
Recherche Coopérative sur
Programme no 25

C. BECCHI

A. ROUET

R. STORA
Renormalization of the Abelian Higgs-Kibble Model
Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1975, tome 22
« Exposés de : H. Araki, H.J. Borchers, J.P. Ferrier, P. Krée, J.F. Pommaret, D. Ruelle, R.
Stora et A. Voros », , exp. no 9, p. 1-53
<http://www.numdam.org/item?id=RCP25_1975__22__A9_0>

© Université Louis Pasteur (Strasbourg), 1975, tous droits réservés.

L’accès aux archives de la série « Recherche Coopérative sur Programme no 25 » implique l’ac-
cord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utili-
sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RCP25_1975__22__A9_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


- 243 -

RBNORMALIZATION OF THE ABELIAN HIGGS-KIBBLE MODEL 

by 

C. BECCHI X A. ROUET n K 

R. STORA 

(Centre de Physique Théorique 
C.N.R.S. MARSEILLE ) 

I 

July 1974 
74/P.634 

x On leave of absence from the University of Genova 

xx Boursier thèse CE.A, 

POSTAL ADDRESS : Centre de Physique Théorique- C.N.R.S. 
31, chemin J. AIGU1ER 
13274 MARSEILLE CEDEX 2 (France) 

é* À* 6v6 / / * A e W in Gwvm. Hxèh- Thyz. 



- 244 -

INTRODUCTION 

The latest achievements on the renormalization of Lagrangian models 
involving gauge fields, mostly due to G. !t Hooft, B.Wa Lee, M. Veltman, 

Civ 
J. Zinn Justin v / , were primarily based on the use of a gauge invariant 
régularisation procedure, the most popular of which being the so called dimen-

(2) 
sional régularisation v 7 , The gauge structure could thus conveniently be 

(3) 
respected by fulfilling the so called Slavtior identities through the 
renormalization procedure . There resulted finite Green's functions which couid 
not however be directly given an interpretation relevant to an operator theory 
in some Fock space, were it be in a perturbative sense, because of the lack 
of the finite mass renormalizations which would have been necessary for this 
purpose. As will be seen here, an operator interpretation is quite convenient 
for any discussion involving asymptotic concepts concerning e,g the unitarity 
of the S operator, the construction of gauge invariant local operators etc 

We shall treat here the simplest model involving gauge fields in 
(4) 

which no infrared problem occurs, namely the abelian Higgs-Kibble model 
within the class of gauges advocated by G, 1 t Hooft, The algebraic complications 
which occur in the non abelian cases are deferred to later publicationse 

We shall make full use of the combinatorial knowledge of renormalized 
perturbation theory that has been acquired through the work of W. Zimmermann 
(effective Lagrangians normal products, Wilson expansions), J,H0 Lowenstein ^ 
and YMP Lam (?)(renormalized action principle), which has been successfully (&) (9N 

applied in other cases (massive quantum electrodynamics v ' , models 
abelian Higgs Kibble model in the Stueckelberg gauge v 

This well developed machinery , which relies on the locality and 
power counting properties of perturbation theory , is most effectively put to 
work by intensive use of the implicit function theorem for formal power series, 
through which, as we shall see , most symmetry aspects of the perturbation 
series can be read off on the classical Lagrangian on which the theory is basée, 
including the possible occurence of anomalies . This possibly surprising state­
ment will be widely illustrated in the present work and in reviews now in pre-

. (12) parati^on 
The main reason why such a favourable situation prevails in the present 

case is that the model is almost entirely specified by an invariance property 

1 
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(13) 

2 

"7 / . / T> C O / . 

even after the introduction of the necessary Faddeev.Popov ghosts 
Namely, at the classical level, the Lagrangian is invariant under trans-

(14) 
formations of the supergauge type , which we have called Slavnov trans­
formations, In the abelian case treated here, one has however also to 
impose the full degeneracy of the ghost masses in order to implement 
spontaneous breaking. This is a particular feature of the abelian case 
which in a sense makes things more complicated, 

Section I is thus devoted to a study of sutne crucial aspects 
of the tree approximation. The role of the invariance under Slavnov 
transformations and the particuliar expression of spontaneous breaking 
are stressed, 

In Section II the model is define d to all orders of a pertur­
bation expansion in powers of a parameter, $0 , which counts the nv#*\}d& 

of loops in Feynman diagrams. Namely, we show that both renormalized 
Slavnov identities and the normalization conditions on Green's functions 
which hold in the tree approximation can be fulfilled to all orders. The 
compactness of the proofs is due to a repeated use of the implicit func­
tion theorem for formal power series The logic of the construction 
also makes clear how anomalies, which db not occur in the present model, 
can be produced. 

In Section III, one proves the independence of the physical 
scattering operator against a change of the parameters which label the 
gauge function, by suitably generalizing the argument given by J ?H, 
Lowenstein and B, Schroer^^ in the case of massive quantum electrodynamics, 

Section IV is devoted to a direct combinatorial proof of the 
unitarity of the physical S operator. 

Several appendices are devoted to a number of technical questions: 
Appendix I deals with the structure of the Slavnov identities at the 
classical level in the non abelian case, 
AppendiK II is devoted to a brief description of the implicit function 
theorem for formal power series 
Appendices III, IV and V give some computational details which would have 
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obscured the line of argument in the body of the article. 
Appendix VI deals with the construction of some local gauge invariant 
operators of dimension smaller than or equal to four, 
Appendix VII extends the theory to quadratic gauges odd under charge 
conjugation. 

3 74/P.634 
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I - THE TREE APPK) XIMATION 

As is well known, a classical Lagrangian, , which will 

be assumed to fee of the renormalivable type, define! the tree approximation 

of a quantum Green's functional 

(1) 

where jj denotes collectively a set of sources linearly coupled to 

the field variables from which P̂, is constructed. The 

Legendre transform HCJE) of the connected Green1 s functional 2E (j) 

defined through 

(2) 

coincides with in the lowest approximation of a perturbative 

expansion in powers of ^ , and, in higher orders, generates "proper" 

Feynnaan graphs, 

Let us now consider a classical Lagrangian 

f (T 

- 1 (Ï) 
(3) 

where J, , ( T ) is invariant under local abelian gauge trans-

formations of the second kind : 

(4) 

^ is a gauge function which breaks gauge invariance, and o< 

is a numerical parameter, as they occur for instance in quantum electro-

dynamic's. Noether's theorem yields the following Ward identity: 

(5) 

4 
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where the substitution 

ce) 

has to be made, and where 

^ SAW 

(7) 

is the kernel of a field dependent differential operator of hyperbolic 

character whenever ^ is a perturbed version of the divergence of the 

gauge vector field associated with the gauge transformations under consider 

ration. We shall fr^m now on limit ourselves to this situation. 

