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I. GENERAL REVIEW OF PERTURBATIVE RENORMALIZATION

There exist at present several V.rlionlt‘]of renormalized pertur -
bation theery, which develop in various di"“ig?' some of the
ideas conteined in the work of N.N. Bogoliubov®€dand covorkers.
The gsnersl sef up, as recently described by H. Epstein and

V. Glasert!) 3i is as follovs:

% : Fock space of a family of free fields 9. (x)

U(a, A):the corresponiing Fock representation of the
covering of the Poincaré group

n ! the vacuum state
§. (8): the "interaction" Lagrangian, a family of Wick
monomials .n @, and its derivatives which, together with a given

monomial, contains all its submonomials.

_a( X) a corresponding family of smooth space time depen-
dent coupling constants, with fast decrease at infinity.

One can construct by recursion an operator valued formal power
series in g:

0 n
’ (z) d o-ed T 400 4 L1)
S( &): 4 + % Y x'm;.xn (%, ?.‘n)a(") §(%)
whose coefficients T(‘q,eoO‘“) = T(go(*v)-" §0(xg))

are proper.y defined "time ordered” products of the Poincare
covariant interaction Lagrangians, denscly defined in ¥ as
operator valued distributions. The antitime orde.ed products
e.g?(defin'ed as coefficients of the formal power series for
S .

g): o n
T (=) —
«S"(‘,). 1“{_.; T AR dxy T(Kweers $0) §060)ooe F(%n)

The recursive construction can be so carried out that the follow-
ing causal factorization property holds:

S (gu+ &)= S(4) S (&)
if Supp-gs 2 SUpp4s
ie. (suppgi+ V)N supp g, =9
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Fig. I Supp. 1 & Supp. &

At each step of the recursive construction, there is an ambiguity
whose minimality can be discussed via & precise theory of pover
counting. This ambiguity arises solely from the fact that causa-
lity ané spectrum force the fields, and therefore their correla-
tion functions, to be distributions. The problem to be solved
concerns a certain "discontinuity" Cn which, in viev of the causa-
lity assumption, has the union of twé opnposite closed cones 13;
as x-space support. Ome has to express Cn as the difference of a
retarded and advanced distribution with respective supports 1;,
13‘ . This can be done, but not by mere multiplication by
some Heaviside step function, and the solution is in general non-
unique. At the nth step there arises an ambig.'ty in the definition
of the operator valued distribution T{x,, ... , xn) which is of
the type '

AT (%, Xn)= ZF; .E (3) J(x,.x,)...é‘(x,,_,-xn):gi;

vhere Qol is a Wick monomial in ?o and its derivatives,
P;(9) = monomial of derivatives, and the sum ranges over all
possible terms compatible with Wick's theorem such that

deg. By v @ (0,) » = 2, (@(&)-4) 44 .

The index @) assigned to a Wick monomial adds up the number of
derivaties and the number of fields each of which weighted by its
naive dimension ( 2j + 2 for a field carrying spin j if no better

estimate holds due tg the presence of an indefinite metric in ¥ ).
. . A . ..
Given twu solutions,S and S , characterized by coefficients T(xo...xu))

(X 000 x ) = T(xy oot xn) + 8T(x,... x_ ), S is obtained by
applying the prescription "T" to the interaction term

73/PE. 588
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P & .
J;’Q(x,a)dngi(x)i(x)dx‘ré (;.:), fdx....dx., coe

teoe AT{;!”... 54) _9_(“4)'"2“'\)

Each operator time ordered product is expressed in terms of
¢-umber distribution coefficients by means of Wick's theorem:

e 1 T, *n
T (&0 0%)e0 L, (%)= 2 (r, T(.-f’,'%(xd,...ﬁ%(x,,))ﬂ)m
. AR . Th

ey ¢ 9%(&)ala QOJQR,‘ Cng"'oxn Y

L X,
where ,’fia:’ .0.;?: a Loe ~and Cp ...n are
some combilnatorial factors. Thus, 1n p—-space, the Qa.cuum expec-
tation values of time ordered products are ambiguous up to
polyncmials of degrees determined by power counting. If all com-—
ponents of carry a non-vanishing mass, a "central" solution
can be defined, which vanishes at zero momentum together with
its & first derivatives, @) being the power counting index. Non
minimel solutions can be defined by assigning to some components
of 2y power counting indices larger than the naive index pre-
viously defined.

