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Metaplectic Quantization of the Moduli Spaces 

of Flat and Parabolic Bundles^ 

(after Peter Scheinost) 

Martin Schottenloher 

1. Introduction 

The aim of this note is to give a survey on some recent results of 

P. Scheinost [Sch] and to explain some related background material and moti­

vations. 

These results concern primarily the rigorous quantization of the 

Chern-Simons theory with Wilson loops but they are also related to a number 

of other interesting subjects in Mathematics and Physics. First of all the results 

constitute another step in giving the Jones polynomial [Jol] a rigorous geome­

tric interpretation. Note that the Alexander polynomial of a knot can be obtai­

ned via the skein relation but also is an invariant of the knot space and there­

fore is well-understood from the geometric viewpoint. This is not yet true for 

the Jones polynomial although Witten made a beautiful suggestion of a geome­

tric interpretation [Wi t ] leading to a topological quantum field theory. This 

approach, however, depends seriously on path integral methods. T o overcome 

the difficulties in using the path integral Witten has also suggested another 

route in understanding the quantization of the Chern-Simons theory employing 

the method of geometric quantization. The first rigorous steps in this direction 

has been undertaken in the articles of Hitchin [Hi2] and Axelrod, della Pietra 

and Witten [ A P W ] , and the dissertation of P. Scheinost [Sch] can be under­

stood as presenting the next step. 

Version remaniée d'une conférence donnée lors de la 55ème Rencontre 

entre Physiciens théoriciens et Mathématiciens (RCP n° 25) à Strasbourg 

en décembre 1992. 
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In addition to this contribution to the Jones-Witten theory, the re­
sults of P. Scheinost can also be understood as giving examples of a geometric 
quantization where the quantization does not depend on the polarisations cho­
sen. Moreover, his approach to the quantization of the Chern-Simons theory 
with Wilson loops makes it necessary to introduce the metaplectic correction 
of geometric quantization already because of purely mathematical reasons. 

Since the metaplectic quantization is a rigorous quantization 
scheme the results may also contribute to the actual discussion of quantum 
gravity using the Ashtekar variables, where the Wilson loops play an impor­
tant role (e.g. [ A s h ] , [Ish], [Loi]). 

Moreover, there is a strong connection to non-abelian Hodge the­
ory. Indeed Scheinost s results depend essentially on non-abelian Hodge theory 
as developed by Corlette [Cor] , Hitchin [Hil] and Simpson [Sil, Si3, Si4]. In 
this context P. Scheinost also contributes to the theory of moduli spaces of 
Higgs bundles since some of the results known for moduli spaces over curves 
are generalized to the corresponding moduli spaces over smooth projective va­
rieties over C. 

Finally, the main technical goal in the dissertation is to construct 
a projectively flat connection on certain natural vector bundles over the Teich­
müller space T g ^ n of conformai structures on a surface of genus g with η 
punctures. Therefore the results are also strongly related to conformai field 
theory and in particular to similar constructions of flat connections as e.g. in 
[BeL], [Fal] or [ T U Y ] . 

2. The Jones Polynomial 

T o every oriented knot or link diagram D in the plane there cor­
responds a unique Laurent polynomial V D 6 Z ^ q " 1 ] with the following three 
properties: 

1) = 1 for any diagram U representing the unknot. 

2) If D_j_, D_ and D Q are diagrams related by the skein relation 

D _ 
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then the corresponding polynomials satisfy 

(J) q " 2 V D. 
+ 

q 2 V D_ (q - q )V 
Do 

Here the skein relation means that the three diagrams are identical outside the 
indicated square and that they differ exactly by what is described within the 
squares. 

3) If two knot diagrams are ambient isotopic then they have the 
same Jones polynomial. In other words the Jones polynomial V D is invariant 
under Reidemeister moves and defines a knot invariant. 

The Jones polynomial has been discovered by Jones [Jol] in 
1984, and it is a much stronger invariant then the Alexander polynomial. For 
example, it can distinguish between the trefoil knot and its mirror image. This 
is a consequence of the fact that for a diagram D and its mirror image D * 
one has the general identity 

V D ( q ) = V ^ q " 1 ) 

and since the Jones polynomial of the trefoil knot Κ can easily be calculated: 
V K ( q ) = q 2 + q 6 - q 8 For the same reasons the Jones polynomial distin­
guishes the torus knots and its mirror images. 

Nevertheless, the nature of the Jones polynomial is not well-un­
derstood. Many problems concerning the Jones polynomial are open and it is 
not only Jones [Jo2] who attributes these difficulties to the fact that there is no 
truely three dimensional topological or geometrical interpretation for the Jones 
po lynomia l All proofs for the existence of the Jones polynomial only use the 
plane knot diagrams and they are based on certain combinatorial manipula­
tions with these diagrams. This becomes particularly apparent in the simplest 
of the existence proofs given by Kauffman [Kau]. The same holds true for the 
companion knot invariants like the Homfly polynomial, the Kauffman polyno­
mial and all the invariants coming from quantum groups using the R-matrix in 
order to obtain suitable representations of Artin's braid groups. 

This is in contrast to the Alexander polynomial. The Alexander 
polynomial Ap(q ) can be defined by using the same skein relation for the dia­
grams as above but replacing (J) by 

(A) A D - A D _ = q A D ( ) 

However, the Alexander polynomial is at the same time a topological invariant 
of the knot space, i.e. the complement of the knot in the space S . It arises from 
the homology of the infinite cyclic cover of the knot space. Equivalently it can 
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be obtained by considering the cohomology of a locally constant sheaf of rank 1 
(or one-dimensional local system) on the knot space. 

Of course, the Jones polynomial cannot be explained as a topolo­
gical invariant of the knot space since for the trefoil knot and its mirror image 
the knot spaces are homeomorphic to each other by a reflection at a plane. 