The Ward identity (5) can conveniently be solved for ^ upon intro­

ducing scalar charged Faddeev-Popov (c|> IT) ghost fields and the cor­

responding sources into the initial Lagrangian 

(8) 

The Fermi statistics conventionally assigned to these fields while pre­

serving locality introduces new sources of indefinite metric into the 

quantum interpretation of such a system and, at the same time exhibits 

crucial properties connected with the structure of the gauge transfor­

mations, which are best observed in the non abelian case described in 

Appendili I . The new Ward identity reads : 

— (3) 
Integrating through £ yields the so-called Slavnov identity s , 

which, in the present, abelian* case, reads : 

0 à^*^ — ~ 

(10) 

where use has been made of the equations of motion for the <£>~1T fields, 

5 
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and of their anticommutativity, whereby the last term in the Ward iden­
tity (f) drops out in view of the abelianness of the gauge trtpisferma-
tionsa In the non abelian case treated in Appendix I, this last term 
contributes however in a way which is characterized in terms of the 
structure constants of the Lie algebra involved, 

The Slavnov identity can be interpreted as expressing the in­
variance of J\ under the following transformations -of the supergauge 

(14) 
type , which we shall call Slavnov transformations : 

( ID £A coo ̂  A (jfc> 

S,coo = o 

where is an infinitesimal, space time independent, gauge parameter 
of the Fermi type0 The vanishing of the variation of c is due to the 
abelian character of the gauge transformations and is suitably altered 
in the non abelian case as shown in Appendix I 3 The Fermi character of 
the <£>7T field linearizes the gauge "group11 since 

(12) 

so that 

me 

74HP.684 6 
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One should realize the lack of equivalence, in general, between the Ward 
identity (5) and the Slavnov identity (10) : if one adds to a break­
ing term of the form 

(15) 
such that 

(16) 

where //L Is a poesibly field dependent differential operator which 
does not upset the hypetbolic character of (Hi , the Lagrangian 

(17) 

will lead to the same Slavnov identity whereas the Ward identity is modi­
fied according to 

J J A G O J 

(18) 

This pathological situation is due to the abelianness of the gauge trans­
formations which insures the absence from the Slavnov identity of a con­
tribution involving the last term of the Ward identity, 
A concrete example of this phenomenon will be given in the context of the 
abelian Higgs Kibble model treated within a family of linear, charge con­
jugation odd gauges. 
The basic fields and sources are given in Table I 

7 
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FIELD BEHAVIOUR UNDER 
CHARGE CONJUGATION 

SOURCE 

C 

c 

4> X ghosts 

even 

odd 

odd 

even 

even 

T. 

TABLE I : Fields and Sources 

One may choose for the Slavnov transformation: 

(19) 

S A - X \ 5 

§ c - I (a* £ 4 . f\) 
S ê = o 

where \T is a field translation parameter -e are charge parameters,a 
o J ' L 

and ^ characterize the gauge function . The corresponding Slavnov 

identity reads: 

(20) 

8 
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Eq(20) can be linearized by introducing into the Lagrangian the source terms: 

(21) 

where ^ , ^ are Fermi type sources: 

(22) 

Now Z c also depends on ^/\^ whereas the Lagrangian is the partial 
Legendre transform of jE c with respect to \^ ;3^ T ^ ^ 

is now a linear functional partial differential operator of the foi 

(23) 

The transformation law is easily converted by translation and renormalization 
of the field variables into the more conventional one 

(24) 

(^^--C^ ~-4L̂ ir-Vf ^ = ^ ^ € L =i )> where we keep however a field translation 
parameter explicit . 

One may ask oneself what is the most general Lagrangian of the 
renormalizable type which is invariant under such a transformation , even under 
charge coujugstHrnrr and carrying zero c£>lC charge . 
This problem is a purely algebraic one .The most general Lagrangian of the 
renormalizable type which carries the vacuum quantum numbers is, up to a 
divergence , a linear combination of the following twenty six monomials: 

9 
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0) % 

15) A f V ^ 

1 9> o x 

20) c c-
21 > C f , C 
22) CCf>ac 
23) c <^"c 
24) C / y ^ C 
25) H Q c (25) 

Its variation under the Slavnov transformation (24) is of maximal 
dimension five, carrying the <̂ >TT charge of a c ghost, odd under charge 
conjugation , It is therefore a combination of the 23 monomials: 

1.) 
2) C^f^ 

3) c <p* 
4) c ^ c f ^ 
5) C Q(f 
6) 
7) C ^ 
8) .c 
9) c ̂  

ii) C5*<Y 

1 6 ) f 94* 
1 7 ) C ^ Y F * 

2 0 ) e A ^ o ^ 

20 ' f y ^ 
22) C 

23) C ^ ^ ^ ^ 

(26) 

One can however verify that the last three monomials can never occur as 
variations of some monomials in &J,(25) whereas the first twenty are such 
variations. It follows that the requirement that £ be invariant under Slavnov 
transformations is expressed via a homogeneous linear system of twenty equations 
whose unknowns are the coefficients of the twenty six monomials listed in Eq/25) 
As a result, the most general invariant 36 can be written as a linear combi­
nation of the following six terms: 

10 
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2) ( i ^ ) * ^ ? 

3) <f* ? 

4) OF" f 3 

6) /y _ £ c * 1 <f> 

where 

£ A ° 

(28) 

In ocher words, is of the form 

(29) 

The last term which is conspicuously absent from the classical Higgs Kibble 
Lagrangian has precisely to do with the phenomenon previously alluded to. 
Its presence violates spontaneous breakdown without spoiling the Slavnov 
identity . As we shall see later , its absence can be imposed by requiring 
suitable normalization conditions on the Green functions which allow to convert 
the unphysical parameters 2 ^ ^ 2^ ^ ^ } oL $ } |3> I N T O 

parameters that are needed to interpret the theory in terms of particles , 

11 
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In terms of the variables appropriate to the case of broken symmetry#E^(29)can 
rewritten as: 

_ _ "2 » C G » z h i t t ' t ^ 

* A « % ( ** 1 - (f,+v ) 11 ) + •* A A + V 3 

^ L 2, 

(30) 

We shall now impose the following normalization conditions, which for reasons to 
be explained , we split into two groups: 

Unphysical : 

Physical 

RATAt^, fan*nrr^h?)- 2SrvK. 

