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On the relation between Yangians, affine Hecke algebras 
and long-range interacting models. 

Denis Bernard 2 

Service de Physique Théorique de Saclay 3  

F-91191, Gif-sur-Yvette, France. 

Plan : 
1- Long-Range Interacting Models. 
2- Yangians and Affine Hecke Algebras. 
3- A Yangian deformation of the W-algebras. 

1 Long-Range Interacting Models. 

There is a large family of integrable long range interacting spin chains. In particular, a model 
introduced by Haldane and Shastry [2], see also [3], is a variant of the spin half Heisenberg 
chain, with exchange inversely proportional to the square distance between the spins. It 
possesses the remarkable properties that its spectrum is highly degenerate and additive, 
and that the elementary excitations are spin half objects obeying a half-fractional statistics 
intermediate between bosons and fermions. They are defined as follows. We consider a spin 
chain with TV sites, labeled by integers z, j , · · · ranging from 1 to N. On each sites there is 
a spin variable σζ· which takes two values: G{ — ± . The hamiltonians, which are all su(2) 
invariant, are of the following form : 

Η = Σ h» (Ρ»-1) (1) 

where P{j is the operator which exchanges the spins at the sites i and j . For translation 
invariance h{j = h(i — j). Demanding the integrability of the model selects the functions h. 

2Member of the CNRS 
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The possible choices are : 

{ ύ ή £ Ί χ ) 2 , hyperbolic model ( 7 real) 

h(x) = < / π ^ 2 , trigonometric model 

k P f ^ ) , elliptic model. 

where V(x) is the Weierstrass function. When 7 —• 00, the hyperbolic model reduces to 
the Heisenberg spin chain: h{j = #t,j+i + a n d for 7 —» 0, the interaction becomes the 
1/x 2 exchange. The hyperbolic model has not been completly solved for general 7 , although 
a partial list of eigenstates is known. The elliptic model is even more intriguing since it 
interpolates between the Heisenberg spin chain of finite length and the trigonometric model 
[4]· 

The Haldane-Shastry spin chain is the trigonometric model. In the thermodynamical 
limit, Ν —> oo, it reduces to the l/x2 exchange model, but it also possesses remarkable 
properties at finite TV. Notably, its hamiltonian commutes with an infinite dimensional 
algebra whose two first generators are [5] : 

Qo = Σ & (2) 
i 

Qi = Σ cot9 (^^Tr) & x $ (3) 

with Si the spin operators acting on the site i. The first generators are the usual su(2) 
generators. Together with the second ones, they form a representation of the su(2) Yangian, 
(which is a deformation of the su(2) current algebra, see section 3 for an introduction to the 
Yangians). This infinite dimensional symmetry is at the origin of the large degeneracy of 
the spectrum. The fact that the hamiltonian is Yangian invariant at finite ΛΓ is particular to 
the Haldane-Shastry spin chain; in the Heisenberg spin chain, the Yangian symmetry only 
appears in the thermodynamical limit. 

In order to grasp the rules describing the spectrum, we first construct few eigenstates. 
Clearly, the ferromagnetic vacuum |Ω) = | + Η + + ) is an eigenstate : its energy is zero. 
The eigenstates in the one-magnon sector are the plane waves :\k) = Ση exp(i2Kkn/N)a~ |Ω), 

with pseudo-momentun fc, 1 < k < (Ν — 1): the one-magnon energy is e(k) — k(k — 
TV). In the two-magnon sectors, i.e. for states of the form \φ) = Σ η , ™ ^ η , ™ 0 " ~ σ ~ |Ω), the 
eigenstates which are not degenerate with the zero or one-magnon eigenstates are labeled by 
two pseudo-momenta &i, &2, with 1 < fci, k2 < (Ν — 1). They are given by : 

, ,71 I . ,771 

^[^1,^2] / L _ L \ (UJnki-]rmk2 . (jmk1^nk2\ ' fLJnk1+mk2 _ UJmk1+nk2\ 

with ω = exp(i2w/N). Note that these wave functions vanish if ki = k2 but also if \ki — k2\ = 
1. The energy of \φ^Μ) is Ε = c(ifci) + e(k2). 

