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ABSTRACT

The nine well known semisimple Lie algebras are partitioned
in two’classes: szc=1 (all roots have the same length) and wfchl (the roots
have two different lengths of ratio equal to fE).
For each of these two classes a general expression is given for few
elements of interest as the highest weight vector (h.w.v.) L aﬁd its
power J(L), the eigen values of the second order Casimir opecrator,
the width of a weight diagram, the dimensions and the matrix elements of

irreducible representations of semi simple Lie algebras.

In appendix are given two examples of application of this paper.
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Highest weights of semisimple Lie algebras.
W. Laskar*

Departement de Mathematiques de 1'Universite de Montreal (Canada ).

Introduction. This paper is concerned with semisimple

‘Lie algebras defined over an algebraically closed field of characteristic
zero only (in brief s.L.a.), i.e. with the type of algebras widely used by
physicists. Calculations of highest weight vectors in particﬁlar cases
[4,11-13] have of course been done already. However here the use of a
general procedure yields general formulas which give a Qery simple proof

that no other s.L.a. than the well known ones do exist,.

To make the paper relatively self contained and to define notations
we first recall the usual definitions of roots of an algebra, the Dvnkin dia-
gram and the highest weight vector (in brief h.w.v.) of a given representation

of that algebra [1-14]..

In the second part the calculation of the h.w.v. is performed firstly
when all the roots have the same length and secondly when the roots have two
different lengths of ratio equal to /c ; these two cases correspond respec-

tively to the two classes of s.L.a. W and W (c =2o0r 3) .

Lpc=1 2zczl

The third part is devoted to the interpretation of the results obtained
in the second part; in a first st:epw’:I it is very simply shown that no other
semisimple Lie dlgebras (defined over aﬁ‘algebraically closed field of

characteristic zero) than the ones already known do exist: the four series

* On leave from U.E.R. de Physique de 1'Universite de Nantes;

Permanent address: 24, rue de la Distillerie, 44000 Nantes (France).
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G,}

F4’ 2

Ay, By, Cp, Dy and the five "exceptional" Lie algebras {E6, Eqs Eg,

that we reclassify according to our stheme as

{A,, D,, E

92 Ygr Ep with & = 6,7,8 only}

wﬁpc=1

G.,}

= {le C‘Q') F4 » 2

W
bz
In a second step we calculate and tabulate the power § (L) of the highest

weight vector L and link it to R = i§:|J; hence the eigen values of the
p>e
Casimir operator and the width of a weight diagram can be deduced.
In a third step the results so obtained are used to build up the matrices

of representations for the two classes of algebraé(&dm&n&gwnawwL«naﬁﬁyeﬁbwuhdﬂ.

In appendix two examples are briefly studied as applications of this paper.

II. Roots, Dynkin diagram and highest weight.

The following fundamental facts are well known :
§1. If I =‘{al,...,ai,...,aj,}..,az} is an irreducible fundamental system
of simple roots we have

i) Opseeesty are linearly independant ;

2<ai,a.> 2<ai,a.>
W G ay TR Taap T meeZ>0g @

iii) I 1is not decomposable into two mutually orthogonal subsets.

Consequently

[2<ai,a.>]2 2
J = 4 cos” B8 =mc <4 (2)

<a.,0.><a. ,0.>
1 3]
and for m = 1 one only gets :

c=0,0=9°; ¢c=1,06=12%; c=20=13%; c=3(0=15%;

0 line (i.e. no 1 line 2 lines 3 lines
connection) '
’ 6 =0 aj = a,
c=4
’ =7 a.=-~-0a, . (3)
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Also

<a.,a.> <a,,0.>
1 1

1) = 1 -
a.> <aj,a.> ¢ (4)

i.e. the roots have only two possible lengths.

Hence cA .
-5 if ai,aj are con-
<a.,a.> = A <a.,0.> = cA <a.,0..> = : .
7% 3 1% cA, al,aJ nected roots ; (5-2)
0 if o.,a., are not
1)
connected roots.
Normalizing Gj such A = %- yields the following relations :
, -1 if ai,aj are connected
2
<a.,0.> = A = =, <a.,a.> = 2, <at.,0.> = roots
i’ c i’71 i’7j (5-b)
0 if ai,aj are not con-

nected roots

§2. To every given irreducible representation (denoted I.R.) corresponds

a unique vector L (in the idempotent D) called the highest weight vector
(denoted h.w.v.) of the given I.R. From this h.w.v. L all the properties
of the I.R. can be deduced ;

for instance the H. Weyl formula giving the dimension N 1is well known :

N=H—(-I€§4‘)Q=H[%’—‘1%—+l] (6)
u€z+ sH u€Z+ sH
I, Dbeing the subset of positive root and
R=%Zu. (7)
pel
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From the h.w.v. L , a set of N ordinary weight vectors {Al,...,lr,...,lN}

can be deduced (all distincts if there is no degeneracy) and used in turn to

calculate matrices of the I.R. diagonal ones

r o
FPr = WA Me Z_ (8)

and non diagonal ones

(Ea); = i/QFa)i'f[(Ea): ]2 where (Ea)z 20 if As = Ar +a @)
using (E_a)z = - (Ea)i ) (10)

II. Calculation of the highest weight vector.

Having emphisized the importance of the h.w.v., it seems natural
to calculate its expression for each of the two type of I.R. given by the

following Dynkin diagrams :

L
™ ™2 ’:9,_1_0' Mg-1
—0——— == 000 — — — — — —0—0 (Type I)
1 2 ‘ P -2 2-1
M e By
OO0 — — — = 0(itts s~ — — = — - — o0 (Type II)
1 2 2 Zwl -1 &
where
2<L,ai>
mi=Lai=<—'a-j:-,—a-i—>— (mieZ>0 ;1 =1,2,...,2-1,0) (1)
L
Writing L = X a0, and using (5) we get the ak§as solution of a system
k=1
of £ 1linear equations :
_ 2
"i T <ae (a5 10y o0 + 85<05,05> + 8y <0, ,,0,

(12)
+ a£<a2,a > 8. ip ]

the last term occuring only for diagrams of type (I) when i = p.
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The system (12) has been solved for each of the two types of diagrams (I)

and (II). vThe corresponding results are given in tables I and II for diagrams
(I) and (II) respectively. If one writes a = %'.i Eimi , then one gets
two different expressions of A according to the i;;e of diagram, say

Ap for (I) and Az for (II). These expressions will be analyzed in §3 to
give the reason for the limitation of the number of simple Lie algebras. As

a consequence of Chevalley's theoregﬂ%ke classification of Dynkin diagram is

equivalent to that of simple algebraic groups over algebraically closed

fields of zero characteristic.

Table I : E; for Type I (algebras wlpc=1)
ApEA=p2+(2-p)2 §=%-p-2 A+ps=204-p)
Ei 1 < i < p-1|p < i < 2-1 2
1
IA +id)k
k 2k (2-1) k(2-p)
IA (A+k$) i
p-1
P \\\\
" (2-1) [p2+(2-p)k]
k (2-k)2i (2-K)p
2 \
n ] [p™+(2-p)il(2-k)
-1 \
L (2-p)i p(2-1) %
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) i
Table II : &k for Type II (algebras W“C)
8.(G) =2+ -5+ A-c)&-2)(z-3J) j = i,k,z or O.
Ei 1 < i z-1 < i <
1
n \\ kb, (i)
. k(2+1-i)
" i, (k)
z-1
z i(2+1-2) \\\\* z(2+1-i)
z+1 \
n (4+1-1)[k+(1-¢)z(k-2z-1)]
K ic(2+1-k) \\\\\\
" (+1-k)[i+(1-¢)z(i-2z~1)]
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TII. Analysis of resnlts. omd applcations.,
bo The %W%Ww« Wﬁ-loc_q ard w;}c# .
L

2 .
As the h.w.v. has been written L = ) aq, wth 8, = l‘ PoEm
' ksl KK bz

we must have A = 0 and A > 0 .

