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ABSTRACT 

The nine well known semisimple Lie algebras are partitioned 

in two classes: w^p C : i i ( aH roots have the same length) and w^ z c^ r l (the roots 

have two different lengths of ratio equal to fc). 

For each of these two classes a general expression is given for few 

elements of interest as the highest weight vector (h.w.v.) L and its 

power cf(L), the eigen values of the second order Casimir operator, 

the width of a weight diagram, the dimensions and the matrix elements of 

irreducible representations of semi simple Lie algebras. 

In appendix are given two examples of application of this paper. 
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Highest weights of semisimple Lie algebras. 

W. Laskar* 

Département de Mathématiques de l'Université de Montreal (Canada ). 

Introduction. This paper is concerned with semisimple 

Lie algebras defined over an algebraically closed field of characteristic 

zero only (in brief s.L.a.), i.e. with the type of algebras widely used by 

physicists. Calculations of highest weight vectors in particular cases 

[4,11-13] have of course been done already. However here the use of a 

general procedure yields general formulas which give a very simple proof 

that no other s.L.a. than the well known ones do exist.. 

To make the paper relatively self contained and to define notations 

we first recall the usual definitions of roots of an algebra, the Dvnkin dia­

gram and the highest weight vector (in brief h.w.v.) of a given representation 

of that algebra [1-14].. 

In the second part the calculation of the h.w.v. is performed firstly 

when all the roots have the same length and secondly when the roots have two 

different lengths of ratio equal to /c ; these two cases correspond respec­

tively to the two classes of s.L.a. W£p C-j
 a n d W£zc*l^° = 2 o r 3) • 

The third part is devoted to the interpretation of the results obtained 

in the second part; in a first step^°J it is very simply shown that no other 

semisimple Lie algebras (defined over an algebraically closed field of 

characteristic zero) than the ones already known do exist; the four series 

* On leave from U.E.R. de Physique de l'Université de Nantes; 

Permanent address: 24, rue de la Distillerie, 44000 Nantes (France). 
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A^, B^, C^, and the five "exceptional" Lie algebras {E 6, E^, E g, F^, G^} 

that we reclassify according to our scheme as 

% c = l = { V D r h W i t h 1 = 6 ' 7 ' 8 o n l y ) 

V * | ' = ( B r C*' F4 ' G 2 } 

In a second step we calculate and tabulate the power S(L) of the highest 

weight vector L and link it to Rr H p ; hence the eigen values of the 

Casimir operator and the width of a weight diagram can be deduced. 

In a third step the results so obtained are used to build up the matrices 

of representations for the two classes of algebras{<A</U>xv-̂ tfV̂  

In appendix two examples are briefly studied as applications of this paper. 

H . Roots, Dynkin diagram and highest weight. 

The following fundamental facts are well known : 

SI. If I = "{a,,... } is an irreducible fundamental system 

Jl X J Xf 
of simple roots we have 

i) a^,...,^ are linearly indépendant ; 

2<ct.,a.> 2<a.,a.> 
U > -<ïh5> = - " ' - ^ V = - C O n . c c X X ) ) ; - (1) 

iii) E is not decomposable into two mutually orthogonal subsets. 

Consequently 

t'2«x.,a > ] 2 

<a.,a.>«x ,c> ~ 4 c o s 6 = m c * 4 C2) 

and for m = 1 one only gets : 

c = 0, (9 = 90°) ; c = 1, (6 = 120°) ; c = 2, (6 = 135°) ; c = 3, (6 = 150°) ; 

0 line (i.e. no 1 line 2 lines 3 lines 
connection) 

fe = 0 a. = a. 
c = 4, \ 1 

6 = ir a. = - a. . (3) 
1 J i 
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Also 
2<a. ,a.> 

* J 
<a.,a.> <a.,a.> 
1_J = 1 L_ = C (A} 

2<a.,a.> <a.,a.> ^ J 

<a. ,a.> i 1 
i.e. the roots have only two possible lengths. 
Hence t cX 

— r - if a.,a. are con-
<a a.> = <a.,a.> = cX, <a.,a.> = « nected roots ; 

0̂ if a. ,a. are not i 3 connected roots. 

2 
Normalizing a. such X = — yields the following relations : 

-1 if a.,a. are connected 
> 2 1 J <a.,a.> = X = - , <a.,a.> = 2, <a.,a.> = \ roots 

J J 1 1 J (5-b) 0̂ if a.,a. are not con-i J nected roots 

§2. To every given irreducible representation (denoted I.R.) corresponds 
a unique vector L (in the idempotent P) called the highest weight vector 
(denoted h.w.v.) of the given I.R. From this h.w.v. L all the properties 
of the I.R. can be deduced ; 
for instance the H. Weyl formula giving the dimension N is well known : 

N = n SgffiL = n r f £ + 1 1 ( 6 ) 

E + being the subset of positive root and 

R = \ I P . (7) 
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From the h.w.v. L , a set of N ordinary weight vectors {X ,... ,Xr,'-... ,X̂ } 

can be deduced (all distincts if there is no degeneracy) and used in turn to 

calculate matrices of the I.R. diagonal ones 

(Fy)J = ( M r ) ye Z + (8) 

and non diagonal ones 

(E0)* = ̂ V r + ̂ V s ] 2 w h e r e (Ea?l * 0 i f Xs = Xr + a ( 9 ) 

using (E_a)^ = - (Ea)J . (10) 

II. Calculation of the highest weight vector. 

Having emphisized the importance of the h.w.v., it seems natural 

to calculate its expression for each of the two type of I.R. given by the 

following Dynkin diagrams : 

% 
ml m2 m£ | V l 
o o o—6—o o o (Type I) 

1 2 p ¿-2 ¿-1 

m m^ 
o o o*.?..,o o o o (Type II) 

1 2 z z«J. £-1 % 

where 
2<L,ot.> 

mi = toi = < a a> (m- € X > 0 ; i = 1,2,...,£-!,£) (11) 
i* i 

% 
Writing L = \ â â  and using (5) we get the â sas solution of a system 

k~* 1 

of £ linear equations : 

2 r 

m. = La. ,<a. ,,a.> + a.<a.,a.> + a. ,<a. ,,a.> 
I <ai,ai> l-l l-l* I I i* I l+l l+l' i 

% V I ip 

the last term occuring only for diagrams of type (I) when i = p. 