From the two-magnon computation we learn two properties of the spectrum : (i) it is 
additive, e.g. the two-magnon energy is the sum of the one-magnon energies, but (ii) the 
pseudo-momenta satisfy a selection rule : they are neither equal nor they differ by a unit. 
These rules are the general rules, and the full spectrum can be described as follows [6]. 
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Furthermore, the degeneracy of the multiplet with pseudo-momenta {kp} is described by 
its su(2) representation content as follows. Encode the pseudo-momenta in a sequence of 
(TV — 1) labels 0 or 1 in which the l's indicate the positions of the pseudo-momenta; add two 
O's at both extremities of the sequence which now has length (TV + 1). Since the pseudo-
momenta are neither equal nor consecutive, two labels 1 cannot be adjacent. The sequence 
corresponding to the ferromagnetic vacuum is a line of 0, those of the one-magnon states 
have TV label 0 and only one label 1, and so on. A sequence can be decomposed into the 
product of elementary motifs, which are series of (Q + 1) consécutives O's. The multiplicity 
of the spectrum is recovered if to each elementray motif of length (Q + 1) we associate a spin 
Q/2 representation of su(2). The representation content of the full sequence is then given 
by the tensor product of its elementary motifs. 

The magnons are the excitations over the ferromagnetic vacuum; the excitations over the 
antiferromagnetic vacuum are conveniently described in terms of spinons. For Ν even, the 
antiferromagnetic vacuum corresponds to the alternating sequence of symbols 010101 · · · 010. 
The excitations are obtained by flipping and moving the symbols 0 and 1. Let us give the 
sequences corresponding to the first few excitations over the antiferromagnetic vacuum, (for 
concreteness we choose TV = 10) : 

' 0 1 0 1 0 1 0 1 0 1 0 , antiferromagnetic vacuum (o) 

< 0 1 0 1 0 1 Ô Ô O 1 0 , a two-spinon excitations (2a) 

w 0 1 0^0 1 0^0 1 0 1 0 , a two-spinon excitations (2b), etc... 

We have inserted a χ between any two consecutive labels 0. These crosses represent the 
spinon excitations, their number is the spinon number. Note that there is no one-spinon 
excitation for TV even. By convention, we will say that consecutive crosses not separated by 
any label 1 correspond to spinons in the same orbital, while crosses separated by labels 1 
correspond to spinons in different orbitals. From the rules described above, it follows that 
the degeneracy of the excitations (2a) and (2b) are different : it is three in the case (2a) 
and four in the case (2b). These degeneracy are recovered by giving a su(2) spin half to the 
spinons and by assuming that spinons in the same orbital are in a fully symmetric states. 
Hence, in the case (2a), there are two spinons in the same orbital and therefore they form a 
spin one representation of su(2), and in the case (2b), the two spinons are in two different 
orbitals and therefore they form a su(2) representation isomorphic to the tensor product of 
two spin half representations of su(2). The fact that the spinons are spin half excitations 
can also be seen by looking at the excitations of a spin chain of length TV with TV odd. 

This description of the states generalizes to the full spectrum. We can classify the se­
quences by their number M of pseudo-momenta. The spinon number Nsp of a sequence is 
then defined by M = ~2

 sp. Since M is an integer, (N—Nsp) is always even : this means that 
the spinons are always created by pairs. A sequence of pseudo-momenta {kp; ρ = ! , · · · , M } , 
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To each eigenstate multiplet is associated a set of pseudo-momenta {kp} which are non-
consecutive integers ranging from 1 to (TV — 1). The energy of an eigenstate | { & p } ) with 
pseudo-momenta {kp} is: 

H\{kp}) = (ς e(kp) \{kp}} with e(k) = 
' 7Γ N 2 

k{k - TV) (4) 



in the Nsp spinon sector, can be decomposed into ( M + 1 ) elementary motifs where, as before 
an elementary motif is a series of consecutive 0. We call the elementary motifs the accessible 
orbitals to the spinons. At fixed Nsp, there are Norb = (l + N~^sp) orbitals. Hence, a sequence 
of pseudo-momenta {kp} corresponds to the filling of the Nori orbitals with respective spinon 
occupation numbers np = (kP+i — kp — 2), with k0 — — 1 and — Ν + 1 by convention. 
Since an elementary motif of length (Q + 1) corresponds to a spin Q/2 representation of 
su(2), the full degeneracy of the sequences is then recovered by assuming that the spinons 
are spin half objects which behave as bosons in each orbitals. 

The spinons are not bosons but "semions": they obey a half fractional statistics. This 
follows from the fact that the number of available orbitals varies with the total occupation 
number [6]. Indeed, at spinon number Nspj the number of orbitals is Norb = (1 + N ~ ^ s p ) . 
Therefore, we have the statistical interaction : 

9sp — 

In the following section, we will describe how the fractional statistics of the spinons is encoded 
in the Yangian representation theory. 

The spinon description of spectrum is very similar to the description of the excitations 
of the Heisenberg spin chain given by Faddeev and Takhtajan [7]. 