Physics usually requires to define an adiabatic limit which we
now describe. Let us separate the compenents of g into two
groups

Loga QT + LA

and let us inquire in what sense we can let the coupling constants
, whereas the space time varying source functions J will be

used to generate fields and composite operators, such as currents,

etc. The first term of Q’ as power series in A is given by _C_z .

One can see that as g;\(x)_, Q the expression
(n, Seann) /(Q,8002)0)

has 4 limit whose coefficients of powers of J are the .

Creen's functions of the interacting operators. It is, however,
only wvhen suitable normalization conditions are satisfied -
vhereby the vacuum to vacuum transition is so normalized that

(D, 5(0,3)R)+0as Alx)—e2 , and the two point function
is s» defined that the one particle pole is fixed at its Fock
space valuel3) - that S(3, 2) nas a limit in the operator sense

73/PE. 588
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as A(R) > A . In many cases one does not want to do this,
but rather constructs a theory of Green's functions which, after

the adiabatic limit is taken, leads to an interpretation in a Fock
space 9;&7& different from the one given initially. This point

of viz2v is often to be taken in the description of systems with

& broken symmetry as we shall see later.

T.e connection with conventional me*hod;:23which use regulariza-
¢tion procedures is the following: Let be & regularlz

free field defined in a larger Fock space F D F -f"" (¢:~)
a regularized form of the interaction Lagranglan. Under certaln
conditions, (Pauli Villars regularization @ -f” (¢ ) ° ¢"’) ),
it is possible to show that ithe central solution of the regula-
rized theory goes over to the central solution of the non regu-
larized theory in the sense of distributions, as the regulariza-
tion is removed. It would be worthwhile to complete such a proof

in more feneral cases, including that of the n-dimension regula-
rization

A particular solution of the regularized theory can easily be
constructed in terms of Feynman graphs by mere multiplication of
regularized Feynman propagators, and the corresponding central
solution is uniquely determined by direect calculation of the
regulator dependent Taylor expansions around ; = C which can

be gathered together into a redefinition of the interaction
Lagrangian modulo regulator dependent ("infinite') counter terms.

arulcular interest are renormalizable theories for which

f in which case possible counter terms occur in
flmte number with coefficients formal powver series in the
coupling constants A . In all the following, we shall limit
ourselves to the study of renormalizable models. In particular,
the next chapter will be devoted to a detailed description and
comparison of the various, possibly non central as well as non
minimal, solutions, in the adiabatic limit. The combinatorial
idert:ities which will be established will ©be the main tools in
the study of the models treated in the later chapters.

73/PE.588
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CHAPTER I: REFERENCES AND FOOTNOTES

This list of references is by no means exhaustive, but contains
revievs where extensive reference to originals can be found.

{1] K. Hepp, Theorie de la Renormalisation.
Legturo Notes in Physies Vol., 2. Springer Verlag Nevw York
1969.
K. Hepp, in "Statistical Mechanics and Quantum Field Theory",
Les Houches 1970, Gordon Breach New York (1971).
H. Epstein, V. Glaser, same volume.
W. Zimmermann, in "Lectures on Elementary Particles
and Quantum Field Theory", Brandeis (1970) Vol. I.
MIT Press, Cambridge Mass, (1970)
?.Ré ?peer: Feynman Amplitudes, Princeton University Press
1965) .

2] N.N. Bogoliubov, D.V. Shikov, "Introduction to the theory
of quantized Fields", Interscience Pub. New York (1960).

13] H. Epstein, V. Glaser: The role of locality in Perturbation
Theory, CERN TH 1400, 16 September 1971, to appear in
Arn. Institut Poincare.
H. Epstein, V. Glaser, "Adiabatic Limit in Perturbation
Theory” CERN TH 1344, 10 June 1971, in Meeting on Renor-
malization Theory, CNRS Marseille (1971).