3. Witten s Interpretation of the Jones Polynomial 

In his seminal article [Wit] E. Witten gives a physical interpreta­
tion of the nature of the Jones polynomial by means of quantizing the Chern-
Simons theory. The Chern-Simons theory on a three dimensional compact 
oriented differentiable manifold Y (without boundary) is governed by the 
Chern-Simons action 

S ( A ) = ( 4 * ) " 1 T r ( A A d A - f Α Λ Α Λ Α ) 

Here, A is a connection in a fixed SU(N)-principal fibre bundle Ρ over Y gi­
ven as a g = Lie SU(N)-valued 1-form on Y. One remarkable feature of the 
Chern-Simons action is that it does not depend on any metric structure on Y 
or P. Therefore, the quantum numbers or other quantum objects which occur 
after a suitable quantization of the theory have to be topological invariants of 
the differentiable manifold Y . The same is true if one incorporates knots and 
links into the discussion: A closed curve C in Y gives rise to the following 
functional on the space sf = r(Y,AdP) of connections in P: 

W R , C ( A ) = T r R ( H o l c ( A ) ) , A e ^ , 

where Holç(A) is the holonomy of the connection A around the loop C, i.e. an 
element of SU(N) up to conjugation, and where T r R is the trace with respect 
to a given representation R of SU(N). Again, the functional W R C , which is 
called a Wilson loop, is independent of any metr ic In particular, general covari-
ance is maintained. 

In order to interpret knot invariants within the quantized Chern-
Simons theory with Wilson loops one considers an oriented link L in the mani­
fold Y which consists of finitely many non-intersecting knots represented by 
suitable loops Cj , i = 1, 2, ... , m. Moreover, one fixes a level k which is sim­
ply a positive natural number and one fixes a finite number of irreducible re­
presentations Rj , i = 1, 2, ... , m, of SU(N) which can be viewed as to be cer-
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tain decorations of the link components Cy Now for C = ( C 1 ? 0 2 , ... , C m ) and 
R = ( R 1 ? R 2 , ... , R m ) the Feynman path integral 

Z(Y,C,R) - J S > [ A ] e x p i k S ( A ) ^ W R . | C i ( A ) 

yields an entity (the unnormalized "expectation value") which is in particular an 
invariant of the link L if one believes that the integral gives sense at all. The 
formal integration Q) [A] has to be carried through over all connections A on 
Y up to gauge equivalence. If one assumes that these integrals are well-defined 
then by varying k, Ν and the representations one obtains various knot polyno­
mials, in particular the Jones polynomial as Witten has shown in a convincing 
manner ( [Wi t ] , see also [Ati]). As an example, the two variable generalization 
of the Jones polynomial - the Homfly polynomial (cf. [Horn]) - will be given 
by the values of the above expectation values for k, Ν G Ν and Rj the stan­
dard representation of SU(N) in GL(N,C). 

However, since the path integral is not well-defined to our present 
knowledge, it cannot be the basis of an existence proof for the knot invariants. 
In particular, although Witten s suggestion provides an important and inter­
esting idea how to look at the new knot invariants, this approach cannot be re­
garded as to give a satisfactory geometric interpretation of the Jones polyno­
mial, unless the use of the path integral has been justified completely. Since it 
is presently out of scope to give a rigorous foundation of the path integral me­
thods, Witten suggests in his article [Wit] to replace the path integral quanti­
zation by a suitable Hamiltonian quantization. 

4. Hamiltonian Approach 

In order to explain the Hamiltonian approach to the quantization 
of the Chern-Simons theory we first concentrate on the case without knots, i.e. 
the Chern-Simons theory on the three-manifold Y without Wilson loops. The 
basic strategy to obtain solutions of the Euler-Lagrange equations belonging to 
the Chern-Simons action on an arbitrary compact oriented manifold Y and to 
quantize them is to cut Y in pieces, solve the problem on the pieces and gluing 
the solutions back together. 

In the immediate neighborhood of a "cut" of Y, which is represen­
ted by an embedded surface S in Y, the three-manifold looks like J χ S for an 
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Intervall J in R. Choosing the gauge Α 0 = 0 (in the direction of the interval!) 
the system which we w a n t to quantize is governed by the constraint equation 

F A = 0 , 

("Gauß law") where F A is the curvature of the SU(N)-connection A on the 

surface S. Let S/ now denote the affine space of SU(N)-connections on S with 

the subspace sfQ of flat SU(N)-connections: S/Q : = { A € : F A = 0 } . As 

a result of the above equation, the classical phase space is 

the space of flat connections modulo gauge transformations. Here, £ is the 

group of unitary gauge transformations (i.e. the automorphism group of the 

principal SU(N)-bundle) on S acting on Stf in the usual way: Α ι » g _ 1 A g 
for (g, A) G £ x S$. £f has a natural symplectic form which is given by 

ω ( Α , Β ) : = - (2ΤΪ)"2 Λ Τ Γ ( Α Λ Β ) 

for the fl-valued connection forms A and Β on S, The action of the gauge 
group leaves the symplectic form invariant, hence the form descents to the quo­
tient ^q/^ and therefore defines a symplectic form t o M on the regular part 
of M . Noie, that the symplectic action of the infinite dimensional Lie group # 
of gauge transformations on the affine symplectic space 3f induces a moment 
map m : Sf —> (Lie # ) * on S4 which can be described as m(A) = for 
g-valued 1-forms A (cf. [AtB]) , and that the classical phase space M conse­
quently can be understood as the Marsden-Weinstein quotient with respect to 
the moment map m: Μ = τή~\θ) 

The classical phase space M has also an interpretation as the 
space of equivalence classes of flat unitary vector bundles of rank Ν on S. 
Therefore, M can be identified with the space of equivalence classes of SU(N)-
representations of the fundamental group of S: 

M — H o m K ( S ) , S U ( N ) ) / s u ( N ) , 

where the action of SU(N) on the set of representations is conjugation. Last not 
least, M has also the description of the non-abelian (Cech) cohomology space 
H 1(S,SU(N)). Altogether, 
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M S HomÎ^ i lS j .SUlNjJ / su^ - ) = H^S.SUiNj), 

with the symplectic structure given by ι ο Μ . 

Assume now, that the quantization of the classical phase space 
(Mjio^j) leads to a natural vector space Z(S) of the quantum state vectors. In 
order to come to a solution of the Chern-Simons theory on the original mani­
fold Y one has to glue the partial solutions on the surfaces in an appropriate 
manner. This can be best formulated by the notion of a topological quantum 
field theory. Note that Z(S) will be a finite dimensional vector space over C 
since M is compact. 

5. Topological Field Theory 

In order to emphazise the topological nature of the approach of 
cutting and gluing we briefly explain the essential content of a two dimensional 
topological quantum field theory (cf. [Ati] for more details): A two-dimensional 
topological quantum field theory consists of the following assignments: 

• T o each two-dimensional oriented compact manifold S without 
boundary there corresponds a finite dimensional C-vector space Z(S). 

• T o each three dimensional oriented compact manifold Y with 
boundary dY there corresponds a vector Z(Y) 6 Z(<9Y) where <9Y obtains the 
induced orientation. 

