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INTRODUCTION

The latest achievements on the renormalizatien of Lagrangian models
involving gauge fields, moscly due to G. 't Hooft, B.W. Lee, M. Veltman,
(1j

J. Zinn Justin , were primarily based on the use of a gauge invariant

regularization procedure, the most popular of which being the so called dimen-
(2)

sional regularization The gauge structure could thus conveniently be

respected by fulfilling the so called Slavhov identities (3) through the
renormalization procedure . There resulted finite Green's functions which couid
not however be directly given an interpretation relevant to an operator theory
in some Fock space, were it be in a perturbative sense, because of the lack

of the finite mass renormalizations which would have been necessary for this
purpose. As will be seen here, an operator interpretation is quite convenient
for any discussion involving asymptotic concepts concerning e.g. the unitarity
of the S operator, the construction of gauge invariant local operators etc

We shall treat here the simplest model involving gauge fields in
vwhich no infrared problem occurs, namely the abelian Higgs~-Kibble model (4)
within the class of gauges advocated by G. ' t Hooft. The algebraic complications
which occur in the non abelian cases are deferred to later publications.

We shall make full use of the combinatorial knowledge of renormalized
perturbation theory that has been acquired through the work of W. Zimmermann (3)
(effective Lagrangians normal products, Wilson expansions), J.H. Lowenstein (6)
and YMP Lam (7) (renormalized action principle), which has been successfully
applied in other cases (massive quantum electrodynamics (8) , ¢ models (s
abelian Higgs Kibble model in the Stueckelberg gauge'(i\‘

This well developed machinery , which relies on the locality and
power counting properties of perturbation theory , is most effectively put COKHW
work by intensive use of the implicit function theorem for formal power series
through which, as we shall see , most symmetry aspects of the perturbation
series can be read off on the classical Lagrangian on which the theory is basec,
including the possible occurence of anomalies . This possibly surprising state-
ment will be widely illustrated in the present work and in reviews now in pre-

(12)

paration .

The main reason why such a favourable situation prevails in the present

case is that the model is almost entirely specified by an invariance property
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(13)

even after the introduction of the necessary Faddeev-Popov ghosts

Namely, at the classical level, the Lagrangian is invariant under trans-
formations of the supergauge type(14), which we have called Slavnov trans-
formations. In the abeltian case treated here, one has however also to
impose the full degeneracy of the ghost masses in order to implement
spontaneous breaking. This is a particular feature of the abelian case

which in a sense makes things more complicated.

Section I is thus devoted to a study of sume crucial aspects
of the tree approximation. The role of the invariance under Slavnov
transformations and the particuliar expression of spontaneous breaking

are stressed,

In Section II the model is defired to all orders of a pertur-
bation expansion in powers of a parameter, *C , which counts the nuwmbég
of loops in Feynman diagrams. Namely, we show that both renormalized
Slavnov identities and the normalization conditions on Green's functions
which hold in the tree approximation can be fulfilled to all orders. The
compactness of the proofs is due to a repeated use of the implicit func-
tion theorem for formal power series 11 . The logic of the construction
also makes clear how anomalies, whichdb nut occur in the present model,

can be produced.

In Section III, one proves the independence of the physical
scattering operat.r against a change of the parameters which label the
gauge function, by suitably generaliring the argument given by J.H.

Lowenstein and B. Schroer(s) in the case of massive quantum electrodynamics,

Section IV is devoted to a direct combinatorial proof of the

unitarity of the physical S operator.

Several appendices are devoted to a number of technical questions:
Appendix I deals with the structure of the Slavnov identities at the
classical level in the non abelian case.

Appendix II is devoted to a brief description of the implicit function
theorem for formal power series(ll),

Appendices III, IV and V give some computational details which would have

R FAVE Q- FA
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obscured the line of argument in the body of the article.
Appendix VI deals with the construction of some local gauge invariant
operators of dimension smaller than or equal to four.

Appendix VII extends the theory to quadratic gauges odd under charge

conjugation.
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I - THE TREE APPRDXIMATION

£

As is well known, a classical Lagrangian, ii , which will
be assumed to be of the renormalimable type, defined§ the tree approximation

of a quantum Green's functional

Z(I>z ue_xF Z <J> (1

where ;I denotes collectively a set of spurces linearly coupled to
the field variables :ﬁ from which ;E is constructed. The
Legendre transform (15) P(f) of the connected Green's functional Z (3)
defined through

C
Z (_I)=T1(kp)+f(l-f)c><>dx (2)
. (é—g+l’)(x)=o
coincides with jz in the lowest appfoximation of a perturbative

expansion in powers of and, in higher orders enerates '‘proper"
P s > 8 prop

Feynman graphs,

Let us now consider a classical Lagrangian

) ia)(i) * "I.zf'

il

70

()
¢ (3)
=L, (&)= 5-+1Y
AmY R -
where ;f, (:f) is invariant under local abelian gauge trans-
m

formations of the secend kind ;

S‘F(x)

g‘f(x):: S/\(%)Ag’ (4)

g} is a gauge functlon which breaks gauge invariance, and «
is a numerical parameter, as they occur for instance in quantum electro-

dynamics. Noether's theorem yields the following Ward identity:
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(x)
A (x).g%@ _ m(X, )__%___ -0
X[I SAW) ’ "(]
where the substitution
o S20D)
T 81

has to be made, and where
S%(x)
/mcx )= (7)
/8 SAY)

is the kernel of a field dependent differential operator of hyperbolic

(6)

character whenever e} is a perturbed version of the divergence of the
gauge vector field associated with the gauge transformations under consider
ration. We shall fr.m now on limit ourselves to this situation.

The Ward identity (5) can conveniently be solved for E; upon intro-
ducing scalar charged Faddeev-Popov C#'ﬂ? ghost fields Q3) and the cor-

respondlng sources 1nto the initrial Lagrangian

£(x)= i (X)-—— ——- +IA?,CC¢})/m ta)ccx) U c+‘§ZJO<)
=L e @0 [-p rEerEE]

(8)

The Fermi statistics conventionally assigned to these fields while pre-
serving locality introduces new sources of indefinite metric into the
quantum interpretation of such a system and, at the same time exhibits
crucial properties comnected with the structure of the gauge transfor-
mations, which are best observed in the non abelian case described in

Appendiw I . The new Ward identity reads

Won ( 2°)= sy S88-Ltgn -5 poaor 2 aplc,

Integrating through c yields the so-called Slavnov identity<3),

which, in the present, abeliany case, reads :

- SPr _
S(Z¢> ,fo [%Q@%QX) *’f&é Jeo- “g%) C@J =0 (10)

where use has been made of the equations of motion for the #DWT' fields,

=7 1~ s
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and of their anticommutativity, whereby the last term in the Ward iden-
tvity (9) drops out in view of the abelianness of the gauge trgnsferma-
tions. In the non abelian case treated in Appendix I, this last term
contributes however in a way which is characterized in terms of the

structure constants of the Lie algebra involved.

The Slavmov identity can be interpreted as expressing the in-
variance of Je under the following ransformations 'of the supergauge

(14)

type , which we shall call Slavnov transformations

d J S R

(V]
|

\
g‘xccxb A %Qo

(1)
SAEQ@ = O

where A is an infinitesimal, space time independent, gauge parameter
of the Fermi type. The vanishing of the variation of & is due to the
abelian character of the gauge transformations and is suitably altered
in the non abelian case as shown in Appendix I . The Fermi character of

4>'ﬂ' field linearizes the gauge '"group'" since

S;H S;EL ff?k):zC)
g/‘\, g;\h cx=o
gl, g’MC(’O =) A []YL(%,XD ey dy

(12)

so that

SLCZ‘);&;J‘A:JQ %%)fm(‘,') Coy & © (13)

5'51 - 5"5)(Z¢.)"° (14

sadé

744P . 684
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One should realize the lack of equivalence, in general, between the Ward
identity (5) and the Slavnov identity (10) : if one adds to 25 a break-

ing term of the form

- B (15)
-4
such that
g = M(x 14D %,QO (16)
SAG /\<<a)
where (n, is a poesibly field dependent differential operator which
does not upset the hypefbolic character of NYL , the Lagrangian

i},c: = iM(X) -3{, (%f) + BO<)+I543 &y(qn(xﬁé)um&n))@)

S(X)-"(’GJ + ?@3 Ce) + By Cled

7

will lead to the same Slavneov identity whereas the Ward identity is modi-

fied according to

Q()[Z] fa\j, T(‘J) Sﬁ) ;(W(g,ﬂﬂﬂ(g,ﬂ)%ﬁ)
- e D

A
This pathological situation is due to the abelianness of the gauge trans-

(18)

formations which insures the absence from the Slavnov identity of a con-
tribution involving the last term of the Ward identity.