[h) For a description of the n-dimensional regularization see,

for instance, the forthcoming CERN report by Ge't Hooft,
M. Veltman, also E.R. Speer, to appear.
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ii, DYNAMICS OF RENORMALIZABLE MODELS TN PERTURBATION THEORY

Within the framework of perturbation theory we will discuss the
dynamicsal properties of renormalizable modeis based on the
classical Lagrangian

£ e ] E
{I7.1) f@lo = fé(w@ a sfﬂj;o

ink
s fz70tes the free Lagrangian. The interaction part ‘t;t.
3 ¥rivten as

int J
(I1.2) L, ad i,
FLE / ‘J
where tne coupling terms o, / are monomials in the fie.
componeats and their Jirst derivatives. The Lagrangian is renorma-
lizable if the naive dimension ng »f each coupling ternm el
satisfies

The components of all fields will be collected by a single field

vector
iﬁ = (%)‘“’ C}Su)

The construction of field operators and Green's functions by the
method of Epstein and Glaser {I.1) was described in the previous
Chapter., The advantapge of this method is that with mathematical
rigour the field operators are constructed re. ursively in pertur-
bation theory such as to satisfy the fundamental principles of
quantum field theory. For practical rsasons, however, other me-
thods of renormalization are more convenient which work in the
adiabatiec limit right from the beginning. In the work that follows
we wiil use such an alternative method whicia 1s hesed on a re-
normalized version of the Gell-Manr Low formulalld, First, we

assign a degree {i satisfying

Q):Scr,'sll

J o
t¢ -33h coupling term iﬁLi . Thie szsignment will determine the
number >f subtractions to ve used for separating the finite part
of & Feynman integral. The time ordered Green's functions are
construzted by

T ¢d1(x,)‘,.o. B, (X)) @
ind
s | Loy, ()R norm,
< T e f Koo %«.o (Kejoes ¢¢n.o(x'")>

(11.3}

s
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The superscript 'horm'indicates that vgcuum diagrams (disconnected
closed loops) should be omitted. o, ;'0 denotes the effec-
tive interaction part of the Lagrangian and is given by

iné

(II.Ly fo 0 = Z -AJ ’\L:,[ 'f&l.joJ

The subscript (o) indicates that the free field propagators
prcvaining to &l o are used to perform contractions. Time order-
¢4 funections involving the symbol N are defined as follows. The
expansion of (II. 3 ) with respect to powers of JJ leads to
expressions of the form

ST Bl By o O)
(11.5) Ny [ Mo (4] e N LM, (4)] 5

where the M’k may be any of the coupling terms of . We may as
vell consider the more general case of arbitrary lon-linear mono-
mials /‘1‘0 in the free field components and their derivatives.
The integers 6. are restricted by

fj.a c['/

where d, is the naive dimension of the monomial /‘Z{m . £ is
called the degree assigned to the monomial \0 . (II.SJ) repre-
sents a time ordered Green's function of t.z dick products

NN
Wnile the Wightman functions of Wick products (II. S ) are unique,
the time ordered functions are only defined up to contact terms.
The symbols N, .o N serve to specify a unique choice of
time nrdered fuhctionSh yet to be defined. As has been emphasized
by Bogoliubov the remormalization of the Gell-Mann Low formula

rests upon a proper definition of the time ordered functions of
free :ields and their Wick products.

Witi ot going into details we give a rough sketch of the defini-
tion vhich is rather involved for arbitrary diagrams due to the

phenomenon of overlapping divergencies. One first expands the
formal expression

(11.6) < T ¢ 0 (xk)"' ¢qm’o(xm) MA,O[H“)“' Mn,o(uh))
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with respect to Feynman diagrams using Wick's rules. Each diagram
‘has m external lines labeled by x., ..., x_ and n vertices at

U,y 0.0, U_. To each diagram I'belongs a Fg‘ynman integral which
in general diverges. We amputate the external lines and denote
the unrenormalized Feynman integral in momentum space by

(11.7) slin:o [ dkyeee iy Ir (Kgweo k5 Brseme Bos GpeerGn)

The external momenta p , q. correspond to the coordinates x_, .
The momenta Koy eees k, form a set of independent integration
variables. The unrenormalized intesrand I, is given by the
usual Teynman rules pertaining to tue Lagrangian (II. 4 ). The
time ordered function (II.6) is defined by the finite part of
(II.7) summed over all possible diazrams. The finite part will
be formed by taking subtractions of the integrand II‘ . To this
end wve introduce the degree

(11.8) S(T)s 4-B- % F .,.%_:_ ({,_4)

of proper diagrams I'. B is the number of external boson lines,
F the number of external fermion lines. We recall that & is
the degree assigned to the vertex at Uj . If the degrees d: are
chosen to be the naive dimensions dj /

!
(11.9) =
J(I‘) is just the superficial divergence & (I') of the diagram

(11.10) d(l)= Q-B-§F+£; (C‘éf“’)

One has always
() > d(m)
A proper diagram is called primitive if all proper subdiagrams

have negative degree. For a primitive diagram the finite part
is given simply by

(1I.11) Lim /dk,...dké_ (’l_ &:(P)).

