basim BG,DE; et decrescant semper applicate a base ad
verticem, ut hic HN est major FD et FD major est CB et sic semper.

Figura composita ex quadratis HN,FD, CB, ad rectam AH applicatis (hoc est solidum sub CB
quadrato in CA et sub FD quadrato in FC et sub NH quadrato in HF ) equalis est semper
figure sub rectangulis BG in GH, DE in EH, bis sumptis et ad basim HN applicatis (hoc est
solido sub BG in GH bis in GH et sub DE in EH bis in EG) etc. utrimque in infinitum.

In reliquis autem in infinitum potestatibus, eadem facilitate fit reductio homogeneorum ad di-
ametrum ad homogenea ad basim. Que observatio curvarum infinitarum hactenus ignotarum

detegit quadrationem [Fermat c. 1659, pp. 271-272].
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where y(x) represents any curve decreasing from the value b to the value 0
as shown in Fig. 2. %Y Fermat, without stating it, will use the theorem even
if the value 0 is reached at infinity, as is the case of Fig. 3 for which

00 d
J x" dy =nJ X" Ly dx.
0 0

Fermat’s General Theorem is stated without proof. In the case n = 2, as can

FIGURE 2. FIGURE 3.

be judged from the quotation above, a sort of three-dimensional argument
is used which gives a hint for a possible proof, see [Zeuthen 1895, p. 51].
The cases n = 3 and n = 4 are merely worded without more ado.

A geometrical proof of the theorem can be found in a work by Pascal
published in 1659, Traité des trilignes rectangles et de leurs onglets, see [Flad
1963, pp. 142-143] or [Struik 1986, pp. 241-244]. Pascal’s result is more
general but the proof he offers is consistent with Fermat’s geometrical ar-
guments. It is likely, then, that Fermat was familiar with Pascal’s theorem
and its proof through some correspondence exchanged in 1659 [Tannery
& Henry 1891-1912, Fermat to Carcavi, 16 February 1659].

With the General Theorem, Fermat is already in possession of one the keys
to his method. In his own words:

29  We will use the modern integral notation to indicate Fermat’s ordered sums. Thus,
the sum of y2 on the base x will be denoted by nydx. We are conscious of the dangers
of misinterpretation that this notation has, but the advantages it offers for the modern
reader surpass in our eyes this inconvenience.
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From here, as we will see, there will derive an infinite number of quadra-

tures. 30

31

The second instrument he needs is the transformation of equations
with the help from the technique of the change of variables.

The first example he offers begins with the equation of a circle.

2 — ¢? be the equation that constitutes the curve

[...] let, for instance, ¥ —a
(which will be a circle). According to the general theorem above, the sum of the
¢ ordered on the line b [the diameter] equals the sum of the products HG - GB
[see Fig. 1] doubled and ordered on the line HN or d [the base]; but the sum of
the ¢2, ordered on b equals, as has been proven above, a given rectilinear area.
Consequently, the sum of the products HG - GB, doubled and ordered on the
base d constitute a given rectilinear area. If we half it, the sum of the products

HG - GB, ordered on the base d will also constitute a given rectilinear area. >

Fermat applies his General Theorem (to x(y)) and obtains the result (in

the case of his example, »* — y> = x?)

d 1 (b .
nydx:—f xzdy.
0 2 0

In this particular case d = 4.7 But none of these two “summations” cor-
responds, from Fermat’s point of view, to a proper ordered sum of ordinates
applied to a segment. For this reason he needs to “linearize” the product xy

in order to have a properly quadrable (and new) curve.

30 Inde emanant infinite, ut statim patebit, quadrature [Fermat c. 1659, p. 272].
31 Notice that the main emphasis in the title of the Treatise is on the transformation
and alteration of equations. See the introduction, page 10.

32 [...] et sit, verbi gratia, equatio curve constitutiva
Bq. — Aq @equaleEq.,

quod in circulo ita se habet.

Quum ergo, ex predicto theoremate universali, omnia E quadrata ad rectam B applicata sint
equalia omnibus productis ex HG in GB ( bis sumptis et ) ad basim HN sive ad D applicatis;
sint autem omnia E quadrata, ad B applicata, equalia spatio rectilineo dato, ut superius pro-
batum est: ergo omnia producta ex HG in GB, bis sumpta et ad basim D applicata, continent
spatium rectilineum datum. Ergo, sumendo dimidium, omnia producta ex HG in GB ad basim
D applicata erunt equalia spatio rectilineo dato [Fermat c. 1659, pp. 272-273].

33 We must keep in mind that Fermat always uses examples to present theoretical
results. Thus, while the example he offers refers to the circle, he speaks as if the curve
were the curve ABDN of the General Theorem.
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This is the purpose of the second essential element of his method: the
change of variables.

In order to pass easily and without the burden of radicals ** from the first
curve to the new one, we have to employ an artifice which is always the same
and which is the essence of our method.