These assignments are subject to a number of natural properties, cf. functori-
ality, and they satisfy in particular the following axioms: 

• Z(S°PP) = Z(S)* 

where S o p p is the surface S equipped with the opposite orientation and where 
V * denotes the dual of the vector space V. 

• Z(0) = C 

where 0 is regarded as to be a surface, and 
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• Z(S X LIS 2 ) = ZiS^GZiSo) 

for the disjoint union S-ĵ II S2 of two surfaces. Hence, S 1 > Z(S) is a kind of a 
multiplicative homology theory. In particular, Z (0 ) = C can be deduced from 
the latter axiom. 

The gluing of solutions is encoded in the ax iom 

• Z (Y) = < Z ( Y 1 ) , Z ( Y 2 ) > , 

where "< , >" denotes the evaluation of Z(Yj) G Z(aYj) = Z ^ Y ^ * at the 
vector Z(Yc>) G ΖψΥ^. In particular, since Z(Y) G Z(0) = C one gets a 
complex number which corresponds to the expectation value expressed by the 
path integral. 

A similar axiom holds in the case of dY φ 0 . As normalisation 
one requires Z(0) = 1 G C , where 0 now is regarded to be a three-manifold 
with boundary 0 . 

6. Geometric Quantization 

In general, the program of geometric quantization of a finite di­
mensional symplectic manifold ( Μ , ω ) requires the choice of 

• a hermitian complex line bundle X over M with curvature 
~ 2 ~ j curv(c^f) = ω {<£ is called the prequantum line bundle), 

• and a, polarization F C T M ® C 

cf. e.g. [Woo]. The space of quantized states (or "quantum Hilbert space") is then 

Q ( M , i o , c / , F ) : = { s G r(M,.*f) : V x s = 0 for all X G T(M,F)} 

i.e. the vector space of the sections in X which are covariant constant along F. 

There are a number of serious mathematical problems which 
arise in the framework of geometric quantization. One of these problem is the 
construction of a convenient scalar product on Q or on a suitable subspace of 
Q in such a way that the relevant observables can be represented as self-ad­
joint operators. Another problem, which is of considerable importance in the 
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context of topological quantum field theory, is the obvious dependence of the 
quantization on the geometric data X and F. Moreover, examples show that 
in general one has to introduce a metaplectic correction which is given in our 
situation by fixing a spin structure on the phase space. 

In order to obtain the necessary geometric data and F on the 
space M of flat connection on a given surface Witten [Wit] suggests to intro­
duce a complex structure J on the connected compact surface S of genus g. 
Let Sj denote the surface S equipped with the complex structure J. Sj is now 
a compact Riemann surface, and by a fundamental result of Narasimhan and 
Seshadri [NaS] the space M has the interpretation of the moduli space of 
semi-stable holomorphic vector bundles on Sj of rank Ν with vanishing first 
Chern class (i.e. degree 0 ) and trivial determinant. In particular, in this des­
cription the space M has a natural complex structure as a complex manifold 
M j (with mild singularities at those bundles which are not stable). On M j 
there exists a natural holomorphic vector bundle namely the determinant line 
bundle <£ which automatically satisfies the prequantization condition 
c u r v ( o / ) = ω Μ , where ω Μ is the above mentioned symplectic form on the 
space M of flat connections on S. Of course, the line bundle X®^ {X k-times 
tensored with itself) is then a prequantum bundle of the phase space (M,ku)j^) , 
since we have c u r v ( o / 0 k ) = ku> M . A suitable polarization for all these holo­
morphic line bundles is simply the holomorphic polanzation on M j and there­
fore, the space of quantum vectors 

Z j : = Z ( S j ) : = r ( M j , ^ k ) 

is nothing else than the complex vector space of the holomorphic sections on 
M j with values in the holomorphic line bundle 

So far, everything can be found in Witten s article [Wit] where he 
also claims that the Z j are essentially independent of the complex structure J 
and thus define the quantum vector spaces Z(S) which one wants to construct 
for the topological quantum field theory. The argument for this independence 
is the following: The complex vector spaces define a fibration π : % — > T g 

over the Teichmüller space Τ of complex structures of a surface of genus g 
with π (J) = Z j . On the basis of heuristic arguments Witten concludes in 
[Wit]: 

T H E O R E M : Under the above assumptions: 

1) The fibration π : % — > T G is a vector bundle. 

2) There exists a natural projectively flat connection on %. 
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Consequently the fibres Z j of the vector bundle % can be identified canoni-
cally via the parallel transport given by this connection. Since the Teichmüller 
space is simply connected and by the projective flatness of the connection the 
parallel transport is independent of the paths connecting the points J, J ; G T g 

up to a constant. This means that the projective spaces of the Z j can be identi­
fied. But this is all what is wanted for in Quantum Mechanics. 

The task of proving the theorem is quite a difficult one. It has 
been carried through by Hitchin [Hi2] and by Axelrod, Delia Pietra and Witten 
[ A P W ] . Hitchin constructs the connection by means of deformation theory of 
complex structures working directly on the moduli space M j = <S&ojg while 
Axelrod, Delia Pietra and Witten work in the infinite dimensional setting on 
the space sfQ to construct a connection which finally can be pushed forward 
to the quotient. 

7. Incorporation of Knots and Links 

In the presence of links in the manifold Y one has to modify the 
topological quantum field theory if one wants to carry through a program si­
milar to what has been described in the sections 4 - 6 . Fix a level k and a group 
SU(N), and let SU(N)" denote the set of irreducible representations of SU(N). A 
two-dimensional topological quantum field theory with links now consists of the 
following assignments 

• T o each two-dimensional oriented compact manifold S with fi­
nitely many marked points Ρ = (x 1 , x 2 , ... , Xp) G S p and irreducible repre­
sentations R = ( R 1 } R 2 , ... , Rp) G (SU(N) Λ ) ρ there corresponds a finite di­
mensional C-vector space Z(S,P,R). 

• T o each three-dimensional oriented compact manifold Y with 
boundary <9Y, equipped with an oriented "link" L consisting of m components 
and with R = (Rj , R 2 , ... , R m ) G (SU(N) " ) m there corresponds a vector 

Z (Y ,L ,R) G Z(<9Y, L D <9Y, R Π <9Y). 

