B. ENRIQUEZ

B. L. FEIGIN
Integrals of Motion of Classical Lattice Sine-Gordon System

Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1995, tome 47

« Conférences de M. Audin, D. Bernard, A. Bilal, B. Enriquez, E. Frenkel, F. Golse, M.
Katz, R. Lawrence, O. Mathieu, P. Von Moerbeke, V. Ovsienko, N. Reshetikhin, S. Thei-
sen », , exp. n°5, p. 127-150

<http://www.numdam.org/item?id=RCP25_1995 47 127 _0>

© Université Louis Pasteur (Strasbourg), 1995, tous droits réservés.

L’acces aux archives de la série « Recherche Coopérative sur Programme n° 25 » implique 1’ac-
cord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utili-
sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=RCP25_1995__47__127_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Integrals of motion of classical lattice sine-Gordon system

B. Enriquez and B.L. Feigin

Abstract. We compute the local integrals of motions of the classical limit of
the lattice sine-Gordon system, using a geometrical interpretation of the local sine-
Gordon variables. Using an analogous description of the screened local variables, we
show that these integrals are in involution. We present some remarks on relations
with the situation at roots of 1 and results on another latticisation (linked to the
principal subalgebra of SAEQ rather than the homogeneous one). Finally, we analyze a
module of “screened semilocal variables”, on which the whole ;@ acts.

Introduction.

In this paper, we analyze the classical limit of a lattice version of the sine-Gordon
system. It consists of g-commuting variables set on a line lattice, representing as usual
densities for the screening charges.

We first determine expressions for the local integrals of motions of this system.
For this, we formulate this problem in terms of the cohomology of the action of the
screening operators on the module generated by a finite number of lattice variables.
It has been known for some time ([F]) that this is an action of the nilpotent part
of g\fz; here we interpret the space of lattice variables as an homogeneous space for
this action. We find that lattice variables are coordinates on the Schubert cells of
SLy(C((A71))), which are an affine version of the Demazure desingularisation. We
give explicit formulae for the cocyles and the integrals of motion.

We then solve the same problem (less explicitly) for an other lattice version of
sine-Gordon, which can be generalised only to &n (whereas in our main approach
the problem can be formulated for arbitrary affine Kac-Moody algebras).

Coming back to the main setting, we show that the integrals of motion commute
in Poisson sense. For this, we study their action on the variables on the whole line.
To this end, we analyze first “screened” variables on the line (that is, the module
generated by the screening action on the lattice variables); they are endowed with
an action of the whole algebra sy (at level zero). We are then able to show that
the Hamiltonian vector fields generated by the integrals of motion correspond to the
action of a commutative Lie algebra on a homogeneous space of sfs.

We then study “screened semilocal quantities”, containing in addition to the
variables above “half integrals of motion” (that is, integrals on the half line of densities
of integrals of motion). We still obtain a homogeneous space of &2, equal (up to
completion) to SLy(C((A™1)))/H (where H is the Cartan subgroup). We study the
Poisson structure of this space; it is connected to the trigonometric r-matrix. This
study enables us to precise the result on the Hamiltonian vector fields generated by
the integrals of motion.

We hope that this group theoretic interpretation will be useful for constructing
solitonic solutions of this system.
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Let us note finally that related lattice approaches to the sine-Gordon systems
were developed by Izergin and Korepin ([IK1], [IK2]).

1. Formulation of the problem of integrals of motion.

Consider a system of variables z;,y;,? € Z, with relations TiTj = QT Yy =
QY. Tiy; = ¢ Lyjxi yir; = ¢ tajy; for i < j, and z;y; = ¢ 'yia; (we can consider
this system as obtained from z;2; = ¢z;j2;,t < j by posing ; = z2;,y; = 22—:“) The
operators ¥ = 3. o @; and 7 = )., y; are lattice analogues of the screening
charges of the sfy Toda system. Lattice analogues of local conservation laws are
quantities > .. P(2i,yi, -, Tiya), commuting with S+ and ©7. We are going to
determine the classical limits of these conservation laws.

2. Cohomological interpretation and classical limit.

Let us give variables z; and y; the degrees 41 and —1 and _pose [a, b]q =
ab — q4¢8@de85pq Then there is an action of the negative part U, b of U, sty on
Clz:,y:, 21,57 by Qi(:c) = [o%, ']q,Ix(x = ¢4 7z (here &t = "7 z; and
~ =3, vi). The polynomial P will be a density for a conservation law if there
exist polynomials #* such that @iP = (T — 1)ip* (T is the shift operator). Then
¥* will be a 1-cocycle for the action of U, b_ in Clz;,y:, %%]. So the problem of
quantum conservation laws is equivalent to the computation of cohomology classes
v € HY(U, b+, [z:,y:, £%]), such that w(Qi) are independent of ©%, and of the
map T — 1 in cohomology.

We will be interested in the classical version of this problem. The classical limits
of operators Qi, K form an action of b_ by vector fields

] 10 o (L0 G 0
%= (554 5L 5 ) - = L (5 L 5~ L 5.
1>t i>t > >t

1€EZ 1€EZ

gl

| ] 9
(+) HZQ;(%_@(Z)’

where z; = €™ and y; = e
Let us suppose that g/)i depend on variables g, Yo, -+, Tk, yr ; We can Wr1te
the operators Q4+ on Clzo, -+, k] ® C[Z4, {24+, 2}, - ]as Q+ = Q1+ ® 1 £ H ®
m(X1) +1® {S4,-}, where m(34) is the operator of multiplication by Zi, and
{a,b} = {a,b} — (dega)(degb)ab. Here Qi,H are vector fields on Clzg,- -, y]
given by formulae (*) with summation over ¢ = 0,---, k ; they still form an action of

[

Lemma.— The polynomials YT form a cocycle (resp. coboundary) for the action
of n_ by operators Q4 on Clzg, -, yr] @ C[X4,- -], if an only if they form a cocycle
(resp. coboundary) for the action of i by Q4 on Clzg,- -, yk].
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Proof. The coboundary statements are obvious. For the cocycle statements, the
first implies the second by consideration of terms of type © ® 1 in the identities.
That the second statement implies the first is the result of a long but straightforward
computation.
|

Note that the (ondltlon that degy*t = —degy~™ = 1 is equivalent to the con-
dition that the cocycle T can be plolongated to a cocycle of /b\_, with ¢(H) =
constant.

3. Homogeneous spaces under b
Recall that the representation of Ujn_ in g-commuting variables comes from
2k —
the sequence of morphisms Ugn_ = (Uqﬁm)@’zk — Clay, Yi)i=1,.. 2k, where the last
map is the alternating product of morphisms U,n. — Clz;],Q+ — z;,Q- —
I, and U,n. — Cly;],Q+ — 1,0~ — y;. Recalling the Hopf algebra isomor-
phism U,ni_ ~ C[N4],, we see that the map Ujn-. — Clz;,y;] has for classi-

cal limit the embedding of C? in ,NA'Jr, (25,9i) — (Ai ?) <(1) yf) Accord-

ingly, the classical limit of C[]@,]q ~ Ugni- — Clzi,ysli=1,...k is dual to the map

@RLg— \+,(ll yi) — H ()\i (1)> ((_1) yf) More generally, we have also al-

gebra morphisms C[]\+]q — Clzy,y1- -, 2N,YN,TN+1] Whose classical limit are

o 1 0 Loy} 1 0
dual to (z1, 1 TN41) (/\l’l 1) (O 1 > ()\CCNH 1), etc. These maps

cV - A\Au are Poisson morphisms, in fact the image of (C*)¥ is dense in a symplec-
tic leaf of No. Indeed, images of CV have dimension N, and images of N-uples have
the respective forms

| *Ak_1+"' */\k-—l+...
_ for (:cl,y1 . '$kayk)7

*AF 4 *AF

- for  (x1,y1,  Yr—1Tk41), fARFL L R

. *’)\k+... * A1
— fOI‘ (y17:["27.”yk?1'k+1)7 *Ak+___ *Ak—l_!_”_
N O Y T
- for (y1,$2,"',$k,yk), */\k—l_{__” */\k—l 4.
(the *' are not zero if the 4, are not zero) whereas the svmplectic leaves of J/\h

are the prelmages of the B -orbits on G/B by the injection N+ — G/B [here
G = SLy(C((A\™1))) and B_ = n7Y(B), where 7 : SLy(C[[A7']]) = SLy(C) is

defined by A™! — 0 and B = {(Z t‘ly} C SLy(C)], according to Semenov-
/

Tian-Shansky [STS]. The B_-double cosets in G are the double classes of affine
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Weyl group elements, so that the images of (C*)" by these morphisms are dense in
B_wB_ /B_7 w respectively equal to

A——k 0 0 —-k—-1 //\k 0 _/\k—]
0 /\k ’ )\k-}-l \ 0 -—k 3 A_k_}_l 0 .