(0) 
(I) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

(31) 

Here A (re«p A ) denotes the transverse (resp. longitudinal part ; of A; 
CxpFVSWitf in terms of the parameters specifying jf, , these conditions read : 

<%->=o=Z*f>- ^ u > + J £ (o) 

12 74/P.634 



- 256 -

<̂5 " ot 

^ r * & ' A n t 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) (32) 

(8) 

This last normalization condition is well defined because the <^>TC ghost 
mass turns out to be degenerate with at least one of the coupled ( ft^ ) 

ghost system . This is a consequence of the Slavnov identity , as shown in 
appendix III . On the other hand complete degeneracy of the ghost masses 
is precisely the condition for spontaneous breakdown , ( ^ O ), except if 

^ -a. dL H \f y which characterizes the restricted t f Hooft gauge, excluded 
here and eventually recovered by a limiting procedure 
The system is an algebraic system which is invertible and allows to solve for 
the coefficients in the Lagrangian in terms of the parameters occuring in the 
normalization conditions. This leads to a particle interpretation of the theory 
in a Fock space carrying an indefinite metric due to the Fermi character of the 
<j) "Ip ghosts and the non positive definiteness of the( f\U^ cp^ ) coupled 
propagator matrix . 

One can easily generalize this analysis to the case where *Q. ^ -P^ 
€L zjk \. where the theory is again determined by the Slavnov identity and norma-
lization conditions, and <U, being left free . Although the 
corresponding algebra is not illuminating and will not be reported here , the 

13 74/P.634 
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possibility of such a generalization should be kept in mind for further 
reference • 

We are now able to describe the scattering theory : the Fock space 
is determined by the quadratic part of 5^ , the corresponding in fields being 
solutions of the derived Euler Lagrange equations , Within this Fock space we 
may select a physical subspace generated from vacuum by application of 
( V* AK )• Physical states should actually be equivalence classes of such 
stat'es modulo some zero norm states whose structure will be mentioned later in 
connection with the questions of the unitarity of the physical S operator and 
of the existence of physical local observables 0 

The restriction to the above defined physical subspace of the connected scatter 
ring operator is given by theL^Z. formula : 

(33) 

where , in view of Eq(3I,3,4,5,6) 

K,c*,>p=(p + M- )^iP (34) 

It is typical of the spontaneously broken theory that the physical scattering 
operator does not depend on the parameters which specify the gauge . In other 
words, 

(35) 
The first relation can be proved as follows: 

(36) 

74/P.634 14 
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since the expectation value of between physical states vanishes because of 
the Slavnov identity and those of >o and >c because of charge conservation 
Similarly, 

(37) 

This concludes our review of the tree approximation . 

II PERTURBATION THEORY TO ALL ORDERS: THE SLAVNOV IDENTITIES . 

The extension of the model beyond the tree approximation , proceeds 
in the spirit of the BPHZ ^ renormalization scheme, via an effective 
Lagrangian of the form 

(38) 

The corresponding Green functional^ (39) 

end (40) 

15 74/P.634 
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are expressed in terms of Feypman graphs in which the propagators are defined 

by the quadratic part of ̂  (Eqs,C30, 31)), and the vertices are given by 

(41) 

The substraction procedure which defines the time ordering symbol T in 

Eqs.(39,40) being specified by the N prescriptions indicated in EqJ^S^The 

coefficients of the Wick monomials in are to be considered as formal power 

series in ̂  , and , of course, £ should coïncide in zeroth order with 

( Eqs, h i ) ) > 

We shall also clearly restrict ourselves to effective Lagrangians even under 

charge conjugation and carrying no ^>T\ charge . 

One can furthermore immediately specialize Eq#(38) by making the choice 

******* (42) 

which corresponds to fixing normalization conditions on the fields coupled to ff , 

We can also define £ f̂j so that no linear term is present , thus automa 

tically fulfilling t^„j№ïM#Mi&%&ten condition (31 ,0) 

(31.0) 

We shall have however to keep in mind in the following that the allowed class 

of Lagrangians is that written down in Eqj(38) and Ŝ Q̂ P) is a linear 

combination of 25 terms which are listed in Eq/25) (excluding Eg.(25,O) in view 

of E<p01,0) 

The question is now whether one can determine Tu so that 2 ^ ^ 3 

fulfills a renormalia©** Slavnov identity : 

(43) 

where ©. ^ y " ^ y S rw-c^lT are formal power series in £ 

We shall eventually require that the normalization conditions (3^) be 

fulfilled . 

1 6 
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Now, according to Lam's renormalized action principle , the Slavnov identity 

(43) expresses the invariance of the effective Lagrangian under the renormalized 

Slavnov transformation 

(44) 

Indeed performing on an arbitrary effective Lagrangian the quantum variation (44) 

according to the quantum action principle yields: 

- 3 Z * C T M = A H c C j l ) ( 4 S ) 

where the left hand side comes from the variation of the source terms, and where 

*~ ̂  is precisely the insertion of the quantum variation of the effective 

Lagrangian ^ ^^cp . It is a consequence of Lam fs analysis that: 

^ « - f a * A / Ut ( F , A > t Ç j c * ) (46) 

where is the naïve variation of the Lagrangian , and ^ £ ^ 

suneis up the quantum corrections. Because of power counting and selection rules 

is a linear combination of twenty three monomials listed in E~ (26),the 

coefficients being formal power series in and in the coefficients 
JP 

of ^ as well as in those appearing in Ef//L4) fhe symmetry condition 

we are looking for is 
(47) 

It can be partially satisfied by requiring that the coefficients of the 20 

first monomials vanish to all orders in jia the parameters of the Slavnov 

identity being left arbitrary to all orders . The argument is that if 

L7 
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(48) 

where ; (49) 

we can write: 

(50) 

where 4 - Ç^k^ / £b being a formal power series 

in * , & t , , S u and the coefficients <% of the Slavnov identity . 