Here, dY is endowed with the orientation induced from Y, and a component 
K j , i = 1, 2, ... , m, of a "link" L is either an ordinary oriented knot in the in­
terior Y\dY of the manifold Y (given by a non-intersecting loop) or a non-in­
tersecting oriented curve K[ in Y joining two points of dY but sitting in the 
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interior Y\dY except for the endpoints (where Kj is transversal to the boun­
dary dY). The set (or sequence) of representations R~ : = R D Ô Y decorating 
the marked points Ρ = LndY = (x^ x 9 , ... , χ ) is chosen in the following 
way: If Xj G LC\dY is a point on the ^knot*' K- (i.e. an endpoint of the i-th 
curve joining two points of dY) then R~j is the representation Rj if at Xj the 
orientations of dY and Kj match to give the orientation of Y . Otherwise, R~j 
is simply the conjugate of the representation R-. 

Similar to the situation in section 5 these assignments have to sa­
tisfy various functoriality properties and axioms in order to give, for example, 
for a link L in the three-manifold Y without boundary the number 

Z ( Y , L , R ) G Z(0) - C 

W e do not explain the details of these axioms (see e.g. [Ati]) but mention only 
the important rule which represents the gluing in case of a cut: Let the three-
manifold Y with its link L be cut in the two pieces Y 1 and Y 2 with the com­
m o n boundary S : = dY1 = 3 Y £ p p (in particular, 3 Y = 0 , Y = Y X U Y 2 

and Υ ι Π Υ 2 = S) and let L 1 — LDY-j^ and L 2 — Υ 2 Π Υ be the correspon­
ding links with induced orientations and decorations Rj and R 2 . Then 

Z t Y ^ R j ) G Ζ ^ Π Ο Υ ^ Ο Ο Υ ^ and 

Z(Y 2 ,L 2 ,R2) e z ( s o p p ,L 2 noY 2 ,R 2 nôY 2 ) with 

z(s o p p ,L 2 nôY 2 ,R 2 naY2) = z(s,L 1nöY 1 ,R 1naY 1)* 

in such a way that Z ( Y , L , R ) G Z(0) = C can be obtained by the evaluation 

Z(Y,L,R) = < Z ( Y 2 ) L 2 ) R 2 ) ) Z ( Y 1 ) L 1 ) R 1 ) > . 

The approach of Witten [Wi t ] to yield at least the finite dimen­
sional vector spaces Z(S,P,R) of the topological quantum field theory with 
links requires the following modifications for the geometric quantization: Heu-
ristically, the space Z(S,P,R) is the quantization of the space of singular 
SU(N)-connections on the surface S which are flat outside the marked points in 
Ρ and which have a prescribed holonomy around these marked points. Thus, in 
the presence of knots the space of flat SU(N)-connections on S modulo gauge 
equivalence has to be replaced by the following classical phase space 

Μ : = &φ. 
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Here, is the space of singular connections on S the curvature of which at 
the marked points x i is locally of the form m(A) = X^RiS(xj - x) up to conju­
gation (with 8(xj x) being the Dirac δ-functional at Xj ) . Therefore, stf^ can 
be understood as to be the inverse image m~\û) with respect to the moment 

map m where Θ is a certain coadjoint orbit of the dual of the Lie algebra of 
^ . Hence, the classical phase space is again a (generalized) Marsden-Weinstein 
quotient. Another interpretation of M is the following: The conjugation classes 
of the representations Rj determine certain orders m-x and therefore, M can be 
identified with the representation space of the orbifold fundamental group 

-*l° r b (S): 

M s H o m i ^ C S ) , S U ( N ) ) / S U ( N ) > 

where the orbifold fundamental group ττ°Γ (S) in terms of generators and relators 
is given by the generators a l 5 a 2 , ... , a g , b ^ b 2 , ... >bg, c 1 ? c 2 , ... , c p and the 
ρ + 1 relators: 

g Ρ 
UK, bj Π c: = 1 and C i

m i = 1, for i = 1, 2,... , p. 
i = l j = l 

It is not evident how to define a natural symplectic structure on 
the (regular part of the) space M. If one tries to imitate the situation of the 
case where no knots are present one runs into difficulties because of the pro­
blem of how to multiply distributional connections. 

Disregarding this important point for a moment one has at least a 
well-known interpretation of M in the realm of algebraic geometry once a ho-
lomorphic structure J on the surface S is picked. By a result of Mehta and 
Seshadri [MeS] the space M = Hom( ix 1

o r b (S ) , S U ( N ) ) / S U ( N ) is the moduli 
space of semistable parabolic holomorphic vector bundles on Sj of rank Ν with 
parabolic degree 0 and trivial determinant. As such a moduli space M acqui­
res at least the structure of a complex manifold M j (with mild singularities). 

A parabolic structure on a holomorphic vector bundle Ε on a Rie­
mann surface Σ with the marked points x ^ x 2 , ... , x p 6 Σ is given by 

• a flag of proper subspaces at each of the fibers Ej of Ε over χ·: 
Ej = FM C F / 1 5 C ... F / r i ) C {0} with the L ( s ) : = dim F ^ / p . i s + l ) as multi­
plicities, 

• and a sequence of weights a . ^ attached to each of the flags 
with 0 < a / ° ) < a-® < ... < a / r i ) < 1. 

The parabolic degree of such a parabolic bundle Ε is 

pa radegE •·= deg(E) + Ç d-, where d. : = Ç a / s ) L ( s ) . 
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A parabolic bundle Ε is semi-stable if for all parabolic subbundles F of Ε the 
following holds: (rk(F)) _ 1 paradeg F < (rk(E)) - 1 paradeg Ε . Ε is stable if the 
same holds when " < " always can be replaced by a strict inequality. 

8. The Elliptic Surface Trick 

So far, this survey has presented some features of Witten s at­
tempt [Wi t ] to provide a truely three-dimensional geometric interpretation of 
the Jones polynomial including the rigorous results of [Hi2] and [ A P W ] . Note 
however, that in these two articles the geometric quantization is carried 
through only under the assumption that no knots or links are contained in the 
three-manifold in question. We now come to the results of P. Scheinost where 
knots and links are incorporated into the investigations. In the presence of 
knots, the first problem to address is to find a suitable symplectic structure on 
the classical phase space M of the singular connections. (The phase space 
M has been described in the previous section.) 

This symplectic structure on M has been obtained by P. Schei­
nost by a trick which has also been used by S. Bauer [Bau] in a similar context: 

Let Σ denote a compact connected Riemann surface (which 
should better be called a smooth projective curve over C in the sequel) with 
marked points x ^ x 2 , ... , x p of multiplicities m ^ ,m 2 , ... , m . These data de­
termine an orbifold structure on Σ by the orbifold fundamental group ( Σ ) 
(cf. the previous section). Then there always exists an elliptic surface X over Σ , 
i.e. a surjective holomorphic map . 