Note that the model is gapless. Its low energy properties belong to the same universality 
class as the Heisenberg model. The low energy, low temperature, behavior is described by the 
level one su(2) W Z W conformai field theory. The spinon formulation of the Haldane-Shastry 
spin chain provides a new quasi-particle description of the states in the W Z W model [8]. 

2 Yangians and Affine Hecke Algebras. 

In this section we review few of the new results on integrable models and on the Yangian 
representation theory which emerged from the study of the long-range interacting models. 
But we first need to recall standard result concerning the algebraic Bethe ansatz, cf e.g. [9]. 

2.1 Algebraic Bethe ansatz and Yangians. 
We introduce the basic notion of the algebraic Bethe ansatz, using the quantum Heisenberg 
chain as an example. We consider a chain of length N: on each site there is a spin variable 
σ3. We denote by Sf, a,6 = 1, 2, the spin operators satisfying the su(2) commutation 
relations : 

" Sf , Sc

k

d ] = 83k ( 8ch Sf - 6ad Sf ) (5) 

The Heisenberg hamiltonian is : 

H = (6) 

Here, we have assumed periodic boundary conditions. As is well known, in order to preserve 
the integrability the spin operators S%b should act on the spin half representation of su(2). 
So, the spin variables take only two values, σ3 = ± , and the operator Sf which acts only 
the j t h spin is represented by the canonical matrix |α)(δ|. 
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The algebraic Bethe ansatz goes in few steps. 
· ) The first step consists in constructing the local monodromy matrices Tj(u). These 

matrices are 2 x 2 matrices whose elements T^b(u) are operators. The matrices Tj(u) are 
defined by : 

Tf(u) = u6ab + XSf (7) 

where u is a complex number, called the spectral parameter, and λ a coupling constant. 
Note that the matrix Tj(u) only acts on the j t h spin. The important point is that we can 
compute the commutation relations between its matrix elements. These relations can be 
gathered into the famous relations of the algebraic Bethe anstaz, see e.g. [9]: 

R(u - v)(T(u) ® 1)(1 ® 2 » ) = (1 ® T(v))(T(u) ® l)R(u - v) (8) 

where R(u) is Yang's solution of the Yang-Baxter equation, R(u) = u — λ Ρ, with Ρ the 
exchange operator P(x ® y) = y 0 χ . 

· · ) The second step consists in constructing the complete monodromy matrix, which 
we denote by T(u). It is obtained by taking the ordered product of the local monodromy 
matrices. Namely, 

Tab{u) = Σ T™2(u)T%2a3(u) T£f*b(u) (9) 

It admits an ( ̂ -expansion: 

u~N Ta\u) = 6ab + 

The crucial point is the fact that the complete monodromy matrix (9) satisfy the relations 
(8) if the local monodromy matrices do. These relations are equivalent to the following 
quadratic commutation relations : 

(u - v) [ Tab(u) , Tcd{v) ] = A (Tcb{u)Tad(v) - Tcb(v)Tad(u)) (10) 

An important consequence of the relations (8) is that the transfer matrix T(tt), which is the 
trace of the monodromy matrix, T(u) = tr(T(u)) = Tu(u) + T22(u), is a generating function 
of commuting hamiltonians : 

[ T{u) , T(v) } = 0 

The Heisenberg hamiltonian is recovered by expanding the logarithm of the trace to first 
order: i f oc du log T(u) 

u=0 

Another generating function of commuting quantities is given by the quantum determi­
nant detqT(u). It is defined by : 

detqT(u) = T22{u-\)Tu{u)-T21{u-X)Tï2(u) (11) 

It commutes with all the matrix elements of the monodromy matrix : detgT(u), Tab(v) = 0. 
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The quadratic algebra (10) is called a su(2) Yangian [10]. More precisely, consider a 
T-matrix satisfying the commutation relations (8) or (10), and normalized to have a quan­
tum determinant equal to one: detqT(u) — 1. Assume that the Γ-matrix possesses a ( - ) -
expansion as follows : 

oo 

Tab(X) - 6ab + λ £ u-n-ha

{^ (12) 
71=0 

Then, the su(2) Yangian is the associative algebra generated by the elements tfy- For these 
elements, the relations (10) are equivalent to : 

[ j.ab j-cd ccb+ad cad+cb 

j.ab icd ±ab ±cd \ / ±cb ±ad icb ±ad \ 
τ(η+1)ιτ(πι)\ ~ ^ ( τ φ ^ τ η + Ι ) ] — λ[τ(πι)τ(η) ~ τ(η)1(πι)) 

(13) 

Note that with the quantum determinant constraint, the (-)-expansion of the monodromy 
matrix can be reconstructed from its two first components tfy and t^y The relations (13) 
clearly shows the Yangians are deformation of loop algebras. 