E-'4»O , 7

b J(p) * ; ( k"/ hidd kg—)’ A)“'ﬁ.} 91"“9“)
Here denotes the Taylor gperator in p, q up to order
d(p). 1z Piq &(T) <O we set &gﬂ‘sz QO . If the degrees

equal the dimensions (see (II.9-10)) 'eqprecisely have Dyson's

prescription for separating the finite part. In the general case

-8-
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oversubtractions are made which would not be required to render
the integral finite. For arbitrary proper diagrams overlapping
divergesncies may occur which can be removed by applying Bogoliubov's
combiaztorial method (I.2). The finite part then is of the form

. dt
(II 12) ez.i?ofd‘k""dk‘” (4- &m,.))(. o .) .
o L (hyee by Pose s G @) s

where { ... ) indicated subtractions for subdiagrams. For
details we refer to ref. [1} . This mcthod of separating the
finite yart from a Feynman integral is thus an extension of the
original work of Dyson and Salam. It can further be shown that

the finite parts (II.12) equal those derived by Bogoliubov and
Hepp with a somewhat different method[3) . Their results in turn
are contained in the general class of solutions which was obtained
by Epstein and Glaser in the adiabatic limit f{1.3].

As phy.ical parameters of the theory we distinguish mass constants
and coupling constants. Mass constants occur as coefficients of the
free Lagrangian and are related to the discrete speatrum of the
nass operator 13% . The coupling constants may suitably be
defined through various Green's functions. Let m,, ..., m, and

Bys < 2 B be independent sets 2f mass or coupiing constants
which completely characterize the physics of the model. A corres-
ponding set of renormalization conditions is then imposed on the
Green's functions.

The renormalization conditions recursively determine -1.,,...,.]a as
power series in B1s - 8 with finite, mass dependent coefficients.
If all paremeters Jv varniish in zero order the expansion of
(IT.3 ) "with respect to Feynman disgrams provides the power series
expansion in g.. However, if some A; do not vanish in zero
order a series“has to be summed for obtaining a finite order of
perturbation theory. This difficulty is characteristic for some
models with broken symmetries. A generalization of the present
treatment will be proposed below in this Chapter which allows
to av~ld the summation problem.

e . 8D \
We next turn to the definition of composite operators . Let M
be a nor-linear monomial in the field components and their deriva-
tives. We will construct a sequence

(I1.13) N, [Mgl , asd,di,ds2,...

73/PE, 588
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of composite operators which are associated with this monomial.
d is the naive dimension of M. Green's functions involving
composit: operators are defined by the following extension of

(n.&.j,..

: ink norm.
(11 (T Z27>=LTeE j\nﬁﬁ (342 Zo>

with the abbreviation

(11.15) X = ¢‘4(x,)... ¢°’m(x“‘) Nm[l‘l.(g,)]... /\QAEMn(y,J]

We now formulate a generalization of;&&e formalism which is use-
ful for models with broken symmetriec . In particular, it pro-
vides a simple remedy for the summation problem of such models.
This wi.l be demonstrated in Chapter IV on the Goldstone and the
Higgs models.In this generalization we let the classical Lagran-
gian be a polynomial in a new parameter s

(II.16) Q‘a(s)= J,, + s% »S* st

The naive dimensions 4 of the monomials occurring in é; are
. [
required to be less than or equal to

c £ o

Accordingly é; is linear in the fields. The parameter s is
allowed to vary within

(11.7) 0 Sg4d

While s = 1 is the physically relevant case the dependence on §
will play an important part in the subtraction procedure.

Before writing down the analogue of (II.14) we have to clarify
the definition of the free Lagrangian which becomes less trivial
in this generalization. The physical mass and coupling constants
of the theory refer to the case g = 1. Accordingly, renormaliza-
tion ccnditions are also imposed at s = 1. As usual, the free
Lagrangian el o at s = 1 1s taken to be the Lagrangian of
the incoming and outgoing fields, apart from possible normaliza-
tion factors. For general s we define the free Lagrangian by the
sum of all bilinear terms of d:L(S) with the coefficients re-
placed by their zero order values. The dependence of these
coefficients on the coupling constants will be discussed shortly.
For the moment we only note that the coefficients of Gé& (s) are
quad=atic functions of 8, due to (I1.16). 09