A concrete example of this phenomenon will be given in the context of the
abelian Higgs Kibble model treated within a family of linear, charge con-
jugation odd gauges.

The basic fields and mources are given in Table I
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FIELD BEHAVIOUR UNDER SOURCE
CHARGE CONJUGATION

¢ even T,
P odd T,
A T
C} B ghosts even 3

¢ | g

even
TABLE I : Fields and Sources

One may choose for the Slavnov transformation:

= - ° c
S, =-A< ¢

§ ¢, =+ e (¢v7)e (19)
=19c¢c

SA L3,

gc l(a +f‘f’>

S = o

o © o )
where V' is a field translation parameter 45/ &1 are charge parameters,Q

(=] . . .
and j> characterize the gauge function . The corresponding Slavnov

identity reads:

Stzozfa[] 2824152 Ga-<1(2iz

A

(20)

ww\

wi2)- [ei’g%Z;jo%zZJ}(n:o
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Eq(20) can be linearized by introducing into the Lagrangian the source terms:

?LJ(Z'J%E-P?:E)-MZZL?LE (21)
2

where 7 ‘? are Fermi type sources:
! o

S(Z) = /S Z =0 (22)

Now Zc_ also depends on ‘Y_“'z whereas the Lagrangian is the partial

Legendre transform of Z(_ with respect to :L;_Sz, —5 ‘% ) %_

ﬁgf is now a linear functional partial differential operator of the form :

/S,-_fdx[T 3 S - LS oy IS ,,(mleg
—§<&%S SS >]QO (23)

The transformation law-(lg)ls easily converted by translation and renormalization

of the field variables into the more conventional one

Sq; =-Leyc
8¢ = A2y, rv)C (24)

SA=
Sc- l( *f?>

(dZ 42 =2 U;U“ 5 j @- =4 ), where we keep however a field translation

parameter explic1t .

One may ask oneself what is the most general Lagrangian of the
renormalizable type which is invariant under such a transformation , even under
charge coujugerton-and carrying zero 4>1T’ charge .

This problem is a purely algebraic one .The most general Lagrangian of the
renormalizable type which carries the vacuum quantum numbers is, up to a

divergence , a linear combination of the following twenty six monomials:

74/P. 634
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0 P, v Yy 9 AL 20) Cc

Dy %z, 1) A/* ¢, ’3), ¥, 21V C9c

2) ¢ AR 22) €¢@*c

3D ek 13) A o A 23) & e

2_ —_—

4) CP,Z‘P, 14) P‘/»A g 24)Z A, fuc

5) 9, A5 A p} 25) e Qe (25)
}’ A

6) q> gy H}?

Ny sp w)@*@))

3) 9L, ’a),ca 13)@9,, )(’a A, -3 A)

9) (RS A 19) (

Its variation J%dg» under the Slavnov transformation (24) is of maximal
dimension five, carrying the CbWT charge of a < ghost, odd under charge

conjugation . It is therefore a combination of the 23 monomials:

H 2y, 1) T A, D TAALS,
DG E " TR.91, 2 C 8 ARy,
3) ch 13) E@’H)‘w‘l 23) CAJ‘@,DJAP
4) C(PJ (.Px ][&') C%}Af Lf‘
5 Q¢ 15) A 9,

- 3 : — re
6) C’LP} ‘Pﬂ.., 16) Ca}*ﬁ}" QPL
N CY ¢l 17) € A, $, %9, (26)
8) < ae, 18) &Ry,
9) € ¢ D¢, 19 ¢ARce
10, € 9,3, 20) e en% %A

One can however verify that the last three monomials can never occur as
variations of some monomials i11Eﬁ£25) whereas the first twenty are such
variations. It follows that the requirement that fz be invariant under Slavnov
transformations is expressed via a homogeneous linear system of twenty equations
whose unknowns are the coefficients of the twenty six monomials listed in Eq(25)
As a result, the most general invariant da can be written as a linear combi-

nation of the following six terms:

10
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2)

3)

4)

5)

6)

where

In other words,

:I/)P-:?»"'Qﬁf
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C“;w Cro = (3A-ADGA-9 AD
D¢) Dy
¢ P

¢- qz*i;;i4§ S/,,Elfy_fugq;
2

) Tl+0eV +PRY
.g—%D§VJ’4

is of the form

* 2 . %
;ii:: - E%?ﬂ Goo C%}‘v + Z, (ja}ﬂD) :BL&F s R ¢

-glee) - (e

* (%éA/’A‘f'éCJ"«SELﬂ.)

(27)

(28)

(29)

The last term which is conspicuously absent from the classical Higgs Kibble

Lagrangian has precisely to do with the phenomenon previously alluded to.

Its presence violates spontaneous breakdown without spoiling the Slavnov

identity . As we shall see later , its absence can be imposed by requiring

suitable normalization conditions on the Greén functions which allow to convert

the unphysical parameters E?ﬁ x- //p?xla,) < 9, ﬁS

into

parameters that are needed to interpret the theory in terms of particles .

11
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In terms of the variables appropriate to the case of broken symmetrx5ﬂ29)can

rewritten as:

£=-20 6, G - 23004 - 2038

28 (630 (G028) SRR (0

. qif)] +/f? [(ﬂz+-ViY}-%i'} - 3/{:(ﬂ:4.v:;+_%iz]z

Z[ Eﬁ%fiz) . ECCH?L(‘Q«L\T))C]
_ 8

o [ Bdr-ze 2]

We shall now impose the following normalization conditions, which for reasons to

be explained , we split into two groups:

Unphysical : < CPJ > =0 : (0)
2 v
rc'li (p’:qu)—(; (D
Mee (Pema)= 2
Physical Mo, (F=M )=0 (3) (31)
AT ©
FRTRT Cbl-; cm?‘): (@] (5)
P'ﬁTAT(P’E WB: Q-A =4 (6)
E‘ATAT%(W’\:M\,Ht): 2E M (7)
= (8)

F.‘ Anx(f"L*‘ e

<6 (e, Do }‘s!m?,
Here AT (resp At ) dehotes the }r;;sverse (resp. longitudinal part ) of A;

‘#xpressed in terms of the parameters specifying 25 , these conditions read:
1- 3
= = —<f +
<¥r>=0 ZU'/-L U %fi )
n (1)
M. = ga\r+{z,az

74/P. 634 12
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A
Z = = (2)
< ford N
=2 (632 ) (3)
\
2= % = “
M [Za.zlum-o—p} Z, (5)
ZA,T' 29 ‘:‘-—i (6)
2 =g (7) (32)
-1 Tpa- Lot
' de o
e r ¥
AL‘R_ B (Pz(Px Pﬂ-’mc’:

- <(F‘-5’“~P*XF¢‘3’“"%»Q .

T P pav-pe S

’(%le‘& =0 (8)

This last normalization condition is well defined because the C&TT‘ ghost
mass turns out to be degenerate with at least one of the coupled ( HL) P, )
ghost system . This is a consequence of the Slavnov identity , as shown in
appendix III . On the other hand complete degemeracy of the ghost masses
is precisely the condition for spontaneous breakdown , ( @>=.CD ), except if

-f., ol 2\ , which characterirzes the restricted t' Hooft gauge, excluded
here and eventually recovered by a limiting procedure
The system is an algebraic system which is invertible and allows to solve for
the coefficients 1in the Lagrangian in terms of the parameters occuring in the
normalization conditions, This leads to a particle interpretation of the theory
in a Fock space carrying an indefinite metric due to the Fermi character of the
ct)’ﬁ‘ ghosts and the non positive definiteness of the( f}L) q%L ) coupled
propagator matrix .