• · · ) The next step consists in diagonalizing the transfer matrix. The algebraic Bethe 
ansatz provides a way to perform this diagonalization inside a finite dimensional irreducible 
representation of the su(2) Yangian. Similarly as for the unitary representations of su(2), 
any finite dimensional irreducible Yangian representation is specified by an highest weight 
vector |Ω). It is characterized by the following equations : 

Γ ( Μ ) | Ω ) = (14) 

where fi(u) and fi(u) are C-number functions, not operators. The product of these functions 
is related to the quantum determinant by : detqT(u) = f2(u — \)fi(u). Due to the fact that 
the quantum determinant commutes with the T-matrix, only the ratio fi(u)/f2(u) encodes 
the data of the representation. Moreover, the Yangian representation with highest weight 
vector |Ω) is finite dimensional if and only if this ratio satisfies [10] : 

for some polynomial P(u). These polynomials are called Drinfel'd polynomials. The condi­
tion (15) is the analogue of the fact that finite dimensional su(2) representations correspond 
to half integer spins. 

All the states in an irreducible Yangian representation are obtained by iterative actions 
of T21(u) on |Ω) : 

|Φ) = Γ 2 1 ( ^ ) Γ 2 1 ( ι / 2 ) . . . Γ 2 1 ( ^ Μ ) | Ω ) (16) 

The Bethe states, which are eigenstates of the transfer matrix, are of this form, but for 
particular values of the parameters up. The relations determining these ups are called the 
Bethe ansatz equations. They can be summarized as follows. Let us define a polynomial 
Q(u) of degree M whose roots are the wp's : 

M 

Q(«) = I f t « - « p ) 
p = l 

(17) 
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The state (16) is then an eigenstate of the transfer matrix T(u) if the roots uv of Q(u) are 
such that this polynomial is solution of the following difference equation : 

t{u)Q{u) = h{u)Q{u - X) + f2(u)Q{u + A) (18) 

where i(w), a polynomial of degree iV, is the eigenvalue of the transfer matrix on the Bethe 
state (16). Notice that eq. (18) at the same time gives the equations determining the Bethe 
roots up and the eigenvalue t(u). Eq.(18) was introduced by Baxter in its solution of the 
8-vertex model [11]. 

Following an idea due to Sklyanin [12], the Bethe eigenstates can then be rewritten in 
terms of the polynomial Q(u). Since the operator T21(u) is a polynomial of degree (N — 1), 
let us assume that we can factorized it as follows, 

T21(u) = XS- . U(u-xk) 
k=l 

(19) 

where the xk are operators and 5* = Sj1. It follows from the relations (10) that the xk 

are commuting operators. The Bethe eigenstates (16) are then given by 

|Φ> = (S-)M Q{Xl) Q(x2) • • • Q(xN-i)\fy (20) 

The eqs.( 18,20) reflect the separation of the variables, since the eigenstates are determined 
from the solutions of one equation for a function of one variable only. 

Finalizing the solution of the models consists in analyzing the Bethe ansatz equations 
and their solutions. This can analytically be done explicitely only in the thermodynamical 
limit. 

2.2 Quantization of the spectral parameter and Dunkl operators. 

The long-range interacting models cannot be solved using the algebraic Bethe ansatz. This 
follows from the fact the hamiltonian commutes with the T-matrix, and therefore non-
degenerate eigenstates cannot be obtained by iterative action of the lowering operators 
T21(u). Nevertheless, the tools of the algebraic Bethe ansatz are useful for constructing 
integrable long range interacting models and for deciphering the symmetries of these mod­
els. 

To illustrate this fact, we now consider su(2) generalizations of the Calogero-Sutherland 
models [1]. These models describe M particles interacting by long range forces. Their 
positions are parameterized by complex numbers 2,·, i = 1, · · ·, M , and each particle carries 
a spin σ = ± . The Hamiltonian is : 

HD = (21) 

where λ is a coupling constant and Pij exchanges the spins of the particles i and j . Notice 
we recover the Haldane-Shastry spin chain in the static limit λ = oo. 