-10-
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The Green's functione of the thecry are corﬁiructed by
horm,

arae) < T2y =< T, eidefcz,o (s,8)] dz Zo>
with ink

(I7.19) ‘fd (s)= @:('(3)»"5349(8): Z .l/ -Z:LJ (s)

and

(11.20) Z o E (X)eee B, (Xm) /\{24[04@4)]"'/\/%[0,;(&;’]

Ym *
The formula defines the time ordered Green's functions of the
fields, as well as Green's functions of compesite operators. The
symbol T, indicates a special time ordering which we are going
to define now. The expansion of (I7.18) leads to expressions
of the form

(rend T %45‘\’4%“ ?gm[*fm) /\,’:t [Me(w)]eoe N&_[ sz(“»r)])

In defining {II1.21) we procecc as before but replace (II.12) by

. . ; . a(T)
Z!m d’k’{ooo dk& i"/”f'm ’iﬂ,;,cg)(. ® Q) e

r
* I;Lw (55 ’eu “%és} ;“f'»w’ "”’én} 94/"'9:)

The new feature is that now subtractions ere nade in p , g, and §
simuWlteneously. In other words, g 1s “reated like an external
moment.m, as far_as subtractions indicated by { ... ) are modi-
fied similarly£5 . Finally, the renormalization conditions imposed
at s = 1 determine the parsmeters J%‘as power series in g. with
mass dependent coefficients. Let m., v, 4, M, s .5 cos , be
comple‘e_sets of indeperndent mass ana coupling constants a

5 = 5 .6; Through the renormalization conditions the parameters
Ay, 0. Ay, become power series in tue g. with finite coefficients
whick depend on the mass constantsl”) . Without proof we will now
state some dynamical properties of “reen‘s functions and field
operators which hold to any orde> i~ perturbation theory. The
dynamics is governed by the effec*iz Lagrangian

w2n Logr(s)a Ny (d )+ Nol ]+ s*Noldh)
« S

-11-
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The principal dynamical laws can be stated as follows.

... [e, 8}
I. Action principle i

oy 3 _ Ielegt (5,2
(17.24) K <T7JT<7§’(,\:,))_ L<T/_£EJ¢3Z’T¢7@)}

is an arbitrary parameter. in @;ﬁfeﬁc /3} the differential
operatcr acts only on the coefficients of the field monomials.

[21.

iI. Spsce~time differentiation of normal products

(I1.25 N [M] = [9 M]

(11.26) a:,‘ < T Ng (M=) —];Tgsij- (XJ)> =

TN, LalM@)] ¢(x)>

T
ITII. Linear relations among normal producte® '’ 2‘,

If ('p< é , & given normal product of degree (p and ita Oreen's
functions may be written as lmear’ combina%ions

(11.27) N‘?[Pﬂz.- 2. a;Ng[M,)
<T NylM&)] 77@ (%)) =
ZQ: Cl- A _,t\’j LZ)T%, ()y)>

where the sum extends over all monos halg 4, of dxmensmns d g S
5 . i
with appropriate quantum aumbers anid invariance properties.

{71.28)

IV. Equations of motion

(II.29) f‘(‘fef}f at ‘;Cf"’“ = O

gb—@n

‘7\
ko=

73/PE. 58
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T [Fo- g TT 4 o) =
Zé’ fe-x) < T L1 ¢ (%))

In Jf} /Jé J{} /5f¢ the action of the dlt‘ferentu.l operators
on normn¢ products 1s def&ned by

(II.30)

(II.31) @N[Mla cd['%]
mNLMJ" c-d,"l[

V. Equations of motion multiplied by a field couponcntce]

(I1.32) ¢t -3¢ J£‘#-/= o)

(.33 < T ¢, [J¢ o i"fgf ](’3)/ ]JT?% (X)) =
LZ & (-5 < T ¢ () ]I & (%))

Here multlplxcatlon of a normal product by a field component
at the same point is defined by

(II.3k)

¢, N, (M) = N, o [ ¢ M(z)]
l9]

VI. Equations of motion multiplied by a field monomial

Let Q(x) be a monomial of dimension 4 in the fields and their
derivatives. Then

(II.35)
i€, & by 1
iQ}[Jgsf ° g’?"éi] B
13-
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T{Q} [ £ dLep a“é ](e) 77?5 (9)p=