In the case of diagrdms of Type I i.e. of W we have

Lpc=1
A= AP = pz +(2-pP)2=2+14+(p-D-2+41) >0

p=%-1 (orl) A= 2+ >0 for all L Ay
p=2 (nt3) b=p’=4 >0 forall & D,
p=3 (n'l-s) A=9-28 >0 for §, = .6,7,8 E,.EqsEg
p big A~p(pp-2)>0 for p> % nonsense.

In the case of diagrams of Type II i.e. of szc we have

A= Az =2+ 1+ - ¢)(X - 2)z

¢ =1 we come back to the’previous case where all the roots have the same
length with a lincar diagram ( = p - 1) i.e. to Al

c=2 A=2+1-(®-2)2=2+(2-1)(z-2+1)>0

z=42 -1 A= 2 >0 for all 2 Bz
2 =1 A =2 > 0 for all £ Cy
z=2 A=5-13 >0 for 2 =4 F,

c=3 A=2+1-22(8 - 2)

u

[}
™
(2]

z=1 A=3-2 >0 for £

2

c>1 2z big A~ z(z - L) >0 for z > 2 nonscnse.

When it is written for instance 9 - & > 0 , of course one can take

% = S (or 4) which gives Ds (o A4) already seen ; similarly for 5 - 2> 0

L

3 gives B3 already seen.

As all other diagrams lead to a null h.w.v.jone is left with the only 9 s.L.a.
already known and widely used by physicists; Hege 94.1..&._%-&%“47'7&‘@1. o tkmu-.g:
Z(4/7C:[ = {491 DZ ) "EB Ml:‘:zlj}

W}c.}“( :{89: e, Fl;l%}‘
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()

0 v
TY¥. 2. Power of weight vector. (Freudenthal )and Jacobson “use equlvalently

the word 'level').By definition the power d(d,) of weight vector (l 2:/\'40%15

Sli) = £ M T
I¥. 2.1. Power of the h.w.v.,
4
The power (L) of the h.w.v, L= Ldéb(& is '
S = ,_f'_a zz_ﬁzf §‘ m--—’-—-é_ (ﬁ’. 'fé)rm« (ts)
I i vt Wi s VA
Let us write Z_;'K_/\ so that in general
=1 + 1)
dL) < A mp . (
For wept,:I the calculation of J‘(L) implies three steps (and of courseA:A',)
ige <p-t
i_[iﬂﬂ)[fp) +(p—L)A] (l?)
pse <41
A -p)A] - (19)
12 :'e
: = [1_(?4—! - J (19)
Hence we get for the power of the h.w.v. of W[, _, algebras:

P"‘: R (—l?.
R R I
Specializing p to p—l,2,3 we get /\‘: (hence J(Lp)) for A( R Dﬂ s Eg (4=6,7,8)
respectively; the results are given in Table III.
It is remarkable that due to the symmetry in i1 and k of Table I the h,w.v. R

of the I.R. given by the Dynkin diagram for which m

g =1 forellds= 1,2,....,3

will have the same coefficients as § (Lp) i.e.:
p-t ?-1.
R= A'—{&Z. %[z[!w)/?—r)f/p-%)zsf]xﬁ + ézfgéi(lﬂ)f + (%-P)A,,]X;( + {;@(PH)‘APJ‘"@}- (M'g)
p L= =p ;

It will be seen later (§ IV.2.2, Theorem I) that R is also the half sum

of the positive roots,



Tadd T . 5 [ Lp)

4 = prr CP)l= 241 + (-p)(£-1 -p)

¢ g pe p gig 4 =4
: = e J2(0r)(t-p) +fp-r - el ifdn L As -
r P{ (2 (t-p) ¢ (p-°) P} X‘;-“r{ (r)p+ ( P)Ap} e APMH) A
. Ap Ll L [A+1-2) =) (bei-b) L
DR ) 2
2 D, 4 S(A-0 r2-32) (2-e)(4¥e-1) Lf-1)
A A Ll 4
| 26 Liy-2) 2¢; s;‘(u;e) tot:
Ep 3-L 3t ?‘Z*&L-L(‘J—“} Sy ips-s)| L(90ur e 2)} =3 } -yt Z_(j_;i NI
(=63 3) "1{ §-2¢ iyt 2 92 7 [+ 23- } D)
«’:7:5(93-5) 8:3; %i(im) 1:3: 68

- 612 -
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For w!zc the calculation of J(L) implies only two steps (and <:':f course A:Az)

1 ig 2]

Aox b fcen(t-z) +(ze1-0) A, ) o)
zsisz _

A= L=t [Pr)ari) + (c-2-1) Az . (24)

Hence we get for the power of the h.w.v, of w.ﬁzc algebras:

J/Lz): t{;‘; f—[c{é’ﬂ}[f’—l} +z H'L) Az]‘m; +£P_i (ﬁtf%)[(‘p#l)/zfl) +(L'—7_—I)Azjm;} . (23,1)

Due to the properties of Table II the h.w,v, R of the I,R. given by the
Dynkin diagram for which m, = 1 for all 1 = 1,2,...,{ will be:
3=t e _ )
R= J—{ z ’i[c(lw)(ﬂz)+[z+|—£)Az % +Z_<£ﬁ_&)[(€+a)(z+«)+ &-2-18, &,_a}. (23,4)
Ax' &:l 2 "’g c=2 1
The connection of R and d (L,) 1s so established; that R 1is the half
sum of the positive roots will be seen in theorem I as before.

The foraulas obtained for A, from W
'f [zc:,|

as well as from W(pc =1
are evidently the same for p = z = ¢-(,
Now for c =2 we get the A''s for B[ when 7.:(,—], for Ce when 2=, for F4when 2 22;

for ¢ =3 we get the A*'s for G, when z=1 and {- 2.

2

The results are given in Table IV,
It is worth while writing the formulas for -f: 2 and zz| considering the

frequent use of algebras of order 2. In that case, we get Azz 4-c,

and Table II gives ¥,=2, f,zzl ; f‘:c,b g::: 2;

3
hence for the h,w.v.:

Ly = T‘_—E{@N.*‘“z)“s + (em, +2m9-) 0(&} (24)

and its power
-
J(Ll,t)'ffg{@+°)m‘+3ml} (25)
vhich checks with Table IV.
These formulas can be used for A2 (c =1, J(LZ,( )= m'l*m&)’
for B2 or for C2 (c :Z,J(Lz;z)_—_gmlfémﬂ’

and for Gz (c =3, é(Lz’s):Sm-,fSMB-



'/“'/‘ W:fy,c

Tabl. 1T {(L}) 1o Z.. A i)
Ay in 8
| 4, = Eerr (1-c)(£-3)
‘ Lgbgg-r p geg
} Vt}‘c “ K. (y+1-2)A A+ c(r) )(¢-3) My o dnl (-2 -y & frt)(311)
A,é"u; ¥ 5’ é Ay - 2!_\, 5 ¥ 7 } }
&t | Ay | 2n %(Az-i) <.4+i~“‘)(‘,
-1 | B, 2 —ZL— (2 8vi-¢) i <____‘°-*£"‘) { (e ..f.?'-—l.) }
1] 4| 2 £ (0-) (%_ﬂ) (f-1+ 1)
) fo 5__£=' { L)(f“ )+ z(\?ﬂ)ﬂ‘l)} awha NM;CL Toﬂ. Lri- b{(“ i)(f'e) +@+I)3} wiid 78 ) JC"IF
Z=4 Us -2) Payad izl | 35U
ce By (R) =1 Hr(R) 2 SFE(0r2) g
| ~-L= -o ot 3% drize [ f el gerey {1
! %’=1 3 f-l {@, - 9 )+ 3 (Er) [f- z)} _34:1.,! ’ ‘23 2){( z)(3 -4) + (H)Z} wloe ?‘ufl({,-
] &) =5 ] x:[“z)‘ S (fra) iens

ne. T fnmﬁdru’w Lon A2 gc«w W’ef‘ . a1 well ag f!cwv', 3= ane. tvwltwi% Ue vauie f*t- P } ?-

- 122 -
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The most important fact which comes out from Tables III § IV is that (L)
is either integer or half integer so that 2§(L)+{=T is always an integer
either odd or even respectively. As we shall see below T is the number of
layers of the weight system constituted by all the weight vectors; the dimension

N of the representation is equal to the cardinal of the set of weight vectors

denoted by {w.v.} = {A'-_L,z\ yeaeenny AN} .
Ordinary weight vectors are obtained by subtracting simple roots one by one
from the h.w.v. L subject to rule (I):
If & is a simple root and Ade{w.v.} then f\nzﬂd—d’,(e{w.v.}
if and only if the integer Q(A, )o(&) determined by the two conditions
Ay + QUAs, g% g€ fw.v ]

£, a
d,+ (Q{-n)u(’,é %{w.v.} ¢ )

is such that

2A0%) o (hy,0g) 0 (26 ¢)

("(ﬁlol&)
! I

One can define the vector §,= J=|ih MJ (%)
where i,{ are «z positive or nul integers (d:l,l.,—- - ,‘8) such that if

Az A= S € fuv ] (¢3)
then §(Ax) = SQ.) - 4 (S) (29)
i.e. the power of A, dif‘ipt‘ers from the power of 4, =L by the integer

d(s.)= Z,ii:ilh_\k—-“i—i){ 3 2= (30)

'R

which is the number of simple roots subtracted from 4, to give /\R.

In others words for any r\n_e{w.v.},J(L) and J(/\n.) are either both integers
or both half integers so that for a given representation all the powers
of the weight system are of the same nature (corresponding to Wigner's

integer or half integer representations ).
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Now equation (30) might have many independent solutions, say 9. solutions
satisfying conditions (26 a,b); in that case the qr ordinary weight vectors
(in brief o.w.v.) )\(3,.....,)\2") form the r-th layer of o.w.v. all with the
same power § (/\r):d A= (r-1.
The r-th layer is said to be power degenerate of order q. .
In particular for the first layer corresponding to the uniqe h.w.v. A =L
one has r=1 ,§,=0, JS,: o, q;.:l and the first layer is never degenerate.
If6 O\i) is an integer, after (mo-l) subtracting steps such that
J[A,,,,o): J(A,) - (mo-1) = o
we have a mo-th layer of w.v. with power equal to zero; here m =8 A, + 1
If 6()\.) is an half integer, after (m%—l) subtrecting steps such that
SAmy )2 I(A) - (my=1) = %
we have a m;-th layer of w.v. with power equal to 1 ; here m% = 6()\,) + :91— '
In both cases due to the symmetry of the process the total number T of layers
(called the height of the w.v. system) is then
T =2dA)+1.
As we shall see the power degeneracy cannot diminish as the number of

subtracting steps grows (up to m-] steps) and consequently the degeneracy is

maximum either for the mo-th layer if J(A,) is integer, say U
0

or for the m%-th layer if J(,h) is half integer, say Q. -
2
This maximum power degeneracy a is called the width of the w.v. system.

So that finally we have for the dimension N of the representation
(counting each w,v. with its multiplicity)

)+ q

if J((\.) is integer NZ2(q,+.. PR L m

-1
if J(A,) is half integer NZ2(q4...+qt..tq )

o

0

Nt

(with q,=! and q,

1+—l>/ qi) b

In both cases we have Tz 26( A)+1 &N the equal sign corresponding to the case

of no degeneracy.
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2.b. Effective determination of o.w.v.

The first layer being occupied by the unique h.w.v. }; =L

let us look for the w.v.'s of the second layer,
According to rule (I) since X; € {w.v.}

we have Q(Al,ai) =0 fori=t, 2,...,%.
As Z(Al ,G;_)
(ai,ai) i

Z(Al,a.)

W+Q()\l:ai) =m > 0
171

=m,, for A;—ai to be a w.v. we have the condition

(31)

If there are q, values of mi:#.O,we obtain a second layer of q, different

W.V., Ax = {f?,.....,fz with the same power §(Xz) =8(Aj)-1.

. . i)
Similarly the w.v. of the third layer are obtained by determining first Q(Ag,aﬂ):

] .
féf-qj: Af‘ai+aj€{w.v.} if and only if ai:aj

, )\2+2_aj: A 1-'ai+ Gj‘i' (lj ¢{w' v.}

3 ‘:)
so that Q(fé,aj):zéi ; and the condition for f; - aj to be a w.v. is

>

2(A2)a) ) 2(11—-(!1,0..)

+ =
(ay,05) Q(A2,05) o o *8,;70
2(ai,q.) 5
=m - . 0
J (aj,aj) ¥ 1,J>_
if j=i we get: mi>1;

so that for mi;2, )\1—2ai is a w.v. of power §(\;)-2.
If j#i we get:in the case where o, and o, are not connected
J i

m.>0,

(4e Hat {o‘ ﬂd>/l) Ar‘"‘«.‘*o‘d (L t“,ng?/Q_) uuuf,thﬁpw’uc;dl

in the case where aj and a, are connected i.e. j=izl

and the condition 4
m. + ——>0
J (e(d, oil)

J

(32)

(33,a)
)-9.

(ai,aj):—1~

(33,b)

is fulfilled even if m, = 0; then Az—ajzll-ai-aj with |i-j|=1 is a w.v. of

O]
power 6(A1)-2. So that with each w.v. of the second layer A2 we get at least

one - W.Vs of the third layer. -
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To study the r-th layer let us write now a w.v, of the r-1-th layer as

A9 =) s )
r-1
whe S(l)"{
re S__ 1)‘-: r—ldj (35)
with J(S(1 ) =r-2 and J(f\(l )=8(A)-T12;
(all i il are positive or nul integers; j=1, 2, .....,£).