One can easily generalize this analysis to the case where 42 ;l.{il)

Q, ;44 where the theory is again determined by the Slavnov identity and norma-
lization conditions, _Q;? and fia being left free . Although the

corresponding algebra is not illuminating and will not be reported here , the

13
74/P.634
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possibility of such a generalization should be kept in mind for further
reference .
We are now able to describe the scattering theory : the Fock space

is determined by the quadratic part of ;e,, the corresponding in fields being
solutions of the derived Euler Lagrange equations , Within this Fock space we
may select a physical subspace generated from vacuum by application of

%Zi- f\iu ). Physical states should actually be equivalence classes of such
statfes modulo some zero norm states whose structure will be mentioned later in
connection with the questions of the unitarity of the physical S operator and
of the existence of physical local observables .
The restriction to the above defined physical subspace of the connected scattew

ring operator is given by theLSZ formula :

. > | dx X, ).5.
S = ? xxr[,‘,fd d}(tﬂlﬁx) Ky o

+ A ("/%)SST )} Z17]
V

= Z Z (1) (33)
bl =0

—

c

pha

where , in view of Eq(3I,3,4,5,6)

K, 064 =(0+ M) Sep
K ()= (39 ~%% e g ) Seop

It is typ1ca1 of the spontaneously broken theory that the physical scattering

(34)

operator does not depend on the parameters which specify the gauge . In other

words,

?Sphse - o A3 b _ o
¢ 7 v (35)
The first relation can be proved as follows:
?2%% LAY
———— S =
P P"‘:) ?F J-o (36)

5, (8 g el =0

P.634
74/P.63 14
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since the expectation value of<§.between physical states vanishes because of

the Slavnov identity and those of & and < because of AP'“‘ charge conservation

Similarly,
DS e DZTx]
2% 2y 53 lgt»o ek

\PAK <_C_§+ E(The)(x) -

4, (i’iimf +§c)(x) ,:‘Ys:—o

-5, 4
Zibgr 3

= Z}ak“:)"b ‘:(iiu

This concludes our review of the tree approximation .

II PERTURBATION THEORY TO ALL ORDERS:: THE SLAVNOV IDENTITIES .

The extension of the model beyond the tree approximation , proceeds

(5)

in the spirit of the BPHZ renormalization scheme, via an effective

.Lagrangian of the form AF
eff 2 _ .
:E C'(f/l/l)r' jiq C(‘f)“—AZ,;(%‘ M[c&p4] & c)
w2 N[egl+ Lo+ S0 ¢ LA
+§c 4\—% e
2ff
= f((ﬁ)(’y(—)_‘!_;;te (38)

The corresponding Green functionals (39)
L LN-( T« d"

Z(3,1)~< Toasp [ [, 310045 ]

and (40)

Zaa)-EhZGa)- BT £ ff,&,x.m)m])c

74/P. 634 15
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are expressed in terms of Feynman graphs in which the propagators are defined

by the quadratic part ;6& of ﬁ(Eqs.(’iO 31)) and the vertices are given by

f\%: i e 3 @)" Mq ﬁo
ot I (41)

The substraction procedure which defines the time ordering symbol T in
Eqa(39,40) being specified by the N prescriptions indicated in Eq{38).The
coefficients of the Wick monomials in ;82 are to be considered as formal power
series in %L , and , of course, }?l should coincide in zeroth order with

( Eqs.f31) ) .
We shall also clearly restrict ourselves to effective Lagrangians even under
charge conjugation and carrying no *fﬁ' charge .

One can furthermore immediately specialize Eq{38) by making the choice

2= 8=4 =0 (42)

which corresponds to fixing normalization conditions on the fields coupled to /] .
We can also define ;ﬁe gﬁ so that no linear term is present , thus autggé

tically fulfilling the &ermuiisakion condition (31,0)

<;sz S=o 731.0)
We shall have however to keep in mind in the following that the allowed class
of Lagrangians is that written down in Eq{38) and R€Q£) is a linear
combination of 25 terms which are listed in Eq{25) (excluding Eg.(ZS,O) in view
of Eq(31,0)
The question is mow whether one can determine ﬁq# so that ZCC_X_)E)

fulfills a renormalizes 8lavnov identity :

S 2t m)- j&x[s,.}g 23,5, + L8 1Y

(a S +f§ )JQ‘JZ,Q Deo (43)

where & ?/ ey )__ y —QLV are formal power series in .t
We shall evencually require that the normalization conditions (31) be

fulfilled .

16
74/P.634



- 260 -

(7

Now, according to Lam's '~ ° renormalized action principle , the Slavnov identity

(43) expresses the invariance of the effective Lagrangian under the renormalized

Slavnov transformation
S;%i ‘JLEELin}PLGL:l
S(?l :’1(@1 le(ﬁa]“ m Z)

§ A, =gE
Sc - A(@UAT )

(44)

Sz=0

Indeed performing on an arbitrary effective Lagrangian the quantum variation (44)

according to the quantum action principle yields:

: /3 Ze@_-/ﬁl) = A ZCC;Y.) %) (45)

where the left hand side comes from the variation of the source terms, and where
"{S is precisely the insertion of the quantum variation of the effective

Lagrangian- yf (e 2;) . It is a consequence of Lam's analysis that:
-

A g._fdk Ng [/a iqéif}’l) + t@] (x) (46)

of
where /% 76 is the nafve variation of the Lagrangian , and ]&'CB
sums up the quantum corrections. Because of power counting and selection rules.
ZS is a linear combination of twenty three monomials listed in E-. (28),the
coefficients being formal power series in i{’ and in the coefficients
of jg as well as in those appearing in E®.(/4)

. The symmetry condition
we are looking for is

A — O 47)

It can be partially satisfied by requiring that the coefficients of the 20
first monomials vanish to all orders in jl the parameters of the Slavnov

identity being left arbitrary to all orders . The argument is that if

17
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where: A ihi'-: o 4 i 7£O (49)

we can write: b
A-dpAZL + R

(50)

where Q’l‘7= §l7+ :QX Ci?b ) éb being a formal power series

—

in 7& Qh , Q b and the coefficients 4 of the Slavnov identity ,
and the quantum correction t& is . not of the form 4 i , namely it involves
the last three monomials in Eq(26). By the implicit function theorem for formal

power series , (cf. Appendix II ) the system:
e+ b P ch Cy Adeo o

is soluble for gb

£ is thus now determined in terms of five paramerers (because of
(31,0) ) and of the five coefficients involved in the Slavnov identity which

now reads

/8 ZCCI/ _’1} = <€4 A,‘*’CLAZ* %A\:Q Zc@;fo(sz)

where A’” b). ) AG (previously numbered 2!,22,23) are the last three
terms in (26), affected with the NS prescription .,

Now, obviously, the right hand side (52) has to fulfill the compatibility

Az - [ [E(an 3L PR o Z©
= —j&x [%C/ant)}(x‘) z°
= At e bes A)E
= [A4 ¢ bre D, ey Zz<

(53)

18
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Now - - l-%/ A‘—} Z_C:: [A AE + &X ﬁ] zc (54)

where ‘QAL‘ is the natve variation of the monomial (\. under a Slavnov

<

transformation, to which dimension six is assigned , whereas ?‘- is a
dimension six inser#ion , carrying two & charges, even under charge conjugation
angl whotse coefficients are formal power series in :& and in the so far
undetermined power series coefficients occuring in ﬁ, and /g , as

a consequence of Zimmermann's reduction formulae.

On the other hand , the C{DT\_ ghost equation of motion is of the form :

(M, )@z [ia,aws +d8, T8 Joz ] -

—

(55)
where d f are formal power series, and (3 is a source
coupled to
— 2 L— —
€ [, nige) ah )
Thus, integrating Eq.(®)through % , one gets
. o — <
j&x [%Cm %)}QO A =o (56)
Noticing that
J’&k C%g >®3£‘ "O (57)

as a consequence of the invariance of ‘-‘E (T f() under the variation

8‘3 =QAc
and substracting E4(56) from Eq.(53) "yields :

far[§Ga- 404, - T8 )]0 2o a8,
':%,g e, (A :‘Agf *XPL)Z.C(‘Q‘/@) (58)

We now express zc in terms of [ by Legendre transform , thus obtaining :
) — 1 ' 7 = 1 - .
for [ T8 T Do B8 8, Tml_
?& (3 FS:;L)
3

D e (Ab R ) =0 | (59)
4

[4
-
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Let us now write

F'; fa%(§/a_c>+€:é + UQR T( (::
rd

occuring in I? are necessarily radiative corrections. Eq(59) can be cast

where it has been explicitly noted that the corrections to

into the form:

[txoe [@d-Faree e sl A8 T

+2¢ ¢ A ra);zcﬂ_*‘ 2e, %»B;E A

(61)
A P(d-ga5, 8, 1 )
where <i> is a functienal of the fields which is linear in the
/
indicated arguments and lumps together contributions from I? and