Zé é$(z-x )<TN [Q[XJ) ¢ (Xe))

{Q?j acting on a normal product of & monomial M denotes the
@nisctropiec normal prodct

(11.37) !Q}’ NQ[M] = Na+d [{Q.} M]

vhich iz defined in the following way. Let dim M denote the
dimension of M. The Green's functions of (II.37) are again
constructed by (II.22) with the subtraction degree J(X) assign-
ed to each proper subgraph ¥ given by (II.10). However, the
degree e assigned to the normal proiuct vertex i1s defined in
en anisctropic manner. d is equal to its minimal value, 4 + a(M),
if g'has no internal lines arising from contractions with

lelds in M, and is ecual to 4 + g otherwige. It should be notea
f*hm N [i@} ] can alwavys be expanded in terms of iso-
tropic normal products of degree & + d using relations similar to
those of III.

(II.36)

Finally we discuss the connection between formulations involving
the parameter s and the conventional treatment given in the begin-
ning of this chapter. We start with the simplest case that the
free Lagrangian of the g-formulation is independent of s. Then

the rules for constructing Feynman integrals involve g only in
form of povers assigned to some vertices of %the diagram. s never
occurs in the masses of the Feynman denominatcrs. Analyzing

the suntraction rules one finds that the model based on the s-—de-
pendent Lagrangian

&£, (s) = éfaz,oCS) + efl “rs)
{11.38)

ofd o (8) independent of s

"“""e(s) G, +5G, +S*g, +53G,

is equivalent to the model based on the conventional interaction
lagrangian

ink

wiw L e NLG] e ML Ga]w MLG]# G

il
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Stated more precisely, the Green's functions evaluated from (II.18)
with N, applied to the interaction part (II.38) are at s = 1
identical to the Green's functions defined through (II.th) with
interaction part (II.39). Thus the generalization is not expected
to give any nev information for such cases.

If the unperturbed mass parameters dgpend on s the situation is
qQuite different. Let 'fd .(s) and 'ch (S) Ybe of the form
(]

(11.40) °fd"° (s)m %, +s% +5*%

mé
(II.41) &L, (s)= G, +sGs+52G, + 534,

with the coefficients of the monomials in iE. independent of g
and the coupling constants g.. For the coefficients of the it
is assumed that they vanish #n zero order of g:. Again there is
a formal equivalence between the s-depeqﬁent ngrangian

ENOTEAROTE MO
= cZ, +J‘J3+ -f"'oZz* -5'307;

and the conventional Lagrangian

143 Loga Ny [Jo]+ NslJs]+ Nl ]+ T

But it turns out that the appropriate form of the free Lagrangian
is

(arw) Lop, = N, [+ F + ‘E_']

s0 that the interaction part becomes

nk

clacy. = Nq [94,]+N3[93]+Nz[§¢]+54
+ N.a[z]"NIv[EJ
+ Nz[z':] = N#[EJ

(II.42)

(II.L5)
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The coefficients of 3: and 3; are independent of the coupling
constants g.. As was discussed above this leads to a summation
problem sinfe an infinite number of Feynman integrals contributes
to a finite order in g.. Since .ga.nd ﬁare bilinear in the
fields one deals with &eometric series in momentum space which
diverge in parts of the integration domains. Thus the formalism
based on the Lagrangian (II.LL - L5; is not satisfactory. With
the original s-formulation, however, each order in the g. is re-
presented by a finite number of Feynman integrals. J

Despite of this it is always possiblz to construct a Lagrangian

of the conventional type which is equivalent to (II.L42), but in

a non-trivial way. The disadvantage of this Lagrangian is that sym-
metries which the s-dependent Lagrangian may display could be
completely distorted for the equivalent conventional Lagrangian.
This happens to be the case for the Goldstone and the Higgs model.

[10]

We briefly state and prove this equivalence theorem

EQUIVALENCE THEOREM

Let ) / in
ez;t (éi>'= ‘t;;,o (\g).+ cfzé tkS)
(IT.L46) / y . y p
= 074 "'@-‘007; +(§-4)J2+(.$é4) F4
/

are polynomials of their fields and their first deriva-
tives with s-independent coefficients, the naive dimensions of

the monomials in éj be less than or equal to four, the dimensions
of monomials in 4.3 be less than or equal to 4,2,3. Let mass and
coupling constants be defined through renormalization conditions
on the time ordered Green's functions of fields. Then there

exists a Lagrangian

» v u Ink
cl:e = étii.o t Sflﬁ

(IL.47! ¥ mk

Lo =N, [L,™]

with the same renormalization conditions such that the models
based on (II.U6) and (II.L7) are identical. More precisely, the
time ordered functions of the fields are identical whether cons-
tructed by (II.18) with the Lagrangian (II.46) or by (II.3)
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with (II.L7). If the coefficients of the interaction part of
(II.46) vanish in zero order of the coupling constants the same
is true for (II.LT7). Hence no summation problem arises with (II.UT).