(12) 
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The system (12) has been solved for each of the two types of diagrams (I) 

and (II). The corresponding results are given in tables I and II for diagrams 
1 £ i 

(I) and (II) respectively. If one writes a =T J £,m. > then one gets 
a i=l K 1 

two different expressions of A according to the type of diagram, say 
A for (I) and A for (II). These expressions will be analyzed in §3 to p z 
give the reason for the limitation of the number of simple Lie algebras. As 
a consequence of Chevalley's theorem the classification of Dynkin diagram is 
equivalent to that of simple algebraic groups over algebraically closed 
fields of zero characteristic. 

Table I : for Type I (algebras W£ p c = : 1) 
A p E A = p 2 + (2 - p)£ 6 = £ - p - 2 A + p6 = 2(£ - p) 
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Table II : for Type II (algebras W ¿ z (J 

A ZÜ) = Ä- +1 - j + (1 - с)(£ - z) (z - j) j = i,k,z or 0. 
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III. Analysis of results. C^YUJL o^xf&*j*k<r»4. 
I .. T-U Ghr ^cU^l^ 7^) C i / ^jCf \ # 

* 1 ' 1 i As the h.w.v. has been written L - V a, a. vxJh. av 2 7 I £vm-
k=l K K i=l 1 

we must have A * 0 and A > 0 . 

In the case of diagrams of Type I i.e. of ^ ^ we have 
A = Ap = p 2 +(2 - p)A = A + 1 +(p - l)(p -A + l) > 0 

p = A - 1 (or 1) A = A n > 0 for all A 
p = 2 A = p 2 = 4 > 0 for all A 
p = 3 (*/-3) A = 9 - A >0 f or A = 6,7,8 E6>V E8 
p big A ~ p(p - A) > 0 for p > A nonsense. 

In the case of diagrams of Type II i.e. of ^^zc
 w e have 

A = A = A + 1 +(1 - c) (A - z)z z 
c = 1 we come .back to the* previous case where all the roots have the same 

length with a linear diagram (A = p - 1) i.e. to 
c = 2 A = A + \ - (A - z)z = 2 +(z - 1) (z - A + 1} > 0 

z = A - 1 A = 2 > 0 for all A 
z = 1 A = 2 > 0 for all A C% 

z = 2 A=5-Jl > 0 for A = 4 F. 
4 

c = 3 A = A + 1 - 2z(A - z) 
z = 1 A = 3 - A > 0 for A = 2 G2 

c > 1 z big A ~ z(z - A) > 0 for z > A nonsense. 
When it is written for instance 9 - A > 0 , of course one can take 
A = 5 (or 4) which gives (or Â ) already seen ; similarly for 5 - A > 0 

A = 3 gives already seen. 
As all other diagrams lead to a null h.w.v.; one is left with the only 9 s.i.a. 
already known and wid&ly used by physicists; 
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r*0 no 

TCT. 2. Power of weight vector. (Freudenthal and Jacobson use equivalently 
the word 'level1).By definition the power <f(rU) of weight vector <i^^4°^ i s 

: f >i • ^ (Hi) 

U . 2.|. Power of the h.w.v.. 
The power (T(L) of the h.w.v. Lz,£ji^^is • 

S(l) z£*A*± L*2 ri ^jr-Lk- fi) M 
Let us write £-%jzf\So that in general 

For WD the calculation of /"(L) implies three steps (and of course 4r A>) <t>t~ 1 r 

Hence we get for the power of the h.w.v. of Wp algebras: 

Specializing p to £-l,£;3 we get A4, (hence J(L )) for , , (/=6,7,8) 
respectively; the results are given in Table III. 
It is remarkable that due to the symmetry in i and k of Table I the h.w.v, R 
of the I.R. given by the Dynkin diagram for which m̂  = 1 for all i = 1,2,,,.,.^ 
will have the same coefficients as <f(kp) i.e.* 

It will be seen later IV.2.2. Theorem I) that R is also the half sum 
of the positive roots. 
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For W^zc the calculation of /(L) implies only two steps (and of course A = ̂ z) 
z-| 

Hence we get for the power of the h.w.v. of algebras: 
ẑc 

Due to the properties of Table II the h.w.v. R of the I.R. given by the 
Dynkin diagram for which = 1 for all i = 1,2,...,£ will be: 

The connection of R and <f(L ) is so established; that R IS the half 
z 

sum of the positive roots will be seen in theorem I as before. 
The formulas obtained for A 6 from W, as well as from W* 

< /ZCr| <PC = I 
are evidently the same for p s z - ̂-l . 
Now for c:2 we get the Â 's for when 7,:f-j , for when z = | , for F̂ when z -2; 

for c-3 we get the Ac,s for when zr I and /: 2, 
The results are given in Table IV, 