For A(l) /\(1) o,( to be a weight vector of the r-th layer we determine Q(Af}i, '
AR o e fwv.}
AD e ¢ wo.
i J s i) .
So that Q'J{"Ir-l‘fj,s and the condition for /\r_l—-p(s to be a w,v, is

208,50y, 20A- 58 )

—r-12"s” 4Q = r=12%7 +Q > 0
(%% (g oL)
(i) Z
m- 2(8 _]’ds) er?_l j’s>o

If s#j and ]s-jl 2 for all j's such that 1r_1;‘: 0, that is to say if ol

is none of the o(J involved in S( 1) and if . is not connected with any one

-1 $

of them, then rule (I) gives

m >0 i.e. ms>,1 (36)
If s#j and tz( is connected with at least one of the O(J's involved .in S(l)1

then for that value of j’ (o(j,ots) = -1; rule (I) is fulfilled even if ms:O.
(Notice that this conclusion remains true if “s is connected with two.o(j's,
or exceptionally three oij's in Dp or in EC_)‘
If o(s.-_o(j i.e. if o(s is a particular o(j then rule (I) gives

mj ‘1131 >0 i.e. mj?iril*'l 37
In particular among the a3 solutions of equation (30) applied to the

(r-1)-th layer there is the maximal one i l_r - 2 (with i 31-0 for all other j's)
and correspondingly A.- (r-l)o(s will be a w.v. of the r-th layer with power
J(f\r):J(A,)—r+} if m 3 1-1.

The conditions ms>}1 for the second layer, m$>,2 for the third layer, etc...

ms)r-l for the r-th layer become obvious in terms of Young diagrams;
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also we can see that power degeneracy cannot diminish as the number of
subtracting steps grows as stated previously.

Due to the action of the Weyl group the w.v. system takesa spindle shape.
Within a given 1aye1~{kr} a certain w.v. M can occur more than once as

soon as r » 3; indeed we have:

4
(1) _ (1) _y ).y -
M=A M e A );llru(Jz\ r><|,/\r_1 oy = (38)
For example the w.v. system of the representation 6————6 of A2 is:

{w.v.}:{o(,fo& 3%, % 50,05 ~d, - o; —(d.+o¢2)} (39)
and the nul w.v. of the third layer is obtained in two ways from the second one.
layer; so that the nul w.v, is degenerate and its multiplicity is two.

In general if M appear n, times then M is said to be degenerate and n,

is its multiplicity (or the dimension of the corresponding degenerate subspace

of the w.v., space); it means that each w.v. such as M has to be counted ny

times to maintain the fact that the dimension N of the representation-space

is equal to the total number of w.v..

{10]

Freudenthal's recursion formula gives the multiplicity ny of M as

oo
L+R,L+R) -(M+R,M+R =2 J(M+k 40
[ ew, MR = 2L T0Ekp, PImy (40)
where R as for the Weyl's formula is given by equation(7).
To calculate dimensions of representatios by Weyl's formula. (eq.6)--one-does

not need L+R but R. As roots and weights are dual forms 0 —isl

with respect to the fundamental Killing quadratig form of the algebra

the power f(L) of the h.w.v. in the weight space corresponds to R in the root-space
?

14
Theorem I: §(D =1 ﬁ-m and Rz QZ;P-‘Z—P]-M are dual elements.
czih 1 pro L2t

The ordering of the roots is important for the use of this theorem;

for W ep1 the order is given with Table V; for wézc one has to interchange m,
and °%+1-i (Beand C£ 281%@  as being dual too). With thése precautions R can

and W

be built up out of Tables III and IX for W b 2c

/pl
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Let us give two examples easy to check in no time,

For G, Table IV gives J(L(Gz))z Sm, + 3m, (41,a)
then Theorem I: R(Gz): 3di+-5K2 (41,b)
For F, Table IV gives r)(L(F4)): 1in,+ 2lm, +15m, + 8m, (42,9
. - oL
then Theorem I: R(F4) p 80(1 +150‘2+21 3 110l4. (41,4)
V4 V4
Now that we have L= zi agxk (Tables I § ;I) g;d R= 451 b uk (Tables III & IV)
17,b

using universally adopted Racah's notations it is easy to build K= L+R
and consequently K2 which is involved in Freudenthal s formula as well as
in the second order Casimir operator whose eigenvalues are KZ-R2= L(L+2R) =8

for the representation defined by a given Dynkin diagram.

Using eq.5 and properties of the Cartan matrix involved in eq.12 we obtain

4
€ =x2- 41: (a, t Zbk)mk__k_k_. ng(mk+2) 5 (49)

given in Table V for WIpl and in Table VI for Wézc. (The trivial exercise of"
specialization to particular values of p,z,and c is left to the reader).

The width of the weight diagram can be deduced easily now from Freudenthal's

formula. We have seen that this width is the degeneracy n, of the null weight

vector when (L) is integer and n, ., of the w.v. M =}« vhen §(L) is half integer.
P A

In the first case we get:

(2-R? n = 2Z.Z(ky PIngy (40 %)
P)o =y
and in the second case:

2 2

where p is a positive root and i%+ ky must be a weight.

w ZZ.Z.(zM“'k]’ V)Thd fkf’ (40,8)

Ty
2% proBa

In the appendix examples of application of these formula are given.
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Table V : Eigenvalues of Casimir operator for wspl

1 (P FL ! b
- ..{ZK‘, {Z (o + ks)im + 2 (Ap+15)km + 21<(Z—i)mi + k(s—p)mz
; .

=y vl £sRH ezp

k[2(6+1) (¢-p) + (P‘k)AR]}mk

£ p = 2
+ 2 {Z(6-k)2im, + T p° + (2-p)i (&-K)m,
{:P izt L:P 1
-1
+ 2 p + (2-p)k («‘1-—i)mi + (8-k)pm5
£z R4
+ (e-1[2(e+1)p + ck-p)ap]}mk
p-t 2. )
£-n)i - .
+ {CZ;( p)im, +§Pp(z i)n, + ¢m, + 5[2(e+1) Ap]}mz}

Ordering of the roots for W
£pl.

For Al as the coefficients of J'(L) are symmetric in i and 1?—H-i the interchange
has no effect and it is just as well to not do it. (see ref. [_15] p.27).
For D?, from an orthonormal basis {ej} of Raall roots ape defined as -_-f_-eii- ej A+
As we notice that Table III givesthe same coefficient for i =1 and for i= 2
we define the simple roots in the following order:

= e{-l-e["”“'""d-f-i 2€,-€ qsees ..»l....,o\’[,_lz ej.-ez,

QS?: e{-1+e2‘

For E; from an orthonormal basis {e.z of lRB all roots are defined as _f_eiiej‘ (i#j)
and the vectors f( l)m(l)e , with Zm(l) even; we define the simple roots as:

cy
ozp—_e1+ez 2:6,-?,8 o-wﬁ\a

2 1, 3:83—62, '°‘4 -:64—63,.......,O(£_1=e£:_1-e£_2.

T
x :2(81 Z-e )3

With the above ozdeiing. of the simple roots of Wl 1 if using Table JIX

i’}
we write J(L)= }:b KOy then we get simply R = JZ_'_IJ b X , with b = "‘
4= pro kk AP
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Table VI : Eigenvalues of Casimir operator for sz

c
1 [z p A ¢
gp: —A—— {'Z.:‘iAz (k)mi+ Z_: kAz(i)mi + 2_3 k(8+1-i)mi+ k [(8-1(—2)[\z + (£+1) (z+1)J]mk
z B-‘—I ¢ s H t=z
bzt 2-1 =R 4
+ {z ic(8+1-k)mi + 2 (£+1-k) i+(1—c)z(i—z—12]mi + 2 (ZJrl—iﬁﬁ(i-c)z(k-z-l)]ni
&:Z‘H cxy ¢z l::&.}‘
' (o, 00)
+ k [(&-k-z)Az + (&+1) (z+1)] ]mk""%ﬁ(“
E y & c=h
+ Z. {'2 JL<:(8+1-k)mi +.Z (8+1-k){i+(1—c)z(i-—z—1)] m,
'3:{.2+" Lz L=2
!
+ 2 (8+1-i)[k+(1-c)z(k-z-1)] m,
C2Bed

(< %)
+(l"+ 1—k)[(2—8+k) Az + c(e+1) (8—2)]}11‘]( dk;(k

(The order of the roots is as given in reference 15 chap.V pages 2%-39).