(
from the ;i’&' Differenciating in turniBeq, (6Y) with respects to the fields
occuring in each indicated monomial , and setting all fields equal to zero ,

yields, in view of the independance of these monomials:
d-7z,=t P_4-§&, £ )
£ = & P, (4-3%,€ =)
£, - K b d-5a,£ )
Pz =k Py (-5, £,2)
e = b, Ctﬁ—le/ﬁ)& )
e, =t P ¢d-3¢, &£,
;= V(d-F8 € >

(62)

n
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where (f)* (i=4,2,3) )q{\ (c=4, 2, 3) are linear in the indicated
arguments, formal power series in and in the remaining parameters. The
situation occuring in the tree approximation and application of the theorem in

appendix II1 yield:

d,g_-_é;"::— 6( —_ CL.: C3 - g){ :fb:,g;% - o

(63)

Hence, the Slavnov identity holds, and , up to the mass term the E&fﬂ“ equatg?n
of motion involves the same coefficients and monomials as those occuring in 1&
The equality of the two mass terms will be proved in appendix III in connection
with the normalization conditions we shall now consider .
Namely, we shall show that the normalization conditions (31) can be fulfilled,
whereby all parameters are determined except & and jé;_Eq(31,0) is already
fulfilled.Next we try to imposeEq(3],i,2,3,4,5,6,7l Looking at the algebraic
system which is soluble in the tree approximation , we can apply once more the
theorem of appendix I1II, because this system is perturbed as allowed by this
theorem by higher order terms occuring in ra%?i,,lfkfy4f, TZ:E?'; LVATATQZ

_ The last normalization condition (3 ,8) is more delicate : one has
first to show, to all orders in A cthat LI" (E "A"“f(P L—-,Ll) is finite
at F;}; Mng . The proof, based on the Slavnov Ldentltfasﬁd Eq(31,2) is

given in appendix III, As a by product, as previously announced, one obtains the

(e
last equation connecting ’%b and the Cﬁ‘n' equation of motion(Eq(SZ»

namely the é%> T equation reads:
&
L/YLS )(X)Z <(W\§ )QcJZ_ = E@ i

In conclusion , once the Slavnov identities and the normalization conditions

have been fulfilled , there remain two free parameters, & and <iz; s

which will not be specialized any further .,

21
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ITI- PERTURBATION THEORY TO ALL ORDERS:GAUGE INVARIANCE OF THE PHYSICAL
SCATTERING OPERATOR .

The normalization conditions Eq.(3))allow to interpret the theory ,
in the sense of formal power series, within the Fock space defined in the tree
approximation , and the formula giving SSC}D S in terms of Z?C?élj
(Eq.B].),), or similarly Shhﬁg in terms of ZCK_) remains unchanged
For a technical reason which will appear later we shall from now on work with
the non connected Green functional .

We now wish to evaluate
DS hEﬁs ) 2 Ei;gbfy

(6)°

renormalized action principle we see that

2 = )
£ B/ZCT&Q_A?‘Z()@) (65)

8
where A is one of the parameters 0() WW< and 4£3)\ is a dimension four

insertion obtained by differenciating i < (vl) xgj.@th respect to
X, L

namely an operation which alters infinitesimally 1E,Cq911)w1th1n the class (38)

Using Lowenstein's

3

Using the Slavnov identity , we are going to show that ;CSAJ can be written
as

i Ao Zé CS’L‘ AS. (66)
[f& :Ei (: A * ¢ IS “

0/
where the Lﬁ; (= ‘{.. 5) are eight insertions such that

o

2. N 20 [ (67)
Plge e

.and leaving unchanged the physical normalization condition (31,8)

The other physical normalization condition® (31  3,4,5,6,7) are left unaltered

as a consequence of Eq.(67). In the following, we shall call these insertions

non physical The {S ) o, (1= 6), are six symmetric insertions,

<

namely such &hat

LA Z(3 n)=0 (e 8)

(68)

22
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Thus applying 'Eg(65) to the physical normalization conditions (31,3,4,5,6,7,8)

yields a Itnear homogeneous system. of equations of the form

Z‘: CE}A\A& > CL):'B/Q//SJéll,&J (69)
1 A

The forthcoming analysis shows that
dot || A Cli#e
(70)

since this happens to be true in the tree approximation . Hence it follows

that S/(‘
cf/l = O

| (71)
and the gauge invariance of the physical S-operator follows from Eq(67)
We now construct the decomposition of K\l given in Eq(67)

From the definition of A)L we have

9x(’§Z>= N3+t LA B =0
_{:[éw,g_] = %,3 : (73)

Thus we can write <

A A\Jr A/ S (74)

where Z&l is a partlcular solutlon of Eq(73) and .ﬁi\'ls a symmetrical insertion

(72)

so that

< We shall first construct a non physical Z&\', and we shall show that
any le- is a linear combination of nine symmetrical insertions three of which
are non physical the remaining six satisfying Eq(68)

<
/%:Z(: (_’,L- /B': (75)
. O

Let us denote

where
c.=H /Ac Jgk(?f 35’3)‘*9
B, A, - (3 5, o
C= 2, )a, = [de (3, & Y
Cy = M JZQ*CS S% IS (76)

Cq -8 AL( j&kC@g >Q<)
Cs=-8  ag-Jx(E of)@

23
74/P. 634



- 267 -

So that Eq{73)  now reads:
CA{\/’&) Z‘ 9, C .4_ oL 77)

Now, :here exists a basis of covariant non physical insertiaons ZS i

(im7, ., 5)satxsfy1ng :
.{% LAL./);] = A

Indeced ler us nensider 3

QA% f (g © E(t )00 (i=4,5) 8

'
where the c; &are defined in Eq»(76) and o in Eq(55)

The symbols S are defined by:

g,
Sq = @ 33

S (79)

3 = 3,
The indices (;'i) indicate translations by the e.g. space like small vectors

rz

We introduce the insertions:
- /S - } (80)
Zxdﬂi-zzi <;3£/£:2; {:15) C;%}a 253

and we have :

A s))g-]Z :’% [/SZJ Q}‘lzlz (81)
i[9, s [;(rm%)]@x”jo\xg ((mgg)w(x; cjo\xfi(;:ﬁ e

where the connection between /§> and the T equation of motion (Eqb&) has

beea used

|-

It is shown in Appendix IV that, in the limit & —>« the finite part Z&é

of Z&. has the same covariance as Z&‘ , namely
1€ L2

j;(x [%Qa) o 1(*) Z (J ”z) (82)

It is furthermore shown, in appendix IV , that by substracting a symmetric

<y Ac Z(ll’_'o =

g—>o0

ingsertion , which therefore does not alter the covariance ;;;/5“ , one obtains

o
non physical insertions which we demnote Z&\ .

24
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We now look for other non physical insertions which are easily obtained by
applying the renormalized action principle (6)
The following variations whose covariances are indicated provide us with the

desired insertions :

gc. oL yields the insertion

A= B R (B0 (83)
S w

2) the operation

with

=% j’;&x C"L S@BQ@ (85)

corresponds to a variation of 2, in the neighbeourhood of

/ . . .
ggl.:a{ 2 = © and its covariance is given by
/A

%‘_[A%)/g]:’ C.L)Az (86)

3)  the operation
iy Ax ( S)(x; (87)
AY (71'2 )
2L
corresponds to a variation of Qﬁ. . 1Its covariance is given by
= - C
A [A/y /{S] A, (88)
2

4) the operation \
A 7(7" jo(x ("? S 0O (89)

corresponds to a varlatlon of {» . Its covariance is given by

[ A“/gl,.—c)g (90)

It is obvious that all of these four insertions leave all physical normaliza-
tioE«condltlons (3t,3,4,5,6,7,8) unchanged .

|
Z&A is thus a linear combination of £§4 Z& K& Z&

) /)
/
which solves part of Eq{74) %x 7; 74

We are thus left with finding a basis of symmetrical insertiens.