It is worth while writing the formulas for -/=2 and z;| considering the 
frequent use of algebras of order 2. In that case, we get A z - 4-cf 

and Table II gives fl-2, - • ; ^=c* ^ = : 2 ; 

hence for the h.w.v,: 

and its power 

which checks with Table IV. 
These formulas can be used for (c s I} J(L2 ̂  ) ~ *&, * ) , 

for B2 or for C 2 (c = V^C^^-**!*^, 
and for G2 (c=3,5(L2 3) - 5^t3v^ . 
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The most important fact which comes out from Tables III 6 IV is that <f(L) 
is either integer or half integer so that 2$(L)-hi^T is always an integer 
either odd or even respectively. As we shall see below T is the number of 
layers of the weight system constituted by all the weight vectors; the dimension 
N of the representation is equal to the cardinal of the set of weight vectors 
denoted by {w.v.J - p j - L , / ^ , , A ^ J • 

Ordinary weight vectors are obtained by subtracting simple roots one by one 
from the h.w.v. L subject to rule (I): 
If c<̂ is a simple root and ̂ 6{w.v,j then A * - / ^ - ^ £ |w. v. j -

if and only if the integer Q(X 4 )^) determined by the two conditions 

is such that 

One can define the vector Sz 21 i oil fi?) 
J"1 ' 

where i£ are -I positive or nul integers such that if 

then J ^ M A i W ^ O (29) 
i.e. the power of A a differs from the power of A, -L by the integer 

4 13») 

which is the number of simple roots subtracted from A. to give /\ . 

In others words for any /̂ fr̂ w.v.̂  J(L) and ^(A^) are either both integers 

or both half integers so that for a given representation all the powers 

of the weight system are of the same nature (corresponding to Wigner's 

integer or half integer representations ). 
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Now equation (30) might have many independent solutions, say q^ solutions 
satisfying conditions (26 a,b); in that case the q ordinary weight vectors 

r 
(in brief o.w.v.) X f^, , X ^ form the r-th layer of o.w.v. all with the 
same power 6 (X,) — (r- | ) . 

The r-th layer is said to be power degenerate of order q^ , 

In particular for the first layer corresponding to the uniqe h.w.v. X, r L 

one has r =I ,S. q tI and the first layer is never degenerate. 

If 6 (Xt ) is an integer, after (m̂ -l) subtracting steps such that 

we have a m^-th layer of w.v. with power equal to zero; here m^r 6 (X| ) + I • 

If 6( Xf) is an half integer, after (mi-1) subtracting steps such that 

we have a mi-th layer of w.v. with power equal to \ ; here r <5( X.) 4- -1- • 
2 2 £ 

In both cases due to the symmetry of the process the total number T of layers 

(called the height of the w.v. system) is then 
T ^ Z S(A>) + I . 

As we shall see the power degeneracy cannot diminish as the number of 

subtracting steps grows (up to m-l steps) and consequently the degeneracy is 

maximum either for the m -th layer if /(Ai) is integer, say q 
0 

or for the m^th layer if <T(<A,) is half integer, say q^ . 
5 \ 

TTiis maximum power degeneracy q^ is called the width of the w.v. system. 
So that finally we have for the dimension N of the representation 

(counting each w.v. with its multiplicity) 

if /(At) is integer N r2(q,*.. .*q.+ .. .+Q ) f q m 

if $(c<{) is half integer Ni2(q j f ...fq.f...fqm ) 
2 

(with q{ r I and qi) . 

In both cases we have Tr26(X | ) + |^N the equal sign corresponding to the case 

of no degeneracy. 
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2.b. Effective determination of o.w.v. 

The first layer being occupied by the unique h.w.v. Xi r: L 

let us look for the w.v.'s of the second layer. 

According to rule (I) since Xi £ {w.v.} 

Xi+cu^w.v.} 

we have QCXi.cu) ~ 0 for ir I, 2,..., i , 
As 2^ 1* at) . ~jn for Xi-a. to be a w.v. we have the condition 

- i £ ^ i > + Q H l, 0.) m. > 0 (51) 

If there are q2 values of m. ̂  0;we obtain a second layer of q2 different 

w.v. X 2 - {X2, ,X27 with the same power 6 (X2) r 6 (Xi)-l. 
{*) 

Similarly the w.v. of the third layer are obtained by determining first Q(X2>ctj): 

Xzra^ Xha^fajCfw.v.} if and only if ĉ rĉ  

X2+-2a .r X i-a^ a jt a. ̂ { w. v.} 
(I) (2 so that QCX2:,ct.) = 6. . and the condition for X? - a. to be a w.v. is 

2(x2>oc.) ^ 2(Xi-a.,a.) 
—? h + Q(X2,a.)r: — L f 6 . .>0 

2(a.,ct.) 
r m. , 1 'J • +6. .>0 

If ĵ i we get; mi>l; (32) 
so that for nu ̂ 2 , Xi-2ou is a w.v. of power 6(Xi)-2. 

If ĵ i we get; in the case where 0 ^ and ou are not connected 

m.>0, . (33,a) 

in the case where cu and ou are connected i.e. jsi±l #^(a^,aj)::-l-
and the condition 

mj + £ T 4 T ? > 0 ( 3 3 ' B ) 

is fulfilled even if m.r 0; then X2-a.=.Xx-a.-a. with ji-j|rl is a w.v. of 
J J it*) power 6(Xi)-2. So that with each w.v. of the second layer A^ w e g e t at least 

one w« v> of the third layer. 
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To study the r-th layer let us write now a w.v. of the r-l-th layer as 

t - A, - S»} (34) 
where S^)

1=Zir^0(j (35) 
with /(S^) ar-2 and M £ } ) = M|)-rt2; 
(all i ̂  are positive or nul integers; j = 1, 2, »^). 