For each of these spaces, the vector fields Q4 get identified with the natural transla-
tion action of b on B_wB_/B_.
We further identify B_wB_/B_ with B_/B_NBY, where BY = wB_w™!

BY are respectively the groups of matrices of the form

\—2k-2, a Ve . =9 )
( )’(Z d )’<>\~2kb d >7<)\—2k+1b d ),a,b,c,dg C A 1H

Finally, B\_/EA?_ N BY can be identified with the varieties A~!C[[A~1]]/A~2F~1
C A7), A A SO AT C /A C L € A/ Ak

C[[A7']], by associating to p,p',o,0' in these vector spaces the right cosets of
y g PP g

~ ~1
(é /1)> , <(1) 'C{ ) , (; (1)> ) <&1, (1)> respectively (™ is a section of A*C[[A7!]] —

A C[[AT]/A""C[[A71]],e = 0 or 1). The action of g = (Z AT

affine varieties is then given by the homographic transformations

;g_ﬂ

o R

) € B_ on these

ap+c/A , ap' +c/A _ b+do ,  b+do’

9= bp +d 9= bp' +d 97 = a+ca/>\’g‘g adcol /N

We can make more explicit the maps from (C*)V to AC[[\]]/ANT<C[[\] :
($1,y1,"‘,$k>yk)*—*,0= — mod A_.Zk—lﬁ where

1 0 1 1 0 1 oy [ Ar Ck
Azy 1 0 1 Az 1 0 1) \By D¢/’

!

, Al _ok—
(1,91, - Tpg1) > p' = ﬁ mod A~2%=2_ where
k

1 0\ ([ 1 0\_[4 ¢
)\il?] 1 )\Ik-{-l 1, o B;c D;L ’

(Y1,22,+* , Tgy1) > 0 = i: mod A7?* where

1 yl . 1 0 . f}k C:jk
0 1 Atpyr 1) \Bx Di)°
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D, ok
(3/1,&?27"‘,$k,yk)f—>0’:—c~,—f‘mod A 2k+1

0 1 o 1)=\B. D)
This defines b_-module injections Clo;] = C[B_/B_ N B*] — Clz;, ;] in the

two first cases, and Clp;] :'C[ﬁ_/ﬁ_ nB*] — Clz; ',y '] in the two last (p; =
Dip1 PIATH 0= D50 0iATY).

4. Computation of cohomologies.

Let us consider a point b_(ﬁ_ ﬂﬁ_“_’) where the mapping ]§_/]§_ NBY — (C*)N
is regular and the local ring at this point : it is isomorphic to the coinduced module
Ub_ ® C. We then have the sequence of maps

, where

U(b-nb®)

H'(b-,C[B_/B_nB"])— H'(b,Clai",y*')) — H'(b_,(Ub- @

i U(b_rbw) C)")
The last space is isomorphic to Hl(/l;_ N /I;’_"), by Shapiro’s lemma. If we find rep-
resentatives for classes in this space by functions in C[ﬁ_ /ﬁ_ N Eﬁ’] their images
n Hl(Z_’C[ £1yF]) will not vanish. Pose s, = b_/b_ NB". Then Hl(sy) =
(8w/[8ws3w])*. Then sy /[Sw, Sw) is spanned by the classes of the (A(; _/(\)_l- > ,0 <
i < 2k, 2k + 1,2k, 2k — 1 in the four cases we considered, and H'(s,) is spanned by
the forms ; : 2(\) = 3 rese Rtr (1\) _0)\1> z(A).

; Let us show now how an element of H'(s,) can give a cohomology class in
Hl(b ,Fun(B_ /Sw)). Let us choose a section o of the projection B — B_/S,. For
X €b_andz € B_/S, wewrite (1+eX)o(z) = o(z. )(1+es(X, z)+o(¢)), with S lin-
ear in X with values in s,,. Then for ¢ € (84 /[Sw, Sw])* we pose fx(z) = (p,3(X, 2)) ;
it is a l-cocycle of b_ in Fun(B /Sw). Let us choose for o the maps p,p’ —

1 p 1 p 1 0 1 0
(0 1>,<0 1>anda,a F—*(& 1),(&, 1>.Thenthecocyclescorrespond—

AN 1 -5 1 5
dA , P\ x p
ing to ¢; are the maps fi(p) = resoo £t 0 —\ 0 1 > X <0 1 ), same

A0 10 10
formula for p', fi (o) = —resood)‘tr<0 _/\i>< . 1)X<5 1).

More e*cphmtly, we have the cocycles fi of b_in Clp1, -, pn), such that f,;A_l =

ff)\ i = TPi-j ,th k =f/\ o =0ifk#£i, kK >1, andthecocwcles g% of
b_ in Clog,-,04], such that 92)\—1' =1 ,giA_j = 0i—; 7Jh/\_k = ng_k, =01if
k#1, k' >0.

Remark. The actlon of b_ and the cocycles can be expressed as follows, on the
manifold B_wB_ N 7V+ . the action of X € b_ at the point g € B_wB_n N+ 1s
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Lxg=g(g™ 1AJ)+ ; to express the cocycle corresponding to A'h(i > 0) we use the
embedding Ny — G/B_ ; the formula is then filg) = resco Rtr(ANhg™' Xg), X €

b_. This gives formulas for the cocycles in terms of x; and y; (and not their inverses).

5. Computation of T and I in cohomologies.

Let % (z1,y1, -+, 2k, yx) belong to Z? (/l;_, Clz1, -+, yx]) ; then we have cocycles
T4 and Itp in Z' (b=, Clay, -+, yra]), defined by (T) (21, ypgn) = 5 (w1, yw),
and (T)E(z1, - yra1) = (22, yrs1). Ty is the image of ¢ by the b_-module
map I : Clay, --,yx] — C [21, ., yr+1), @4, yi — 2i,y;. Recall now the maps
Clp1,+,p2k] — Clz1, - yxl, Clpr, -+, pak+2] — Clz1, -+, yr+1]. Then I corre-
sponds to the map Clpy,- -, p2x] = Clp1,- -+, pak+2), pi — pi. Indeed, recalling the
notations of section 3, we have

Cv Crar| _ | Ok yrprAr + (L + 2rgayr+0)Cr | _ e
Dy Dyiq Di yr+1Br + (1 + @k+1Yr+1)Dx e
Then Qi— - g’iﬁ = D_kka:-ll-l € A\72E1C[[A Y], since Dy, and Dy have respective

degrees in A, k and k + 1. It means that the classes in A"LC[[A 7]}/ A2k~ 1C[[A1]]
of pr and py41 are the same. We deduce from this that the map I corresponds to

~k
the map C[B_/B n B¥] — C[B_/B n Bw+1], wy, = (AO _?\k>, induced by
the natural projection, and that it induces in cohomology the map I : H(s,,) —
H'(s4y,,,) coming from the injection sy, ,, — Sw,. In particular it maps the class of

k41
fi € Zl(b—v C[Pl, T ,Pk]) to the class of fl € Zl(b-—: C[Pl, ) Pk—}-l])-
Let us now compute T in cohomology. Let us consider the map T : Clzy, -+, yx] —
Clzy, -, Yk+1], TirYi ¥ Tit1, Yi+1- 1t is the composition of the maps Ty : Clzq,- -+, yx| —