Let HE - ED [see Fig. 1] be any of the products we have to order on the base.
In the same way that we call analytically ¢ the ordinate FD or its parallel HE
and we call a the coordinate FH or its parallel DE, we will call ea the product
HE-ED. Letus equate this product ea, formed by two lines unknown and unde-
termined, to bu, that is to say, the product of the given 4 by an unknown u and
let us suppose that u equals EP taken on the same line than DE. We will have

bu

— =a.
4

But according to the specific property of the first curve, > b2 —a? = . Replac-
ing a by its new value bu/e we will have b%¢% — b?u® = ¢* or, transposing,

b2€2 _ €4 — b2u2, 36

equation that constitutes the new curve HOPN [Fig. 1], derived from the first.
For this curve it is proven that the sum of the bu ordered on b is given. Dividing
by b, the sum 37 of the u ordered on the base, that is to say, the surface HOPN
will be given as a rectilinear area and we will consequently obtain its quadra-

2
ture. 38

34 Thisisone of the important consequences of Fermat’s method: the sum of radical
powers of ordinates avoiding the use of radicals. In this first example, Fermat wants

to calculate ,
f xV 02 — x2 dx.
0

The change of variable will “linearize” xy and convert it to bu, where u will be the or-
dinate of a new curve. See [Zeuthen 1895, p. 55].
35  That is to say, its analytic equation.
36 Notice that bu = xVb2 — x2.
37 Fermat uses the word sum for the first time.
38 Ut autem facillima et nullis asymmetriis involuta fiat translatio prioris curve ad novam,
ita constanti artificio, que est nostra methodus, operari debemus.
Sit quodlibet ex productis ad basim applicandis, HE in ED. Quum igitur FD sive HE, ipsi
parallela, vocetur in analysi E, et FH sive DE, ipsi parallela, vocetur A, ergo productum sub
HE in ED wvocabitur E in A. Ponatur illud productum E in A, quod sub duabus ignotis et
indefinitis rectis comprehenditur, equari B in U, sive producto ex B data in U ignotam, et
intelligatur EP, in directum ipsi DE posita, equari U. Ergo

BinU

@equabitur A.
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Fermat effects the change of variable y = bu/x 39 and the circle trans-

forms into a new curve in the xu-plane (see Fig. 4). As the change amounts

u

FIGURE 4. The new curve, 2x2 — x = %2,

to xy = bu, the new curve is quadrable since the new ordinates u can be
summed when ordered on the line b:

b 1 b 1 b 9
udx:—f xydx:—f x° dy,
Jo b Jo 20 Jo

and as the sum of the x? can be obtained squaring two parabolas,

b b 3
)
J x2dy=f (0 =% dy = =,
0 0

b 2
b

f udx = —.
0 3

Quum autem Bq.—Aq. equatur, ex proprietate specifica prioris curve, ipsi Eq., ergo subrogando,

we have

in locum A, ipsius novum valorem
BinU
O

fet

Bgq. inEq. — Bq. in Uq. equale Eqq.,
sive, per antithesim,

Bq. inEq. — Eqq. @quale Bq. in Ug.,
que est equatio nove HOPN curve ex priore oriunde constitutiva, in qua, quum omnia pro-
ducta ex B in U dentur, ut jam probatum est, si omnia ad B applicentur, dabitur summa om-
nium U ad basim applicatarum, hoc est, dabitur planum HOPN ( in ) rectilineis, ideoque
ipsius quadratura [Fermat c. 1659, p. 273].
39 Notice the homogeneity of the dimensions. The constant b is introduced not only
to keep the dimensions right but also to keep the “limit” of summation under control.
Notice that the point (4,0) in the xy-plane becomes (b,0) in the xu-plane.
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Fermat’s method in this first example consists essentially of the following.
We start from an algebraic equation y" = Y a;x' + 3b;/x/ and, conse-

quently we know how to calculate f?) y"* dx. We then proceed in two steps:

1) Apply the General Theorem: f[()) y'dx =n | g y*~Lxdy;

2) Linearize the integrand through an appropriate change of vari-
able: y"‘lx = b1y, where u is the ordinate of a new—and a fortiori,
quadrable—curve.

In Fermat’s account it is worth mentioning the absolute lack of references
to the region which is actually squared in each curve. It goes without say-
ing that if the curve draws a closed region this is precisely the area to be
squared. If the curve has an asymptote, the region to be squared is the one
enclosed by the curve, the asymptote (always an axis) and an appropriate
ordinate which is almost self-evident. *’

5. A MORE DIFFICULT EXAMPLE

The next example is a bit more elaborate as it involves a curve with an

implicit algebraic equation. The starting curve is the cubic
(3) ¥ = b — &P

The new curve, however, ends up being an algebraic curve of degree 9 in
the variable y and degree 3 in the new variable u. The squaring of this
last curve is a challenge even if one is equipped with all the artillery our
calculus provides us with.

Fermat offers this example not only as a second instance of his method
but also to exemplify a situation which needs an improved version of the
General Theorem.

Fermat reminds us that the sum of all y* on the interval [0, ] is imme-

diately obtained as a sum of two quadrable parabolas (see Fig. 5),

b% b 9 5 b4
Ydx = bx” — x7) dx = —.
foy X Jo(x x7) dx B

On the other hand, the General Theorem says that

40 Fermat only considers positive values of the variables and consequently, his
quadratures limit themselves to the first quadrant.
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)

[xa) | =0

20/3 b x

2_ .3

FiGuRrE 5. f(x) = bx

b y
(4) J 3P dx = 3] y2x dy.
0 0
Fermat now makes the change of variable that provides the linearization

part of the method,

_ b2u

= y_2

which takes curve (3) into the curve with equation (see Fig. 6):

X

(5) Puy? — 30 = 1543,

The change effected on the integral of the right-hand side of (4) is

i i
f y2xdy :bQJ- u dy.
0 0

Notice the upper limit of integration in the new integral: j. If you look at
Fig. 6, you will clearly see that the “sum of all the »” has to be “ordered on
the line y”. But actually, the value of y is irrelevant for Fermat’s purposes as
the quadrature he is interested in is represented exactly by that last integral
which will be calculated going backwards in the chain of integrals obtained

so far:

) 1o 1 (! b?
dy=— | yYxdy=— | y?dx = —.
fou ! bQJoyx ST PR TS

Thus, the quadrature of the new curve (5) is b%/36.
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F1GcuUre 6. The curve b5u2y2 — y9 = b3,

As we mentioned before, in this example, some comments are really
necessary to fully understand Fermat’s technique.