Of course the use of Tables V § VIcan be avoided if one use the second form
of equation (42)that we write again
Bl » O
) (42)
2

where only the ccefficients of the h.w.v. Lgiven in Tables 1 & II are involved.

2 {
= L( L#2R) .—_f.;‘ak (mk+2) ¢

Anyway the ordering of the roots is still necessary to go from §tp to R.
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IV.3. Mabiises of T.R. of domicdiupl Lie alsebray.

IV.Z..0n Weyl's formula and dimensions of I,R, of semi simple Lie algebras.

ﬁ’”] give the dimension N of an I.R, as

N=2T [-(_LLM, v + ']] (/+3)

Voo
This formula implies the knowledge of L and of all the positive roots /U,

Weyl's formula

(R= —Z_P being deduced either directly from the V'S’ or from J(L) ).
P>o

What follows shows that the knowledge of the pos1tive roots is enough.

As IJ Zklo( (y ez’ ) using eq.(11) we have:
?
) = iy L oLe)
- Epi gz

As R =2f—f. p is also the highest weight of the I,R. corresponding to the

Dynkin diagram such that all m, =1 (1=1,2,0000000,L) we have:
d
(R,p) = gvi%f.f% S(L,p)
i=

where (S(L,IJ) is the power (i.e., the sum of the m, 's coefficients) of (L,F).

Formula (43) becomes: N
Zpl 'v'/ C)
N =T 2 4 (44)
pro Zp D)
i=1 2
y,
For W2p1 for which (oli,oli)/z = 1 we get:
: pim.
N(Wy )= TF [t + 1 (4dra)
) Pro J(y)

where Z p m is obtained from y= ):_t) o, by interchanging «; and m,
and J(V) ZP is the power of the positive root p.

For w{z us:Lng previous notations we }bave

)= n[évimi o

N(w,[zc

+ 1 (44,Db)
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The number of positive rootszg of a given Lie algébra being called np
the QGoxeter index h is then h = 1?2 and the maximum power JQﬂm) of the
positive rootsis §(p ) = h-1,

When exfdliciting (44,a) and (44,b) it is useful to give the factors of N
in increasing order of §(y) with

18 S(¢) ¢ S ) =h -1
where §(p) = 1 corresponds to simple roots.

It follows from eq.(44) that to write the dimension of the I.R. of a
given Lie algebra corresponding to a Dynkin diagram (or bp a Young diagram )
only the positive roots of that algebra are needed. The families of positive
roots are build up out of an orthonormal basis {ei} of a vector space E
according to Tables VII and VIII for wep1 and wézc respectively,

The dimensions are then deduced according to the above method and given

in Tables IX and X for w?p1 and H?zc respectively.

et Leask for AL, By, G s
At that stage it is useful to establishYthe connection between Young

and Dynkin diagrams, For Young diagrams (as oppose to Dynkin diagrams )
one has to say in which Lie algebra they have to be considered, Then if Ai
is the length of the i-th line one has pfl.yz, Ap:

o= Ai - Ai+1

however for E? (algebra of S0(20+1)) one has

(for i = 1,2,...,£)j
mo=A, - A, (for i=1,2,0.0,6-1) and my = 24}
for Cp (algebra of Sp(20)) one has
m, = Af+1-i -'Af+2-i (for i = 2,...,£)and m, ='Ae.
These precautions been taken, Tables IX and X can be used for instance
to help the reduction of the I,R. of a group w.r.t.iis invariant subgroups
as for the decompqsition of SU(n) into representations of S0(3) and the
studies of the chain- SU(2¢+1)280(28+1)>50(3) for { integer
and of the chain SU(2j+1)>Sp(2j+1)>50(3) for j half-integer
which are the root of the sehority concept so widely used by physicists

(cfe M Hamermesh[1&élhapter 11).



Table VII, Femilies of positive roots for W£p1 algebras.

y ) 3 .
P gpti E om dasd e} ofp: El ng ﬁeum) ei+p-ei=a(iﬂ+....+n(i+p; %M ,FP“.L.{_ Laela .
b1 | 8y B*1i0,1,....,0 L] ] i=0,1,2,0000 b1
2 V= ei_ -e0=a{1+x2+'....+\‘e
L |0 RE [i=0,1,.0.., 041 "_?_(ﬂon) 20-3] 1=0,1,2,....,0-2. 2“,*.@“‘27
eiﬂ’<rei=.\'1 (1-(5;;0)-& o(é,+of2+o(3+. ...+0(i.+o(i+1+.. "+°(i+p
+(&/2+a(3+...+o(i})(1-Ji,o)(1-fi'1)
‘-k,v.'&@o‘d ’ ‘\'g=e1+eo %ﬁ! p=1, i=0
! a9 well ag Pan =€) 148 =% +20(, 42 Xytiie 42 DIZ—2+L’(;_J-1+ m’e
308 | & |is,2,....8 )
' =0 -1){ - - ¢ -2
g n, (-1 -2)+(¢ 6)[6( 7)+1]+2 g ‘
9 P ex (1= : ,
:,_6,7 i21,2, 00001 ei+p+ei'oﬁ(1 5;'1)+me+ol3tx4+....+¢\i+oli+1+....+.g(i+P
}’/ -8 i21,2, 00081 *("3“"4*""*“&)("[1,1)(“Ji,z)
| 3 famiy () 32-1)"Hes wal) n(1)=0 it ged £n(1)= otn.
2:6 2x10+16 11 \1=})(1)=%(e1+e8—e7-e6-e5-e4—e3-e2);H(i):a{+u2+....+o‘i 1¢ig4
) t /
bop(5)= P(a)rp p(8)=p(5)edy  p(7)3 pP(6)ex, P(B)=P(6)+rdpr Xp
1) = ! 5o Y = e <l s s ., ;
| l(,1/?):P((i)x)’:if’ Por)= pl) bols  4ses? Py =pid)+y
pii6)=y 3 P(16)= p(15)+ . | '
; i Aot oy b Ay b st g c=1,56,85, 1,12, 1(-
§f=7 2x15+32+1 |17 P (16.4i)= [J{G) +{ V{E?}EV33=38-e7= 2 1»3)(1«0-1*»(34»](:(“*-?,0(53{61'2’9;'
6(3"4!‘*0‘5-‘.?:,_"_42 552,3/‘1)1: 10, I3,I‘UIY'
! =8 2x28+64 29 Y (32+ i)= y(16+i)+o(7 v (48+i.)=y(i)+o/2+2d3+2o(4+2m’5+23(6+.\'7+&’ .
: so s 1L <16
1L seytbh ,