Clyt, 22, Yr+1]s Tis Yi = Tig1, Yitr, and Tz : Clyn, @2, yrat] = Cloa, -+, Ykl
Lq,
Yy 7 Ty Yi -
Let us define algebra isomorphisms 7] from Clog, -+, 02k] to Clp1,- -, p2x] @
— k —i k —i
Cly7 '] by o = Z?:o oAt = y11+p, where p = Zf 1 pi/\ , and T, from )
Clpls s Phgyal to Clog, . 02 @ Cla] by p = v +U, where p' = 22 + pEATE.
The inverses of these correspond to T} and Ts.
T! and T} are i _-module morphismsif on Clpy, -+, par] @C[y; '], eA™" 71 AATT,
FAT™ act respectively as the vector fields

0 0 0 0
2ylaf) e Z 3Pn+k —ZZ/)M 2 OP

Opn+1’ k>1 k>0 =0 "“

(in the last expression we set pg = 1), and on Cloy, -+, 02r] @ Cla7 '], by

0 0 9
_Z(Z 0i0k—i) ‘ngl‘”aanJrk’(’)Tn’

ST i O0tnt1
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where in the two first expressions we set o_1 = .
Then we have maps of cohomologies H'(b—,C [py,---,pat]) — H! (/I;_, C
B Tl—l ~ —~
lp1,opa] © C [y ') == HYb-,C [og,---,09:]) and H(b_,C (00, ,00k]) —

H! (5_, Clog, -+, 02k) © Cla7']) N Hl(/b\_, Clp1, -+, Pyry2)), where the two first
maps associate to the cocycle ¢ in Hom(/b\_ , C[pl, -+, p2k]) or Hom(/b\_, C(oo, -+, 02%]),
the cocycle ¢ defined by @(eA™ 1) e(eA™H @ 1,¢(f) = e(f)® 1.
The mmgﬁ by ~of f1 € Zl(, ,Clp1, -+, p2x]) is the cocycle f*, such that f’ =
]Lf,\ N ff,\~' = Jlaf]ic)\_k” = th I f)\ w o= 0if B 7A ¢, 2

0,k" >i:the image by ~ of ¢* € Zl(/b\_, Cloo, -+, 02k]) is the cocycle §*, such that

—1 - - — =t _ ~1 =1 =1 _
Gpr—i = 1 sGern—i = gln.lﬁge/\‘i_l =T ’gh/\"kl —ge/\_k// = gf/\__kul =0

R A0, B >041 K" >0. R

Let us compute the classes of T, *(f?) and Ty *(¢'). The mapping H'(b_,Fun
(B_/S™)) — H(s") is defined as follows ([G]) : to the cocycle (X — ¢x) €
Zl(g_, Fun(ﬁ_/Sw)), we associate the form X € s — ¢ x(eS™). This operation is
impossible here because €5" corresponds to o9 = -+ - = g9 = 0 in the first case, and
Py =+ = phyy, = 0 in the second, where the function y; = oy (resp. z; = pih)
is not defined. So we will use evaluation at another point of ﬁ_/S“’. Let b_ € B_ ;
the stabilizer of b_S% is b_S"b”", and the natural map H' (/l;_,Fun(B\_/Sw)) —
HY(b_S%b™) is (X = ¢x) = (X € b_s®b! = o x(b-S¥)) ; finally we have the

natural map

HY (b, Fun(B_/S")) = H'(s"),(X > ox) — (X € s¥ s 0y _1,-2(b-S™)) .

For T}~ '(f*), we choose b_ = (i (1)> ,a # 0. Then

S‘Qb_()\—"f)bzl = —pi-n?@b_()\—nh)b:l = 6zn - zapi-—n ’ 99[,‘,()\—71—16)(,:1 =

= —a0;py1 — a?p;—n—1 (posing again py = 3/1_1 = 01_1). We are only interested in
gob_(A_nh)b:l(b_Sw) and it is —&;,. So T; maps the class of f* to the class of —g*.

For Té—l(gi), we choose b_ = ((1) ﬂ) B # 0. Then ¢, (A=nh)b=t =

= 67”' - 2ﬁ0—i—n’c’9b_(A—"e)b:1 = ai‘”""ob_()\-"f)b:l = ﬂézn — ﬂ20i—n'

So T, maps the class of ¢* to the class of —f°.
In conclusion we see that in cohomology, T — I is equal to zero. It means
that for each k, we have k integrals of motion corresponding to polynomials in

-1 -1 —1 -1
C[Q‘l sH1 5 T Yy ]
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We can repeat the reasoning for the other algebras C[yl_l, e ,yk'l], etc., and
obtain for cohomologies of the diagram of algebras

_ I - - I - _
C[xll] — C[%lv"'vykl] - C[$11a"'afcki1] —
T T
Y O
\ /N
- - I - —
Cly; 1] 7 C[y2 l’ >$k—+1-1] —  Cly, 1; »ykil] —
the diagram
2k _ 241
ch - Povr -  Poxn
i=0 =0
V’
Ch )
N
2k ‘ 2kt1
Ch  — - @cm — @CM
1=0 =0
Let us denote the space of integrals of motion in z;*,---,yz ' by IM(x; ", - Jyr )

it is the subspace of Clzy"', -+, y; ' }/Im(T — 1) of classes of polynomials P whose

Poisson brackets with Ef___l T, Zle y; are in Im(7T — 1). Let us remark also that
the part Ch of the cohomology corresponds to a trivial cocycle ¥ = 0,4° = 1. We
summarize our results :

Proposition.— The spaces IM (z', - ,y,;'_il), IM (271, ,a:kj_z), IM(y; ",
e :rk__iz), IM(y;*t, - ,yk*iz) are graded linear spaces of respective dimensions 2(k—

2k—2
1),2k —1,2(k — 1),2k — 1. Setting IM(x7",---,y; ") = ® ClL{a]", -,y "), etc.,
s=1

the identity and the translation induce maps between the spaces IM(z7%, -+, yit),
IM(z7t, - ’331;—41-1)7 etc., analogous to (*%).
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6. Expression of the integrals of motion.

Let us consider the cocycle A2**1h ¢ Hl(/b\_,C[x]_‘l,-n,17,:41_]]). By the map
Clar!, -+ ] = Clph, -+, physq] (sect. 3), A1 is identified with the class of
f**+1. Consider now the map Ty : Clz]?,- - 7l1;11] — Cly; - 7"17;412]7“7% —

Zit1,Yir1. The class of the cocycle Ty f2*+1 ¢ Zl(g_,C[yl_l, e ,;17,‘12])7 defined by
(T fR1(Q4) = Th(f?*11(Q1)) coincides with the class of —g?F+!,

Let us write Th f2*+1 4 ¢?#*1 = dp. By the identification of Cly;!,--- ,;v,;l_g}
with Clog, -+, 05..,], we see that we should have Lyy-ip = 20j 2541, Ler-ip =
Ookt1—is Lpa-ip = "‘(%)2};4.]_1'. The third equality gives us equations satisfied by

1 0 — . d¢ 1 ;.
”9((00+01A—1 1)) = Plo0,71,0+) ¢ §E = ~(Sawnri Wit now oy +
o AT+ = exp (Inog + El>1 51‘ "i) We have ZQZO gg—;gg‘z = 6 (with & =
Inog), 80 D 5o 0i- a%i— = ;1 and = (l)a k. We thus obtain ¢ = —{354; and
check that the two first equations on <,0 are satisfied.