The construction of these models relies on the définition a monodromy matrix in which 
the spectral parameter has been quantized. More precisely, let us consider the monodromy 
matrix (9) but in which the spectral parameters have been shifted to (u — A ) , where the D{ 
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are operators, commuting among themselves and with the spin operators. More precisely, 

we define a T-matrix by [13] : 

with 

ï f (u) = (23) 

The operators D{ we consider are defined as follows [13] : 

D{ = ZidZt + A ] P OijKij — Α Σ öjiKij (24) 

where 0{j = j - ^ j - and the operators which exchange the particles at positions Z{ and z3 : 
A ^ j Z j = ZiKij. They obey the defining relations of a degenerate affine Hecke algebra : 

Di , Di ] = 0 

Ä % + i , D * J = 0 if k φ h i + 1 

Kij+iDi — Di+iKij+ι — — λ (2s; 

In the mathematics literature, the role of the affine Hecke algebra in this context was revealed 
by Cherednik [14]. In the physics literature, operators similar but different to the D{ were 
introduced by Polykronakos [15]. Notice that these relations imply that : 

M ^ 

Kij, AM(u)] = 0, with AM(u) - [J(u - D%) (26) 

I.e. ÀM(U) is symmetric by permutation of the particles. This property follows from 
Ä i t + i j (u — Di)(u — Di+i) = 0, which is valid for all i. 

Since the operators D{ commute, the Γ-matrix (22) satisfies the RTT relation (8). How­
ever, the positions and the spin variables are totally uncoupled since the operators D{ com­
mute with the spin operators. In order to couple them, we define a projection π which 
consists in replacing the permutation K{j by the permutation after it has been moved to 
the right of an expression. One can view this projection as the result of acting on wave func­
tions totally symmetric under simultaneous permutations of the positions and of the spins, 
In more mathematical words, this procedure consists in quotienting the algebra generated 
by the permutations Kij and by the left ideal generated by [K^ — Pij). We use it to 
eliminate the permutations of the particles by replacing them with those of the spins. 

The transfer matrix T(u) defined by 

T(u) = x ( T ( « ) ) (27) 

will then satisfy the Yang-Baxter equation if we can replace the projection of the product 
(1 ® T(v))(T(u) ® 1) by the product of the projections. Since, AM(U) is symmetric under 
permutation, it is equivalent to check this property for T\u) — AM{U)T(U). For this to be 
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true, T(u) applied on a totally symmetric wave function must still be a totally symmetric 
wave function. Equivalently, we must have: 

7Γ (KnT(uj) = Pa* ( f ( u ) ) (28) 

Since the permutation groups are generated by the permutations i f^+i and P^+i, eq.(28) 
is equivalent to : π ^Kt^+ifi(u)fi+i(uYj = Ρΐ,ΐ+ιπ (Ti(u)fi+i(uf), with f{(u) defined in (23). 
This is garanteed if the commutation relations of the degenerate Hecke algebra (25) are 
satisfied. Thus, the relations (25) are the necessary relations for this T-matrix to satisfy the 
jRTT-relation. 

An alternative presentation of this T-matrix was obtained in ref.[13] : 

M / 1 \ 
T*\u) = Sab + \J2 Sf[ r ) (29) 

where L is the matrix defined by : L{j = SijZjdZj + (1 — <5^·)λ0^·Ρ^, with 0t-j = Zi/(zi — Zj). 
In eq.(29), the projection π has been explicitely done. 

The immediate consequences of this construction are the following. Since the T-matrix 
(27) satisfies the relation (8) it defines a representation of the su(2) Yangian. As explained in 
the previous section, the relation (8) implies that T(u) = tr(T(u)) is a generating function of 
commuting hamiltonian. However, T(u) is not Yangian invariant since it does not commute 
with Τ itself. A clever choice consists in choising the quantum determinant detqT(u) as 
the generating function of commuting hamiltonians. It is the projection of the quantum 
determinant of T(u): 

detgT(u) = , ί ^ ψ ) (30) 

where ÀM{U) is defined in eq.(26). The hamiltonian (21) is the u~2-tevm in (30). It is 
therefore Yangian invariant. The quantum determinant (30) has been diagonalized in ref.[13] 
by directly diagonalizing the operators D 2 . 

2.3 Application to the Haldane-Shastry spin chain. 

We now explain how the previous construction can be used to derive the fractional selection 
rules satisfied by the eigenstates of the Haldane-Shastry spin chain. 

As mentioned in section 2, the Haldane-Shastry spin chain is Yangian invariant. There­
fore, there exists a T-matrix commuting with the hamiltonian (1) and satisfying the relations 
(8). It was constructed in [13]. It is the limit λ —* oo with χ = u/λ fixed, of the Γ-matrix 
(29). Its expression is : 

with υ - = (1 — 6ij)6ijPij, = Zi/zij with z^ — Z{ — z^ and Sf is the canonical matrix 
\a)(b\ acting on the i t h spin only. For any values of the complex numbers z^ the transfer 
matrix (31) form a representation of the exchange algebra (10) with u changed into χ and λ 
normalized to one. The trigonometric spin chain corresponds to Zj = α;·7 with ω a primitive 

85 

Tab(x) = Sab + 
Ν 

Σ 1 

x-L'' 
(31) 



Nth root of the unity. For these values of Zj, the transfer matrix (31) commutes with the 
hamiltonian (1). 