25
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We know that, given the Slavnov identicy Zeg%&P /fl) depends on nine
parameters , namely six to specify 7€> qj) , three to specify the external
field dependence Ci'l. Z,, %, 21), -

This is indeed true in the tree approximation and therefore , by the theorem
of appendix II, to all orders ,(Of course, this counting does not take into
account any of the normalization conditions (3Y), including (31,0)}.As a
consequence, there are nine independent symmetric insertions

We first construct those which respect the physical normalization conditions

The first one is : o
NP NN

A’z A +Ag‘ (9r)
o 4 <

The second one is generated by the variation SR{: :.Qeﬁél

o8
A; CJECQ‘&K (92)

The third one is obtained by considering

Byt Ji 3,5 o

whose covariance is given by

%[ACPL//S]: A, + E3 Ay - b e

From the foregoing analysis: . o

o8

A A P AT (53)

= + /Z P (3( g

2 f. 4 2 1
is symmetric, leaves the physical normalization conditions unchanged, and is
non zero as can be seen by a direct calculation at the tree level

We are thus left with finding six independent symmetric insertions

By the general theorem of appendix II, five of them are determined by the terms

@ S
of t;e (excluding the one which leads to [&5 ) The sixth one involves

Sru VO (s e N PO ’
A5 G Ty g

since
\ / - S (97)
£ [A, A= Cotom S hm -4 Gh -G R eA e
it follows that p
S o » o
=A -0, - - 3 2N -
A 6 AA A‘{l A"(l <, A‘Z} " e AS (98)

is symmetric,

'Y
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It is straightforward but tedious to verify in the tree approximation that
these six insertions alter independently the six physical normalization
conditions(31,3,4,5,6,7,8).

The gauge invariance proof is thus completed . It is extended in appendix VII

to gauges which contain a quadratic term odd under charge conjugation .

IV- “UNITARITY OF THE S OPERATQR

Let us first define

-2 21
3,0 2, 2

(99)
where the notations are the same as in Eq.33). According to the
reduction formula , the physical S operator is given by

Sh B S (“'g;)\ (100
} %5 %QUS -—O )

A

The contribution of non physical particle states to physical unitarity is

explicitly given in the expression :

ghnm&xh{tjgk[s LS, LS]@)S (1)
-5 <xj&ka=&3

Lj 'S::£>

Here L and 1*& S; are respectlvely—ihe differential operator occuring

J=

(101)

in the asymptotic fleld equations and the positive frequency part of the
asymptotic field commuctator.

S (3) U SCT) S (xm(m)s LS)‘ (102)
e P e P P oo

27
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and evaluating

D) SMS(J) QLC\) S C—j\ Seo (103)

It is shown in appendix V, by exLenslve use of the Slavnov identity that

SM () UM S %S(I) oo

ﬂmS (r}ﬂﬁ[g (TS L)S ]axm}u@ guﬁu)\

> Jcg)
= 3? (104)

where
¥ =298 +F S_S
v \\C%) )‘\' 2, (105)
534- denotes a regularized version of §;+_around the ghost mass shell and the
-~
index ? fL labels the 'gauge-~gauge' matrix element of L_ f;f [j as

indicated in appendix V.

Integrating Eq(104) with respect to )Y yields

k, 03 (S] b § h;x),mx,,g fAyp”j)(LS*% { o g 0 o

Further use of the Slavnov identity according to which , the gauge operator

decouples from physical states finishes the proof:

Sc I (
S@H/H)SM(J)) Lﬁ?) “T)L
Jr

= g S (107)

BOs  fegs

Unitarity follows from the hermiticity of the Lagrangian

28
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CONCLUSION . OUTLOOK

The gauge invariance problem has been solved for the abelian Higgs
Kibble model treated in a family of gauges odd under charge conjugation .
Emphasis was put on the fulfillment of normalization conditions which allow the
interpretation of the theory within a Fock space with indefinite metric
This has in particular allowed us to prove the unitarity of the physical
scattering operator and to construct some physical local observables.
We feel however that one should make a more complete study of the zero norm
states that are allowed in the definition of physical scates as equivalence
classes. From the technical point of view , it was encouraging to see that the
theory was widely controlled by the algebraic structure of its tree approximation
thanks to the repeated application of the implicit function theorem for formal
power series . This situation looks quite favorable to a future treatement of the
non abelian situations, at least when no fermion anomalies are potentially
present. This last case will doubtlessly call for more refined techniques,

involving the Callan-Symanzik equations which have not been included here.
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APPENDIX 1 : NON ABELIAN GAUGE TRANSFORMATIONS: CLASSICAL THEORY

Here are a few details concerning the classical theory of non abelian
gauge transformations: the gauge parameters /\ as well as the 4>U ghost
field <C are labelled by the indices of the dual of a Lie algebra,?f with
structure constants g . The #DU ghost field € and the gauge function 9L
are labelled by the Lie algebra itself .M= §§fls labelled as a linear
operator from E;/ into 2?’ . The square of i% is the Kiiling form of 3j
at least for the non degenerate part.

Going from the Ward identity to the Slavnov 1dent1ty now involves an extra

term: j:;lxdaﬁ{% C:(x) __31.,___ C(Q)CCU)

g/\@)g @ (AL, 1)

which , using the group law together with the anticommutativity of & boils
down to g%(xj S —% _
4 d §_;’</ ; CE)C ?3)
_ A dx a @, 0 3 @5 4 2
21 3
or , using the equation of motion:

¥ o_p
4 1dx 2% C o) £
2 J °e(~5 ¥ (AL, 3)

The corresponding Slavnov identity can then be interpreted as expressing the

invariance of the lagrangian under the transformation law:
— &
SPer - kftg ) e
£ _R =T
—
S e )= A ?}*3 %@(xr%wf el T

where A, is a space time independent aaticommuting parameter carrying no

index.
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APPENDIX II. The implicit function theorem for formal power series

This appendix is devoted to the statement and proof of an easy theorem (11)
which has been repeatedly used to reduce the proof of a property to all orders
of perturbation theory down to the verification of a simple algebraic property

of the tree approximation :

TH Let F CXJ ”/X”} ';4) /‘J’P‘)—D (L 4' m)be a set of algebraic
analytic equatlons which has a unique solution 'K,L’ ‘F %l/ )‘é?)(analytlc) in

Q‘é“ ‘) (fP in some neighbourhood of C‘} y LA
Then the perturbed system

AR TR ROR IS

where ‘a[ are formal power series in t whose lower order terms are

003
9,

possessesF a unique solutlon

(‘OC-{I //) P)

where the <ID /) are formal power series in :‘t %4 Iy %)D

and the ‘E ’S are formal power series in-XJ/‘,,J f‘y?u'/% ,"f,]/

r

Lee 7= X0 - F (B 8D
F;'. can be expanded into a formal power series in %‘\L #(. , whose
term linear in % is /=

PARRES
(ax _%_d

J X ‘(’ C %
where, by the hypothesis L= LEI/ j-P)

oty
dox || =3 % =
is invertible in the sense of orﬁxal power series . Hence the initial system
. )
3 Ctj (% Em/zb)"J_(iFJ
Q?S‘ are such that 4%03“)0/‘%4/"/ j{ojo
i. e §- xp (% -/EM)%U“/jh)£>

can be cast into the form
AP
BN Ixp= P Y, /‘5}.,)

where the fo‘{'mal power series

-—

with the same cond1t10ns on \P . This system is easily solved by

iteration .
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~-APPENDIX ITI-

We show here that, as a consequence of the Slavnov identity, <<('AA 1 4;:)
is finite at F m»q and thus can be required to vanish . In other -
words, the C@T‘ ‘ghost mass is always degenerate with one of the AL/ ®,
ghost masses, Complete degeneracy then characterizing spontaneous breakdown,

We first write the Slavnov identity in terms ¢of the vertex functional :

)= K~C’)XP£SS+§PS|
()= Jd=( ) [30+5

me§r-afyll-fe Lo o

(AT11I, 1)
Within the A (f channel, we get :
b -5 L=yl ) =
FRL @i zmo‘) |’ (py=vo
\OJ'F» %’qua) &{D ce bL Af@’ (AI111,2)
where
2 = S LM
’XCFJ' “2 E"qu) * (AIII,3)
Thus
P‘P‘Pcﬁ) = B:i(—a;j [Lb) (Z c()(P)-—:ﬁ_ [;C(FJ] (AIIT,4)
T ' f L
SO R =iysp [l weap L $
Hencflyr /d;‘)A"F (}Of Af‘fy [b ce

. Nt (AIIL5)
Do . o [

(S A
ar @‘&(F) @ (FF-F )
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Thus, first

- |
[ :D is finite
cc

-

. m
and furthermore 1its tanishing implies

ap-§@ee L #)] = a - 5YP)| = o

« [ L 3\
=U-*q :m; (AIII, 6
since P %O , provided one stays away from the restricted' t Hooft gauge

Cp=aev) 6

Looking now at the L&T propagator equation

[& Fm‘@u—l’f}é)]qéiﬁj —E %S e, = (AITL,7)

= =
the absence of a pole in the left hand side at }:>—;\uq yields:

— — YR —_— |7 2
— fL_ —
- Fa@ap)-54, [ ( =
a‘o (S }L) 75 ek \O) > (AIII,8)
A $mq 3
after multiplicationof ¢AIII,7)cthrough {_’_ and use of
F [
qé% v Eec (AII1,9)
Hence comparing with Eo(AIII,6) , we get:
(AIII,10)

/1-_—.0
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- APPENDIX IV -

We have shown in chapter II1(Eq(81)) that, in the limit € = O ,
the commutator of Z&Lﬁ- with ,ﬁg is equal rto C%i’&d . We thus infer
that the infinite part of éxcz as given by the Zimmermann-Wilson expansion is
/

a symmetric insertion with coefficients going to infinity as €& -=» o

N
The finite part A¢ will then be given by [/S/ Q}] where de is the
finite part of )

P Q,L,z
It is possible but lengthy to verify these statements by looking at the
Zimmermann-Wilson expansion of C;)Jz_ . In the case of - the
g
/

calculation is however reasonably simple: !