Consider now the map T5 : Cly;*, -, xk+2] — Clz', -+, a;iz] i Yi
zi,yi. The class of the cocycle Thg?*tt ¢ Z1 (b_, Clzy', -+, ’Lk+2]) defined

by (Tog? 1) (Q+) = To(¢**T1(Q4)) coincides with the class of —f2*+1, TLet us
write Tog?*t1 + f2R+H1 = @iy, After the identification of Cle]",- - l;_*l_z] with

Clp1,- -, p2k+3), we obtain the conditions on 9, Lyr-it0 = 20; 2k41, Ler-ith = ( Y2k+1—i5

- (/1 AT
Lir-ith = —pars1—s. Posing ¢(p1,pz,---):¢((o S )>,the second

condition is translated into —p_ = (%)Qk_f_l_i.
Let us write py A7t + p2A72 4+ -+ = exp (ln)\‘1 + lnp1 + Za>1 NaA™%), then
Opi Da ~ y
EQZO ok gax = bik (with 1o = lnpy), so Za>0 Pi O‘ap = bik and (i)a_k.

We thus obtain ¢ = Nok+1, and check that the other conditions on 1[) are Qatisﬁed.
We have finally ToTy F251! 4 Tog?F ! = d(—Tybopyq), and Thg?*H! 4 f2E+1 =

d(n2k+1), so that TF2E+HY — f2E41 = J(_To&opi1 — mak41). Toakt1 + 2k is the

conserved density corresponding to cocycle A2F+1h, it is expressed in terms of z; and

y; as the coefficient of A~ 2k=1 in the expansion of lnB,i. Similarly, we can show
k41

that the conserved densities representing the class AAZ¥*1 are proportional to

TeSx—oo ili/\%“ql B,+1, OT T€S)\=co d/\/\””“l Cf“
A Bk+1 A Ck+1

J

and the conserved densities representing the class 2A?* are proportional to

' dX D},
réS)=oc @)\Okl Aj , OF T€S)\=no LNk kAL

A Agp A Diyr’

in the notations of sect. 3.
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Theorem.— The conserved density of classical lattice sine-Gordon representing
the class of hAF is proportional to the coefficient of A% in the expansion of

In(Azy /Aay +1/yr + -+ 1/ Aan) +In(ys Jyr + 1w + - - - +1/yn)

with N > 2(n + 1) (we use notations of continued fractions); this coefficient becomes
independent of N in this region.

So these classes can also be represented increasing the indices of Byyq,---, e.g.

AAZETL is also represented by res. d>‘)\2"+11 gk'“ k' > k, ete. The first inte-
k41

grals of motion are Y (z;y;) ™" + (yiviz1)” " and > (wyivip) " + %(1712%2)"1 4
Zi(yi‘rz%—lyi*l-l)nl + %(yz‘zx?+1)_1~

Remark. Assume that these integrals of motions (here denoted by It*) admit quan-
tizations [I;. Consider the case where ¢ 1s as primitive n-th root ¢5 of 1, ¢f = 1.
Then it is natural (assuming commutativity of It’s) to compute tr ([], s, I;*) ; the
trace is taken in the module Clz;,y;]/(2? = X;,y = Y;). This trace is a function of
X;,Y;, and (recalling the Poisson structure of the center of an algebra depending on
a parameter) we will have,

O X ([ 1)) = lim

k>0 =490 ¢ — (o

trz l,HIO”“

k>0

tr(Z + (g — qo) - rest, H I*] = 0;

k>0

= lim
=90 4 — {o

the second equality relies on > X; = (D> z;)" for ¢ = qo, and the third is because
the trace of a commutator vanishes. The same reasoning can be applied to show that

Yi tr([], <, I* } also vanishes. Note that tr I*) has the form
k>0 1k k>0 s=1
D i, MTs(11) - mg ,(1s), the mdy being polynomlals in X;, Y; and P( ) denot

ing the polynomial P, translated by 2, with the tensors Z _ymf @ -@mg  totally
symmetric. The commutation of tI(Hk>O Iy with Y X, and >, Yi imposes that
the mCY are densities of the classical inteérals of motion ICE(XT-,, Y;); substracting then
to tr(Hk>0 *) an appropriate polynomial in If/(X;,Y;), we obtain an expression of
the form 25:1 25{21 Diicoci, MEs(21) - ng (i5), commuting to Y, X; and ), Y.
By induction we see that tr(][,5, %) is a polynomial in the classical integrals of
motion If¢(X;,Y;). B
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7. An other lattice version of the sine-Gordon system.

An other way to discretise the sine-Gordon system is the following : we consider
a svstem of variables %il(z €Z)on the line, with x;2; = qu;z;,¢ < j, and define the

screening actions to be Q. = [3. L Yole
(lassical limit of these operdtors are the vector fields Q4(1) = £ e*& (
ZZDi 5—5—7 (we pose x; = ¢8). Pose H(0) = 2 -2 ﬁ’ and [Q4(27 + 1), Q_(l)] =

H(2i+2), [H(2().Q=(1)] = +2Q4(2i+1). Thisis an action of b_ on ClzF!, --,ackil].
:!:1]

Denote sill by Q. (21-1), H(2) the action of the ebove operatorson Ol -}
and by Q (2i + 1), H(24) their action on Clz!,---, 21|, Then we have the formu-
las -

G2 +1) = o PUH(O) 4 HE) +(Q4(1) 4+ Qa(20 +1)
—™(Q-()+--+Q-(2n—-1)),
Q- (20 +1) =~ — TH(O) -+ H(20)
6"2” Q+()+ - +Q+2n—-1))+(Q-(1)+-- -+ Q-(2n+ 1))
+(2H(0) + - - + 2H(2n — 2) + H(2n)) |
—2e7(Q-(1) + -+ Q-(2n—1)) +2e7(Q+(1) + -+ Q+(2n + 1)) .

This allows to show that the values at the point 1 = --- = zny = 1 of these vector

fields are given by

o0 ' ; N 1+/\2k——1+ 1_)\216-—1 ]
HO) = e =Z( e
1 Y 2k—1 A 2k—1 o
Q¥ = @ it = S LENTE G 0

“(\) = Z Q7 (2 + )= X = —QF(N) .
1=0

These vector fields span the tangent space at 3 = --- = oy = 1 ; the stabilizer of

their action is the subalgebra of b4
an :a+(1—A)N3++s,

where a = @ CA(e + Af) is the principal commutative subalgebra, and
i>0

= ."E>§§0C[ti(1 + t)N(ft +h— -(;‘) + (—t)i(l — t)N(——ft +h+ %)] (here 2 = )\) .
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We have [a,s] C s,[s,s] C (1—)\)Nﬁ+ﬂa, and we can see that an /[an, ay] is spanned
by the classes of \i(e + /\f),é =0,---,N—1.
We have a map Hl(b+, C[ il xfjl]) — H'(an), since by Shapiro’s lemma,

we have an isomorphism Hl(b+, C[[Il —1,-yany —1]]) ~ H](u/\;) The injection
Clz fﬂ’...?xﬁlj — C[:v1 s x]i\,lﬂ] zi — a;, is a morphism of by-modules and
induces the natural map Hl(aN) — H'(an41) in cohomology.

Let us now compute the injection T : Clzi!, - 23] — ClaE', - 2F'], 2

x; in cohomology. The image of the cocycle 3 W1ll be defined by (T¥)(Q1) =
T(¥(Q+)). By the above formulas for @1, H, we then have

(TP)(Q4(2n + 1)) = 2o [Y(H(0)) + -+ + ¥(H(2n))] + [¢(Q+( ) +
+9(Q+ (2n + 1)) = [(Q-(1)) + -+ + (@ —(2n — 1))]
(T)NQ-(2n+1)) = —xal[zb(H(o»+~-+¢<H<‘2n>>] [W(Q-(1))+ -
+P(Q-(2n + 1)) — [(Q+ (1) + -+ + (Q4(2n — 1))]
(T)(H(2n)) = [2¢(H(0)) + -~ + 2(H(2n — 1)) + (H(2n))] = [{(Q-(1)) + - --
+P(Q-(2n — )] + 2 (Q+ (1) + -+ + 9(Q+ (2n + 1))] .