In the representation (31), the quantum determinant is a pure number for any values of 
the ζ S s given by : 

N Ν 4-1 
Δ ^ ) = Π(̂  + - γ - - ^ ) (33) 

Since the monodromy matrix (31) commutes with the hamiltonian, the long-range in­
teracting spin chain cannot be solved using the algebraic Bethe ansatz. A way to solve it 
consists first in decomposing the spin chain Hilbert space into irreducible sub-representation 
of the Yangian, and then in computing the energy in each of these irreducible blocks. For 
the values Zj = ω·7, the representation (31) is completely reducible. Each irreducible sub-
representation possesses a unique highest weight vector |Λ) which is annihilated by T12(x) 
and which is an eigenvector of the diagonal components of the transfer matrix, as in eq.(14). 
In ref.[13], it was shown that the corresponding eigenvalues of Tn(x) and T22(x) can be 
expressed in terms of two polynomials P(x) and Q(x) : 

These polynomials characterize the irreducible sub-representations. The polynomials Q(x) 
and P(x) are not independent, since the quantum determinant (31) take the same value in 
any of the irreducible blocks. They should satisfy : 

AN(x) = P(x) Q(x)Q(x-l). (35) 

Therefore, the roots of P(x) and Q(x) are among those of AN(X). This implies that Q(x) 
factorized as : 

where the {kp} are integers bewteen 1 and (Ν — 1). The equation (35) then admits solutions 
if and only if the roots of Q(x) are not adjacent, or equivalent]y, if and only if the integers 
{kp} are neither equal nor adjacent. These integers will be identified with the rapidities 
labeling the eigenmultiplets of the spin chain. 

This provides a purely algebraic way to recover the rapidity selection rule. It also shows 
that the fractional statistics of the spinon excitations is an echo of the Yangian symmetry. 

3 A Yangian deformation of the W-algebras. 

We begin this section by introducing different representations of the su(n) loop algebra and 
of the su(n) Yangian. We then show how they can be gathered into a representation of a 
bigger algebra, which we called a "Yangian algebra" [17]. 
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with AN(X) the characteristic polynomial of the Ν χ Ν matrix Θ with entries θ^: AN(X) = 
det(x — Θ) . For the Haldane-Shastry spin chain Zj — u>J and we have : 

Γ(χ)|Λ> = 
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Q(x) 
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P(x) 

* 1, 
|A> (34) 

Q(x) = 
M 

Π 
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3.1 A set of operators. 

For our purpose we define the following two operators: 

jab = ^Ef, (37) 

J? = Σ ^ έ - λ Σ ί ^ Γ 6 ^ - · (38) 

where Ejb are the canonical η χ η matrices acting on the j t h space. We have used the 
conventional notations, (EjEk)ab = Σ£=ι EfEf. The generators J 0

a t and Jf satisfy the 
following relations: 

[Jo\ Jod\ = 6bcJZd - tdaJo\ (39) 
[J«\ Jf\ = èbcjf - 8daJ{h, (40) 

[JS\ \Jf, J?\] - [J?, J?)] = 0. (41) 

The third equation is known as the Serre relation for the loop algebra. These relations imply 

that the higher generators J^> 1 ? which are defined recursively using the generator J^6, form 

a representation of su(rc) loop algebra, 

[J:\jCrÏ\ = tbCJanU-tâaJCn+m- (42) 

Consider now the following set of generators as [13, 5], 

Qo = JSb, (43) 

We have the following commutation relations: 

[J 0

a 6, Q{d] = 6bc Qf - Sda Qf, (45) 

[Jg\ [Qf, Ql}]} - [Qlb, [JCQD, QxW 

= γ(Μ?6, Wo)cd, ( W ] ] - [(JoJo)ab, [J?, (W]]) . (46) 

These relations together with equation (39) are the defining relations of the Yangian Y(su(n)). 
The second equation (46) is called the "deformed" Serre relation. It reduces to the Serre 
relation (41) for the loop algebra when λ —* 0. In this sense, the Yangian can be viewed as a 
"deformed" loop algebra. The relations (39) and (45-46) show that the generators Q$b and 
Q*b form a representation of the Yangian algebra Y(su(n)). 