The initial curve, y?’ = bhx% — %3, is not decreasing, a necessary condi-
tion for the General Theorem to hold. In fact, seen as a function y(x) it in-
creases on the interval [0,2b/3], and decreases from there until reaching
the value 0 for x = b. The highest value it attains is j = \3/@/3. In terms
of ys, this maximum is, obviously, 5)3 = 4p%/27.

This means that when y varies between 0 and y, for each value of the
variable y, two values are obtained for the variable x. Let us denote each
of these values by x; and x9, as shown in Fig. 5. We can think of %1 (y) and
x2(y) as two different functions. The same considerations have to be made
about the new curve, see Fig. 6. Again, for a given y, two values of u have

to be considered, u; and uo.
Thus, to be rigorous, Fermat’s procedure should be rewritten as follows:

by Vo, o 7
fy dx:SJ Y (xl—xg)dy:?)sz (u1 — u2) dy,
0 0 0

this last integral representing the lined area in Fig. 6.
Fermat is conscious that this example is not exactly covered in his

General Theorem and proceeds to offer a new version when the curve is not
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FIGURE 7a. FIGURE 7b AND 7c.

decreasing. His explanation amounts to saying that if a curve as the one
shown in Fig. 7a is given, the General Theorem can be applied first to the
decreasing portion of the curve, x9(y) from x = 0 to x = z where the
maximum is reached. A different procedure, though, has to be used for
the increasing portion, the one we have called x;(y) that increases from
x = b to x = z. Essentially what Fermat does is change the axes in such
way as to have the increasing portion as a decreasing curve. Consider
x = z as the new “base”. On the one hand we have the curve z — x9 which
is decreasing from the new base to x = z (we have to think of positive x
downwards), see Fig. 7b; and on the other hand we have the curve x; — z
which decreases from the new base to x = b — z, see Fig. 7c. The sum
of the y" ordered on [0,b] can obviously be decomposed into the two

portions. His arguments, translated into our notation would lead to:
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b z b
j y"dx:f y"dx—{—f 3" dx
0 0 z

4 n—1 ) n—1
nJ‘y (xl—z)dy—i—nJy (z — x9) dy
0 0

) n—1
:nJ‘ YT (x1 — x9) dy.
0

Obviously, the value z of y where the maximum j for x is attained can be
obtained by his method of maxima and minima, developed twenty years be-
fore. Paradoxically, these values are of no importance as they only are in-
termediate values that are not explicitly needed to carry out the quadra-
ture. *! This is probably one of the reasons why Fermat pays no attention

at all to the limits of summation in the intermediate curves he uses.

6. THE QUADRATURE OF THE FOLIUM OF DESCARTES

The next example Fermat offers has the clear intention of creating an

impression on the reader.

Just to show clearly that our method provides new quadratures which had
never even been suspected before among the moderns, let the curve considered
before be proposed *? with equation

Px—0 4

—5 = yo.
It has been proven that the sum of the y3 is given as a rectilinear area. Trans-
forming them on the base 43 we will have, according to the preceding method,
b?u/y? = x. Replacing the new value of x and finishing the calculations accord-
ing to the rules, ** we will arrive at the new equation y> + 3 = byu, which pro-
vides a curve from the side of the base. Itis the one from Schooten, who gave its

construction in his Miscellanea, section 25, page 493. "% The curvilinear figure

41 Mahoney [1994, p. 264] says on this point that “Fermat employs his method of
maxima and minima to determine the value of x for which y attains a maximum and
the value of that maximum?”. This is not really so as the actual values of both, the max-
imum and the value of x where it is attained, are irrelevant in Fermat’s method.

42 Itis example (2) of page 16.

43 That s, using the General Theorem.

44 The rules of algebra, of course.

45 The curve is the folium of Descartes.
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AKOGDCH [the loop in Fig. 8] of this author is, consequently, easily quadrable
according to the preceding rules.

The folium of Descartes appeared during the controversy that con-
fronted Fermat and Descartes around 1637 on the methods for the
tracing of tangents to curves. After quite an acrid exchange of letters with
examples and counterexamples to prove the superiority of each other’s
method, Descartes ended by challenging Fermat to find the tangents to
the curve of his invention with equation (see Fig. 8).

(6) % 3% = by,

Fermat not only solved the problem but also offered a general solution
that allowed him to find the two tangents of a given slope (see [Duhamel
1864] or [Mahoney 1994, p. 181 & ff] for more details about the contro-
versy). Descartes, after this tour de force of his opponent, had to admit Fer-
mat’s superiority and the merit of being one of the greatest geometers of
the moment. It is not strange, then, that twenty years later, Fermat used
the same curve to test his method. *’

If you follow the exasperatingly short description of Fermat in the quo-
tation above, one realizes that Fermat starts with an apparently innocent
curve that, as if by chance, gets transformed into the equation of the

folium. It is obvious that Fermat proceeded just in the contrary direction.