We then compute

(T)(Q+(2n +5) + Q—(2n + 1)) = $(Q (20 + 1)) + ¥(Q_(2n — 1)) .

It means that T and I are equal in cohomology. So we will have, denoting by
IM(xy,-- -,z N ) the integrals of motion which can be expressed as > . P(ziq1, ++, TitN)
[P is a formal series in xy — 1,--- oy — 1] :

Proposition.—
N—1 .
1) IM(zy,---,znN) is a graded linear space, isomorphic to H'(ay) = @& CA'(e +
Af)*.

2) The natural map IM(x1,---,zn) — IM(z1,---,2N41) commutes with the nat-
ural injection of the corresponding graded spaces.

In other words, we have a “new” integral of motion for each N.

Note that by inductive limit the space of all polynomials in xy. -+, 2, -+ gets
identified with Fun (N+ /A) and we can hope to describe the action of the 1ntegrals of
motion on this space in a way analogous to [FF]. We can also hope that the elements
of IM(xy,---,zn) are equivalent to the Faddeev - Volkov integrals of motion ([FV]).
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8. A geometric interpretation of the screened local quantities.

Let us denote by 31 and £~ the quantities Y i>0 Tir 2 isp Yi 5 the action of i
on the Poisson algebra generated by them, C[E+, S~ - -] can be naturally prolonged
to an action of s¢3((\)), on the following way : as n_-module, C[S*, 57, -] can be
identified with C[M], endowed with the dressing action ; this action is compatible
with the left action of n_, by the mapping ]v+ — (A?/E’_ ; since this mapping is a
dense embedding, the left action of § = sl5((\)) defines an action of § on N4. Let
O+,0- be the operators on C[SF 27 -..], corresponding to the generators of 7.
Then 94 and d_ are derivations, and we have for example 9.(8°) = 6./, £,¢' = +
or —.

We can now define the action of on Clz;,y;, 21,27, - Ja<ico = Clai, yila<ico®
C[Z+,87,--] by {Z%, -} for the A-part, and 1 ® O+ the Ay -part. Recalling that
{E#,-} is expressed as Q+ @ 1+ 1H @ m(S+) + 1@ {4, } [sect. 2], we see that
these formulae indeed define an action of g on Clz;,y;, 7,57, - Ja<i<o-

Let us interpret this algebra as a function algebra on a homogeneous space of
g. We have Clz;,yi]a<ico @ C[E"' 57, ]~ C[B-/B_n BY x N+] for a certain
Weyl group element w ; on B_/B_ N BY x N+, the action of n; is given by the
product (0, right translation), and the action of b_ s given by the vector fields
Q+®1+tHQ@m(Z4+)+1®{Z4, ). Consider the mapping B_/B_NB*x N, —
G/B_n B*, (b_(B_ N B¥),ny) — nyb_(B_ N B¥), and let us show that it is
g-equivariant. For the part 7y, it is clear. The action of Q4 € b_ on the right is
n+(n__}_lQin+)+b_ +n+(n;1Qin+)0 b_+ny(nT'Qini)_b_ whereindices 4 ,0, and
— are the projections on the components of g = ﬁ.,_ +Ch+n_. But, (n7'Qing)-
Q+, and (n7'Q4ny)o = bo2, (nT'Q-n_)e = c1 %, with ny = exp(boe(0) + clj(l) +
+--+), and by and ¢; are respectlvely identified Wlth S+and 8- by C[S,, 5, ]

C[N+] : this proves the claimed equivariance.
Let us concentrate now on the identification of these spaces as Poisson manifolds.
The identification C[S+, £, -] ~ C[N,] is also an isomorphism of Poisson algebras.

Let us identify now the Poisson structure on B_/B_NB™, given by C[B /B_nB*] =
Clzi,yi]-d<i<o. Recall that the - map_ C[N+] — Cl[z;,y;] is a Poisson map, and so
the map from (C*)?¢ to N+ N (B wB_) [symplectic leaf of N4] is Poisson. Let us

consider now the map Ny N (B wB_ ) — B_/B_nN BY. The group B_ actsin a
Lie-Poisson way on both sides ; it means that on the right side the Poisson structure
is the structure such that the prOJectlon B_ — B_ /B N B¥ is Poisson [such a

structure exists since if s¥ = b_ N b’_", 8(sV) C s¥ N b_], plus some left-invariant
bivector. To compute this bivector, we remark that the two maps

Nyn(B_wB_)— B_wB_ — B_/B_nB"
should also be Poisson, where on the two first spaces the Poisson structures are given

by the embeddings in N+ and G respectively. So it is enough to compare the Poisson
structures at w in the second space, and at e(B N B“’) in the third one. Denoting
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by r the element of /\Zg representing the trigonometric r-matrix, we find that second
bivector is r — wrw™"'. It means that the Poisson structure on B_ /B N BY is such

that its embedding in G/B_ N B, with structure r” — (wrw =" )% [exponents L and
R mean left and right action of A?g], is Poisson.

Finally, note that the Poisson structure on E-/E_ nBY x ./\ATJr corresponding
to that on Clxy,y;, X4, -] is such that the projections on each factor are Poisson,
and {f,¢g} = (deg f)(degg)fg, if f and g come rcspectlwly from the first and second
factor. On the other hand, the map B_ x N+ NS J(b_,ny) > nyb_| is Poisson, if
L DR and B_ x N+ has the Poisson structure

G has the Poisson structure = — (wrw™

such that ﬁrst projection on B_, composed with embedding in @', with Poisson
structure r — (wrw™1)R is Poisson, as well as the second projection on N+ with
usual Poisson structure, and functions coming from different factors have the same
brackets as previously. (G is here the product N+ X B_, the factors of this product
being completed in the topologies of C[[A]], resp. C[[A7']}; it is not a group but has

actions of § by left and right translations.)

?

To summarize, we have :

Proposition.— The morphisms of Poisson algebras C[S¥, - -] — Clz;,y;, 2%, -] —
Clzi,y:], (the latter mapping is obtained by factorizing the Poisson ideal generated
by £t and ©7) are respectwely g- and n_ —equ1var1a,nt and are dual to the map-

pings of Poisson manifolds B_/B_ NBY — G/B_ NBY — G/B_, where the second
manifold has Poisson structure r* — (wrw™1)® and the third has Poisson structure

rl (where r € A?g is the trigonometric r-matrix). The morphism of Poisson alge-
brae C[rz,yl] — C[x,,yz, nE deﬁned by iy Yi = T, Yi, 1s dual to the projection
G/B_NB* — N+\G/B NBY «— B_ /B nBv.

Let us now determine to which operations of homogeneous spaces correspond the
natural embeddings of algebras of screened local quantities. Let o < 3 < v be three
points or the line ; then the embedding C[w,,y,,Ei, ]5<l<7 s C[:E“yl,zi, Ja<i<y
corresponds to the natural projection G/B NnBY — G/B ﬂ BY (here ©4 =
Disy Tis T = > is, ¥i). Let us pose now E+ = Dlivgli, Bo = = ) >4 Vi, and
let us consider the embedding C[fﬂi,yi,zi,"']agigﬂ — Clzi, ¥:i, 24, Ja<i<y It
corresponds to the mapping ]v+ x Cy—atl) ]/\\f+ x C2B=et) (g ysny) =

(Tza Yi, Ny H/Hl <(1) yl) ()\il 2)) The identifications of C*7=2+1 gnd C2(B—o+1)

with B_/B_ N B~ and B_/B_ 0N B""~* are (a;,y;) + class of b_, such that

H'ﬁjﬂl <(1) yf) ()\iz (1)> € b_wv_gB_ [resp. same formula with 3 replaced by

«], so the mapping ]V+ x Cy—etl) CA}'/B\_ N BY" is (ny,z;,y;) — class of

ny H?:’y (/\21‘ (1)) (é xf) w~—q. This proves that the initial embedding corre-

sponds to the mapping G/B\_ nBY == 5 @/E- N BY"~*, class of ¢ — class of
JUB—~-
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The algebra Cle;., i, S;O, -+ +]i<o 1s the union of algebras Clz;, y;, i;to, ] _N<i<o,
which is the function algebra on the projective limit of - - - — @/ﬁ_ NBYS & ...
@/E- This projective limit 1s @/(Sl — B)_ [where (S! — B)_ is the group corre-
sponding to the Lie algebra (ST — b)_ = C[[A7!]]®b]. The Poisson structure on this
space is then 1% — (w.crw ), where weorwZ! is the r-matrix corresponding to the
Manin triple (g,(S" — n) & (ST — Ch)4,(S' - n_) @ (S' — Ch)_) in notations
generalizing the previous one.