3.2 The Yangian Deformed Woo Algebra. 

To combine the loop algebra J%b and the Yangian algebra Q*^, we introduce another set of 
generators K%b : 

Κ? = ΣΕ?χΙ (47) 
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It is easy to see that the generators K*b represent the su(n) loop algebra, 

[K\ Km] = tbCKim - tdaKn+m, (48) 

All the K*b can be defined recursively from the two lowest generators, 

Kaoh = Jo\ (49) 
K? = Y,E?Xi. (50) 

3 

By construction, they satisfy the relations (39-41) with J%b replaced by K^b. 
Consider now the algebra generated by the elements { Jq6, J*6, K%b}. The Yangian current 

Qlb appears from an inter-relation formula between these operators; 

[Jf , K{d] + [Kf, J?) = 2 ( > c Qf - δάα Qcb). (51) 

Besides the relation (46) for QJ6, we also have the following Serre-like relations, 

[JZ\ [J? + Qld, Jîf + Qlf}} - [J? + Qf>, [J?, Jt1 + Q?]] = 0, (52) 

[Jgb, [Kf + Qf, K? + Q\s}} - [Kf> + Qf, [Jt, Kl1 + Qe/}} = 0. (53) 

The relations (39-41), (45-46) and (51-53) possess an interesting interpretation: consider the 
generators Qlb(x->y) defined by 

Qf{x,y) = Qt + xJlh + yKt\ (54) 

for any complex numbers χ and y. Then, all the previously written Serre relations can be 
summarized into the following compact equations : 

[JSb, QCM y)] = *6c v) - tda <??(*, y), (55) 
[Jt, [<??(*, y), 2/)]] - [Qî6(*, y), [̂ cd, y)J] 

= j{[JS\ [(JoJo)cd, (JoJoY1]] - [(J0Jo)a\ [J^d, (W]]) . (56) 

In other words, the commutation relations between the generators J*b and K%b of the two 
loop subalgebras are such that the generators Qf){x^ y) form a representation of the Yangian 
for any χ and y. We thus have an infinite number of Yangian subalgebras constructed from 
Qlb(x->y), but they all have λ as deformation parameter. 

In the limit λ -> 0, the generators J«b reduce to J«b = Σj Ef(dXj)n. Together with the 
operators / ^ 6 , they generate a VT^-algebra with elements, 

Q?)e6 = £ ; ^ ~ 1 ( & i ) n + e ~ 1 > ( 5 7 ) 

which satisfy the commutation relations, 

rn(s)ab n(s')cd] _ cbc " y ^ * (η + θ — - 1)! n(s+s'-ï-k)ad 
W n ^ k\{n + s-k-l)l(s'-k-l)\Wn+m 

cia ™ψ1 ( m + y - ! ) ! ( , - ! ) ! n w - i - k ) * 
to k\(m + s'- k ~ l)\(s - k - 1)1 V n + T O 

(58) 
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As a consequence, this algebra is generated by the elements { Jq 6 , Jf, Kf}. Moreover, it is 
easy to see that this W^-algebra possesses an infinite number of su(n) loop subalgebras. 

For λ φ 0, our algebra is naturally called a "Yangian deformed Woo-algebra", and denoted 
YW00(su(n)). The algebra includes the loop algebra, the Virasoro algebra [16], and the 
Yangian as subalgebras. 

3.3 An infinite number of Yangian subalgebras. 

We now analyze a little more the structure of the algebra. Let us first identify another 
Yangian subalgebra. Define another set of operators Qf(h,uj) by 

Qf{h,Lo) = h2J?-u2K?, (59) 

where h and ω are arbitrary complex numbers. By direct computation, we see that the 
operators Qf{h, ω) constitute a representation of the Yangian since they satisfy the following 
relations: 

= (Xhu)2([JSb,[(J0J0)cd,(J0Jo)ef}} - {(JoJo)ab,[Jod,(JoJo)ei}}). 

(60) 

(61) 

Notice that the deformation parameter is now 2\hu>. 
This subalgebra is actually a simple example of a more general structure. As we now 

explain, in the Yangian deformed W^-algebra generated by { Jq 6 , J^ 6, Kf], there exists an 
infinite number of "slices" in which a Yangian subalgebra can be constructed. 

To prove it, we need to introduce the Dunkl operators D{ for the Calogero model [15]. 