For ~-^r-l" ̂  s t o ^ e a "^S* 1* v e c t ° r of the r-th layer we determine Q G ^ j ^ 

A ^ )

1 + ( Q f D ^ s j : W.V. 

So that Q cX.i r ]_<fj s
 a n (* condition for — ^ to be a w.v. is 

"' 2 ^ ! U ) | . o . n A , - s < , i > , . g t n , n 

If s^j and Js-jJ ̂  2 for all jfs such that ilfc °* t h a t * s t 0 s ay if 
is none of the tfj involved in and if ̂  is not connected with any one 
of them, then rule (I) gives 

If s^j and fe( is connected with at least one of the #.fs involved.in 
' J s j r-1 

then for that value of J ^C^j* 0^) - -1» r u l e C 1 ) i s fulfilled even if ^ - 0 . 
(Notice that this conclusion remains true if <*s is connected with two ^ ' s , 
or exceptionally three ̂ ! s in or in ). 
If tfg-'Kj if o(s is a particular oi^ then rule (I) gives 

mj " i r - l > ° i # C- " j ^ r - l * 1 ( 3 7 ) 

In particular among the solutions of equation (30) applied to the 
(r-l)-th layer there is the maximal one - 2 (with i ^ ^ 0 for all other j's) 
and correspondingly A 4- (r-l)«s will be a w.v. of the r-th layer with power 

J (A )=/(^}-r+l if m *r-l. r b ^ 
The conditions m^l for the second layer, m

s>,2 for the third layer, etc... 
m >r-l for the r-th layer become obvious in terras of Young diagrams; s' 
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also we can see that power degeneracy cannot diminish as the number of 

subtracting steps grows as stated previously. 

Due to the action of the Weyl group the w.v. system takes a spindle shape. 

Within a given layer |X r|
 a certain w.v. M can occur more than once as 

soon as r 3; indeed we have: 

M - ^ = v / H

i J r y * S i - v ----- ™ 

For example the w.v. system of the representation 6 d) of is: 

(w.V.Jr [ot^ ; erf, , ; 0 , 0 J - , - ; "(o<,t^)J (39) 

and the nul w.v. of the third layer is obtained in two ways from the second one. 

layer; so that the nul w.v. is degenerate and its multiplicity is two. 

In general if M appear n^ times then M is said to be degenerate and n^ 

is its multiplicity (or the dimension of the corresponding degenerate subspace 

of the w.v. space); it means that each w.v. such as M has to be counted n^ 

times to maintain the fact that the dimension N of the representation-space 

is equal to the total number of w.v.. 

Ho] 

Freudenthal's recursion formula gives the multiplicity of M as 

[(LtR,L + R) - (M * R,M + R)J n^ - 2^X(M f k^.^i^^^ (40) 

where R as for the Weylfs formula is given by equation(7). 

To calculate.dimensions of representatios by Weyl's formula (eq.6) one-does 

not need L + R but R. As roots and weights are dual forms ̂  
with respect to the fundamental Killing quadratic; form of the algebra 

the power /(L) of the h.w.v. in the weight space corresponds to R in the root-space 

* A1 1 i 

Theorem I: <£( L) zJC— m. and R z ¿21 p are dual elements. 

The ordering of the roots is important for the use of this theorem; 

for W£pi the order is given with Table V; for w ^ z c

 o n e has to interchange nu 

and ^ (B̂ and Cg &lSQ. as being dual'too). With these precautions R can 

be built up out of Tables III and HT for and ^ Z Q 
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Let us give two examples easy to check in no time. 
For G 2 Table IV gives S(h{G^ Sm^ 3m2 (41,a) 

then Theorem I: R( G2^~ 3 * i + 5 S ( 4 1» b) 

For F 4 Table IV gives ^L(F4)Jr lln̂ -h 21m2 + 15m 3+8m 4 (41,C) 

then Theorem I: R(F4) - 80^ +-15 2̂ + 21^ llo^. (41,tf) 

I £ 
Now that we have L- 21 a ^ (Tables I $ II) and ^-X- (Tables III % IV) 

using universally adopted Racah's notations ' ̂  it is easy to build Kr LfR 
2 

and consequently K which is involved in Freudenthal Is formula as well as 
2 2 

in the second order Casimir operator whose eigenvalues are K -R = L(L + 2R) 
for the representation defined by a given Dynkin diagram. 

Using eq.5 and properties of the Cartan matrix involved in eq.12 we obtain 
t I 

^zK 2-R 2z Z. (akt 2b k)ni k^k^ (hi) 

given in Table V for ""̂  ̂  a n c l i n Table VI for w^ z c» (The trivial exercise of 
specialization to particular values of p,z,and c is left to the reader). 

The width of the weight diagram can be deduced easily now from Freudenthal1s 
formula. We have seen that this width is the degeneracy n^ of the null weight 
vector when ${L) is integer and n, of the w.v. M =k« when £(L) is half integer. 

In the first case we get: 
CO 

(K 2-R 2)n o.2ZI(k r > r)n. frO,*) 

and in the second case: 
F(K 2-R 2-£(^^-2]n i i i f 2 Z l E ( ^ k K > f 0 n l y t ^o,l) 

where y is a positive root and £DC+ must be a weight. 