46 Ut autem pateat novas ex nostra hac methodo emergere quadraturas, de quibus nondum
recentiorum quisquam est aliquid subodoratus, proponatur precedens curva, cujus equatio
Bgc. in A — Bec.
Ac.
Dantur omnes E cubi in rectilineis, ut jam probatum est. Quibus ad basim translatis, fiet, ex

equalis Ec.

superiori methodo,
Bg. in U
Eq.
et, omnibus secundum artem novo ipsius A valori accommodatis, evadet tandem nova equatio

equale A,

que dabit curvam ex parte basis; cujus equatio dabit
Ec. 4+ Uc. equalisB inE in U,

quee est curva Schotenii, cujus constructionem tradit in Sectione 25 Miscellanearum, pag.
493. Figura itaque curve AKOGDLA que apud illum autorem delineatur, ex superioribus pre-
ceptis quadrationem suam commode nanciscetur [Fermat c. 1659, pp. 275-276].

47  We coincide with [Mahoney 1994, p. 265, n. 67] when he insinuates that Fer-
mat deliberately slights Descartes as the author of the curve and attributes it to van
Schooten.
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FIGURE 8. The folium of Descartes, x> + y3 = bxy.

From the equation of the folium, he derived an equation which had the
necessary features for his method to be applied, that is, an equation of the

form
. b
(7) ymzzaix’+2x+;.

We can now present the chain of integrals of Fermat’s method (see Fig. 9a
and 9b):

y 1 ) 9
[ —say = | - way
0 b= Jo

1 (™ B> (> u—b b

“a), =), e

Needless to say that Fermat does not bother to calculate the actual area

b?/6. See Appendix A for an alternative way of solving the problem and
some interesting generalizations.
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FIGURE 9a. x° + 3% = buy. FIGURE 9b. f(u) = b° (u — b) /u3.

7. THE QUADRATURE OF THE WITCH OF AGNESI
AND THE CISSOID OF DIOCLES

Fermat now opens a new front. He proceeds to reduce the quadrature
of some curves to that of the circle. In this sense, he first tackles the quadra-
ture of the curve known today as the witch of Agnesi. ** This curve seems to
have been brought to Fermat’s attention by the geometer Lalouvere who
might have asked Fermat about its quadrature. *’ Immediately after doing
that, Fermat adds:

48  This curve was studied in 1748 by Maria Gaetana Agnesi (1718-1799) and had al-
ready been object of attention by Guido Grandi (1703) who gave it the curious name
of versiera or versaria (see [Gray & Malakyan 1999; Mulcrone 1957; Truesdell 1989]
for the history of the name and other details about the curve itself). In English it is
known as the witch of Agnesi or the curve of Agnesi.

49 Fermat in the Treatise, after constructing geometrically the versiera and after giv-
ing us the value of its quadrature, comments: “Itis so that we have solved at once that
question proposed to us by a learned geometer” [ Hanc vero questionem, ab erudito ge-
ometra nobis propositam, ita statim expedivimus [Fermat c. 1659, p. 281]]. Aubry [1909,
p- 85] is of the opinion that the “learned geometer” mentioned by Fermat is none
other than Antoine de Lalouvere, a Jesuit from Toulouse and frequent correspondent
of Fermat. Anyway, we have not been able to find a previous mention of a curve like
the versiera in the literature, and this leads us to think that Fermat might be the real
author of the curve or, at least of its algebraic equation.
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[...] with the same method I have squared the cissoid of Diocles or, I had

rather say that I have reduced its quadrature to that of the circle. >

Fermat in the Treatise does not give any more indications about how he
reached the quadrature of the cissoid. 51 However, the two curves, the ver-
siera and the cissoid, have similar cartesian equations, a fact that makes a
common treatment with Fermat’s method possible. In fact, going clearly
beyond Fermat’s work, in Appendix B we treat a more general family of
curves that include both the versiera and the cissoid and can be tackled in
the same way.

The versiera (Fig. 10) is the curve of equation:
» = ny + bx
which can be written
(8) xy% = b2 (b — x).

The quadrature of the versiera (8) corresponds to the area between the
curve and the two axes—the vertical axis being the asymptote of the curve.
Fermat obtains it with the help, in this case, of two changes of variables. In

the first place,

which leads to the new curve

232 = 25 — 22).

50 [...] eadem methodo spatium a Dioclea comprehensum quadravimus, vel ad circuli
quadraturam reduximus [Fermat c. 1659, p. 281].

51 The same Fermat in a brief note titled De cissoide fragmentum [Fermat 1662]
squares the cissoid by purely geometrical methods without using any of the methods
of the Treatise. The result he obtains in that short “fragment” comes to say that the
area trapped between the cissoid and its asymptote is the triple of the area of the semi-
circle used in its geometrical construction. Details of this construction can be found
in [Truesdell 1989]. Aubry [1912] offers a reconstruction of the quadrature of the
cissoid of doubtful likelihood. He freely uses differentials and the full formula of in-
tegration by parts, poles apart from Fermat’s method. More than from Fermat, Aubry
seems to borrow from Johann Bernoulli, who in [Bernoulli 1692, pp. 399-407] had
carried out the quadrature of the folium, the versiera and some other curves treated
by Fermat. Bernoulli’s procedure, though vaguely reminiscent of Fermat by the
changes of variables used, is definitely far from the method of the French mathemati-

cian.
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Ficure 10. Versiera.