φ : X > Σ 

from a compact connected Kahler manifold Σ of complex dimension 2 (hence 
a "surface") such that 

• the general fiber of φ is a smooth elliptic curve, i.e. outside a fi­
nite number of points of Σ the fiber φ 1 (x ) is a compact Riemann surface of 
genus 1 (of varying complex structure), 

• over the marked points x. one has the multiple fibers φ (χ.) of 

multiplicity rm, 

• φ induces an isomorphism : τ γ 

• there is at least one singular fiber and χ(Χ) > 0. 
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(See [Ue] for the existence of the fibration φ : X ——> Σ or [BPV]. ) 

This elliptic fibration allows it to understand the classical phase 
space M of singular connections on the curve Σ with prescribed holonomy 
around the marked points as a certain moduli space of semi-stable holomor-
phic vector bundles on the surface X . 

PROPOSITION [Bau]: Let φ : X » Σ be an elliptic surface over the curve Σ 
with b j (X) even, χ (Χ) > 0 and kod(X) = 1. Then the direct image functor in­
duces an isomorphism between 

• the moduli space of semi-stable rank Ν parabolic bundles on the 
curve ( Σ , x 2 , ... , x ^ of paradegree 0 with rational weiqhts = ^ t ^ , 
s = 1, 2, ... , r., at each marked point such that d. = Σ α· s ^ k . ^ 6 Ν (where the 

(s) · · · · \ · 1 · s 1 1 · 
k. are the multiplicities of the flags) and with determinant equal to the line bundle 
0 ( - S d . x . ) οηΣ. 

and 

• a corresponding component of the moduli space M(X,N,0) of the 
semi-stable holomorphic rank Ν bundles on X with degree 0 and trivial determi­
nant. 

Now, on any component M of M(X,N,0) with sufficiently many 
regular points one has the natural symplectic form given by 

ωΜ(Α,Β) := - ( 2 τ τ ) - 2 ^ Τ Γ ( Α Λ Β ) Λ ω χ , 

where ω χ is the Kahler form on the surface X. 

In a similar manner as in the one dimensional case one gets a ho­
lomorphic line bundle <£ on M C M(X,N,0) with curv(<^f) = u> M , the 
generalized theta bundle. Therefore, by using again the holomorphic structure 
as a suitable polarization, the procedure of geometric quantization leads to the 
spaces 

Z' - T ( M , ^ k ) 

of holomorphic sections of the line bundle . 

This finite dimensional complex vector space is a candidate for 
the quantum Hilbert space Z(S,P,R) in the topological quantum field theory 
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with links. However, the geometric quantization can only work if S is equipped 
with a complex structure J such that Σ = Sj, and then the discussion of this 
section depends on this complex structure. As a consequence, the above space 
Z' should better be written as 

Z' = Z'(Sj,P,R) = r ( M j , ^ ® k ) 

to indicate the dependence on the complex structure J. 

As before in section 6 one wants to get rid of the dependence on 
the chosen complex structure and this can in fact be done under some mild re­
strictions as is explained in the next three sections. 

Before we start with the general discussion of this problem let us 
mention that the trick to consider a siutable elliptic surface over the curve with 
marked points also provides a simplification of a proof of a result of Simpson 
[Si2] on noncompact curves. The result in question is the one-to-one correspon­
dence of the category of stable parabolic Higgs bundles of rank Ν and parade-
gree 0 (which are called filtered Higgs bundles in [Si2]) on a smooth projective 
curve Σ with marked points and the stable parabolic local systems of rank Ν 
and paradegree 0 on Σ . This can be deduced from a suitable extension of the 
above proposition to parabolic Higgs bundles as will be explained in a forthco­
ming paper. The extension of the proposition is due to P. Scheinost. 

9. The Main Theorem 

In order to show that the spaces r(Mj,^® k) of holomorph ic sec­
tions are essentially independent of the complex structure J on the surface S 
and of other choices made in the above construction it suffices to prove that 
these spaces are independent of deformations of the holomorphic structure on 
the elliptic surfaces X which arise in the discussion of the previous section. 
More generally, starting with a compact Kahler manifold X one can study 
smooth components M of the space H ^ X , SU(N)) with suitable prequantum 
line bundles on M and discuss in which way the spaces Γ(Μ,ο^) of holo­
morphic sections depend on the deformations of the complex structure of X . It 
can be shown that under suitable assumptions these spaces are independent of 
the deformations up to a constant as will be explained in the following. 

Let X be a compact algebraic Kahler manifold with Kahler form 
u>-£. According to results of Donaldson [Dol] and Uhlenbeck and Yau [UhY] 
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the space H X (X, SU(N)) can be understood as the moduli space of semi-stable 
rank Ν holomorphic vector bundles on X with vanishing Chern classes and tri­
vial determinant, Hence, Hu X, SU(N)) has a natural analytic structure. Let M 
be a smooth component of this moduli space. As in the cases of dim X = 1, 2 
the Kahler form ι υ χ together with the Ad-invariant trace on Q = Lie SU(N) 
induces a natural symplectic structure on M given by the symplectic form 

u > M ( A , Β ) : = - (2ιή'2 J Τ Γ ( Α Λ Β ) Λ ω Χ Λ ω χ Λ ... Λ ω χ , 

where ι υ χ has to be taken η - 1 times if η is the (complex) dimension of X . In 
the situation of bj(M) = 0 there exists a unique line bundle X on M with 

curv(c^f) = ω Μ (which comes from a suitable power of the determinant 
line bundle, cf. [BiF] or [Do2]) . Hence, for any level k there is a prequantiza-
tion bundle <£ with - ^ curv(<^?®k) = k u o M . In contrast to the one-dimen­
sional situation one has to take care of a metaplectic correction of the quanti­
zation. Thus, one has to fix a metaplectic structure on M which is given by a 
spin structure on M which in turn is given by a square root j^C^ o f the cano­
nical line bundle J?T on M (if it exists). Instead of the ordinary quantization 
with Γ(Μ, ̂ 0 k ) as the space of quantized vectors the appropriate quantum 
vector space in the metaplectic quantization is now the space 

r ( M , ^ 0 k ® ^ r * ) 

of holomorphic sections in JÏ^^ÏK^. 