In the appendix examples of application of these formula are given. 
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Table V : Eigenvalues of Casimir operator for ^ 

1 fP-l ̂  P-' *"* 
- J J z {Z (A + k6)im. + Z (A +i6)km. + Z 2k(£-i)m. + k(£-p)m, 

z " 7^,<>-i P 1 i**H P 1 i-=? 1 1 

P 

+ k[2(«+i)(e-p) + (p-k)Apj ^ 

+ Z {Z(£-k)2im. + Z p + (2-p)i (e-k)m. 

¿-1 2 

+ Z p + (2-p)k (£-i)m. + (£-k)pm 

+ («-k)[2(*+l)p + (k-p)Apj}mk 

+ {Z^-pJinK + Z p(«-i)mi + ̂  + ¿12(4+1) - Ap|>ra

eV • 

Ordering of the roots for W j 

For as the coefficients of /(L) are symmetric in i and the interchange 

has no effect and it is just as well to not do it. (see ref. [isj p.27). 

For D£ from an orthonormal basis ̂ e^ of R̂ all roots aeft defined as !£e^jr e.. (i^j) 

As we notice that Table III gives the same coefficient for i=.l and for i - -£ 

we define the simple roots in the following order: 

" l S * s W l ' • * • ' '*>-l= V 6 2 * 

• i " e^-i*"ei* 

For Ê  from an orthonormal basis £ej of |R all roots are defined as te. + e. (î j) 

and the vectors liT(-l) Je., with Im(i) ; even; we define the simple roots as: 

% ~ V e 2 = S 

^ U e ^ e g - Z ^ e . ) , ^ z e ^ , V W ^ ^ - e ^ , *£-f V l ~ V 2 ' 

With the above ordering. of the simple roots of W„ ,. if using Table III 

we write J(L)-21b,m then we get simply R r \ £, U - b,*, » w i t h \ - — • 
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fable VI : Eigenvalues of Casimir operator for W. 
v zc 

0 l (z U ' I r 7 

— iA7(k)m.+ 2 kAfi)m + 2 k(*+l-i)m.+ k }(*-k-z)A + (M)(z+1) k 

*-« ^ £ r £ f ~ 
+ {2 ic(e+l-k)rai + 2 (£+l-k)l i+(l-c)z (i-z-l)J m i + 2 (£+l-i]k+(i-c)z(k-z-l)Jn 

+ kp-k-z )A z + (l+l)(z+l)jlak- -2- ' 

+. X , {2 ic(£+l-k)ra. + 2 (e+l-k) i+(l-c)z(i-z-l)lmi 

4*1-2*1*''' 1 c"z 1 

+ 2 (̂ +l-i)|̂ k+(l-c)z(k-z-l)Jmi 

(z-e+k)Az + c(i+i)(i-z)jkk- • • I • 

(The order of the roots is as given in reference 15 chap.V pages 22-£9) • 

Of course the use of Tables V § V I can be avoided if one use the second form 

of equation (42)that we write again 

£ r I< L+2R) - £ a (m +2) (JL_*) (42) 
l£=i K K 2 

where only the coefficients of the h.w.v. Lgiven in Tables I § II are involved. 

Anyway the ordering of the roots is still necessary to go from to R. 
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IV»ZM.0n Weyl's formula and dimensions of I.R. of semi simple Lie algebras. 

fl 11] 
Weyl's formula ' ^ give the dimension N of an I.R. as 

This formula implies the knowledge of L and of all the positive roots jJf 

( R -yZ-V being deduced either directly from the (J!s or from J*(L) ). 

What follows shows that the knowledge of the positive roots is enough. 

As ̂  = 2 T ^ i ) using eq.(ll) we have: 

d,p) - ZL\>\ - ^ i i • 

As R = J-L p is also the highest weight of the I.R. corresponding to the 

Dynkin diagram such that all m.=1 (i=1,2,.......9t) we have: 

Jt 1 , 
(R,p) = ^ ^ - f o . p ) 

i=1 Z 1 

where J(L,^) is the power (i.e. the sum of the n̂ 's coefficients) of (L,̂ >). 

Formula (4.3) becomes: /- £ s 

N = ir y 2 + 1 (a) 

i=1 2 
k ) 

For W^ p 1 for which (Qi

it°'i)Af 1 we get: 

H(W.D1)= IT
 z-,ir 1 + 1 (U,a) 

£ i -L i 
where Z. u m. is obtained from t»= 2-M by interchanging <*\ and m. 

i=1 > ±

 f i=V 1 1 1 

and = ¿2 U is the power of the positive root L>. 
i=1 ' 

For \J» using previous notations we have: 
Y~ y m. + 2__ U _m. 

i=V i=z+1 ° 



- 231 -

The number of positive roots p of a given Lie algebra being called n 
2n ' p 

the Ooxeter index h is then h us ~^ and the maximum power Mfm) of the 
positive root6is Hym) = h-1. 
When exjlliciting (44fa) and (44,b) it is useful to give the factors of N 
in increasing order of / (f/) with 

1$ J ( P ) $ S(pn) = h - 1 
where <f(p>) = 1 corresponds to simple roots. 

It follows from eq#(44) that to write the dimension of the I.R. of a 
given Lie algebra corresponding to a Dynkin diagram (or t>p a Young diagram ) 
only the positive roots of that algebra are needed. The families of positive 
roots are build up out of an orthonormal basis jê j of a vector space E 
according to Tables VII and VIII for «. and W^ z c respectively. 
The dimensions are then deduced according to the above method and given 
in Tables IX and X for ^ and respectively. 