A N A



Table VIII., Families of positive roots for wlzc algebras,

¢

! za“'. . s ! A YA 'a.dl . . : d_
“pc| B ombudlad b B M, ) 0 f%‘ g 00 fasdy | 3% Wf-
| 3
L]
¢ ! 2 ! !
i = - i - &, =NK, . sen . .= M, R cee =
By BTt ¢ 32[ 1 RS Uit tiapa | SNt ety Ci*CiapT Y T N p
! ! ,
. ; : d a0 e
| ! ; ; 42 iept +2 ofy
| S .
: ! ;i=.1'2""'€-1 1=1v2:--- Q, " P8 +€= K +20, 4. . 0420
| e r e A
{ ,O,l1,...,u€_1
- - . e e+ o —
H P ! :
g 'R i=1.2...-,‘£ el et 2e, =% 420+, 0420 o e mnan )
‘ . : 2 = +oee . A e .
| ] BepOITI e gt o
‘ H=1.2.....0-1 is1.2. ... P P prerars) (128, ) &
! ! CYeeloa e simpla xoots! yelda o | =2€, and ' W
i H f ; ~ ~ '
] i ! | : - PYRRRY 0(8 j;f)m—2e€—of1+2o<2+...+201€,
{ ' i . |
] | T e
¢ i . ! se = R ) . ) i
PR, 34! 1=1.2,...4 2RI k= Pon = €48 = Loty +3% + 4 hr 2ol
| l E % L 8-ty Yy E33 v Bireyz o #3544+ 20,
) i ! : )
‘: : ! ,r : "'"ez=!°a,+2d3+d‘ Qy = o+ oy +oly Cl*eq: °(.+~?—°(¢*4°(3F1°(q
‘: €l~ez R ¢la(3+"‘,‘ Fe, [ e, = n(' +1x‘l f}u} Fld‘l ' %4_63 - 3“ +zd&+"-°‘3
H “
‘ €0 = 2o rrmg iy b, (|7 &y L (e-2y-05- eq). €y el = o + oy +zg3
f 4“— : YOI R P N L €3+ 8, = %y +2%
’ iR ! PS) = peB) +Xg 5 p )zl + o
s I slerefs ey red) il \l L (3 :_51.) e ,‘:m:l%zm,j)
! .
30, ! :
G i=1,2 e oA
2 R v2,3 { 6 S | el e1+’, D&+.’Al+1+,, ot (\i+p—-1 e1 +324‘ei—383
;i=1 ,2 i=3,2,.
i Joelole . ol il ““f“w‘f‘
v oy ; A i K ~ iy .
! ’(11"‘2 N+ 2 v/1+2 12,0(1+3 5 et rm_2~l1+342
| |
l i
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Table IX, Dimensions of I,R, of w£p1 algebras,

2 'e+1._k m,+m, +oeotl, ) TN 4ol
N(Ap)= TI(m41)eeo IT [1 1+] i+k-1 +1]......{‘ 2£ 2
sl i=1 N x

N(D£)= ‘I‘.I:‘(DP) TI’Z(Dz) corresponds G the oo families "f' roots,-
rr1(n\o)= TI(8p )

e M 4M 4o oot P [ my+m 4m 400otm,
Tr(De)=(mF+1)T1' 72" L 'IT{p 12 i1 +1] X
b i=2 | i =3 i
203 ¢
x T-r m9+m1+2€ﬂ2+...+. mg*mi*‘.“.'oco"'mi"_k +1 ,
21+k=5] 214k

N(Ee)= 'II;(Ee) IT,(Ep) TI’3(Ee) corresponds to the threg Pamilies df raofs,
£.6,7  con .i.n 0 1)(P-2)fac s.
T, (By) 1T, (Ep)= ! (DP’1)€M 67< rine E)F2)tactar
' ] (De) ﬁo’L P-8 - contains bl 1) = 56 facteurs.

‘ITS(EP) . far ?: 6,7,8 contains respectively 16,(32+1),64 factors[—(s-é—%g- +1}
budd wp wik the roots of e thoul Loty . )

B-1 P-x 4¢isx <P
mi+. . '+mi+k-1 N mi+. . '+”i+k-1 +mp
N(Eg)={ T (m;+1) TT | ——>= 11 (m+1) IT +1
i=2 i=2 Xk i=2,3 k+1
: ful.-:Gﬁ x=2,3,4
m2+2m3+m4+mp . m2+2m3+m4+m5+m£ " m2+2m3+2m 4+m5+m ¢ .
5 6 : 7
4
M 4oeedM m,+m,. +m_+m +m m, 4m,.+2m_+m +mp
Tf-——-—-—-1 i+1 ! 23424-1 [12 3 4 +1J
i=t i 5 6.

n1+2m2+2m3+m4+me m1+m2+2m3+2m4+mr+mg 16 c4
+1 2 al 1T /(1) "
’ 8 i=9 |J6(3))

£(9)=£(3)+mp ; £(6+i)=f(i)emy  for 45ig7 ;i £(14)=£(13)4m,
£(15)=£(14)+m; ;£(16)=£(15)+mp

T Lt F(16+4i)=£(i) + M+ 4 for i=1,5,6,8,9,11,12,16
. . AR
Iie,) ‘a(.“u):g(p) ) for 1=2,3,4,7,10,13,14,15 Lol

f33 =2m1 +3m2+4m3+ 3m 4+2m5+m 6+2m7

To-leilol . £(16+1i)+
7 gl {£(32+i) £(1 )m7

}151$16 ong. meeded

8 £(48+41i)=£(i )-H'u2 4-2m3+2m4 + 2m5+2m6+m7+m8
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Table X, Dimensions of I.R. of wlzc algebras,

ZEf 1p1m +ymﬁ

N(B)- 1| = T, (B, )T, (B, )IT. (B
T
-1 ! 1-k . ees e see
I§(82)= Tr;‘(m;‘*v ....:.'r1r [mi+ml+1+ +’“1+k—1 +]00.[m1+mz+ +m[-1 +1]
i= i= ) 4 -1
e“‘ 2( e
TT(Be) (mp+1) n’[ A 2 DA +1] _
1 2(0 -i)+1
rf . )!—1 M +oeotmy 1—[ {m teeetm. R{uuk cotmy )+mp "
E £ -1+ 1:1 L 2(£-1)=k+1 ,
1 T '
+)£i=2v ml ]
N(C,)= 1o3=20 1 41 2 1x(cy)YY, (C))IT, (C))
f’>oL[) +ZiQ=2P1 'ﬂ; ? 2\7Y 3270
: - d+1-x Mmoot 4eoa4m
_ i+k-1 3 4
ﬁ1(ce)'ig(m‘-’+1) no;.I:-zr [ k “'ﬂ.a [ 3-1 +1]
) M 4M, 4o 0 0,
T1,(Cp)= (my+1) n'(—————l +1]
12 i
-t (C ) It b [2m1+m2+...+mi +1i=$1:1 2(m1+‘°'+mi)+mi+1+"+mi+k "
i=2 i+1 . Ji=2 214k
N(l’-‘ Y= IT

2_(y1m +P2m2)+p3m3+P4m4 , ’]
+
P)O 2(‘) +P2 )+P3

S<k Im,4m. _4eeetm, 2m, +m
- Ir (m #1)ee IT [1 i+l i+k-1 +1] [__2__3_ +1]
x .

i=1 3
1m +2m, +m -‘ m,+jm, +m,_+m 2m_+km_+m
bod a2 3 +1 1 "2 3 4 +1} [—-————2 3 4 +1}
i,3,k=1,2 3+i ) 3+J ‘ 3+k
: m +im +2m, +m T (2m +Jm +2m +m,
ol 172 3774 +1 1 34 +
i=2,3 443 J 3=3, 4\_

2m, +2m,+im_+m 2m, +4m, +3m_+im
T 1 2 3 4 +1 [ 1 2 374 +1
i,3=1, S+i 9+j
C

N(6,)= (m +1)(m +1) (m’mz +1)(2m1+m2 +1) (3.m1+m2 +1) (m +1)
-1 2 2 3
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An I,R, is called basic if all components mj of the h.,w.v. are zero
except one m, = J’ j for j = 1,2,...,1,...,2 ; such a representation is
’
denoted (\M)@ and its dimension N(we )@ is obtained by doing m 5
in Tables IX (for wz ) and X (for wbzc
8]

by a recursive method; they cannot be used to
compute the dimension of any general I.R. since the dimension- formulas