and the quantum correction £(j\^is>riot °f the form £c , namely it involves 

the last three monomials in Eq,(26)a By the implicit function theorem for formal 

power series , (cfa Appendix II ) the system: 

is soluble for CL L 

^ is thus now determined in terms of five parameters (because of 

(31,0) X and of the five coefficients involved in the Slavnov identity which 

now reads 

where £\ £s (previously numbered 21,22,23) are the last three 

terms in (26), affected with the N/̂  prescription , 

Now, obviously, the right hand side (52) has to fulfill the compatibility 

condition implied by the structure of the left hand side(cfEq&.((12> 13) namely: 

-iZ*Z\ - J<** - J ^ 3 ^ f JJoo Z c 

(53) 

18 
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N o w ^ T i à . l Z * - Z e (54) 

where ^ ^ x is the naîve variation of the monomial under a Slavnov 

transformation, to which dimension six is assigned , whereas P̂j is a 

dimension six insertion , carrying two 4& charges, even under charge conjugation 

and whose coefficients are formal power series in ^ a n d in the so far 

undetermined power series coefficients occuring in and ^ , as 

a consequence of Zimmermannfs reduction formulae. 

On the other hand , the ^bl\~ ghost equation of motion is of the form : 

where 6^ ™ d I ^ are formal power series, and |2> is a source 

coupled to 

Thus, integrating Eq .02} through ^ , one gets 

Noticing that r^r-D -\ c 

J \ » * C U > ) £ - = ç > ( 5 7 ) 

as a consequence of the invariance of ^ C i under the variation 

S C 7i à Z 
and substracting E3.(56) from Eq.(53>> fyields : 

= L i ( A A. + £ j ^ c

C l ^ ( 5 8 ) 

We now express 2 i n terms of P by Legendre transform , thus obtaining : 

0 L t. ft=_o 

- 1 . « . ( A ^ + t ? o r = o t 

4 f 

(59) 

19 
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Let us now write 

(60) 

where it has been explicitly noted that the corrections to X 

occuring in £7 are necessarily radiative corrections,, E<^(59) can be cast 

into the form: 

(6i) 

where is a functional of the fields which is linear in the 

indicated arguments and lumps together contributions from J7 and 

from the . Differenciating in turnj§^ (6T) with respects to the fields 

occuring in each indicated monomial , and setting all fields equal to zero , 

yields, in view of the indépendance of these monomials: 

(62) 

20 
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where dlp^ £ L ~ ̂ , ̂ > 3 3 ^ \^ ^ c ~ ^ y ^ ~ ; ^ ^ a r e linear in the indicated 
arguments, formal power series in Jtz and in the remaining parameters. The 
situation occuring in the tree approximation and application of the theorem in 
appendix II yield: 

(63) 

Hence, the Slavnov identity holds, and , up to the mass term the CpTp" equation 
of motion involves the same coefficients and monomials as those occuring in A . 
The equality of the two mass terms will be proved in appendix III in connection 
with the normalization conditions we shall now consider , 
Namely, we shall show that the normalization conditions can be fulfilled, 
whereby all parameters are determined except and -6^EqJ(31,0) is already 
fulfilled.Next we try to impose Eq(31 ,^,2,3,4,5,6,7), Looking at the algebraic 
system which is soluble in the tree approximation , we can apply once more the 
theorem of appendix II, because this system is perturbed as allowed by this 
theorem by higher order terms occuring in Ĥ ><p I^T^T ^f^f^cf 

The last normalization condition (31,8) is more delicate : one has 
first to show, to all orders in that I T ^ / H , , , P - P , 1 is finite 
at >̂ ^ WY>q . The proof, based on the Slavnov identity and Eq*(3r,2) is 
given in appendix III. As a by product, as previously announced, one obtains the 
last equation connecting < ^ and the C§> TT equation of motion ̂Eq,(52)) 
namely the ^> Tl equation reads: 

(64) 2 0 

In conclusion , once the Slavnov identities and the normalization conditions 
have been fulfilled , there remain two free parameters, and , 
which will not be specialized any further . 

21 
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III- PERTURBATION THEORY TO ALL ORDERS:GAUGE INVARIANCE OF THE PHYSICAL  

SCATTERING OPERATOR . 

The normalization conditions Eq. (3J.)allow to interpret the theory , 

in the sense of formal power series, within the Fock space defined in the tree 

approximation , and the formula giving in terms of 

(Ec|«31)Jt or similarly in terms of remains unchanged 

tor a tecnnicai reason wmcn w i n appear later we shall trom now on work, with 

the non connected Green functional . 

We now wish to evaluate 
<?> Ti uUkc 

S ai 
Using Lowensteinfs renormalized action principle we see that 

T "ÒX J ~ * J J (65) 

where £L is one of the parameters ftv\ and is a dimension four 

insertion obtained by differenciating £cf> (f^\ with respect to X > 

namely an operation which alters inf initesimally <jL Ccp f\\ within the class (38) 

"A 
Using the Slavnov identity , we are going to show that c a n ^ e written 
as 

1 a 4 

where the ^ ( ^ (¿-4 -«,,5^ are eight insertions such that 

Z , , A° Z.Czt%) I O (67) 

and leaving unchanged the physical normalization condition (31,8) . 

The other physical normalization conditions (31 3,4,5,6,7) are left unaltered 

as a consequence of Eq,(67). In the following, we shall call these insertions AS 
, (i*i.. ....... 6), are six symmetric insertions, 

namely such fctvat 

d > ' (68) 

22 
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Thus applying Eg.(65) to the physical normalization conditions (31*3,4,5,6, 7 9 8) 

yields a linear homogeneous system of equations of the form 

> . C A c \ = \ ^ s - , 4 , * . * j (69) 

The forthcoming analysis shows that 

(70) 
since this happens to be true in the tree approximation „ Hence it follows 
that ^ / 

= ° O f ) 
and the gauge invariance of the physical S-operator follows from Eq(67) 
We now construct the decomposition of A \ given in Eq.(67) 

From the definition of A;L we have (72) 

so that 

Thus we can write 
(73) 

A $ 
(74) 

where /\. is a particular solution of Eq.(73) and i s a sy m metrical insertion 

We shall first construct a non physical , and we shall show that 
any A^ is a linear combination of nine symmetrical insertions three of which 
are non physical the remaining six satisfying Eq.(68) 
Let us denote 

(75) 
where 

(76) 

23 
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So that Eq/73) now reads: 

Now, there exists a basis of covariant non physical insertions /S : i 
(i'"1

 v . ,-.'5) satisfying : 