‘fdx [Tcpz(s) e(—g)](x) :i\:\l‘PkT [ﬁ:@méz)}m Ng[éﬁ]@pfdx 7¢)

N —_
< [T [ty calom £ S0 | b N[ cesoo]

o
where the second coefficient is amputated on its Qﬁz & arguments,

(A1V, 1)

The only singular coefficient in this expansion is

< J&T LSESISINC Ay (av12)

which diverges logarithmically . The singular parc of ZX5_€< is thus
: /
proportional to [‘_/S j:;h(/y (Xﬂ‘vj;b‘SQ/)WhiCh is symmetrical (cf{Ea(%2))as
) Y3 A
expected

By a similar but more involved analysis one can evaluate the singular part of
3 y p

. 4,2
which assumes the form

w(z)j&x ;[Qg +wzg)[féx (:S:‘ S\Z + %1+ T;%: ('14 %;r (g, ”{Aé;>(>() (arv. 3

P ALY

where W and (O are , in the limit §$ =@ logarithmically divergent
The resuliinpg finite parts are however not suitable for our purpose
because , due to the occurence of graphs which are L€4 one particle reducible

they do not vanish upon application of the operator jzkaﬁp (c§ 7 i
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Since the Q. A carry the quantum numbers of ctPl. we have:

o :——EJ Ak(,-JAS X QZ
e ™ itk

}L‘Js_ A I (A1V,4)

where (QJ

Mo = 4<T N[EEIE @, P> 19,

is involved in the expansion:

%(F) <TN[€‘€]@Q «mpé Z* (TN[‘“f’l]\g)Q>Z: (AIV, 6)

where the upperscript I',( denotes the set of graphs which are one particle
irreducible with respect to the pair ZCP )Q

Since S‘ﬁk [3} g‘J + gql 1@) is obvipusly & symmetric insertion ,

, Q)
adding 2, [" O (MY S‘dx [T,Sg 7, Sy 30
does not change the covariance of /%Q '3 and produces insertions which leave
the physical normalization conditions(Eq’ . (3,4,5,6,7)) 1invariant .
o

We now want to show that the insertions A‘{ feave the normaliration condition
Eq{31,8) unchauged ., These insertions can be replaced by A.i: [‘S{Qz]modulo
terms which trivially do not contribuge to the caiculation .

We shall show thar:

E'%ﬂa(a"* D‘““)z—_ G, D

cc re r (AIV,7)
Ay, (P¢ . . [&
remains regular at the C£>_“_ mass, upon insertion of O
Ai (C'ca:D) - GGE D <Z[A3 613
3\
T[T The Sen e, } )
i q - 12 R (AIV,8)
cc . - e
R C:
Ae, 6% Cf‘ﬁAL ¢
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where the matrix || Cf\,(\ is the inverse of the matrix || 7
. ? _ A) /g )L)
By commuting 4% §§ through we get

[4,G )= <TER GO Q>
=G BT e goQ,” (419,9)

where underlining means amputation.

Similarly

(A <, D -2 D, [<T EprGe Q>
< TR [e N[Eg)+mE]e Q; D
BT QA T Q>

Thus we cnly kave to make sure that the bracket is regular at the 4;ﬁ' squared

(AIV,10)

mass .Now the first term is singular due to the occurence of the e% propagator
and the last two terms are sgingular due the occurence of the d)jT‘ propagators

The S%_ propagator can be factorized using the Slavnov identities:
<TG > =-< T (L NEg1+m )@ >
o kN
= T e &>
<T %(F) ?}%&o}) P < ORIt (AIV,11)

so that:

<T E G Q>=-<T Eprtes @ O<T(g Nizg) +F e <6
£ <T Ep3Aer<T & S

(A1IV,12)
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Now the c}>T equation of motion allows to replace [é__ N&[-_?.“CQ] +mm Z}@)
by a term proportional to E] €@ Up to a regular term , so that the factors
<[ Ce C')_'qag> undo the € amputation involved in their factors

and produce an exact cancellation with the last two terms in Eq(AIV,10).
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- APPENDIX Vi~

This appendix deals with a number of details in the unitarity proof of ch. IV.
We first discuss the properties of the asymptotic ghost field wave operators L~
and of the corresponding asymptotic field two point function ES+.

Within the coupled C?,_A/-‘)QPL) channels L can be taken as a polynominial

approximation to the matrix

where

G= &Yt T
%’:,&g,@ + P A (AV,1)
Denoting x,f,". fm: , and taking into account : (i) the normalization condition

(31,8), which implies the occurence of a double zero in det L ar x=0
(ii) the lack of singularity in the‘%ﬁipropagator ,which follows from the
Slavnov identity and implies the occurence of a double zero in {57 § x=0
We can pafametrize L_ in the following form: g
X x
L= ey + Q5
X ©

k'S
The last term giving corrections of order ¥

The corresponding matrix propagator is: (av,2)

q?i C%%)__il_& © -y + Regular terms (AV,3)
g3 Cg7l EX\yx Ao

and the S+ operator is given by:

s © ¥ 3 (AV,4
A% S, = 6¢ ¥ ( 4)
so that ‘%Sx '%130‘)'*-%;8?‘)
' P o PPN \' 25
ALK S+ Soox +‘x"§kx)x]+$ax 0x oy % kex

(L S, L )= 0o
¥ X? Ser X o

—
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- o
where the symbolsX, X are to remind that the usual identities s ng()c )(S(X)—’:O

cannot be used here because this kernel is to be tested with functions which have
poles at x=0.

Concerning the Faddeev-Popov fields, let us define

ce:—:. C - " -
@ -25[m+z [, (M)]E (Av,6)
Using the results of Appendix III we get:
q - A 4 /?thuem. Teovug . (AV,7)
N A I < 1 o
and (
it (TS, '—)@— Y ¥ %o¥ (4v,8)
The 4 operator Eq{101)can now be written —s

< S X
u‘&‘ﬂ‘”&w{gf?@) W"g("’*' 9% % W;Fx ot R (aV,9)
8w Su 8w o
S[ I;( P 6%4"3 J cﬁ” J.(B Jg\na PGS
S  Qm
where Sﬁ 18 the :oZr'oce“:f the field ‘-(’ that is used in the definition of

antitim ed functional .

(—-X X SQC)'X

Before pursuing, let us regularize the S functions according to

zs.
S — 3 &) = (av,10)
V'ﬂ‘i N
so that we may forget about the arrows on the X variables,
Owing to the invariance of the lagrangian under the transformation:
C — -
(av,11

Z - < e —
we have the identity ., <~ — g
-“— —b _ a g‘q
g'v g,« - S«» fv - S'vx‘ SN + ~ N ~ 7
J\éep Jz® T ® I OEP 5P JL?’(PJ (Av, 12)

Taking lnto account (Eq(&})we get:

[gif_(w, 2] = SN -+ O(x)

[ M%Q’); ;g} ) #i ] S;QPJ "o (AV 5
ES«J»@%)) A= g%@
< Ay=e
o
39
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which y1elds {

(44 J’%ﬁqoa i 4780 B 9

Sex
\o)C’!I><> Se® SIcage)g SIQ&\’J) 3 (P3 %Ca@ji (av,14)

-

w;&x)[
+ O®©)

Since the propagator attached to the%/ and ‘-Cflegs have only simple poles

VA

the r: dependent term in the righthand side 0f(Eq.(AV,14)) is of order € .
gl
This does not happen for the term involving S~ because the(%%)
propagator has a double pole . %’ '
However we have
-—'—
xq%%c'@ﬁ‘_ﬁ q%((jc\o)ﬂt Regerton Tonue. (av,15)

Slnce the(%ca)propagator has no pole we have:

x S Z= -8 P +Regular terms -~ (av,16)
Thuso§ ] 3-(_.3(\33 :

[4,5] f%%{s T26k§0<)+ﬂxgo<3—

R

(- > < 1
- A x&!}]é X) + %Kivgk)[gj;%%)g ‘qu)*- 3 %‘J QJ*O(E)
jdk»%) Fyx ng [ & S 3

J )P PEORERIS S ‘M»J

(AV,17)

The vanishing of the A dependent terms is due to the absence of double poles
in the% and \€ propagators.