Thus,

o0 1 o
Area:j xdy:—J z2dy.
0 b
He then applies the General Theorem:

1 (> . b
ZJ; zzdy:%J yz dz.

And the second change,

that leads to the new curve

a circle, to whose quadrature the quadrature of the versiera reduces:

9 b b
ZJ yzdz:2j udz.
0

0
Summing up,

o0
Area versiera = J

b
xdy = QJ udz.?
0 0

As we see, the quadrature of our first curve depends on the sum of all the
u on the interval [0, ],
b
j udz,
0

52 Fermat does not mention it, but the final value is ©52/2.
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where u is the ordinate of a circle of radius b.

Fermat, as we mentioned before, says that the cissoid of Diocles (Fig. 11)
may be squared similarly, which is true, but he does not mention that, in
this last case, the quadrature reduces to that of an odd power of the ordinate

of a circle. In fact, the same method applied to the cissoid of equation

xy2 = (b—x)3
2 _ 2_ 2.

’\1(

leads to the quadrature of u® where, as before, u

Area cissoid = J xdy = —= J ud dz.
0

(See Appendix B for the details). As the case of the cissoid demands, Fer-
mat will now turn to the problem of summing different powers of the or-
dinates of a circle.

8. THE SUM OF THE POWERS OF THE ORDINATES OF A CIRCLE

We now come across one of the reasons why the reading of the Treatise is
so puzzling. Fermat, apparently, stops analyzing the quadrature of curves
and turns to solve the problem of finding the sum of the powers of the or-
dinate of a circle. This is only clear if the reader has taken the trouble of
reducing the quadrature of the cissoid to that of an odd power of the or-
dinates of a circle which is not obvious at all.

He begins by considering the equation of the circle y? = 5> —x%. He has
already remarked that the sum of even powers of y poses no problem. The
odd powers, he asserts, can be reduced through his method to the quadra-
ture of the circle.

Fermat considers only the case y® and informs us that the generalization

to all odd powers is very easy. **

53  Here Fermat again faces the problem of the sum of a radical power of the ordi-
nates. His method circumvents the difficulty.

54  As [Zeuthen 1895, pp- 57-58] says, Fermat’s method reduces the sum of y2"+1
to the sum of 2" where z is the ordinate of a circle of radius 5/2 and not centered on
the origin. This reduction is faster than the one we would undertake today if we had
to calculate

b
J (B2 — 2)@+D)/2 g
0
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An application of the General Theorem gives

b b
J ygdx = 3J y2xdy.
0 0

There are two changes of variable. The first,

leads to the new curve
b2u2 — yQ(bQ _yQ)’

and the corresponding quadrature,

b b
3J nydy = Sbf yu dy.
0 0

If the General Theorem is applied again,

b 3 b/2
?)bJ yudy:—J yzdu.
0 2 0

The second change is
yg =bv
which gives the curve
u? = by — %,

and the last quadrature is

3 (b2 g (b2
—f deu:—bJ vdu.
2 Jo 2 Jo

Since Fermat presents only the case of the quadrature of y3, he finds no
difficulties as the sum of the v is simply half the area of a circle of radius

2n+1 for n > 1 one must still reduce the

b/2. But for the general case, y
new circle to another circle, this time, centered on the origin in order to

be able to iterate the procedure. See Appendix C for the details.

integrating directly by parts. This would imply the differentiation of (b2 - x2) @n+1)/2
and a reduction formula that reduces the degree in 2 units at a time. If we bother to
do the necessary calculations, we get the reduction formula

b 9 b
J (2 — x2)@HD/2 gy (2n+ 1)b J (42— x2)(@=1)/2 g
0 2n + 2 0

Fermat’s reduction halves the degree each time. In Appendix C we develop the gen-
eral case with all the necessary details.
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9. THE LAST TURN OF THE SCREW

Fermat, to close his paper yields to the temptation of presenting the
quadrature of a curve that needs up to eight changes of variable to be re-
duced. *°

As for the rest, it often occurs that, strangely enough, in order to reach the
simple measure for a proposed equation of locus we need to carry our analysis

through a great number of curves. °°

This last example is, obviously enough, a tour de force to present an al-
most impossible quadrature. But after careful analysis we can see that it is
not only that. It can be placed along the class of curves that lead to the
quadrature of the folium of Descartes. The difference lies in the fact that
now Fermat wants to find the quadrature of the first curve instead of start-
ing with the known sum of the power of the ordinates of a curve in order
to derive the quadrature of a new curve. In this, the example differs from
the previous ones.

Fermat’s initial equation is

o b (x=b)

y = NG

57

The aim of Fermat is to square this curve (see Fig. 12), that is, to compute

o0
f ydx
b
y
J x dy.
0

55 Tannery and Henry remark in a footnote that in this part, a series of mistakes in

or, what amounts to the same,

the names of the successive curves (for instance, quarta instead of tertia), seem to indi-
cate that the original text may have been edited by someone who wanted to clarify it.
56 Sepius autem contingit et miraculi instar est per plurimas numero curvas incedendum et
exspatiandum esse analystae, ut ad simplicem equationis localis proposite dimensionem perve-
niatur [Fermat c. 1659, p. 282].