Indeed let us consider J 

O F<**& V ) 0 = ^ . o ( 7 8 ) 

where the C;4 are defined in E<k76) and of in Ea.(55) 
The symbols are defined by: 

(79) 

The indices indicate translations by the e,g» space like small vectors 
£ Z 

We introduce the insertions: 

and we have : 

(81) 

where the connection between and the cp \\ equation of motion (EqM) has 
been used c 

It is shown in Appendix IV that, in the limit *>o the finite part /V\ 
of A . has the same covariance as /\ , namely 

It is furthermore shown, in appendix IV , that by substracting a symmetric 
insertion , which therefore does not alter the covariance ^< , one obtains 
non physical insertions which we denote ^ v 0 

L 

24 
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We now look for other non physical insertions which are easily obtained by 
applying the renormalized action principle (6) 
The following variations whose covariances are indicated provide us with the 
desired insertions : 

I) o c ^ c yields the insertion 
(83) 

with 
(84) 

2) the operation 
(85) 

corresponds to a variation of 3Lj in the neighbourhood of 
^,-^3?: 2: ss. o and its covariance is given by ^ 2» / J 

(86) 

3) the operation 

(87) 

corresponds to a variation of ^ , Its covariance is given by 

(88) 

4) the operation 
(89) 

corresponds to a variation of ^ , Its covariance is given by 

It is obvious that all of these four insertions leave all physical normaliza­
tion conditions (31,3,4,5,6,7,8) unchanged , i 

A is thus a linear combination of £\ A ^ \ 

which solves part of Eq^74) J C x ^ 
We are thus left with finding a basis of symmetrical insertions6 
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4 
We know that, given the Slavnov identity ^ J-fi , ̂  ̂  depends on nine 
parameters , namely six to specify ^ , three to specify the externa 
field dependence %\ / } 

This is indeed true in the tree approximation and therefore , by the theorem 
of appendix II, to all orders ,(of course, this counting does not take into 
account any of the normalization conditions (31), including (31,0)). As a 
consequence, there are nine independent symmetric insertions 
We first construct those which respect the physical normalization conditions 
The first one is : 

.(9 J) 
The second one is generated by the variation 

(92) 
The third one is obtained by considering 

(93) 
whose covariance is given by 

(94) 

From the foregoing analysis: 
(95) 

is symmetric, leaves the physical normalization conditions unchanged, and is 
non zero as can be seen by a direct calculation at the tree level . 

We are thus left with finding six independent symmetric insertions 
By the general theorem of appendix II, five of them are determined by the terms 
of 

(excluding the one which leads to (\ ' ) The sixth one involves 
(96) 

since 

^ [ A f l 4 > ^ ~ c « \ - ' C A - ^ K - C A - 1 eA• c 5 \ < 9 7 ) 

it follows that 

A \ = A - A - A ~ % A «- * A ~ A° (98) 
is symmetric. 
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It Is .straightforward but tedious to verify in the tree approximation that 
these six insertions alter independently the six physical normalization 
conditions(il,,3,4,5,6,7,8). 
The gauge invariance proof is thus completed . It is extended in appendix VII 
to gauges which contain a quadratic term odd under charge conjugation , 

IV- UNITARITY OF THE S OPERATOR 

Let us first define 

(99) 

where the notations are the same as in Eq.(33). According to the 
reduction formula , the physical S operator is given by 

(100) 

The contribution of non physical particle states to physical unitarity is 
explicitly given in the expression : 

(101) 

Here ^ and jt/vi are respectively the differential operator occuring 
in the asymptotic field equations and the positive frequency part of the 
asymptotic field commutator. 
The proof consists in considering 

S * ( T ) U,005 (-1) =S F ( T W A A ) ^ (X)I c-02) 

27 

74/P.634 



- 271 -

and evaluating 

q S ( C t ) ^ ) S ( 1 ) 1 (103) 
It is shown in appendix V, by extensive use of the Slavnov identity that 

<f<T (104) 

where 

= a *3 £ +.? S 
(105) 

s i denotes a regularized version of S around the ghost mass shell and the 
index ^ ^ labels the Mgauge-gaugeM' matrix element of L L a i 

indicated in appendix V a 

Integrating Eq.(;J.04) with respect to yields 

Further use of the Slavnov identity according to which , the gauge operator 
decouples from physical states finishes the proof: 

S.Lz)m\ CR)L - S / D s c i ) | 

(107) 

Unitaritv follows from the hermiticity of the Lagrangian 
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CONCLUSION . OUTLOOK 

The gauge invariance problem has been solved for the abelian Higgs 
Kibble model treated in a family of gauges odd under charge conjugation 
Emphasis was put on the fulfillment of normalization conditions which allow the 
interpretation of the theory within a Fock space with indefinite metric , 
This has in particular allowed us to prove the unitarity of the physical 
scattering operator and to construct some physical local observables, 
We feel however that one should make a more complete study of the zero norm 
states that are allowed in the definition of physical states as equivalence 
classes. From the technical point of view , it was encouraging to see that the 
theory was widely controlled by the algebraic structure of its tree approximation 
thanks to the repeated application of the implicit function theorem for formal 
power series , This situation looks quite favorable to a future treatement of the 
non abelian situations, at least when no fermion anomalies are potentially 
present. This last case will doubtlessly call for more refined techniques, 
involving the Callan-Symanzik equations which have not been included here, 
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APPENDIX I : NON ABELIAN GAUGE TRANSFORMATIONS: CLASSICAL THEORY 

Here are a few details concerning the classical theory of non abelian 
gauge transformations: the gauge parameters /\ as well as the <̂ >7T ghost 
field C are labelled by the indices of the dual of a Lie algebra with 
structure constants +- . The <PT ghost field <C and the gauge function 0, 
are labelled by the Lie algebra itself offftrOjIis labelled as a linear 
operator from ^ into ^ . The square of ^ is the Killing form of 
at least for the non degenerate part. 
Going from the Ward identity to the Slavnov identity now involves an extra 
term: 

(AI,I) 

which , using the group law together with the anticommutativity of it boils 
down to 

(AI,2) 

or , using the equation of motion: 

(AI,3) 
The corresponding Slavnov identity can then be interpreted as expressing the 
invariance of the lagrangian under the transformation law: 

9 S A № (AI,4) 

where /L is a space time independent aiiticommuting parameter carrying no 
index, 
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APPENDIX II, The implicit function theorem for formal power series 

This appendix is devoted to the statement and proof of an easy theorem (11) 

which has been repeatedly used to reduce the proof of a property to all orders 

of perturbation theory down to the verification of a simple algebraic property 

of the tree approximation : 

TH Let I^C>^ „ ; Aft; * f ^ . v ^ p )•=<=> OH-Z'Obe « set of algebraic 

analytic equations which has a unique solution ^ ;. ^ ) ( analytic) in 

(j$Ar-j
 i n neighbourhood o f ^ . ^ ^°^) . 