Remark: Green's functions involving normal products may change.
This does not impair the equivalence of the models but only indi-
cates that similarly constructed normal products must not be
identified.

Proof: In order to eliminate the s—dependent terms we will
construct a family of Lagrangians

aruey Ly (s)= g +G-V T+ 620G + 2V,
vhick wncludes the Lagrangian (II. 46) with

Tundi m () o Jundi weuns.
and & Lagrangian

a?.o‘:(s)-.-a'fl' A A A

with no s—-dependent terms. For this family it will be shown that
the Green's functions of fields do not change.

Let

(II.49) Mdd. ) e Md- A(d)

be all monomials of naive dimension 4 which can be formed out ,
of the field components and their derivatives. We express J,:, J,‘
as linear combmatlons of these monomials

Z(_ Cdy, My

d:'l Jl’"
iR
- E . e
Ix = & 4n Ced I\’IJJ o=4,2,3

With this notatlon the original Lagranglan becomes )
£ (9= 5 2 ety 43 (s W

q”" ds4 ;:4
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We now study the ﬂ“i(d)
(II.50) -él‘(s)a i Z CAJ MdJ +Z- (5“‘ Z- i adJ

of Lagrangians where the ¢c.. are functlons of arbltrary parame-
ters tyqd; . Our intentionYis to plac: suitable restrictions
on the functions c,. such that at s = 1 the Green's functions
remein independent dr tad J . To this end we form the deriva-

Live a Al
KTX>. 12 2 g%la‘ Ja= <T N, [M; @)
ot ek dz1 st P
PER b i fd < TN My @] - N[ M )X

(I1.28) then implies that < T N [MﬁJX)ls 8 linear combina-
tion of Green's functions :mvolvmg Nh-products

CT(Ns [Mek@®]- N [Ma(®]1)X ) =
=- & Tpekdj < T N, [ My@ ] X >

Thus

KT X) _
) - t/sek
holds provided
] Cdj
= X .
The r ekd) depend on tg.dg directly and through the
fu.ncnonals Cq;’ A more detalled discussion shows that a solu-

tion exists n'eh the initial values

Cy:a C/ at E t'
dj = ~dj pdj = “pdj
With these solutions as coefficients Cd' the family (II.SO)
of Lagrangians has all desired properties. We finally set

Eiq: =0 and find A¢d)
MJ " °fc2 = Z C Md

vhere C4: denotes the va.lues at & d =2 O ., Since the
Green's functions of the basic fields do not change the same
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normalization conditions are satisfied throughout. In zero

order of the coupling constants the coefficients rpekd vanish.
do not change. Accordingly,

Hence the zero order values of the c¢..
§6) remains the same at s = 1

the free part of the Lagrangian (II.
and the coefficients of the interaction part d%¥¥ vanish in

zero order. This completas the proof.
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III. EXACT AND BROKEN SYMMETRIES: RENORMALIZATION EFFECTS.

In the following, we shall exclusively consider renormalizable ef-
fective Lagrangians vhose dimension four kinematical parts involve
non venishing mass terms. Superrenormalizable couplings may other-
vise be present and will be weighted by a power of the previously
introduced parameter § which measures their desree of superrenorm-
alizability. The presence of superrenormalizable interactions 1s,[ 1)
as we shall see, essential to the definition of broken symmetries

In all cases, the symmetry or lack of symmetry is best described

by the effective Noether theorem, which follows from the various
effective equations of motion described in chapter II and is
summarized by a set of Ward identities. We shall first, for the
purpose of orientation, look at the simple case of space time
symmetries, and then will go into the subject of internal symmetries.