57 TItis worth mentioning that Fermat uses numbers to denote high powers: 7, 8, etc.
Tannery and Henry remark that this is rather suspicious as he has not done it before
and makes no note of the change of notation. Again, some edition of the original
manuscript may have occurred.
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FIGURE 12. y% = b7 (x — b) /x5.

The different quadratures and the corresponding changes of variable
with the resulting curves are the following (we denote by T the aplications
of the General Theorem and by CV a change of variables, all listed below to-
gether with the different curves, C, obtained through them), see [Fermat
c. 1659, pp. 283-285]:

j 1 () 00
f xdycll —J ZQdyzg ZdeCX2 f 2 dz
0 b 0 b b b
4 U u
I —J uzducxsélf vdu
b 0 0
0 4 v
X 4! ude:4—J vw dv
0 b 0
T 2 (7 avs o [P cve 2
:_J 24 QJSd_—QJ 2tdw
b 0 0 0
b
. —2 j wgdt,
(3)62 Jo

CVl: x=2%/b Cy: 92212 = 12 (2% — 1?)
CV2: y=u?/z Co : utz1 = p12(22 — p?)
CV3: z=bv/u Cs : 01 =) (v® — u?)u*
CVd: u=wvw/b Cyq: %0t = (B — w?)w?
CV5: v =bs Cs : b*s% = (1 — w?)w?
CV6: s=uw?t/b® Cg:w>=0b>—12
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A few remarks are in order. First, notice that the quadrature of the initial
curve ends by depending directly on the sum of the powers of the ordi-
nates of the circle, already studied by Fermat. Second, the example cho-
sen allows him to exhibit eight changes of variable—the last three, though,
are only needed for summing the third power of the ordinates of a cir-
cle. Third, in this example, he uses for the first time a quite obvious result
which can be seen as the General Theorem for the case n = 1. The area of
a figure is the same whether the sum of the ordinates is taken on the base
or the sum of the abscissas is taken on the diameter. That is to say,

fxdy: Jydx.

It is the step marked above with the symbol =.

Lastly, to emphasize the great internal coherence of the Tireatise, it is
worth noting that this final example is the quadrature of a curve of the
same class as the first he had used to obtain the quadrature of the folium
(see footnote 60). Thus, this last example closes the paper with a spectac-
ular display of his method and, at the same time closes a circle returning
to the starting point. See Appendix D for a more general treatment of the
example and some more interesting comments.

Fermat’s last words clearly show the pride of the author for his creation:

We have thus used up to nine [actually eight, see footnote 55] different
curves to reach the knowledge of the first. >

10. CONCLUSIONS

One of the more momentous conquests of the first third of the seven-
teenth century was the expression of a curve by the means of a mathemat-
ical equation expressed by a polynomial.

In fact, if a general method for determining properties of curves from
their algebraic equations could be found, a giant step would have been
taken, since in this case, important parts of mathematics would achieve

their independence from pure geometry.

58 Beneficio igitur novem curvarum inter se diversarum ad notitiam prioris pervenimus [Fer-

mat c. 1659, p. 285].
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In this direction, Descartes’ finding in La Géométrie is crucial: as a curve
can be expressed by the use of a polynomial equation, P(x,y) = 0, the nor-
mal at a given point (xg,)o) of the curve can be found (and consequently
also the tangent). The method consists of cutting the curve with a circle
of unknown center O = (r,s) and imposing that the resulting polynomial
0O(x) = 0 have x = x( as a double root. A great success for a good method.
It always depends, of course, on the degree of the polynomial equation of
the curve.

More or less at the same time, the geometers of the seventeenth century
came to realize the importance of squaring the curves of the form y" =
b5 ¥ They devoted a great deal of energy to achieve these quadratures
and they strived to find

b 0 b )
J x" dx, J x " dx, J XM g, J X" dx.
0 b 0 b

So, from Cavalieri to Newton and Leibniz, with different techniques and
different epistemological frameworks, they carried out their calculations
and arrived at

X

b b:l:m/n+1
+m/n dx —

except in the case in which the exponentis —1. The success was so spec-
tacular that Newton considered as the explicit analytical expression of a
function its power series expansion and thus developed a sort of algebra
of infinite series (see [Stillwell 1989, p. 107]).

It is precisely in this context where Fermat’s contributions to algebraic
geometry, tangents to curves, lengths of curves and quadratures have to
be analyzed. In this last subject, the quadrature of curves, Fermat finds a
method similar to the ones he has found in the other areas mentioned.
This is what our reading of the Treatise tries to show.

In a first part, Fermat establishes a general method to find the quadra-
ture of all higher parabolas and hyperbolas. Next, he sets himself the prob-
lem of determining the quadrature of an algebraic curve given by an im-
plicit equation P(x,y) = 0 using the quadratures he has just calculated.
This is the difficult part of his paper and the one analyzed in the present
article.
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To achieve his aim, he seeks a new curve, quadrable, whose quadrature
is expressible through the known quadratures of the curves at his disposal,
the higher parabolas and hyperbolas.

Thus, given an equation of the form

(9) Y =Y a4 ij/xf

Fermat is able to obtain the sum of the y" through the squaring of the
parabolas and hyperbolas of the right-hand side. He then applies the Gen-
eral Theorem to reduce the degree and proceeds to determine a new curve
by a change of variable that either linearizes (y" = 5"~ 'u) or reduces even
more the degree.