Then the perturbed system 

where ^ are formal power series in m whose lower order terms are 

éj>v u ° and the X. ^ are formal power series in Y. xu M . U ,"U 

possesses a unique solution ^ 

where the ^ ^ a^e formal power series in ^ > "'7 ̂ 1» 

Proof : 

Let 

can be expanded into a formal power series in , whose 

term linear in ^ is 

I L K 
3 X . - J 

where, by the hypothesis 

is invertible in the sense of Formal power series , Hence the initial system 

can be cast into the form . 

2E* 

where the formal power series are such that <£\ ( o r > O J % r j %j &J - ° 

i, e 

with the same conditions on \pj , This system is easily solved by 

iteration , 
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-APPENDIX III-

We show here that, as a consequence of the Slavnov identity, Q ~ CC*yjL *C v"*̂ - ^ 
is finite at p = /Y*>̂  and thus can be required to vanish . In other 
words, the C^TT ghost mass is always degenerate with one of the ^f^ 
ghost masses, Complete degeneracy then characterizing spontaneous breakdown, 
We first write the Slavnov identity in terms of the vertex functional : 

(AIII, 1) 
Within the f\ , ̂  channel, we get : 

(AIII,2) 
where 

Thus 
(AIII.3) 

(AIII,4) 

Hence : 
(AII],5) 
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Thus, first 

-I \ 

is finite 

and furthermore its vanishing implies 

a f . ^ ù J (£))] ~ a ^ J ^ j = o 

since P 7^ ^ 

(AIII, 6) 

, provided one stays away from the restricted' t Hooft gauge 

Looking now at the (\2 (A propagator equation 

(AIII,7) 

the absence of a pole in the left hand side at br̂ lflî  yields: 

(AIII,8) 

after multiplication of (;AXII, 7)through {]_ 
Cd. 

and use of 

(AIII,9) 

Hence comparing with Eo.(AIII,6) , we get: 

(AIII,10) 
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- APPENDIX IV -

We have shown in chapter III(Eq/8l)) that, in the limit £ O > 

the commutator of with is equal to ^JL We thus infer 

that the infinite part of 4 as given by the Zimmermann-Wilson expansion is 

a symmetric insertion with coefficients going to infinity as -3» o 

The finite part ^ will then be given by £ ^ where ^ c is the 

finite part of ^ 

It is possible but lengthy to verify these statements by looking at the 

Zimmermann-Wilson expansion of C^) , ̂  .In the case of Q^- t^xe 

calculation is however reasonably simple: * 

«- < J»KT [ < ç W c ^ l f o £&o §(pj> • <çs 
(A1V, 1) 

where the second coefficient is amputated on its C arguments, 

The only singular coefficient in this expansion is 

(AVI2) 

which diverges logarithmically , The singular part of & ^ J S t n u s 

proportional to ^ (^^|^Jj>c which is symmetrical . (cf(Eq (92) )as 

expected , 

By a similar but more involved analysis one can evaluate the singular part of 

which assumes the form 

./I ^ " 
(AIV, 3) 

where ¿0 and Cl) are , in the limit ^^p<0 logarithmically divergent 

The resulting finite parts are however not suitable for our purpose 

because , due to the occurence of graphs which are -̂f one particle reducible 

they do not vanish upon application of the operator ^> i (cf ; .'>; 
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Since the Cp( carry the quantum numbers of C ^ we have: 

(AIV.4) 

where 
(AIV.5) 

is involved in the expansion: 

where the upperscript 1̂  denotes the set of graphs which are one particle 
irreducible with respect to the pair . 

Since \^CZjl^T + is obviously a symmetric insertion , 
adding ^ p l T t t 7 ^ J o ^ t o 

does not change the covariance of u o Q ^ ar*d produces insertions which leave 
the physical normalization conditions (Eq«3 L(3,4,5>6,7)) invariant . 
We now want to show that the insertions /\ f leave the normalisation condition 

1— JL 

Eq.(31,8) unchanged , These insertions can be replaced by /\ - № Q j m o c * u ^ 0 

terms which trivially do not contribute to the calculation . 
We shall show that* 

(AIV,7) 
remains regular at the <k-$- mass, upon insertion or . 

w f U f A c%J) 
(AIV,8) 
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where the matrix \[ C?*. [\ is C n ^ inverse of the matrix (| f7^ [| 
By commuting ^ through ^ we get : 

• < y £ < T g(TO ^ Q , > (AIV,9) 

where underlining means amputation, 
Similarly 

(AIV,10) 

Thus we cnly have to make sure that the bracket is regular at the squared 
mass .Now the first term is singular due to the occurence of the ^/ propagator , 
and the last two terms are singular due the occurence of the C^TT propagators 
The C3L propagator can be factorized using the Slavnov identities: 

CREEP vAvfr- Y <r ECOJ> £ CL°> (AIV.ll) 

so that: 

(AIV.12) 
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Nov the c^TT* equation of motion allows to replace ]j€^ Mj/^jl + <^ Jfc) 
by a term proportional to Q e ( & ) up to a regular term , so that the factors 

<~T Cfel ^({O^ undo the C amputation involved in their factors 
and produce an exact cancellation with the last two terms in Eq,(AIV,lQ). 
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- APPENDIX V\ -

where 

(AV,l) 
0 7- " Y 

Denoting X-a^-W^ > a n d t a k i n g i n t o account.: (i) the normalization condition 

(31,8), which implies the occurence of a double 2ero in det L at x=0 

(ii) the lack of singularity in thepropagator ,which follows from the 

Slavnov identity and implies the occurence of a double zero in Vpï a x=0 , 

We can parametrize L i n the following form: ^^ 

1. 