Di = (62) 

where Kij is the operator permuting the coordinates X{ and x3\ XiKij = KijXj. We have 
the commutation relations: 

D i Κ ij — ^ij ^j 5 

[Di,Dj] = [χί,χ,·] = 0, 

[ A , xj] = Si3 (1 + λ £ Kü) - (1 - δα) λ Κα. 
1:1φί 

(63) 

(64) 

(65) 

Introduce now the operators Δ,· defined by: 

Δ,· - (hDi + ωχ{ + y) {h'Di + ω'χ{ + y'). (66) 

They depend on the c-numbers h,cü,y and Ιι',ω',ψ. They satisfy 

[Δ,·, Aj] = A {hJ - tiuj) {Ai - A3) Kij. (67) 

This relation allows us to construct a representation of the Yangian algebra. Following 
Ref. [13], we introduce a monodromy matrix T(u) by 

Tab(u) = 6ab + X {hJ - Ιι'ω) J > ( - J — ) Ef, 
i U /At 

(68) 
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{JS\[Qld(h^),Qlf(h,u)}) - [Q?{h,u),[J<\Q\s(h,u)]] 

UZb,Q?(h,Lo)] 

_d_ 
-X Σ 

1 

3C % CC j 
•Ki3. 

= 6bcQÎd(h,Lo)-6daQ?(h,Lu), 



where π is the projection consisting in replacing Kij by P{3 once the permutation K{3 has 
been moved to the right of the expression. As in the previous section, the matrix Tab(u) 
satisfies, 

[Tab(u), Tcd(v)} = - k ' U ) ( T c b ^ Tad^ _ T c b ^ Τ*ά(Λ (gg) 
u — V v J 

This is another presentation of the Yangian. Therefore, the matrix (68) forms a represen­
tation of the Yangian. As usual, the quantum determinant of T(u) defines a generating 
function of commuting operators which all commute with the matrix T(v) itself. 

We thus have identified an infinite number of Yangian subalgebra in the deformed W o o ~ 
algebra. They are parametrized by the complex number h,üü,y and /^ ,α / , ΐ / ' . Notice that 
their deformation parameters are \{Η'ω — hu'). The previously discussed loop and Yangian 
subalgebras can be recovered as particular cases of this construction. 

We essentially worked with a specific class of representations of the algebra. But the 
algebra can be defined abstractly as the associative algebra generated by the elements 
{ J q 6 , J 2

A 6, Kib} with the appropriate Serre relations. So it is important to decipher the 
statements which are representation dependent from those which are true in the algebra. 
Also we did not discuss the Hopf algebra structure, if any, of our algebra. 

References 

[1] F. Calogero, J. Math. Phys. 10 (1969) 2191, 2197; 
B. Sutherland, J. Math. Phys. 12 (1971) 251. 

[2] F.D.M. Haldane, Phys. Rev. Lett. 60 (1988) 635 ; 
B.S. Shastry, Phys. Rev. Lett. 60 (1988) 639. 

[3] See, e.g., F.D.M. Haldane, in the proceedings of the 16th Taniguchi Symposium, eds. N. 
Kawakimi and A. Okiji, Springer Verlag 1994. 

[4] V.I. Inozemtsev, J. Stat. Phys. 59 (1990) 1143. 

[5] F.D.M. Haldane, Z. Ha, J. Talstra, D. Bernard and V. Pasquier, Phys. Rev. Lett. 69 
(1992) 2021. 

[6] F.D.M. Haldane, Phys. Rev. Lett. 67 (1991) 937. 

[7] L.D.Faddeev abd L. Takhtajan, Phys. Lett. 85A (1981) 375. 

[8] D.Bernard, D.Serban and V. Pasquier, preprint hep-th/9404050 
P. Bouwknegt, A. Ludwig and K. Schoutens, preprint hep-th/9406020. 

[9] L.D.Faddeev, Integrable models in 1+1 dimensional quantum field theory, Les Houches, 
Elsevier Science Publishers (1994) 

[10] V .G. Drinfel'd, FunctAnal.Appl. 20 (1988) 56. 

[11] R.J. Baxter, Exactly solved models in statistical mechanic, New York Academic, (1982). 

[12] E.K. Sklyanin, in "Integrable and superintegrable systems", 1990, ed. B. Kupershmidt, 
World Scientific. 

90 



[13] D.Bernard, M.Gaudin,F.D.M. Haldane and V.Pasquier, J.Phys.A 26 (1993) 5219. 

[14] I.Cherednik, Invent. Math. 106 (1991) 411. 

[15] A. Polykronakos, Phys. Rev. Lett. 69 (1992) 703. 

[16] K. Hikami and M. Wadati, J. Phys. Soc. Jpn 62 (1993) 4203. 

[17] D. Bernard, K. Hikami and M. Wadati, in "New developments of integrable systems 
and long-ranged interaction models", ed. M-L Ge and Y-S Wu, 1995, World Scientific. 

91 