Y. The results listed inJTables XI and XII

have already been obtained

are very far from been linear in the mi's;they are only an example as well as
a test of Tables IX and X.
The basic I,R. of smallest dimension will be called‘the elementary I.R.
as it corresponds to the dimension of the smallest vector space of representation
and according to our coherent notation (cf.section III, Type I and II)
corresponds to a terminal simple root i.e, i = 1,2, or[-J, this last value
been specialy valid for Dp and for E, ( =6,7,8).
A representation of particular interest is also the one whose dimension
is equal to the number r of parameters of the‘associated group; such a
representation will be called the regulg; representation and denoted R.R.j;we have
r=o2n +f= P(_e_pﬂ) =4m+) =8 () +2).
In general the regulg%;§§%%%gentation is a basic one except for the cases of
Ap for which the R.R, is the I.R. m, =m, =1, m, = O for i = 2,3,000,0-1;
C! for which the R.R. is the following reducible representation:
RR(G) = (G))8,, @ (p)By @ (5,)B,
where (Qﬁ& is the scalar identity representation for which all m

i
As for Fyone has n, = (?—I)//—Z) + /f-ﬁ)[é/f’ 7) i—j + -?.é 2’

which is not a 51mple function of ¢ to handle all the basic representations

= Q,

are computed directly using Tables IX and X,
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The process of alternation.

Starting from the representation space of the elementary I.R, of dimension

say n for A?’ D,, BZ we can represent the Dynkin diagram given by m’ =1,
m, =0 for i= 2,3,....,[ by a Young diagrém consisting of a single box.
Then the Young diagram corresponding to the Dynkin diagram given by

m,
t

J%& is a column of i boxes i.e. a skew-symmetric tensor of rank i

in E*™ and the number of linearly independant components of that tensor

. " . . .

is equal to ( L) s consequently the dimension of the I.R. given by the
n

J is also (L)

as a direct calculation using Tables IX and X yields (see Tables XI and XII).

Dynkin diagram of the basic representation m, ='J¢
)

To make the above reasoning obvious for Dﬁ a2 relabeling of the roots

0-¢
The alternation process applied to E‘, El' Eg’ C?, FL, qﬁ yvields reducible

4
interchanging i and { -i has been used so that (29 ) becomes (2i ’

representations (except for few cases of EG)‘ In the following tables
whenever possible Dynkin diagrams have been displayed whith the dimension
of the basic representation written below the corresponding simple root;

possible reduction of the alternation process have also been expanded.
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Table XX, Dimensions of particular representations of w£p+.
. n = 2nh+f:£/£+:) Comamzntts .
oz [ -t
Ayl 0—0— om0 0 i)l QLRR.WW@P
Bri tH oH)_ Dot
v?),[ ( | ): \QPI ( L) {2)-&" w.‘-| mg | alL }
ot (¢takieliiy, A
ot ca o = —0—0 A=l bl
y -1 2¢ of (28] [29). o ‘
(I‘a) 2,[2_6)? ‘ ”"(2) {( ) 2€ mtw&ofrt&
”f"s i} - Kooki Com &t Revorted
2 { ER v -2 - wem (17 ok
O—— O = - O - )
$14 23’ - 1Y 30 g0 Mt C{b\x fove
(e (GHER () [ pa o pr b2
Bstg -2 |
€ &1 5= ] 2n R f=12 n:=38
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Table XIT, Dimensions of particular representations of W

fzc*®
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IV.3.9Construction of the representation matrices of s.s.L.a.

IV3.2)Diagonal matrices.
(1)

To each weight vector X(l) 1= 1"""’qr corresponds a unique vector v
r rir=1,..... »T /) T

in the representation space E, such that[t-15]

N
. H v(l)_ (u,x(%))vﬁi) (43,a)
with u= Z.u o Being = P‘”“’W oot (all vk ezt), (43,b)
. 2 .
Hence (Hu)r i = (u,k(l)):&i uk(ak A(l)) (44)
and (Hu);:. is known when the (H ) ,1__(ak,x(l)) k=1, ., are known.

Due to the symmetry of the weight vector system it suffices to write down
its positive part only i.e. the G(Xj) first layers if 8(),) is an integer
(as the following one gives the degeneracy of the nul w.v.) .or the §(\,)+ }

first layers if §¢X,) is an half integer. The complete matrix of order N

can then be filled up with the opposite numbers (to get a zero trace matrix

as expecte@).

Ffom equation (34), using (5,b) and (11) we get first

. {r. . .

(i) . EJ -1 g+l )

(SI‘ ’ak)_-); T (a".’uk) - 11‘ - 11. Gj ,k’ (45)
J=r 3

with z +' 1\< k\<,?,:

i ™ 2% k1l kel

T, .
(Hak)r,l"c - E—Er Tl T ip ) (46)

hence for W
Lze

for W with l1ckgz,or for W one has to make ¢ =1 in eq. (46).

Lzc £p1
In case the w.v. M::Ail) presents a degeneracy of order n, we get just
as many identical diagonal elements,

A relatively general exemple of application of the formula (46) is

given in appendix.



- 241 -

V. 3.$9.Non diagonal matrices,

The relation[”] ¢
E_u:- Eu (47)

allows the study of Eu for u being only a positive root.

As E voecv , (v(,v €E\) we have A_=A_t e{w.v.}

s
and the non nul elements (Eu)z are such that Ar= AS+-u; (48,a)
i.e. are situated in the lower half of the matrix (Eu) and connect w.v.

of layers whose power differ by §(u); in other words r=s -4§(u). (48,b)
(Of course if y is a simple root S(u) =1 and rz=s -1).

The proof of (48,a) is well known; for any other positive root v

the commutation relation?

(#,.E ] = wa0E, (48,¢)
yields
T Tr T S r
(HPZEDS - EITHIT =, ()]
or WA = A, - 1) (Eu);' =0

hence (48,a).

If there is no degeneracy of the w.v. system one has:

. 2
(E)g = ¢vfﬂu)§ + [fEu)i] (49,a)
Indeed the commutation relation;
[Eu,E_u] = H (49,b)
yields
s t s T s
(B E_ g - (B_DIEDT = ()7 (49,¢)

and using (47) we get
2 2
T s s
— - 49,d
[(Eu)s} [(Eu)g] = 0 (49,d)
hence (49,a) which gives the elements of the non diagonal matrices in terms

of the elements of the diagonal matrices given by formula (46).
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Notice that (49,a) being not linear one can not expect to get (EU) as linear
combination of the (Ea) with a as a simple root. Each matrix has to be
calculated for its own sake,

From (48,b) we see that r = s =« S(1) = (t - 8(1)) - 6();
so the calculation starts from As:: - A3 {the lowest w.v.) which yields At: 0
i.e. (Eu)i = 0; then (Eu)§ = * vy ): is known from: section 3.a eq. (46)
and the procedure is carried over by ascending along a prallel to the
diagonal as §(u) is fixed.

The commutation relation

[E E[=N U,V, U+ e{positive roots} (50)

= E
TEY) U,V U+ Vv 2
is used to obtain some coherence in signs,
If there is a degeneracy of the w.v. system i.e. if in the same layer

a certain w.v. M occurs with the multiplicity ny then the terms of the

left hand side of equation (49,c) would be summed over the repeated indices t

and r respectively.