The last term giving corrections of order x 

The corresoondine matrix orooaeator is: 

(AV,2) 

+ Regular terms (AV,3) 

and the S operator is given by: 

(AV,4) 

so that 

9 

(AV.5) 

O 
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and of the corresponding asymptotic field two point function • 

Within the coupled ^^A^ }*Pj) channels L can be taken as a polynominial 

approximation to the matrix 
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where the symbolsX -t are to remind that the usual identities t 
cannot be used here because this kernel is to be tested with functions which have 
poles at x=0. 
Concerning the Faddeev-Popov fields, let us define 

(AV,6) 
Using the results of Appendix III we get: 

(AV,7) 

and 
(AV.8) 

The o^, operator Eq(101)can now be written 

(AV,9) 

where y is the source of the field <f that is used in the definition of 
the antitime ordered functional . 
Before pursuing, let us regularize the S functions according to 

(AV.10) 
so that we may forget about the arrows on the x variables, 
Owing to the invariance of the lagrangian under the transformation: 

C —5> <=-
(AV.il) 

we have the identity —" ^ C 

atfo T > 38° J ^ 5 ^ ^ J*> (MM 2) 
Taking into account (Eq.(43)we get: 

(AV ! ^ 
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which yields 1 x 0 - r 

c V ^ K ) V V V ^ (AV,14) 

Since the propagator attached to the ̂  and *<F legs have only simple poles 
the j?> dependent term in the righthand side of(Eq-(AV,14)) is of order £ 
This does not happen for the term involving because the(^<j^) 
propagator has a double pole . ^5" 
However we have 

(AV.15) 

Since the/^ r")propagator has no pole we have: 

+Regular terms (AV,16) 

(AV,17) 

The vanishing of the A dependent terms is due to the absence of double poles 
in the^tandV? propaeatorse 

As a consequence we get: 
(AV.18) 

where is the Slavnov operator which characterises the anti-time ordered 
functional. 
Indeed Eq.(AV,18) is a consequence of the symmetry of both A± and C/̂ , ^ 1 
with respect to the transposition and the complex conjugation of the sources 
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We are now in condition to state the following identity: 

^ * * M V V V V ' 

(AV,19) 

In the first step of this reduction, the 0(£) term takes into account 

contributions of the kind: * \ I I 

' ( J ^ 

The second step makes use of the Slavnov identities 

3 W I ) = D 
(ÀV.20) 

and takes advantage of the sero source condition by commuting s\ to the left 

and to the right, 

The last step is a trivial consequence of Eq(AV,l8). Going back to the expression 

for , and taking into account the symmetry property , one gets Eq.<tlG' ) of 

section IV, 
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- APPENDIX VI-

A CLASS OF LOCAL GAUGE INVARIANT OPERATORS 

In order to define a local operator of dimension d, we 
shall first consider an effective lagratigian , 

ON? 

(AVI, 1) 
where^O is a classical field of dimension 4-d, 
The first criterion for gauge invariance is 

(AVI, -2-) 

where <\ is the operator defined in Eq{43) . Assuming that ?,qa(AVI,2) has 
solutions j they are in one to one correspondence with those found at the tree 
level . They will be further specified by as many physical normalization 
conditions as are necessary to specify physical operators of this type at the 
tree level (namely modulo the ideal generated by operators which vanish on the 
physical subspace ) , It follows that (̂ ) is ambiguous up to a linear 
combination of operators whose tree approximations vanish on the physical 
subspace . 

The proof of gauge invariaflce then proceeds as usual (ch,III) 
Keeping terms of the first order in 60 , one looks for the most general solution 
of 

X ~J -) ^ to K 1 (AVI,3) 

which is of the form 

^A X J 1 J (AVI, 4) 

where the second term in the right hand side of E q(AVI>4) is a perturbation of 
the (tf dependent part of the solutions of Eq,(âVI,2) in the tree approximation 
Testing now Eq/AVI,4)vich the physical normalisation conditions which specify 
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(h^(V) shows that the problem reduces to check that the perturbations of 
operators which have nul physical restriction in the tree approximation retain 
this property to all orders , 

Finally the stability of the physical subspaoe under application of 
($)qc) , up to the zero norm states is a consequence of Eo^VI,2)as 

follows from a slight generalization of the argument in Ch,IV' 
defining 3 by replacing 2T CT ^ { \ ^ by in 
the LSZ definition of S in the overall Fock space> (j^Qc) i8 defined 
according to 

JL r> 

(AVI, 5) 

Let e q be the projector on the physical subspace generated by 
T 

CO QxxA A quanta c One wishes to show that 

(AVI, 6 ) 

i, e 

(AVI 7) 

whera the unitarity of S has been used 
Eq^AVI,?) follows simply from 

(AVI,8) 

which is the result of Ch IV 
a«nt-from the identities 

t o " — ! 

t 

~ e 0 ^ e Q — Bo 

r - O O i— <<* c: * 
* • ~ •* \ \ - - s 

(AVI-.9) 
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which are consequences of the first criterion for gauge invariance : 

(AVI, 10) 

and of the argument in Ch. IV , 

Example 

a) d=2 C= + l> 

@ is a linear combination of £ <PÀ )

 <iP, ; ^ ; ̂ ^>J

<2'C'^ 
\ (k) is a linear combination of^cpê <£>V>è Ç'ÎA '"fàAf.so is the termOC<^0 

Thus there is no anomaly i, e. there exists one invariant local operator which is 

a perturbation of 

which is non zero in the physical subspace 0 This operator is completely 

determined by e.g. 

and can serve as a gauge invariant interpolating field operator for ^ 

b) d- 3 C=-l vector operator 

It is trivial that solves the problem t 
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Appendix VII 

This appendix is devoted to the main steps involved in the treatement of an 
extended class of gauges involving quadratic terms odd under charge conjugation 
In the tree approximation , the Slavnov transformation (cf Eq|j24)) is now taken 
to be 

8c- XfyAS?^*%%)-l<t (AVII.l) 

The most general lagrangian fulfilling the corresponding Slavnov identity is now: 

(AVII.2) 

where now 

(AVII.3) 

Keeping the normalisation conditions (Eq.(31) unchanged Eq.(32) is unchanged 
except for Eq.(32,3) which now reads 

(AVII,4) 

But due to Eq.(32,8) CJi^o) , the overall algebraic system . Eqj(32) is unchanged 
We now turn to the details of the Slavnov identity which we shall express in 
linear form as inE^(43), Before doing so we need to introduce at least one 
external field y coupled to <-p̂  Cp^ s co which we assign dimension rwo and 
odd charge conjugation quantum number c The corresponding term however undergoes 
a variation under the Slavnov transformation (AVII*1) , which forces us also tc 
introduce at least one field coupled co (̂ "̂- S^*J ^ However , for later use , 
we shall right away introduce three fields of dimension one , ̂ 5 ^f^ ji_ \ 
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tfoupted to three independent linear combinations of : — ^ ¿ . / ^ 3 ) 

^ *-f̂  5 J J\ c ^ and also a field of dimension 

dimension zero C coupled to A ^ ^ ^ - ^ * Thus we have introduced externa; 

fields coupled to a system of operators which is closed under Slavnov transfor­

mations. The most general lagrangian invariant under charge conjugation , 

TT neutral and consistent with power counting is now 

i % t Â T 3 = ̂ Cf) * * ! 2 > t ^ ? . 