In order to enlarge the class of reducible quadratures, he has to add the
circle to his stock of known quadratures. He then realizes that the squaring

of curves like
(10) (0% — x%)"?

will lead to the possibility of squaring more curves. The case in which » is
even presents no problem as y? = »*> — x?, and for odd n he manages to
circumvent the difficulty of the radicals by a masterful use of his method

2+l where y2 = b? — x2.

applied to y

We could describe in a few words the essence of Fermat’s method (leav-
ing apart the last example of the Treatise in which he deviates from the pre-
vious ones while maintaining the spirit) as follows. Fermat knows how to

compute

b
(11) J ¥ d,

0

either by squaring directly higher parabolas or hyperbolas, (9), or as the
sum of the ordinates of a circle, (10). Now, by the General Theorem,

b j )
J Yy dx = nj xy" " dy.
0 0

A change of variable of the style

xynfl — 0
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can be carried out with a suitable ¢. So, in (9) or (10), x can be replaced

by 0"~ 1ul/ y”_l in order to obtain a new curve
P(y,u) =0.
for which

3
J u? dy
0

is computable in terms of (11). The process can be iterated until reaching

p
J zdw
o

which is the actual quadrature of a curve F(w, z) = 0.

Strictly following the previous process, it seems that the “new” quadrable
curve, F'(w,z) = 0, appears at the end of the process as a sort of surprise.
Fermat—and we hope our new reading of the Treatise will have made this
clear—is conscious that the process can be reversed at least for certain fam-
ilies of algebraic curves with a “standard” equation.

Fermat’s method of quadratures is, as has been shown, highly original
and powerful, but only applicable to a certain class of algebraic curves. It
could be argued that he sought a general method to square curves with an
implicit polynomial equation. He did not succeed but he managed to find
a workable method for a limited amount of curves. In fact this limitation
partly explains the sparse attention the method received in its time.

In our opinion, the history of mathematics consists of understand-
ing the writings of great mathematicians, their internal coherence, the
methodology that has been used, the extension of the methods deployed.
All this independently of the measure of success of those writings. A
paradigmatic text in this sense is the Lettres de Dettonville by Blaise Pascal.
Fermat’s Treatise on quadratures is another one which we hope we have
contributed to vindicate at least for its great intellectual value. Our work is
neither a historiographic analysis of Fermat’s text nor a study of its ulterior
influence—which has been almost non-existent—but offers a complete
detailed analysis of all of its examples showing its inter-dependence and
the logical thread that conducts them all. In some occasions we dare re-
construct in an appendix obscure parts of Fermat’s exposition but we do
so in the hope that these reconstructions shed some light on the method

Fermat is trying to develop.
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APPENDIX A
THE FOLIUM OF DESCARTES

In the case of the folium, Fermat’s most likely train of thought would
have been to essay a change of variable that replaced x in (6) by an ex-
pression involving the new variable « and the old y in such a way that af-
ter making the change the new equation would look like (7). In order to

achieve this it is enough to make the change of variable °*

2
N
b2
which alters (6) into
O
BT
or, after simplifying y* from each side and rearranging,
P (u—b
(12) =t
e

The graph of y3 as a function of u can be seen in Fig. 13b. °” We can also ask

e us(9) “w()

FIGURE 13a. The loop of the folium.  FIGURE 13b. f(u) = b°(u — b) /u5.

59 The change x = b%u/y? is an alternative that also solves the problem. Johann
Bernoulli [1692, p. 403] uses this last change of variable in order to square the folium,
but here ends all similitude with Fermat’s method, despite what Aubry [1912] says.
See also footnote 51.

60 It must be noticed that equation (12) or, if you prefer, equation (13), has a very
special structure, which, as it happens, occurs almost in the same form in many of
Fermat’s examples.
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ourselves (see [Paradis et al. 2004]) about the possibility that Fermat car-
ried out a few trials on curves composed by higher hyperbolas with equa-

tions of the form:

bm+k—l _b
(13) A N N T )
X
The graph corresponding to y in (13) and of y, for m > 0, are essentially
the same and very similar to the one depicted in Fig. 13b.
Proceeding a la Fermat we make the change of variable
bm71Z

- ym—l ’

and we undertake the chain of integrals:

s i) 1 1 y
J ymdx:mj ' xdy = mb"~ f zdy.
b 0 0

The new curve’s equation will be
b(mf?)kfmzk +y(m71)kfm — bmeZy(mfl)(kfl)fm.
This family of curves, in the first quadrant have a loop similar to the loop

of the folium—which is the curve given by m = 3 and k = 3 (see Fig. 13a).

The areas of these loops, that is to say

i
szy
0

b2
m(k—1)(k—2)
Itis seen at once that Fermat’s method also solves in a quite straightforward

are

A(m, k,b) =

way the quadrature of the generalized folia of [Bullard 1916] with equation
KL 2 — (90 4 1)ty

where ¢ is a positive integer.
The change of variable required is 7t1x? = uy?*!, and the areas of the

loops in the first quadrant are

%+ 1 .
A(g.b) = quZ.