Then the embedding Clz;, y;, i§07 -+lico = Clzi, yi, ij;N, -+ -li«n corresponds
to the projection G/(S' — B)_ — G/(S' — B)_, class (g) — class (gwpn). This pro-
jection can be viewed as the composition G/(S! — B)_ @/wl_\,1 (S' - B)_wy —
@/(S1 — B)_., where the first map is class(g) + class(gwy) and the second is the
natural projection. Note that the Poisson structure on the second space, induced by

the first map, is 1t — (Wi (woerwZHwn)? = rl — (weerwZHE.
We obtain :
Proposition.— The inductive limit of algebras C|z;, y;, ij;N, -+ )i<n, Is identified

with functions on CE/(Sl — H)_, with Poisson structure r’ — (werw})®, and
action of screening operators given by left translations by by. The inductive limit
of algebras Clz;,y;]i<~ is identified with functions on B_/(S' — H)_ ; Poisson

structure and injection of this algebra in the latter are given by
G/(S' = H)_ — NJ\G/(S' — H)_ — B_/(S' > H)_ .

This is because (S — H)_ = Ny(wy' (S' — B)_wy) [here H is the Cartan
subgroup of BJ.

9. Commutativity and geometric interpretation of the integrals of motion.

We are now able to give a geometrical description of the Hamiltonian vector
fields generated by the integrals found in 6. The action of these vector fields on
lim Clz;, yi, EfN, -+-]i«n corresponds to vector fields on G/(S! — H)_, commut-

ing with the left action of /b\+. Let us show that the vector field generated by
integral I} (let us denote it V) also commutes with the left action of b_. In-
deed, [V7,,04] should commute with {Z4,-}. Pose X,it = [V1,,0+]. We compute
X;t.(polynomials in x;,y;) = 0. We deduce that X,it vanishes on the smallest subal-
gebra of 1£n Clzi, v, Sj;N, -+]icn containing the polynomials in w;,y;, and which is

{4, } stable ; this algebra is the full algebra, and X;t = 0. So, vector fields V7,
can only be given by right translations by elements of (S! — Ch); [Ch = Lie(H)].
In particular, we see that these vector fields commute, and so the integrals of section
6 are in involution.

Remark also that the integral of motion corresponding to RA™ (n > 0) involves n
dots on the line and so should map Fun (CA;'/w;,l(Sl — B)_wp) to Fun (@/(w]\]wn)—1
(S' — B)_wpnwy), it means that it corresponds to the right action of a linear
combination of elements h)\k, 1<k<n.

We conclude :
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Proposition.— By the identifications of last proposition, the Hamiltonian vector
field corresponding to the integral I(RA™) found in 6, acts on lim Clay, vi, S%N clien

and on Clx l,y,],ez as the right action of a linear combmatmn of elements hA\F, 1 <
k < n, on G/(S1 — H)_ and on ]\7+\G/(S1 — H)_, respectivelv. In particular.
these mtegrals are in involution.

Let us give an explicit form for these vector fields. The identification of Clz;, y;]i>1
with C[B_/(S' — B)_] associates to the point (z;,y;) the class of the matrix

0 1
B_/(§' - B) =5 B_/w{Y (8" = B)w; — B_/(S' — B) whose composition is
dual to the embedding Clyo, zi, yi]i>1 = Clzi, yi]i>1. The second map is the nat-

(1 p), with p = 1/Az; + 1/y; + 1/Azy + ---. Let us describe now the maps

ural projection, and the first is constructed as follows : to the class of (é ?) we

o) e Noboe (St B wn,

. {0 =X 1 p 1 0 1 0 L
with w; = ()\ 0 ) We have (0 1>w1€ (;,\r 1)((%)@ 1)(5 —

B)_. At the next step, we multiply by wy = 0 *1>. Since 1 0>wo €

1 0 o 1
1 (3 1 (%)<O 1 wo 3
(0 4 ) (0 1 (S — B*)_, we obtain

1 1 0\ /1 L 1 (& ,
<0 ’f)wleE (A_ 1) (0 (10) (O (G%<O>(Sl—>Bwo)_7
P£1

where p=pi A - o=0p+ 0 A7 = (%)SO, and indexes < 0 or < 0 mean to

associate the double class of b_, such that

take only < 0 (resp. < 0) powers of A.
Iterating this procedure we obtain for variables (z_n,y—n, ) the equality

(3 ) (05 8- 6 )G 7)

(é 1/)\x1+1/y1—{—~~>' element of (S' — B™°)_

Writing the element of (S! — B*)_ on the right side (1 0) (a 091 >, we find

b 1 0
that the first columns of this matrix and of A= ((1) —1/Az, —11_ V- > ((1) _iqo ) .

< ;T ?) <(1) —yl_N> ( /\i (1)> coincide. We deduce that
— 2o —Ar_p

b=—l(yo+1/Az0 + 1/yr + -+ 1 Ae-n) + (1 Az + 1/yr + ).

In conclusion, we have :
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Proposition.— The identification of Clz;,y:|icz With C[I}\_/(Sl — H)_] asso-
ciates to the point (x;,y;), the class of the matrix

; :<1 1/Aa:1+1/y1+~-)< | 1 0

- \0 1 =[(yo+1/Azo +1/y1 + )+ (1 Aer + 1y )70 1)

The vector fields given by the integrals of sect. 6 are combinations of the flows
Opb_ = (b_A"hbzl)_E_,7z >0

[b— is the class of b_ in é_/(S1 — H)_]

Note that the change of origin point is performed by the sequence of maps
b€ B_/(S" — H)- = G/(S' — H)- - NJ\G/(8" — H)- > B_/(S* — H)-

(wy has to be replaced by wy at the next step). Since wy and wy commute with
hA™ n > 0, these maps commute with the flows, as we could expect.

Observe that expanding b in powers of A7, we obtain functions concentrated
near the origin ; as the power of A™! increases these functions involve more variables.
This reminds the continuous case, where these functions are differential polynomi-
als at the origin, whose degree increases with the power of A\™1. Note also that
the equations obtained have some features of the non-linear Schrodinger equation
(intervention of the homogeneous subalgebra).

10 Semilocal quantities

The variables treated above where localised near the origin ; the group elements
of N;\G/(S! — H)_ can be understood as a discrete version of the “monodromy
at the origin”. To explain this expression recall the situation in continuous case. We
have the dressing identity ([DS])

O+A+dh=n(0+A+ ZuiA_i)n_l,

=0
¢ = ¢(z), u;i = u;(z) are differential polynomials in ¢, n = n(x) a matrix of N_ with
coefficients differential polynomials in ¢. The monodromy between @ and b has the
oo b -
form nae(b_“)M'Zi:o fa will nb_l. When b—a > 0 and A — +oo the asymptotic ex-
oo b _i
pansion of this is %e(b““)\/xna(l + %)ezlﬁo J wer ny '. For a = b, this is identified

with n,An !, i.e. with the class of n, in N, /A.
As was shown in [E], the element of Ny /A obtained in this way corresponds to
the one provided by the construction of [FF1]. *

* Let us remark that a result of [FF2] follows from this: the fact that the n-th
KdV flow corresponds to the right action of a_, = A"(e + Af), indeed, it is shown
in [DS] that this flow is 9,(ncA) = (Rea—nn;t)-n.A.
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We have also monodlomy variables living on the two half lines, M* __ ~ (1 +
f)exp(zl o )t wiAT Land M ~ ng(1 + %)exp(z;ﬁo LA let us
show how the equivalent xarlables MZE =nqexp(£Y. 00, faioo u; A7), can be obtained
in terms of screening action.