(AVII.5) 

and the Slavnov identity assumes the general form which will be needed later: 

(AVI1,6' 

where however in spite of the huge number of parameters involved in (AVIÏ., 3) 

the coefficients in *^(r- a r e always constrained by 

(AVII 7) 

because b; ( & ) ~ (B> ) and 4- ^ S> C^^X) . 
One can in fact verify directly that this is the only constraint on the coeffi­

cients of the Slavnov identity 

We are now ready to prove that one can fulfill a Slavnov identity of the type 

(AVII*6) to all orders in y with coefficients constrained by £|Av'I "iy ; 

Performing a Slavnov variation of the type (AVII>1) on an effective lagrang^.-
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of the form K £ ( ^ T £ LO (cf Eq/AVII,5)) yields: 

(AVII,8 ) 

where the first 23 >̂ are listed inEqj(26) , and the last nine are; 

ti**) J*U t v 2 5 ^ 

(AVII ,9) 

After elimination of the C^,'^ which are nalve variations, one is left with a n 

~f" , including source terms such that only /V A rt Ana a n d a linear 
combination of ¿V ¿-̂ o. /A , namely : A 

remain on the right hand side of the 

Slavnov identity which reads : 

(AVII, 10) 

Now recall that is the naïve Slavnov identity associated with the 

Slavnov transformation we started with, hence "of* = O 

Now compute >^ , which because of this condition has the same form as 

the CD TT equation of r i o . ion integrated through >p «, 

We have : 

(AVII,11) 

The same argument as before shows that ^ bas coefficients identical with 

those occuring in the equation of motion, except for the mass term , and 

that 

(AVII,12) 

x If a monomial is of the form ^ M6F) where £ is an external field to 

which dimension 4 was assigned , (\!u[z Mfy)]J means £ ]\i , 1̂ (̂ )3 
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At this point the Lagrangian depends on 24 parameters since 28 relations were 
imposed on the initial 52 parameters . Together with the IA independent 
parameters of the Slavnov identity we have 38 parameters which can be fixed 
the 9 normalization conditions in Eq{3l) x together with 26 others fixing tne 
couplings with the external fields x x . It is a matter of routine to verify 
that the corresponding system is soluble the condition being preserver? 
Three parameters are then left free : <T , The gauge parameter tr 
could be fixed by imposing an extra normalization cdnditTion on C!*-.*̂  
We now extend the proof of the gauge invariance of the Scattering operator 
In order to do so , we shall decompose again the insertion generating 
infinitesimal variation of the gauge parameter /L according to 

(AVII*13) 

and we shall show that it is possible to choose the two insertions [\y and -> 
satisfying the same requirements as in chapter III, (Eq/68) and Eq/73)) 
First of all , let us write Eqd(AVII,6) in the form , 

the first six j± are listed in Eq a(76) the remaining four are: 

(AVII. IS) 

x Using the same kind of arguments as in Appendix III it can be shown that the 
condition given in Eq«(3l58) is a suitable normalization condition and that the 
mass term in the equation of motion has the same coefficient as the 
corresponding term in • ^ Z ^ , 

xx The simplest additional normalization conditions are: 
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The derivative of with respect to the parameter /t is obtained by 

differenciating the and the vectors band ¿4 , Since we know thatT>^*° 

(Eq^AVII,7)) independently of A , we have the equation : 

(AVII,16) 

We can parametrize O b and by introducing the two cartesian triplets: 

(AVII,17) 

in the form: 

(AVil,18) 

Thus we have to find a non physical & v satisfying the equation: 

kt***A = %i ^ c ? ̂  • J"** 'fir, ^ S f 
(AVII,19) 

The insertion ^ s a li n e ar combination of a basis of covariant non physical 

insertions which can be found as follows„ 

First we introduce, in analogy with Eq/78) three operators <Q ̂  ̂  

with , M"r the same construction as in Chapter III we get three 

insertions , of covariances C\ \^ (i=4 ?5,6) 0 

Then using the generalized action principle ; we can complete the basis of 

covariant non physical insertions as indicated in table (AVII^lJ 

Insertion Covariance 

TABLE AVII-I-
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It is evident that one can find a particular solution of Eq.(AVII,19) as a 
linear combination of these insertions and of the three 
In the same way one can get other non physical insertions which are listed in 
table (AVII-II) 

Insertions Covariance 

o 

o 

O 

TABLE AVII .II-
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It is clear that combining liftearly the insertions listed in Table(AVII.JI) 
with those previously considered we obtain ̂ 8'Symmetrical non physical insertions; 
in fact, because of the orthogonality condition EqXAVII,7) TD is a linear 
combination of the 3 / * and cT of the T̂ />\ . (i*l,2), 

x 

Now, following the same procedure as in Chapter III, we complete the construc­
tion of Aj^ by studying a basis of symmetrical insertions A 
Since we know that, given the Slavnov identity , the complete lagrangian 
(E<^(AVII,5)) depends on 24 parameters ,(6 of them fixing the propagators and 
the couplings of the quantised fields, and It specifying the external field 
dependence) it follows that there are 24 independent symmetrical insertions, 
We have already constructed Ifc independent A which are non physical a Thus 
to complete the proof of gauge invariance we have to find six symmetrical 
insertions satisfying Eq 0(70) , Five of them are determined by the independent 
terms of the tree approximation lagrangian (Eq/AVII,2) excluding il ̂ cOUc 
The sixth one is the analog of /Â  (EqX98)) . They verify Bq.(70) as can 
be seen in the tree approximation . 
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