As a consequence we get
[769 /SJ 1‘@ /‘%1*'@(2) (AV,18)
<K

where ﬁ is the Slavnov operator which characterires the anti-time ordered
functional.

—
Indeed Eq(AV,18) is a consequence of the symmetry of both /é, and [/é,/)&]

with respect to the transposition and the complex conjugation of the sources .

40
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We are now in condition to state the follow1ng 1dent1ty

%
(I‘ ) {fd[o eqo; XA”XQO[ ;;%qa) 3%@ S&J&p Tca@

+§~ iv ]5 S}gk (I)\

S
‘eq,) T (p) Sxéﬂ’) 323(\’)

gg‘k (3) {5%&%) Wi’m[f O'(F)’ j 3 ®

Pl
ESRIEY gv%ew] S’féfﬂ
e ol

m{j’a‘r%)\ﬁ"%[gs uﬂ ]gé =)

Sy 2’ LT T ;
5. [5478 ]&
) g’%&Y’)MfQ Vi %Q"’J[ |
< A - \
_Su. e "; A]gd ]+O@}Sk@)\ = 0©)
I, P %(F) phys Jeo
In the first step of this reduction, the()@g term cakes into acecount
contributions of the kind: - - }\.;E ‘
+ 3 ’ ‘ ‘ -\ |
dio 33 S e S @)
ch:x)f P00 Sr % ¢ S D]

The second step makes use of the Slavnov identities

(T)=
l‘(“j AJ ‘ (Av, 20)

%\T)é =0

and takes advantage of the Zero source condition by commuting /& to the left
and )5 to the right.
The last step is a trivial consequence of Eq(AV,18). Going back to the expression

forc)é ; and taking into account the symmetry property , one gets Eq{1G') of

section IV,

41
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- APPENDIX VI-

A CLASS OF LOCAL GAUGE INVARIANT OPERATORS

In order to define a local operator Cj(x) of dimension d, we

shall first consider an effective lagrangian .

()
fﬂﬁ@b f%(f/?i/i‘g)om e N[O ]

where & is a classical field of dimension 4-d.

(AVI;-1)

The first criterion for gauge invariance is

3Zo g O wm

where /& is the operator defined in Eqf{43) . Assuming that %q.(AVI,2) has
solutions , they are in one to one correspondence with those found at the tree
level . They will be further specified by as many physical normalization
conditions as are necessary to specify physical operators of this type at the
tree level (namely modulo the ideal generated by operators which vanish on the
physical subspace ) . It follows that <:> is ambiguous up to a linear
combination of operators whose tree approximations vanish on the physical
subspace .

The proof of gauge invariance then proceeds as usual (ch.III)

Keeping terms of the first order in&), one looks for the most general solution

of
) _
?Q,Z(:‘S:;@)LOJ :%&.— A/l = Ci/ﬂ)uﬁ (AVI; 3))
which is of the form
) s
AA = A/L+ jAk ) [Z" f ®, QO] (&v1,4)

where the second term in the right hand side of Eq(AV1,4) is a perturbation of
the & dependent part of the solutions of Eq(A¥1,z) in the tree approximation

Testing now Eq(AVI,Q)wich the physical normalization conditions which specify

42
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(:)(K) shows that the problem reduces to check that the perturbations of
operators which have nul physical restriction in the tree approximation retain
this property to all orders ,

Finally the stability of the physical subspace under application of
<:)QK) , up to the zero norm states is a consequence of Eq@VI;Z)as
follows from a slight generalization of the argument in Ch. IV:
defining S (W) by replacing CE, /13 by ZC;)@(_)m) in
the LSZ definition of § in the overall Fock space, (:)Qx) is defined
according to

(cDge) = é N E_%

3 —o
+ WK) W=

+ SS AvVI, 5
@ey--522 5
4 SUQQQ w= o
Let E, be the projector on the physical subspace generated by
¢ oud AT quanta . One wishes to show that
g T
t ~ = @ =
. 2 (K E. == @(K) ) o
EO @Q() E:c Qcé) S i ‘j (AVI,—b)
i.e T
T <@ + gf§
§S $S e g SSRELS = B
Soxo Suwy) @ e
where the unitarity of S nas been used
Eq(AVI,7) follows simply from
rr
EO ReE- IS Eo = Eo (AVI,8)

which is the result of Ch IV

amd from the identities

o — e - O -
—O - ;’—(‘);' — T o qu
Sewes Sy QLix D wee
s
o ~+
v < \ (AVI- Q)
% S — = 85 = o
F‘—:/Q - S Z:C)l = e o o Lf.‘)!
S / Aol
) W wso
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which are consequences of the first criterion for gauge invariance :

5 4]
Sw (AVI 10)

and of the argument in Ch., IV ,

Example

a) d=2 c= + 1.

T -
@ is a linear combination of {CP ¢ ,%, 6,@)@@))

A @ is a linear combination onCPe cptpe ) '}ZA%;SO is the term(Xt)
Al
in ’SZCY Y W)

Thus there is no anomaly i.e: there exists one iavariant local opecrator which is

a perturbation of
2 2+
%4—@»4.2,0"?6

which is non zero in the physical subspace . This operator is completely

3

determined by e.g. . + ‘
<ﬂ_ U(.’Q(P Q:S) _Q_\)::,t A Ck"QB

and can serve as a gauge 1nvarlant interpolating fleld operator forQP
).LL

b) d="3 Cc=-1 vector operator

It is trivial that (EL Ci»" solves the problem :
[cugf\,—gwyg},’s}——-c

~ - _ 207 ’

LTy 230,22

H

0
¥
K
.C\gﬂ)
~—

¢

53
(!
G
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Appendix VII

Thig appendix is devoted to the main steps involved in the treatement of an
extended class of gauges involving quadratic terms odd under charge conjugation
In the tree approximation , the Slavnov transformation (cf Eq@&b is now taken

to be:
S“;‘/-}u A& i
8‘*3 = -depc
SP = Le(P+v)C
Sc= Ao A+ R« 64 %)-1G

gé: o

The most general lagrangian fulfilling the corresponding Slavnov identity is now:

£=-24G,, G, + = @S De + f ¥R g (€0

(AVII,1)

> = 6’¢ﬁ1 2 (AVII,?2)
‘ézl—%+5§—/\%C]+F[@”c¢*Z z v Ecﬂl
where now
3G - - 2]+ 0 +e g -
gﬁ')r: MLQ(,‘S) [D+§£U + Qg«t (Lﬂ ¢ )1(’0 g(x_&) o

§ Ag)
Keeping the normalization conditions (Eq31) unchanged Eq(32) is ﬁnchanged

except for Eq(32,3) which now reads
2 I
L (6t )
M=% €;§5u~ e %%,
= =

But due to Eq{32,8) (Fn=C> , the overall algebraic system .Eq{32) is unchanged

(AVII, 4)

We now turn to the details of the Slavnov identity which we shall express in
linear form as inE{43), Before doing so we need to introduce at least one
external field 7{ coupled to <P e, s to which we assign dimension two ar
odd charge conjugation quantum number . The corresponding term however undergoes
a variation under the Slavnov transformation (AVII,1) , which forces us also tc

introduce at least one field coupled to(ﬂil—‘{fi)éi However , for later use ,

A\

S
: i
i

o

we shall right away introduce three fields of dimension one ,E;ga((s‘ 61 ry
e
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Ebupked to three independent linear combinations of : leEF(JEJ“€;/<§3)

C &P F\ }\ 3 and also a field of dimension
dimension zero 4!:' coupled to AjC ‘}C . Thus we have introduced externa;
fields coupled to a system of operators which is closed under Slavnov transior-
mations. The most general lagrangian ‘invariant under charge conjugation ,

4>1T neutral and consistent with power counting is now
L Bc)=2% (2,8¢ <2 & xa
ZZS’—/Z)T/(BJLJ: @D)’Z (Ef ‘c)*ﬂ&{‘ f

+y (@, 96+ Q0 + LA P (B ﬂe AL

- - > = T (AVII,S)
+« U e + VUJC GC)&—t&Q A/,_e(a)xc 4 ng +<3JL€,

TG+ P A T

and the Slavnov identity assumes the general form which will be needed later:
‘ < e -

A2 BZ5 Ja [FFS ~ y[a 0§

« A g% A+ /\3 §0& %3 + d (sg ](xa o

where however in spite of the huge number of parameters involved in (AVII,

the coefficients in ')gd' are always constrained by
.
e% . l; =
-1 oy
because bL*(BRL* (B)z., and CQC o B¢3 (C—_llzg)(

One can in fact verify directly that this is the only constraint on the coeffi-

(AVII 7)

cients of the Slavnov identity
We are now ready to prove that one can fulfill a Slavnov identity of the type
(AV1Is6) to all orders in A& , with coefficients constrained byE{A Tl

Performing a Slavnov variation of the type (AVII,1) on an effective lagran: a.