Now let (I t , e o t ) t B be a holomorphic family of complex structu­

res on M , induced by a holomorphic family on X given by a holomorphic map 

ρ : SEK > Β 

between complex manifolds: Mt = (M, 1^ = p"*1^), t 6 B. Assume uot = loj^ 
to be constant. Furthermore, let £ be a holomorphic line bundle on 9JÎ such 
that the restriction to Mt is the prequantum line bundle for the symplectic ma­
nifold (Mt, ω Μ ) and let Ai be a spin structure on 

MAIN T H E O R E M [Sch]: Let M be a non-singular compact component of the moduli 
space H ^ X , SU(N)) satisfying bj(M) = 0 and assume that M has a spin struc­
ture. Let ρ : ΐΟΙ > Β be a holomorphic family of complex structures on M indu­
ced from a deformation of the complex structures on X and adapted to the given 
geometric data , and in the manner just described. Then: 
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1) The sheaf % : = p ^ ( £ ® k ® Ä^) on Β 25 locally free, i.e. a holo­
morphic vector bundle, 

2) There exists a projectively flat connection on %, 

provided a certain technical condition with respect to the moduli space of Higgs 
bundles is satisfied. (This condition will be explained at the end of the next section. It 
is always satisfied for elliptic surfaces X . The spin condition, however is not always 
satisfied. This will be discussed in the last section.) 

As a consequence, the vector spaces % v i.e. the fibers of % over 
t £ B, can locally be identified projectively by parallel transport. 

Concerning the construction of the spaces Z(S,P,R) of a topologi­
cal quantum field theory (cf. section 7) one can now apply the main theorem in 
the following way: Varying the complex structure J on the surfaces S with 
marked points Ρ gives a deformation of the Kahler structure on the elliptic 
surface X j over Sj (cf. section 8) and a deformation of any component Mj of 
Η^(Χρ SU(N)) corresponding to the space of parabolic vector bundles on Sj. 
Under the assumption of a spin structure on M j one then gets the J-indepen-
dent space Z(S,P,R) by identifying the various Γ(Μ^<^ Θ ΐ ς Θ J?T^) up to a con­
stant. In particular, varying the complex structure by taking Β to be the Teich­
müller space Τ of Riemann surfaces of genus g with ρ marked points leads 
to the corresponding bundle % of quantum Hilbert spaces over T g p endowed 
with a projectively flat connection. The fibers of % are the conformai blocks of 
conformai field theory. 

T o a large extent the strategy of the proof of the main theorem 
follows the article of Hitchin [Hi2] where the case of d i m X = 1 is treated. At 
a number of occasions, however, the higher dimensional case causes additional 
difficulties and it is not obvious how to overcome these difficulties. I will try to 
give a sketch of the proof without explaining too much of the details but rather 
by presenting the main lines of the proof. 

S K E T C H O F P R O O F O F T H E M A I N T H E O R E M : 

The proof starts with the description of the deformation tensor. 
Let I t denote the integrable almost complex structure of the fiber p" 1 ^) over 
the point t G B. For any curve t = t(s) in the base manifold Β the infinitesi­
mal deformation is given by 

δ Ι = " | W l s = 0' 
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Since I t is an endomorphism of the tangent bundle T M the infinitesimal defor­
mation δΐ is an element of the tangent space of the space of integrable almost 
complex structures, i.e. 

δΐ G Ε η ά ^ Μ , Τ ^ Μ ) = Ω ^ Μ , Τ Μ ) 

with the integrability condition &'bl = 0 and its cohomology class 

[δΐ] G Η^Μ,ΤΜ), 

the Kodaira-Spencer class of the deformation. (Here and in the following, T M 
denotes the tangent bundle and at the same time the sheaf of germs of holo­
morphic sections with values in TM.) By the compatibility of the complex 
structures with the fixed symplectic form ω = u ) ^ one gets 

hl\ = G a b e o b £ ' , 

with a symmetric tensor G G H ° ( M , S 2 T M ) , called the deformation tensor. It is 
rather easy to check: 

STEP 1: The deformation tensor G is holomorphic. 

Next, one considers the sheaf Q)m of holomorphic m t h order dif­
ferential operators on the line bundle *£®^® For a fixed complex struc­
ture I and s G H°(Mj ,^ f®^® OfC^) one has the double Dolbeault complex on 
M = Uj: 

with the coboundary operator ö s ( D 0 u ) — ( V " D , V " u + ( - l ) q _ 1 D s ) and the hy-

percohomology group 

HJ; S(M,#). 

Here, V / ; : = ^(1 + i I )V where V is the connection of the prequantum line 

bundle <£. As in [Hi2] one can show: 
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STEP 2: A connection on the sheaf % := ρ * ( £ ' Θ & is given by a 
class 

A = A(8I,s) G H ^ M , © 1 ) 

depending smoothly on the parameters such that the symbol map is σ(Α) = [^ίδΐ]. 

In our situation such a class can be found by exploiting the exact 
cohomology sequence 

cl 

E ^ M , ^ 1 ) > H ^ M , ® 2 ) > H° (M,S 2 TM) H j ^ M , ^ 1 ) 

and taking A to be ^ 6 1 (G) with G the above holomorphic deformation ten­

sor G. An elaborate calculation shows: 

STEP 3: The cohomology class 6 1(G) satisfies o (6 1 G) = [-2kδΐ]. 

Hence, according to Step 2, ^ 6 1(G) defines a connection D on %. 

One reason for this condition to hold is the fact that the meta-
plectic version of the geometric quantization is used. It can be shown that wi­
thout the "twist" of the prequantum line bundle <£®^ by JC* the correspon­
ding terms of the Ricci tensor do not in general cancel so that the candidate 

does not provide a class of the required type in H j ^ M , ! ^ 1 ) . This explains 
why the metaplectic quantization must be taken instead of the uncorrected 
geometric quantization. 

It is a pure coincidence that in the dimension η = 1 ( = dim X ) 
one does not need to consider the metaplectic correction. In fact, one knows 
jtC = {*£ν)®2^ in that case, where Xv denotes the dual of <£, and therefore 

^ ( k + N ) 0 > x i 

As a consequence, ignoring the metaplectic correction in the one-
dimensional case just amounts to a shift k ι > k + Ν (cf. [Wit], p. 362 with 
Ν = 2). Reversing the arguments, the shift occuring in the above mentioned ar­
ticle of Witten and in other publications can be explained by an incomplete 
quantization procedure. This is in contrast to the usual explanations in which 
the "shift" is attributed to an "anomaly" in the régularisation of the correspon­
ding quantum field theory. In a combination of these arguments one could 
view the metaplectic quantization as the correct quantization procedure which 
automatically avoids a possible anomaly. 
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Having found a connection D on the sheaf the first part of the 
main theorem is already established: X has to be a holomorphic vector bundle. 
It remains to show that D is projectively flat. This is the main part of the 
proof. First of all, as in [Hi2] the connection D has a local description by holo­
morphic heat operators with the deformation tensors determining the part of 
order 2. Hence, the commutators are of order 3 at first sight. But by the foil-
wing step they are only of order 2. 