Let us note that the vector fields Q% = ew“"(“){ff}o e*29 .} act on the algebras
C[6)(a), faioc u;]. We have then the pairings

+oo +oo

u;] — C[gé('i)(a),/ u;] — C

a

Uy x Clea), [

a

+oo Foo

inducing mappings C[¢\V(a), fioo u;] — C[]/\\f_].

Proposition.— These mappings are 1som01ph1sms the prOJect1ons (¢4 (a), f u;) o
(¢ (a)) correspond to the natural projection N_ — N_/A ; the actions of inte-
grals of motions correspond to the restriction to N_ of the right action of ay on

]§+\@ — ,ﬁ_.

1 0 1 ——% + +
Proof. Let ng = 61 =g s for e = 0,1, let M™ (N = ni M (N).
Then ]\/[()jfi()\) (resp. Mi:z()\)) is a differential polynomial in —¢' + ¢? (resp. ¢' + 4?)

and so the action of Q4 (resp. Q) onit is trivial. So, Q4+ ME()\) = — (2 8) ME(N),
0

_2 ~
Q_M*(\) = (0 0)‘ > MZE()X). This shows that the image in SLy(C[N_]@C((A™1)))

of ME()\) is the canonical matrix of elements of C[N_]®@ C((A™')). This proves the
surjectivity; for the injectivity, we see that elements ¢(¥(a), and f u; can be ob-
tained by combinations of the coefficients of A\' in matrix elements of MX()). The
last part follows again from the form of the flows on the dressing operator, shown in
DS] 5 0, M* = (nga_,n; Ve MF = (MFa_,(MF)~ ) ME.

The lattice versions of the modules C[¢(?(a), fa ] are Clz;, yi, j::{ LK)}
it will be more convenient to analyze first Clz;,y;, (k), 0% {2,573},
(I;(k) is the k-th conserved density obtained in 6, beglnmng at point ’Ek) We de-
fine an action of g on this algebra as follows: the action on va,riables TiYi, BE
is unchanged; writing Q1+ I;(0) = (T — 1)fF we set Qi' * L(k) = —fF and
Q+(X12) Li(k)) = f finally 0+(X355 Lilk)) = H(L(Z "Ti(k)) = 0. By the iden-
tification Clv;,yili>1 =~ C[B-/(S! — B_)_], fi" and f; are respectively identified

?

0 1
embedding of Clz;,y;]i>o in Clz;,y:, 5%, - Jiez is the natural map C[E_/(S1 -

with the functions of the class of (1 ) 0 and —p; [p = Y. .;5, pir "] Since the
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B_)_.] — C[@/(S1 — H)_], these functions in turn correspond to the functions of

the class of ng (é /1)> <; (1)>, 0 and —p; (n4 € Kﬁ_, and o € C[[A71]]).

Let us consider now the §-module C[G/H | (the action is by left translations).

Write elements of G under the form n4 <(1) ';) (i (1)> (eo €9a> H, p,a €

ATLO[A], o € CIA ] ny € Ny
Then if o = )5, a; A7, the oy are ny-invariant, Lox-10; = 0 and Lra = —p.
So we can extend the identification Clz;,y;, &F, -] C[@/(S1 — H)_] to

Clei.yi, 8F, - ZI C[G/H]

by Sopey Ti(k) = ai, and to Clay, yi, £F, -+ 7% Li(k)] ~ C[G/H], by 5.5 Lik) —
—«;. The subrings Cla;, yi, ioo o 1i (k)] bemg the intersections of the kernels of J;

and J_ are then identified to C N+\C1H
The elements of SL')(C[LZ,y“E 5 Li(k)] @ C(A™1))), correspondlng to the

element b_(A) of SL,(C [! NA\G/H] @ C((/\ 1)) (provided by B_ — N \G) are

then

<1 1//\1"1 + 1/?]1 + > < 1 0> 6201 ’\_ithx Li(k)
0 1 Cyo + 1/Azo 4+ ) + (1/Aar -0 1 * )

and

1 1//\:1;1+1/y1+-..>< 1 ()) _Ei>1)‘"ih2k<oh(k)
(0 1 ~[(yo +1/Azo + ) + (1 Az -7 1) T < :

Recalling the identities

exp(3 AT Y p(hy) = M A My b Wy b L e

i>1 k>1 1/)\1‘1 1/y1

and

1/yq 1/ Az 1/y-1
AT Lk
== ; ;0 (k)= Vyo+1/Azy + -+ 1/Azo +1/yo + -+ 1/y—1+1/Azo +---

we obtain the form of these matrices in terms of variables z; and v;.
Let us study now the homogeneous spaces interpretation of lattice translation.

From the equalities
1 a 1 0 t 0 0 =A'\y _[/1 0 1 0y
0 1/\b6 1/\0 ¢71)\x 0 ) \& 1)\i-2 1

(é —a(‘11+ab)> (a)\(t)”l t/((;/\))

Qly
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and
10N [1 a\(t 0\(0 -1\ (1 E\(/1 -1\
» 1) o 1/lo )\t o) o T)\o 1

'<—b(11+a.b) (1))<_1{)(bt) ~—0bt>’

with @ € AIC[A7Y]], b € C[[A\7!]] and t € C[[A71]]*, follows that right multi-
plication by affine Weyl group elements in N1 \G/H transform the above matrices
into the matrices with shifted arguments z; and y;. This refines the result obtained

previously about translations. )
Let us describe now the elements of SLy(Clz;, v;, 2:3 L(k), %, JoC((A A7)
corresponding to the element g(\) of SLy(C[G/H] @ C((A\,A71))) provided by the

projection G — @/H The projection G/H — G/(S! — H)_ sends it to

LG ) 067 ) e 1)

according to 8, and the projection @/H — ]/\7+\(A}'/H to

(1 1/)\xl+--->( 1 0 2, Ay, k)
__[ 1 - -

0 1 yo -]t

1 1/ day + - 1 0 : .
[<0 /:ClljL ><‘[yo...]‘1 1)exP(_ZiZlAmlhzkgoff(k);”reSp']' So these

matrices are

ﬁ ((1) ?)(_ixz 0)_((13 1//\?...> (—[yo?--]_l (1))622&_”‘2@&(’6)

4 0

t=+00

and

ﬁ 1 =y 1 0\ (1 1/2&y--- 1 0 EA—ZDl)\_"hEk«)[i(k)
s 0 1 —Az; 0 0 1 —yo-- 7" 1) - R '

Let us pass to the Poisson structures on a/H and ]VQ\@/H induced by these
mappings. Note first that g acts in a Lie-Poisson way not only on Claz;,y;, 2%, -],
but also on Clz;,y;, 5%, -, 2;03 I;(k)]. Recall that this means that X{f, g} =
SSXWFX@ g 4 (X f, g} + {f, Xg} for X € G, f,¢ in this function aliebra, with
6X =S XM @ X@ the cobracket of §. We can check it replacing S o Li(k) by
(1 —T*N) ki:] I;(k) and letting N to oo, using that T is a g-module map.