More details can be found in [Paradis et al. 2004].
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APPENDIX B
THE VERSIERA FAMILY

Let us consider the family of curves °! with equation

(14) PNy = (b - x)V.
For N = 1 we have the versiera (Fig. 14) and for N = 3 the cissoid
(Fig. 15). The quadrature of the family of curves (14) will correspond to

\ \
\ |
\\ \
\ 2 2 »‘\
\\ XYy =b (b—x) ‘xy2= (b_x)3
\ \\
\ \
\ \\\
\\ \\
\ \
\\\ \\
\ \
\ \.
N
b b

FiGURE 14. Versiera. Ficure 15. Cissoid..

the area trapped between the curve and the two axes—the vertical axis is
in fact the asymptote of the curve. It can be obtained with the help, in this
case, of two changes of variables. As before, we will use a T upon the equal

sign to denote an application of the General Theorem and CV to denote a
change of variables.

o0
(15) Area = J x dy
0
1 00 b b ‘
Cll _ J‘ Z2 dy L g J yz dz C¥2 2 J uNdz.
b 0 b 0 bN—l 0
Fermat needed two changes of variable:
2
b4
CV1: = —
=3

61

Notice that these curves are again of the form (13). The only difference is that
instead of x — b, now we consider b — x. See also note 60.
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which led to the new curve

b2N74Z2y2 — (b2 _ ZQ)N,
and
N
u

giving the last curve which, independently of N, is the same circle,
W =0 — 22

Now, the quadrature of our first curve will depend on the sum of all the

N
b
f u dz,
0

u" on the interval [0, 5],
where u is the ordinate of a circle of radius b. For even values of N, it is
clear that the required sum will be very easy to calculate as it will ultimately
be a sum of quadratures of parabolas, i.e. the powers (b* — 22)N2_ For odd
values of N, the required sum will not be so easy to carry out.

The simplest odd case, the case of the versiera (N = 1), is easily dealt
with. Its quadrature will depend on the quadrature of the circle itself, (for-
mula (15) for N = 1)):

b 2
b
Area versiera = 2[ udz = —.
0 2
APPENDIX C

THE QUADRATURE OF y = (4% — x2)"/2

Let A(m,r) denote the sum of the y” where y is the ordinate of a circle

of radius r centered on the origin.

b

A2n+1,b) = J y2+L gy
0

b b
i (2n+l)f 2 dy X! (2n+1)bf v =Ly dy
0 0
T 2+ 1 b/2 o cve 2n+1 , /2
2n 0 27l

V" du.

0
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The changes of variable indicated are, first:
CV1: X = —
y

which leads to the new curve
Bl = 2 (12 — y2),
and then
CvV2: y? = bv
which produces the curve

W = by — v

Let us remark that this last curve is a circle of center (6/2,0) and radius
b/2. The sum of the v", where v is the ordinate of this circle, has to be
taken as the sum of the expressions vf — vg , where the v; are the monotone

portions of the circle as shown in Fig. 16. Since Fermat presents only the

b/2

b/2 b v

FIGURE 16. u2 = bv — v2.

case n = 1, he finds no difficulties as the sum of the v is simply half the area
of a circle of radius /2. But for n > 1 one must still reduce the new circle
to another circle, this time, centered on the origin in order to be able to

iterate the procedure. This can be done with another change of variable:

b b
16 CV3: = — 41, = — —1,
(16) =g + V=g
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46
which transforms the sum of the v" as follows:

b/2 b/2 b n b n

[ [ (2 (-4}
0 0 2 2
[1n/2] b n=2j+1 rb/2
=2 > .n (—) J 1211 du.
j=1 2j—1 2 0

The sum of the odd powers of ¢ corresponds to the circle centered on the
origin with equation (> = (b/2)? —u?. We obtain a recurrence formula for

the sum of the odd powers of the ordinates of a circle:
9 1 [n/2] b n—2j+1 .
A@n+1,0) = 2T n <_> CA(2) —1,b/2).
n j:l 2] — 1 2
In this last formula, [x] denotes the ceiling of the number «, i.e. the small-

est integer greater than or equal to x.

APPENDIX D
ANALYSIS OF THE LAST EXAMPLE

Instead of studying Fermat’s last curve directly, we can deal with his ex-

ample a little more generally.
Let us consider the curve (see Fig. 17) with equation

o _ U (x—1b)
y - k :
X

The chain of integrals and the corresponding changes of variable with the

FiGUrE 17. y% = bF+1 (x — b) /xk.
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resulting curves is the following:

y 1 ) 00 00
xdy i - 22 dy . g 2y dz 2 g u? dz
0 b Jo b Jy b Jy

b b
I J v2dw X 9 f s dw X° =7 J =4y dw
0 0 o Jo
T 2 ’
= J wk_?’dt,
(h—3)ph= )
CVl: x=22/b Cq @ 9222k = 0% (22 — b?)
CV2: y=1u?/z Co : utz?h =2 = bk (22 — b?)
CV3: z=bv/u Cs : 0?2 = p) (02 — u®) %8
CV4: u=wvw/b Cy : 0?F104% = (2 — 4?)0?*—8
CV5: v? = bs Cs : 0?82 = (12 — w?)w? 8

CV6: s=wl"4/ph=*  Cg:w? =02 -2
Besides the remarks offered in section 9 we see that in order to be able to
apply Fermat’s method, itis necessary that £ > 3. Thisis a condition which,

from a modern point of view, makes the improper integral

J*oo phtl (x —b) i
b xh

convergent. Assuming that Fermat tried different curves of this nature, we
can add that he did not choose k = 4 for then the quadrature would have
taken only five changes of variable. He also skipped the case k = 5 for then
the quadrature reduces to that of a higher parabola. Instead he chose k =
6 which allowed him to exhibit eight changes of variable—the last three,
though, only needed for summing the third power of the ordinates of a
circle. For the symbols 7, CV, C, x in the above displayed formula, see p. 37.
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