(^«Jr<U**+ 4^- At, Be> Cty 
At that stage it is useful to establishYthe connection between Young 

and Dynkin diagrams. For Young diagrams (as oppose to Dynkin diagrams ) 
one has to say in which Lie algebra they have to be considered. Then if A i 

is the length of the i-th line one has • 
mi = ^i " ^ f o r 1 = 1> 2>* # #> ̂  i 

however for (algebra of S0(2(?+1)) one has 
mi = ^i " ^ f o r 1 = 1 * 2 * ) 3131(1 m( = 2H J 

for Cg (algebra of Sp(2g)) one has 
mi = /V+1-i "^i+2-i ^ f o r 1 - 2 f * ^ ) a n d mi = V 

These precautions been taken, Tables IX and X can be used for instance 
to help the reduction of the I.R. of a group w.r.t.jiS invariant subgroups 
as for the decomposition of SU(n) into representations of S0(3) and the 
studies of the chain- SU(2fM ) D S0(2^+1) o S0(3) for I integer 

and of the chain SU(2j+1) O Sp(2j+1) oS0(3) for j half-integer 
which are the root of the senority concept so widely used by physicists 

(cf. M. Hamermesh^^^hapter 11). 



Table VII. Families of positive roots for W. 1 algebras. 
- 
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Table VIII. Families of positive roots for algebras. 

- 
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-
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Table DC. Dimensions of I.R. of W. ̂  algebras0 
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Table X. Dimensions of I.R. of W. algebras. 
c z c 
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An I.R. is called basic if all components of the h.w.v. are zero 
except one m. = £. . for j = 1,2,...,i,...,£ ; such a representation is i if J 
denoted (Ŵ )£& and its dimension N(Wg)#^ is obtained by doing = ^ j 
in Tables IX (for J and X (for W„ ). The results listed inxTables XI and XII 
have already been obtained r by a recursive method; they cannot be used to 
compute the dimension of any general I.R. since the dimension- formulas 
are very far from been linear in the nu !s;they are only an example as well as 
a test of Tables IX and X. 

The basic I.R. of smallest dimension will be called the elementary I.R. 
as it corresponds to the dimension of the smallest vector space of representation 
and according to our coherent notation (cf.section III, Type I and II) 
corresponds to a terminal simple root i.e. i = 1, £ , or/-1, this last value 
been specialy valid for and for Eg ( =6.7,8). 

A representation of particular interest is also the one whose dimension 
is equal to the number r of parameters of the associated group; such a 
representation will be called the regularTrepresentation and denoted R.R.;we have 

P = 2np+t= ^|ip+l) = J(h+1) + 2). 
In general the regularY representation is a basic one except for the cases of 

Â  for which the R.R. is the I.R. = m^ = 1, = 0 for i = 2,3,•••.^-1; 
for which the R.R. is the following reducible representation: 

R.R.(Cg) = (ty)^© (Cefy®(Gt)<B0 

where (C^^is the scalar identity representation for which all m^ = 0. 
As for ̂ one has n p = (Mft-1) + (t'S)\§(?-T) f'] + 

which is not a simple function of £ to handle all the basic representations 
are computed directly using Tables IX and X. 
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The process of alternation. 
Starting from the representation space of the elementary I»R. of dimension 
say n for , , we can represent the Dynkin diagram given by m^ = 1, 

= 0 for i » 2 , 3 i » « « « i by a Young diagram consisting of a single box. 
Then the Young diagram corresponding to the Dynkin diagram given by 
m, = cT ̂  is a column of i boxes i.e. a skew-symmetric tensor of rank i 
in E^and the number of linearly indépendant components of that tensor 
is equal to (̂ j ; consequently the dimension of the I.R. given by the 
Dynkin diagram of the basic representation m% = ̂  is also ^ ̂ j 
as a direct calculation using Tables IX and X yields (see Tables XI and XII). 
To make the above reasoning obvious for a relabeling of the roots 
interchanging i and t -i has been used so that becomes [^l]9 

The alternation process applied to E f E f E , C., F , G yields reducible 
6 J o i h Z 

representations (except for few cases of E^). In the following tables 
whenever possible Dynkin diagrams have been displayed whith the dimension 
of the basic representation written below the corresponding simple root; 
possible reduction of the alternation process have also been expanded. 
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TableÜ3» Dimensions of particular representations of 

_ . z * j-j j P 
A f О О О - О О TU.U.^Wife' 

¿ i ¿ — о о _ о 

Dp i^tJ&í e0i*-i 

о о о — о О 

ft* ( i t e if) й г 7 . г а . 

^6 Гвч ̂  cu Дл. j G'.i) 
1 . 2 - 3 л 5* ^ tr«kk~Y^tubiti 
°¡ ft 3 " "ft ?, 6 , 4 ¿< * ^ ~ ¿ 

Hp4'u. ti,, ̂î wuíuj. ̂  £¿, 

i i 3 4 5" 6 
O 0 O O O O 

7-13 *.|3-r *М5*.1 * | 3 ' # 13-3* 

^ s i t e n s c¿j=3«tf«n-icuwü) 

I 2. 3 « 5" ¿ * 
O 0 — — o - ¿ o — i — o o o 

55.31 *(*3-$)3 лфьирзям ьзцнз)»з-9о selbig *r-tx ffioi 
тт i(â6 по бгзэ.д&щ plinto игом зозго | г ^ - ^ -
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Table XII. Dimensions•of particular representations of Wff . 