We thus obtain that the Poisson structure on a/H is of the form rf — r'®;

L —(woorw 1 )R is Poisson,

moreover, the projection on @/(S1 — H)_ with structurer
s0 7' = weorw ! + 79, 70 € (ST — R)_ A7,
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The space ]/\}_,_\a /H has a Poisson structure corresponding to the identification
+oo N
of its function algebra with Cla;,y;, > Ii(k)] ; it is such that the projection G/H —
k=0

N+\@/H is Poisson, so it is given by the bivector —r'f. The right multiplication by

Wo = < is an automorphism of this Poisson manifold, since it corresponds

0 A
to the translation z; — x;41,y: — yit1. S0 we have r'*? =/ and so ry € (§! —
R)— A (S — h).

Let us show now that rop € (S — h)y A (S' — h)_. Write the element
of SLy(Clzi,¥i, y 1> Lilk)] @ C((A71))) under the form b = (Z 2) ; then
d = exp(— Y. A7* 3" Ii(k)). The Poisson brackets {I;(k),I;(I)} are polynomials

>1 k>0
in 27!,y without constant terms (since the I;(k) themselves are polynomials in
z; ',y "), So we should have {d(\),d(1t)}4;=5;, = 0. On the other hand, if z € iy,

7

R(z)b_ = (b_zb_")_b_ vanishes at the origin of B_. So the value of ' at the origin
is the projection of ro in A?(S? — h)_ along (S* — h)_ A(S? — h);. Writing this
projection Y ragha A hg, we find {d(\), d()}origin = D raﬁ)\a,u/j ; so this projection
1s zero. R

Let us try now to determine rg. Elements of G/H being written gH = nyn_H,

. . a I's] - 1+ c0+... . .
w1thn~—<b d) andn+-—</\bl+“_ 1+.“>Weshouldha,ve{bl,d}_dp_

¢, {co,d} = 0 by the identifications b, = -5+, ¢g = —S~ andd = eZQl AT D s iR
(because on Y, i(k), the Poisson brackets with b, and ¢¢ coincide with the actions
of Q1). After computations

TL(bl ®d) =0 5

R
<Z eN® NI - AR e,\—’) (by @ d) = —A"1bd?,

1EZ

R
(Z AN @RATE - hATI® hx) (by ® d) = —2\"1bd?

i>0
and

?"L(C() ®d)=c,

R
(Z eN®FANTT— A eA—i) (co ®d) = be* |

1€Z

(Z AN @A —hAT ® w’) (co @ d) = 2acd ,

1>0
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SO

R
rk - (ZW AT = N OAT) = S (N @R =R @ h/\’))

&

i€Z >0
=P — (weerw )
give the right brackets {by,d} and {cp,d}.

Let us show that this structure is the only possible on G/H : we know that any
other structure differs from this one by the addition of some A%, with 4 € (§' —
h)4+ A (St — h)_. On the other hand, functions of ny should commute with d in for
the structure defined by A because we have {b;,d} 4 = {co,d} 4+ = 0 and the Poisson
algebra generated by by and ¢y is the set of functions of ny. But

(Z A RN @ h VB (ny @ d) = Z Ajjng(nohXNnZhpld(p)
1>0,5<0

so for any 7, ZAij(n_h/\inzl)+ =0,s0 A=0.

Let us consider again g = ny <(1) q (17 (1) ezizl )‘_thzkzoli(k). If wy =

0 -\t R 20 SV N A B U DD Sl T PN I —yo
()\ 0 >agwo—n+<0, 1)<0 1]°¢€ 2t ,withnl, =ny 0 1

and o' = =1/yo + 1/ Awo +1/y—1,---, ' = Par + 1/yp + -+ (1/yo + 1/ Az -+ )] 7.
Ifo6=> .5, 8 AT Loa-16 = =A71o', L6 = 0. On the other hand if I;(k) is the
integral of motion obtained in 6, ending at yx, we have Q_(>_, <, Ii(k)) = 0 and
Q+(> <o fz(k)) = gj', which is identified with o;_;. This allows to identify ¢ with
— Zi>1_/\_i D k>0 Ii(k) in the case of the module generated by 3°, . I;(k), and with
Siaq ATE Y, o Li(k) in the other case. So, gwge Doy AT n'y 1( 1, (1)) <(1) q/> :

g

€ Zizl A EkSO Tk _ g'. Let us determine the Poisson brackets of ¢'.
The Poisson bracket {I;, ¢} is a right translation ga;, @; € (S' — h)y [we
know from sect. 9 that it has the form {I;, g} = ¢g(a; + (S1 — h)-), and the brackets

{g@\gt;LiZl [i)‘—lh} have the form r* —(weerw ) E =3 (a; +(ST — h)_)@AT )R

the action of § on {¢g ® ge—ZiZ1 foA h} is again Poisson-Lie, so the vectors of
(S1 — h)_ are constant ; repeating the reasoning above, we see that the bivector
has no (S' — h)_ ® (S' — h)_ components, and {[;,g} = ga;.] Then the Poisson

. -1 - =S AT'RIG
brackets for gwg are given by r’ — (wowerwl w, l)R, and on gwge 2*21 " by

rL (wgwoorw;ol wo_l)R — Zi>1(/\—ih, ®Ra; —a; @ /\_ih)R.

. . . . 1
Let us determine now the Poisson brackets of ¢' using the writing ¢' = n' (U, (1)) :

, —l *. . PR, , ...
((1) /1)8_2{21)‘ thSOL(A)‘ Posen'=< L o >,and (;’ 0>-

AV 4 T 1
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1€

R
(Z eN' @ fAT - fA ®e/\"i> (ch @a)=ca’ ,
R

(Z AN @ RAT = hATI R \) (ch ®a) = —2¢a’,

>0
and
rl(b @a) = A"th
R
(Z AN @ AT - AN eri) (b, @ @) = —A~teb?
1€EZ
R
(Z AN @ RN — AT Q@ h/\i) (by ® @) = 22" ' abd
1>0
S0

rL - ('wowoovﬁw;,lw(;l)R — (Z N h@a; —a; ® /\"ih)R
i>0

_..L 1 -1 ? -1\ R - : -1 -1 R
=k =Y (N @ AT = A @A™ - 23N @ hAT - AT haY)

i€Z i>0
This shows (since weorw3! is wg-invariant) that a; = —hA
Theorem.— For each point of the lattice, there is a natural g-equivariant map-

ping of the manifold with coordinates (z;,y;, 5%, -, ki__cf) Li(k)) to G/H ; the

mapping corresponding to z; 1s (i, Yi,--+) H;:+oo (1) _yf_l> ( /ix (1)> -
TALg

Lopi) (10 B2 M7 20 1K) IR ;
0 1 o 1)¢ 21 k> 0(k<0) , for point y; it is (zi, yi, ) = Lo oo

LY (1) (L O) (1) T S O i = 1/
(i D06 ) (o §) (6 5Tt Bosown vt = s

Vyit-, 00 = —lyici+1/Azizy (1 Az 4+ 1 yi - )7, o = D1 +1/yira +- -+
(1/y; +1/ Az +-- )Y, ol = —1/yi+1/Azi +1/yi—1 - - -. These mappings are Poisson
if we endow G/H with the structure r’ — (woorw;)E [resp. 17 — (w_sorw”L )],
where r is the trigonometric r-matrix of g and superscripts L and R denote the bivec-
tor field generated by left and right action of a given element. The Hamiltonian flow

generated by the 1-th integral of motion ), ., I:(k) corresponds by this mapping to
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right translation by —h\'. The sine-Gordon flow corresponds to left translation by
e+ Af.

The passage from the mapping corresponding to point x; to y; (resp. from y;
to x4 is realised by right multiplication by the affine Weyl group element wq (resp.
w1y ).

Here w_qorw” . corresponds to the Manin triple (g,(S! — Ch); & (ST —
n_),(S' — Ch)_ & (St — n)).

It is possible to define, at the matrix level “higher sine-Gordon flows” by the
left translations by other elements of the principal subalgebra, eX® + fA*FL (3 > 1),
commuting to the sine-Gordon and the “mKdV” ones (generated by the integrals of
motion). We can think that these flows correspond to some differential equations on
variables z; and yi, which would become more and more non-local as ¢ increases.
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