STEP 4: Given any two infinitesimal deformations of the family 
ρ : 9JÎ > Β , the corresponding deformation tensors G, G' G H° (M,S 2 TM) Pois­
son commute as (quadratic) functions on the cotangent bundle T*M: { G j C } = 0. 

Finally, the connection is projectively flat since there exist no glo­
bal second order operators except for the constant operators: 

STEP 5: H (M,S5 ) = C , if the aforementioned technical condition 
is satisfied. 

In order to show Step 5 one studies the convolution with on 
the symmetric tensors on M: A k : H ° ( M , S k T M ) » H 1 ( M , S k " 1 T M ) given 
by ΰ » » k [ u ) M ] * ^ . The Step 5 and hence the proof of the Main Theorem 
can now be reduced to the following 

STEP 6: H°(M,TM) = 0 and the convolutions are infective for 
k > 0 (again under the assumption of the technical condition). 

T o show Step 5 under the assumption of the results of Step 6, 
consider the exact sequence 

H ^ M , ^ 1 ) > H ° ( M , ^ 2 ) > H° (M,S 2 TM) H ^ M , ^ 1 ) . 

Similar to Step 3 one can check that σ ο δ 1 = kÀ2- Thus, the connecting ho-
momorphism δ 1 is injective by Step 6. By the exactness of the sequence this 
implies that every global second order operator is of first order already. But by 
the exact sequence 

H ° ( M , 0 M ) > H ^ M , ^ 1 ) > H°(M,TM) > H ^ M , ^ ) 
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and the vanishing of H°(M,TM), any global first order operator is constant. 

Last not least, the essential step 6 can be derived from a general 
reinterpretation of the moduli space M and its cotangent bundle T*M as part 
of a moduli space of Higgs bundles on X. This will be described in the next 
section. 

10. Moduli Spaces of Higgs Bundles as 
Completely Integrable Systems-

Let again ( Χ , ω χ ) be a compact algebraic Kahler manifold and Ρ 

a differentiable SU(N)-principal bundle such that the complex vector bundle Ε 

associated to Ρ by the standard matrix representation has vanishing Chern 

classes. Let 64 be the affine space of SU(N)-connections with translation vec­

tor space j a ^ X j A d P ) , the space of g-valued 1-forms. s4 is endowed with the 

natural complex structure I : TA-St = J#\X,AdP) > ^ ( Χ , Α ά Ρ ) gi­

ven by A *~-—> Α ο Ι χ = - Α ° Ι χ , when Ιχ is the integrable almost complex 
structure Ιχ : T X » T X of X . Let Μ φ 0 be a non-singular compact 
component of the moduli space of semi-stable holomorphic vector bundles on 
X of topological type Ε and trivial determinant 

Motivated by the one-dimensional situation [Hi2] one wants to 
have a presentation of the cotangent bundle T*M as a Marsden-Weinstein 
quotient of T l s f with respect to the complexified gauge symmetry , where 

is, as before, the group ^ = AutP of (unitary) gauge transformations. 

In order to do this let P c denote the usual complexification of Ρ 
as a principal bundle with structure group SL(N,C) and consider the affine 
space •€ = Stf^ of connections on P c . Any connection D in splits uni­
quely into 

D = d A + ί η , 

with d A the unitary part (according to the decomposition of Lie SL(N,C) into 
0 + 10 for g = Lie SU(N)). Therefore, the real tangent space T j ) # of -€ can 
be represented as T D # = { ( α , β ) : (α ,β) G i t f ^ X , A d P ) } and € has the na­
tural Riemannian metric 

gi(aß),(a',ß')) := - / χ Τ Γ ( α Λ * α ' + βΛίβ^. 
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As an additional special feature # has a natural Hyperkähler structure (cf. 
[ H K L R ] for basic properties of Hyperkähler manifolds): There are three com­
plex structure I, J, Κ on the affine space -€ with I J = Κ and correspon­
ding Kahler forms u>i, i o j and ιοχ with respect to g: 

Ι(α,β) = ( - α ο Ι χ , β ο Ι χ ) 

J(a,ß) - ( β , - α ) 

Κ(α,β) = Π(α,β) - - ( β ο Ι χ , α ο Ι χ ) . 

PROPOSITION: The action of the (unitary) gauge group & on the affine space ~€ is 
compatible with all three complex structures and induces three different moment 
maps which describe various interesting constraints: 

mj(D) = ( - F A + ^ Λ Τ ) ) Λ ω χ = - R ^ D λ ω χ 

m T D = α Α *η = 2Re ϋ ' ^ Λ ω / 1 

mK(D) = ά Α τ ) Λ ω γ

η " Α = 2 I m D , ^ A i o Y

n " i

) 

Here D = d A + ίη = οχ + Θ + + Θ , with F a = F(cIa) the curva­
ture of d A and D " = d& + Θ as in Simpson's papers {cf. e.g. in [Si3]). 

The quotient i f 0 ^ c with €Q : = { D 6 & : D 2 = 0 } is the 
moduli space of flat connections or local systems. According to a result of Cor-
lette, the semi-stable part of this quotient is the Marsden-Weinstein quotient 
with respect to the moment map raj. (Here a flat SL(N,C)-connection is stable 
(semi-stable) if its holonomy representation is irreducible (semi-simple).) 