Furthermore as we have now n, values (Hy)z which are identical

(for s :.1,2,...,nM) the number of independent equations is no more sufficient
to determine all the 'matrix elements; the last commutation relation (eq.50)

is then a useful complement. One can also choose arbitrarily the values of

the relevant matrix elements of one of the operators which is tantamount

to choosing arbitrarily a basis in the degenerate subspace (of the w,v. system)
of dimension nM;but the values so obtained will depend on this choice.
Degeneracy: is often met and complicates apparently simple problems

as for instance the study [18J of the chain GZDAZ.
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_Conclusions: The following results have been obtained in three steps:

I. In contrast to the point of view recently discussed in (16,17 ] consisting
in breaking a given algebra into subalgebras we have considered here the
building of two classes of algebras out of known algebras@Q]

W {AF’DE’ ER forg- 6,7,8}

W ={B ,C, F,, G, }.
ch#l{z’l w 2 )

This classification is based on equation (I) and on Chevalley's theorem

2pc=1:

CHi4]

stating that the classification of Dynkin diagrams is equivalent to that

of simple algebraic groups over closed fields of characteristic zero.

2. A study of the w.v. system has been performed using the results

of Tables I & II of the first part. For the highest weight vector L

we have calculated its power §(L) and shown} for h& 1(Table III) as well as
pe= ,
forw{z 41 (Table IV))that d (L) is either integer or half integer in agreecment witl
[

the fact that 2J(L)+I-=T is the integral number of layers (or shells) of the
w.v, system whether this system is degenerate or not.
In case of degeneracy of a particular weight vector M the Freudenthal's
recursion formula gives the multiplicity ny of M. In that formula as in
Weyl's formula (eq.6) comes in the form R::EE;EWhiCh can be deduced from
Tables 111§1V according to Theorem 1; hence the eigen values of the Casimir
operator(given in Tables VGVQ and width of weight diagrams are deduced.
3. The results obtained above have been used to build up the matrices
of zero trace (diagonal and non diagonal) representations for the two classes
of algebras.

In appendix two examples are briefly studied to illustrate this. paper.
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APPEND IX

Example 1. 0----- %]
m

L:/\l: _HC (2m) + m), + (cmy + 2m))et, };
Jop=—{@r an +m]; RS 73y + e };
m
E=UL + 2R)=—4-}—c'{(2m| tomg £ 6)m + ((cm‘ + Zmz) + 2(2+c))-(—:—2—}

or equivalently &z— (2m) + m)(m; + 2) + (cmg + 2m) (2l c+ 2)} .
4-c

According to section 2.b. we can write:

for the second layer:

W . .
)\2~ )\1 -ale{w.v.} if and only if mlzl.
o . .
)\_2 = )‘1 -azé{w.v.} if and only if m,3 1.

if mlmz# 0 then )‘(i) and }g)e‘ {w.v.} with the same power &(x) = &lx) - 1.
If m; = 0 (i,j=1,2) then ),;—”e{w.v.} but )\(‘;_)?/w.v. G £ 1).
for the third layer:
Az = Ay T 0 = )\1 - Zdl (—{w.v.} if and only if m1>2.
) w.v. even .ifrm.zj:_O
1 2(12 e{w.v.} if and only if m2_>.2_

D
<
t
>
~
N
Q
[ 37
it
>
[

>
[

Az = Ay - 0y =
Mgz A= o Aty s 0y E )\gz)é@:.,v.}
As g = 2, there are no disconnected roots and the third layer contain at least
the degenerated w.v'._{)\g) = (;)}and at most the 4 above w.v. with the
same power 5‘()\3) = 6()\1) - 2.

Particular cases can be considered:

for ¢ = 1, take m, = 0, m2:1
or m, = 1, mz: 0
or m; = 1, m, =1 corresponding to the Young diagram B:l of SU(3)
. - ~ - : - - ~o -}
with 5_()\1)-2and{w.v.}_ {0«1+c2,a1, @ , 0, 0,0 , -0 , -0 0

\
so that the dimension of the representation is 8 as forseen by Weyl's formula (é/. 51‘
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m

for ¢ =2, L and R are obvious and L(L + 2R) = %{(Zmirm2+6)ml + (2m1+2m2+8)§z-}q

for ¢ =3, Weyl’s formula (6) gives using (41,b) for the dimension N

3my+2my

N(GZ) = (m‘+1) (mz.,. 1)(_-'52_"1“}_H) (ngrmJH) (3m:1+m,*_})(

FWK'MI:D,*ﬁQ:lluﬁ

N@a)z ¥+ 2ol Fruwe

2]

t H) . (6’@?>

%b%wd& %hﬂu 1h>=l:

According to section 3.a. and summarizing what we know from before we have:

{w.v.}={ Al; Al - 0y, Al - ay;
v
my
ml -2
m1~+ 1
H(l -
1
iR
T2
c
m
rald
m2 -2
c
HO -
‘2
|

If v is a positive root such that p=./2_ uka

H 1
H

1

Ap =0y T Oy Ay -0y -

“~

m1 -1
m1 -1
m 2
2=
a + C
m, 2
2.+l
£ ¢

¢

- K ve get

2

= Hu<+ u Ha

2

dl,

-

Al - Zal, Al - 2@2;...
m1 -4
m1 + 2.
m
248
C * .

‘for this example

3
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. ™m, My "4
Example II: Representations of Cs-algebra of group Sp(6): ——B—®
Using Table 11 we get:
— 1 (]
IC =3 (3m +2m2+m3)u + (2m +2m2+m3)d + (m +m +m3) )
Ce ) 2(9m1+8m2+5m3) J(LBS): 3m +Sm2+3m3
R(CS) = 3d&+50§+3d3;
m,+2 mt2

6

Dimension: N(CS) = (m: +1) (m +1) (m +1)(n\1+m2 ;) m +m +1>(m o +1)

2(3m +2m +m3)(m +2) & (2m +2m +m3)(

3
) 4+ (mp#m i) ()

-
conditions for ,\%)

@)
Ay

Ifmzfm3+t’(?ml+mz+m3
3 4

Second layer:

:)\1—

G(Xz) = G(Al) -1

third layer; conditions for the following vectors to be w.v. provided ﬁ%)é{w.v.}

(1) - }LGJ

- 1=X1-2a1
A(?: %)‘ 23 7 % %
A "AU 3:Al--al- 04
Ag) A5 2). dl:le -0y -0y =
)\32 (2)- 0‘2:}‘1 - 2(12
fghlfg)— 0z kl -0, - Oy
}\(73):>\C§) - o= )\1 - Qg - Oy =
)‘(i): %)‘ @y=Ay -0z -0y =
Ag)w%)- on3:>\1 - 20,

All with power é(ks) = S(Al) - 2.
Suppose my=om, 3 0, mg = 1, then G(Alj =
degenerate w.v. system:

{wv.) = (o, + a2+.oc3; %O‘i t ooy 2003

so that the dimension of

forseen by Weyl's formula (6,C,).

’)(?m1+2221m3+t).

oy " if and only if m 71, for i

if and

if and

(2
2

if and

i

if and

if and

5/2 and we

1 1
-30.; -20
71

to be a weight vector:

—
=y

1,2,3.

only if

even if

only if

even if

only if

even if

only if

even if

only i

are left with the non

-}

- O 3

. 21
®ps —2Gy = Oy

the corresponding representation is 6 as

(6,C;)
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