- 240 -

jy. 3,iConstruction of the representation matrices of s.s.L.a. 
I7.3.Sy«piagonal matrices. 
To each weight vector = *jrj corresponds a unique vector 

in the representation space such thatf*~lrJ 

H v C l )z (y,X^)v ( l ) (43,a) ^ y r - V H >
 r

 J r \ 
with y=ily ka k OL P"̂  tTZ*) . (43,b) 

Hence < V m » O i , * ! " ) ^ / ^ ^ ) (44) 
and (H ) r ' * is known when the (H ) r ' * = (ou ,X̂ 1**) ,k r 1, >l are known. 

y r,i v r,i v K' r * 
Due to the symmetry of the weight vector system it suffices to write down 
its positive part only i.e. the 6(Xj) first layers if 6(Xi) is an integer 
(as the following one gives the degeneracy of the nul w.v.).or the 6(Xi)+l-
first layers if 6(Xi) is an half integer. The complete matrix of order N 
can then be filled up with the opposite numbers (to get a.zero trace matrix 
as expected̂ , 
From equation (34), using (5,b) and (11) we get first 

CS^,a k)=4r - 4 " ' " ir" 1] S
j,k ; t 4 S ) 

hence for Wfi with z + l<k<:£: 

(H ) r , i z — - (—r - i k - 1 - i k + 1)J (46) v ak^r,i c k c r r J* K J 

for W^ z c with l^:k^z,or for one has to make c si in eq,(46). 
In case the w.v. M^X^; presents a degeneracy of order n^ we get just 

as many identical diagonal elements. 
A relatively general exemple of application of the formula (46) is 

given in appendix. 
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US". Non diagonal matrices. 
The relation^"} 

E =- E (47) 
allows the study of E for y being only a positive root. 

M 
As £ ^ 5 ^ ^ * ( v

s
, Vr € EN^ W e h a v e X r r ^ s t y 6^ w- v-^ 

and the non mil elements (E are such that ^g^^J (48,a) 
i.e. are situated in the lower half of the matrix (E ) and connect w.v. 

V 
of layers whose power differ by 6(y); in other words r: s-6(y). (48,b) 
(Of course if y is a simple root 6 (y) z 1 and r:s-l). 

The proof of (48,a) is well known; for any other positive root v 
the commutation relation; 

[H V,E y]r (v,y)EY (48,c) 

yields 

(H J R ( E ) R - (E ) R(H ) S -(v,y)(E ) R 

or (v,Xr - X c - y)(E)[ = 0 

r 5 y S 
hence (48,a). 

If there is no degeneracy of the w.v. system one has: 
Indeed the commutation relation: 

[E ,E In H (49,b) 
yields 

(E )!(E ) T - (E ) S(E ) R - (H ) S (49,c) \xJtK -y's v -y^rv \iJs - v y's v ' 
and using (47) we get 

hence (49,a) which gives the elements of the non diagonal matrices in terms 

of the elements of the diagonal matrices given by formula (46). 
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Notice that (49,a) being not linear one can not expect to get (Ê ) as linear 
combination of the (E ) with a as a simple root. Each matrix has to be 
calculated for its own sake. 

From (48,b) we see that r z s - 6(y) - (t - 6 (y) ) ~ 6 (y) ; 
so the calculation starts from Xgr: - Xi (the lowest w.v.) which yields X^- 0 
i.e. (E ) S

t - 0; then (E )* x ± ) s is known from: section 3.a eq. (46) 
and the procedure is carried over by ascending along a prallel to the 
diagonal as 6(y) is fixed. 

The commutation relation 

[E
y,E

vJ - N ^ v E ^ + v ; y,v,y+V €{positive roots} (50) 
is used to obtain some coherence in signs. 

If there is a degeneracy of the w.v. system i.e. if in the same layer 
a certain w.v. M occurs with the multiplicity n w then the terms of the 

M 

left hand side of equation (49,c) would be summed over the repeated indices t 

and r respectively. 

Furthermore as we have now n^ values 0^) s which are identical 
(for s — l,2,...,n ) the number of independent equations is no more sufficient 
to determine all the ̂matrix elements; the last commutation relation(eq.50) 
is then a useful complement. One can also choose arbitrarily the values of 
the relevant matrix elements of one of the operators which is tantamount 
to choosing arbitrarily a basis in the degenerate subspace (of the w.v. system) 

of dimension n^;but the values so obtained will depend on this choice. 

Degeneracy:is often met and complicates apparently simple problems 

as for instance the study l J 0f the chain G^Z>A^. 
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, Conclusions: The following results have been obtained in three steps: 

1. In contrast to the point of view recently discussed in [16,17] consisting 
in breaking a given algebra into subalgebras we have considered here the 
building of two classes of algebras out of known algebras^ 

This classification is based on equation (I) and on Chevalley's theorem^''^ 
stating that the classification of Dynkin diagrams is equivalent to that 
of simple algebraic groups over closed fields of characteristic zero. 

2. A study of the w.v. system has been performed using the results 
of Tables I § II of the first part. For the highest weight vector L 
we have calculated its power <T(L) and shown for Wft (Table III) as well as 

9 <pc=l 
for W. (Table IV)^ that cT(L) is either integer or half integer in agreement wit] 
the fact that 2cf(L)+I=T is the integral number of layers (or shells) of the 
w.v. system whether this system is degenerate or not. 
In case of degeneracy of a particular weight vector M the Freudenthal !s 
recursion formula gives the multiplicity n^ of M. In that formula as in 
Weyl's formula (eq.6) comes in the form R-i£pwhich can be deduced from 
Tables 111&1V according to Theorem 1; hence the eigen values of the Casimir 
operator^given in Tables V§V]) and width of weight diagrams are deduced. 