PROPOSITION [Cor]: There is a homeomorphism [ß^j^ ) s s = m j \ 0 ) ^ . On any 

semi-stable flat SL(N,C)-connection there exists a (harmonic) metric such that for 

the above decomposition of D one has 

D " 2 A w x

n _ 1 = 0 

Now let us consider the condition D " = 0 . This is equivalent to 
the three equations — 0, dpJ^Q) = 0 and ΘΛΘ = 0 . By definition, a 
Higgs bundle is a holomorphic vector bundle ^ on X together with a holomor­
phic End (^-valued 1-form Θ G H ° ( X , E n d ^ ® T * X ) satisfying ΘΛΘ = 0. 
Then €q : = { D G t f : D " 2 = 0 } is the set of all Higgs bundle structures 
on E. The notion of stability (semi-stability) of ordinary vector bundles carries 
over to the case of Higgs bundles. The following is similar to Corlette s result: 

64 



PROPOSITION [Si3]: The moduli space {^q'/^Y* of semi-stable Higgs bundles with 
Ε the underlying differentiable bundle is homeomorphic to ? n £ 1 ( 0 ) . On any semi-
stable Higgs bundle there exists a metric such that for the corresponding operator D 
one has 

ϋ ^ ω χ 1 1 " 1 = 0 

A comparison of all these construction leads to 

P R O P O S I T I O N [Sch]: There are homeomorphisms 

H o m s s K ( X ) ) S L ( N ) C ) ) / S L ( N ! C ) = K " / ^ ) S S = K y W " 
and the corresponding space, denoted by M in the following, inherits a Hyperkähler 
structure from -€, 

The existence of the Hyperkähler structur has also been shown by 
Fujiki [Fuj]. T o explain the proposition in a more detailed manner, let us con­
sider that component of [ß^l^^f% which contains the cotangent bundle 
T*M to the smooth component M of the Main Theorem. This component is it­
self smooth (at least in the elliptic surface case) and is denoted by M . T*M is 
then a dense and open subspace of M . Let Ω denote the sheaf of germs of ho­
lomorphic 1-forms on X . 

D E F I N I T I O N : The Hitchin map is the map 

Η : M > V := H°(X,S 2Q)eH°(X,S 3Q)e... eH°(x,sNn), 
(<Τ,Θ) ι > ( a 2 ( 6 ) , . . . , a N ( 0 ) ) , 

assigning to each Higgs bundle the coefficients of the characteristic polynomial 
of the (traceless) endomorphism Θ , i.e. a 2 ( 0 ) = ± ( ( T r © ) 2 - T r ( © 2 ) ) , ... , 
a N ( 0 ) = d e t Ö . 

The important Step 6, for which all this machinary has been de­
veloped, is essentially a consequence of the following key result: 

P R O P O S I T I O N [Sch]: M j with the holomorphic 2-form ω : = ω κ - i i o j is a com­

pletely integrable system with the components Hj of the Hitchin map Η = (Hp H2, 

... , H ) as the Poisson commuting functions (i.e. the constants of motion in involu­

tion), at least ^d im M of which are generically independent 

From this proposition one can deduce the property of Step 4 in 
the previous section. Moreover, if the codimension of T*M in M is small, one 
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also obtains the required vanishing results of Step 6 as a consequence of the 
following result. 

PROPOSITION [Sehl: Assume 

(codi) c o d i m ( T * M ; M ) > 1. 

Then one gets the natural isomorphisms 

H U ( M , ^ ) Ξ 0 k > o H u ( M , S K T M ) 
R (M,û) = 0 k > o H \ M , S k T M ) 

by extension. Similarly, the "convolution" A : H°(M,é?) > H 1 ( M ) ^ ) mapping 

f G H ° ( M , ^ ) to the class [ i n ^ i ] where H f is the Hamiltonian vector field with 

respect to the form u), is induced by the corresponding convolutions A k on M , and 

satisfies Ker Λ = C . In particular, A k is infective for k > 0, and H° (M,TM) 

vanishes. 

The technical condition referred to in the main theorem and in the 
steps 5 and 6 is 

( c o d i ) c o d i m ( T * M , M ) > 1. 

11. Final Remarks 

The formulation of the Main Theorem suggests several natural 
questions: 

1. Do there exist non-singular compact components M of the mo­
duli space H ^ S l ^ N ) ) ? 

2. Under which conditions does the first Betti number bj(M) va­
nish? 

3. Does M possess a spin structure? 

4. Under which circumstances is the technical condition ( c o d i ) 
c o d i m ( T * M , M ) > 1 satisfied? 

5. Can the results be extended to non-singular components of the 
moduli space? 

These questions are investigated in detail by Scheinost [Sch]. As a 
general rule, in the elliptic surface case X coming from a smooth curve Σ with 
marked points, the questions 1, 2, 4, 5 have a positive answer in the sense that 
the Main Theorem (or a generalization thereof) applies to the topological field 
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theory such that the quantum Hilbert spaces Z(S,P,R) which one wants to con­
struct are well-defined for most of the cases. 

There is, how rever, a serious exception, namely M does not in ge­
neral have a spin structure. The existence of a square root of the canonical 
bundle on M depends essentially on relations among the numbers Ν ( = rank 
of the bundles), ρ ( = number of marked points) and d ( = Ed- cf. sections 7, 
8). For example M does not possess a spin structure for an even rank Ν if 
ρ = d = 1. On the other hand, a spin structure does exist e.g. for Ν odd if d 
and Ν are coprime (and g is not too small). For the construction of the knot po­
lynomials from the topological field theory the exceptions for which there is no 
spin structure on M presumably will not matter, since there are enough cases 
for which M has a spin structure and the Main Theorem applies. Note, that 
one can e.g. avoid the case ρ = 1 by considering only a suitable subclass of all 
"cuts" of a three-manifold containing a link. 

There seems to be also a procedure to"construct the quantum Hil­
bert spaces Z(S,P,R) without using the elliptic surface trick and, hence, avoi­
ding the higher dimensional theory altogether, by employing the description of 
a symplectic structure on the moduli spaces of parabolic bundles recently given 
by Biswas and Guruprasad [BiG]. 

Concerning the fifth question there is again a codimension condi­
tion under which there is a rather straightforward answer. Let M be a (possi­
bly non-singular) component of the moduli space H ^ S l ^ N ) ) . If the codimen­
sion of the regular part of M is not too small (namely > 2) then the Main The­
orem holds for M. This can be shown by analytic continuation from the regu­
lar part of M to all of M. In particular, in the elliptic surface case X over a 
marked curve Σ the convolution Λ : H ° ( M , ^ ) > H ^ M , ^ ) on the Higgs 
moduli space (cf. the last proposition in the previous section) is not only injec-
tive but even an isomorphism for all components M of the moduli space. 

C O N C L U S I O N : 

The goal of presenting a rigorous foundation of Witten s geome­
tric interpretation of the Jones polynomial has been achieved in parts by the 
Main Theorem of this paper: The quantum spaces Z(S,P,R) are essentially a 
result of the metaplectic quantization procedure. However, what is completely 
missing so far is a rigorous quantization method to obtain the ("expectation 
value") vectors Z(Y,L,R) contained in the vector spaces Z(<9Y,Ln<9Y,Rn<9Y) 
(cf. section 7). 
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