46
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of the form ™ N ‘£(‘£'§ ﬂ \6 F) ’C) (cf Eq-(AVII,S)) yields:
/g Z = ;< A, Z (AVIL, 8

where the first 23 A' s  are listed inEq26) , and the last nine & g are:

24) Sz&x Lyl

@5) §Ax [ynelw

26) §dx Dy NTE€1]00

(2%) Jdx [y N[ € 3o

@) §dx [y N[Eeg1Teo

(29) §ax [¥N[c Af@,]]@cj
(30,34,32) SAX Lfbc Nq[l\/ﬁ%ﬁﬂ(k) (AVII,9)

After elimination of the AL4 which are naive variations, one is left with an

i ";”" .
~ including source terms such that only AZ« ) Azl , AZS and a linear

combination of A A A , namely : /\
— 33

= -E\jo\k[@ N [ }F fc]}(x) remain on the right hand side of the

Slavnov ldentlty which reads :

<

/g Z = (CL\ Azz* Cz v S A 33A33) Z

Now recall that % is the nafve Slavnov identity associated with the

Slavnov transformation we started with, hence —Jv g = 0O

(AVII. 10)

<
Now compute % Z , which because of this condition has the same form as
the é}"ﬂ" equation of monrion integrated -through % -
We have: 5
< <
e )
/g Z - /S[ » Az.’r"-;.. Au*’fn Aza*cas A3g] A (AVII,11)
The same argument as before shows that é Z¢ has coefficients identical with
those occuring in the 4>T equation of motion, except for the mass term , and
that
- - c =
Cld_ = & = & = 3% () (AVIL,12)

¥ If a monomial is of the form <& M(\P) where & is an external field :o

which dimension 6{ was assigned , Nu[_t M(«p)] means & Nq A[M(‘P)] :

47
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At this point the Lagrangian depends on 24 parameters since 28 relations were
imposed on the initial 52 parameters . Together with the 14 independent

parameters of the Slavnov identity we have 38 parameters which can be fixed nv
the 9 normalization conditions in Eq{31) * together with 26 others fixing tre

couplings with the external fields *¥* .

It is a matter of_routine to verirv
that the corresponding system is soluble the condition & - bz=obeing preseivec
Three parameters are then left free : & 61 6 . The gauge parameter &
could be fixed by imposing an extra normallzatlon céndition on rjzxp

We now extend the proof of the gauge invariance of the Scatterlng oﬁtraCUL

In order to do so , we shall decompose agaln the ingertion iﬁ\h generating »o-

infinitesimal variation of the gauge parameter L according to
A S

A}L; Ah+ Al (AVITI®13) )

and we shall show that it is possible to choose the two insertions l&}. and o
satisfying the same requirements as in chapter III. (Eq(68) and Eq/{73))

First of all , let us write Eq{AVII,6) in the form .
J = -~ Q0 5 < (AVIL. 14
e.’ . N . { ) Q( £ L.l4
32 =12, an Jﬁ[xbé’ﬁ RS §=
the first six J&Cis are listed in Eq.(76) the remaining four are:
Ae (ytlk [i%VgXTXO‘)
- P Ty as, e
JaTyas ]
A _,jc\x [B’ g§](»<) (AVIT 1)

= Ja [y, X*)

\

g
«
)

¥ Using the same kind of arguments as in Appendix ITI it can be shown that the
condition given in Eqf31,8) is a suitable normalization condition and that tre

mass term in thedfﬁ‘ equation of motion has the same coefficient as the

. . <
corresponding term ln.%?zg

s#¥ The simplest additional normalization conditions are:
t =2,=Q-= 65:1 = Eszb = ESSE = Clq =

’%L: Ql_‘.gg =Q5-:./U” =V =W= S(#) =0©
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The derivative of /S’r with respect teo the parameter AL is obtained by
differenciating the (-:_-4 and the vectors B and d . Since we know that t 220

(Eq{AVII, 7)) 1ndependently of A , we have the equation :

d. 'a b o+ 'E'é . (AVII,16)

We can parametrize ‘%\:g and 'ak by intreducing the two cartesian triplet3:
T;/ Tz;4 )'Q,_ (A17,17)
in the form: 2 134 (’a)jf. Cg) 2
ca/\ziem x;'_; (2) bd (AY11,18)
% 3-2 4%, - Vb

2
p ysical A satlsfymg the equation:
)

Q»ca A, +‘YA\< {Z__ 3()l Xd %g

Thus we have to filflé
¢

%[3,\/%0,] "'é

=12

(AVII,19)
DT (X) }

Z‘é 5(31*? CEKQS C{E(bg>()<)

4:!1
The insertion A is a linear conblnat:lon of a basis of covariant non physical
insertions which can be found as follows.
First we introduce, in analogy with Eq(78) three operators Q; €
with g = S . 37 rhe same construction as in Chapter III we get three
insertions A‘t of covariances C,;A4; (i=4,5,6).
Then using the generalized action principle (6) we can complete the basis of
covariant non physical insertions as indicated in table (AVII,l)
Insertion Covarience

:Ef&k[qgl@} A
% e o e
Bq <% axn, g%lc)c) -GN S9 %
Op =T P [B § Qi ¥o - Ax

(*“ s»SA*EGP%l“J -

r~‘>- »5’*"[% 2. N

f 5dk [g P a.. gﬁ}(&) --jéoc [xéf{;‘k(x)
Acbx - f:al""ydk [Et(s a S(gk*) j&k [_Q(; %’t\BQc)

A}

b B Cia%ke RS GI
TABLE AVII-I-
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It is evident that one can find a particular solution of Eq.(AVII,19) as a
linear combination of these insertions and of the three

In the same way one can get other non physical insertions which are listed in

table (AVII.II)

Insertions

A, Ja= 3a

At Jax (B 1o

A ='§_ ‘Y&k ey g_}ﬁk)
A - "F_ Jele I 8, de0

A

A H (Sclx[\gg Jeww
- j*x [Y% ST}O‘)

- & fdx [B,SF a3 Je

M

TABLE AVII ..II-
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©
C A Ss % 4
‘cz»&l.pe % ~C 45

“Csée*'z LA "XL’ S“
L=%8,9
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It is clear that combining lifhearly the insertions listed in Table(AVII.II)
with those previously considered we obtain‘l&sy-metrical non physical insertions;
in fact, because of the orthogonality condition Eq{AVII,7) 1; is a linear
combination of the L‘l“ and of the -Ei‘): . (i=1,2),

Now, following the same procedure as in Chapter III, we complete the construc=
tion of Al by studying a basis of symmetrical insertions As

Since we know that, given the Slavnov identity , the complete lagrangian
(Eqg(AVII,5)) depends on 24 parameters ,(6 of them fixing the propagators and
the couplings of the quantirzed fields, and 18 specifying the external field
dependence) it follows that there are 24 independent symmetrical insertions.
We have already constructed 18 independent AEQS which are non physical . Thus
to complete the proof of gauge invariance we have to find six symmetrical
insertions satisfying Eq.(70) . Five of them are determined by the &ndependent
terms of the tree approximatiom lagrangian (Eq{AVII,2) excluding 3:4.€/D\<
The sixth one is the analog of A: (Eq(98)) . They verify Bq(70) as can

be seen in the tree approximation .
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