3. The results obtained above have been used to build up the matrices 
of zero trace (diagonal and non diagonal) representations for the two classes 
of algebras. 

In appendix two examples are briefly studied to illustrate this.paper. 
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APPEND DC 
Example ]. . 0-----8 

m l m2 

h~\~T^r{(-2ml + m2 ) 0 < l + ( c m l + 2 m2 ) 0 /2 } ' 

^ ( V = ~ 4 b t C 2 + C ) m l + 5m2}> R = ~4 ^ { 3 t < l + (2+c)*2j; 

gz. LC L +• 2R) = - 4T^(2m i +- 6)m, + ((cm, +• 2mJ +- 2(2tc))~| 

1 ^ PI *f* 2 ̂  
4-c [ C j 

According to section 2.b. we can write: 
for the second layer: 

*i "* a
1fe{ w- v*| if a n d only if m^^l. 

A ^ - A j - a26{w,v.} if and only if m 2 ^1. 

If m 2 m 2 ^ ° t h e n ^1 a n d ^ e t w # v ' } w i t h t h e s a m e power <$( ̂ ) n (S(ĵ ) - 1. 
If m i r: 0 (i,j-l,2) then ^ e{w.v.} but X^ ̂  w.v. (jjfci). 

for the third layer: 

X^r X(2 " ai = î " 2 ai ^{w-v*j i f a n d o n l y i f m i ^ 2 -

3̂ - ^2 " a2 ~ *1 " al " a2 W # V # e V e n i f m 2 ~ ° 
X ? " a2 z Xl " 2 a2 €{ w- v-} i f a n d o n l y i f m2-> 2 

As £ - 2, there are no disconnected roots and the third layer contain at least 
the degenerated w.v.{X^- X̂ }and at most the 4 above w.v. with the 
same power 6(X3) — fiCXj) - 2. 
Particular cases can be considered: 
for c - 1. take m^- 0, ^ 1 

or m, - 1, m - 0 1 2 
or m^ - 1, m^ -1 corresponding to the Young diagram of SU(3) 

with 6(X2) - 2 and{ w.vj z * {ĉ  + ĉ , , , 0 , 0 , , -c^ , - a
2-°i* 

so that the dimension of the representation is 8 as forseen by Weyl's formula (& £̂  
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r m2 ) for c = 2,. L and R are obvious and L(L 2R) r I j C2"1-^ m
2 " < " 6 ) m

1 + 2m2+8)y— J- • 
for c =3, Weyl's formula (6) gives using (41,b) for the dimension N 

N(G2) ( V l ) Cm^DfJV^flj l^p± + lj (iSjtSU^ ̂ ± 2 b u f ,j , (V*v) 

According to section 3.a. and summarizing what we know from before we have: 

{w.v.} = { X^; - ctj, X.̂  - a 2; X^ •- otj - a 9, Xj - a 2 - ctj, X-̂  - 2^, Xj - 2a2;..-3 

* k 

If y is a positive root such that y - OL we get "for this example 
1 2 H - y H + yzH 

V «1 «2 
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•m, i~it -m-
Example II: Representations of C_-algebra of group Sp(6): o » a-

Using Table 11 we get: 

^j-I^ _rl(3m1+2m2+m_)o<1 + (2m1+2m2-Hn_)a'2 4- (m],+ m24-m_)c/_ • 

^1- _ (9m^ 8m2+-5m-) ; 3m1f5m2f3m_ 

R(C_) _ 30^5^-1-30^; 

m +2 m t2 
5 - lC3m1<-2m2+m_) Cmx+2) + (2m +2m+m ) (——) + (mj+m^m.) (——) 

Dimension: N (C3) - (_.-• 1) (m^l) flyl) fo^j.) fi^+j) 
/m.+ m tm " /2m +m0+m7 4/2m-+2m0tm7 v ^ 6 , ( V 

w - * » i i - v - ^ ' j (,-L-s2-,+') • 
Second layer: conditions for $f to be a weight vector: 

- " a_ ' a n c J on-Ly ^ mi ^ ^ o r * ' 1,2,3. 

6(X7) = 6(X,) - 1 
third layer; conditions for the following vectors to be w.v. provided X 2 6{w.v.} 

^3~^2 " a l = Xl " 2 al i f a n d ° n l y i f ml & 2 

X T = X T ~ a2 ' Xl " al " a2 e V C n i f m2 r ° 
^Z~^2 " a 3 r Xl ~ al " a 3 i f a n d ° n l y i f m 3 £ 1 

X^ - d = Xj - « 2 - a 1 = X^ even if = 0 

X ? " X ? " a 2 ~ Xl " 2 a 2 i f a n d ° n l y i f m2 £ 2 

X < ? ~ X 2 > _ a 3 " Xl " a 2 " a 3 6 V e n i £ m 3 ~ ° 

X ^ X ^ - a 1 = X x - a 3 - s X^ if and only if m][ ̂  1 

X ? " X T " a 2 = Xl " a 3 " a 2 r X ? G V e n i f m2 r ° 
x ? " x ? " a 3 = xi " 2 a 3 i f a n d o n l y i £ m 3 ^ 2 

All with power 6 (X3) = 6(Xj) - 2. 
Suppose m = m 2 r; 0, m 3 = 1; then 6^) =5/2 and we are left with the non 

degenerate w.v. system: 

(w.v.) r {lax + a2 + a 3; Ic^ f a 2; -h^ -lo^ - « 2
; "^al " a2 " a 3 J 

so that the dimension of the corresponding representation is 6, as 

forseen by Wcyl 's formula (6,C3). 
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