1. Space time symmetries. The energy momentum tensor.

We recall the effective equations of motion:

d& .
< T( ff Jat&)mz»__, ‘%S(x.xky TXQ>

where, for each term in , the corresponding derivative with
respect to fp has to be counted vith a power counting degree
diminished by dim ¢ . The Noether current associated with space
time translations:

p(x) = Plxea)y G(x)+ X W)

is

Noeth. y
b4
564 = 'TC¢ d 9’
with
T '_ J&PG/‘;
& ‘S a P ; Noeth.v
According to the precedlng rules has to be counted

with dimension four. Using the effective equations of motion under
the quadratic combination 7[/‘ av? , We have:

AT M 3% X>= < T, AP X +< TT 30 X>
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=<T§#a"px>+< Tgf_%’:g 375 XD
-ié; J(x-:;)%)(TX} v
= 3T Lya) X ) E;(J(x- )L 3y < TX

(2]

Hence, the canonical energy momentum tensor

O =T - 8L gy

fulfilis the Ward identity
N~ L Y
¢ T 6, cx)x>=£x §(x-x)L3 < TXD

The Ward identity associated with Lorentz invariance usually re-
quires the use of the Belinfante energy momentum tensor, of the

form
v, B Y a A AY
625 = 65%‘ + :5 4%‘3

v .
vhere {: a is given by the usual formula [3], is formally antisym-
metric in W,%,s0 that it does not spoil the Wardlgdentity and has
to be assigned dimension 3 . The symmetry of v in e and Y
being a consequence of the equations of moticn, results into the
asymmetry identity

3 B k)
<Tet‘,,cx) X)>-< 'T'@\,&(x)><>=kz;Ex S(x-xk) wa (T XD
where the v are the reievant spin matrices.

The asymmetry identity, and the Ward identity put together, result
into the Ward identity for the Lorentz current:

B B
Hl,tw = t*eav - % eﬂ&

B, 0 () X 0= 2 Qe (AL
LT X)

Finally, the dilation current which generates broken scale in-
variance can be conveamiently written as
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. b
vhere the "improved' energy momentum tensor of Callan, Coleman,
Jackiw is given by
cDCIJl a

<
E 4+ b, (
Q‘f." V7S i S Ugt‘”'at"a”)cps
where the sum ranges over scalar fields and the factors (4+b‘)
are the finite wave function renorma}ization, factors occurring in

;f,”in front of the quadratic termszat.,%'a s

The corresponding Ward identity

A 4
FXT D0 XD=22<TMEX) L 8lk-1) 7.
.( %‘a“% dw) <TXY

vhere Mz(x) denotes the set of mass terms(gscurring in d& , and
thus contains dimension four terms, and 4 is the canonical
dimension of field , 1s a consequence of the Ward identity
together with the trace identity:

T 9:(i§.3>(>=2<TM2(‘)x)+ ;Zg; J’(xn&)%d“"(’l’X}

The iuprovement thus does not yield a "soft" :race, and one can
show —hat no other choice can be made so that the trace becomes
"soft", at the expe?§§Lgf changing the canonical dimensions into
abnormal dimensions . By integrating the Ward identity for
the dilation current or combining the trace identity with the Ward
identity for the energy momentum tensor at zerci2 mentum, one
obtains the so called Callan Symanzik equation ¥ “after full use
of the reduction formulae of chapter II.

2. In.ernal Symmetries.

et {f.;;be of the form

Ofiff = Sf;ynnu* Gf;reak.

where the terms in ®§makhave dimensions strictly less than four
and a_l mass terms of dimension four in ﬂ&ym,are non vanishing.
Symmetry and symmetry breaking are understood with respect to a
transformation of the type
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¢ =d=D(3)p 366G .

where G denotes & compact Lie group. L a finite dimensional
unitary representation of G. The infinitesimal transformation law
is of the type

ﬁf - 38 + 1 éi é§;5 fﬁ

vhere g represents the Lie algebra Q of G in@. When < is
the adjoint representation, we shall denote by & the represen-
tatives of E& . Defining

-,vMaeH

du =Ny T, 6 ¢
and using the effective equations of motion, we obtain the Ward
identity
'*Noe!:h

c <T /x) X )= KT 6""’*‘(::))()-* Z_g@’-X)9<TX>

wnich has to be understooé, as the whole theory in the sense of
multiple formal series m ail the parameters of af;,“k and some
of tne parameters of mqym . Opa_ coula similarly establish
current algebra Ward identit ies*®*which assume a normel form
provided a suitable time ordered product involving two currents
is defiaed, which differs from the time ordered products we have
used so far by allowed ambiguities.

It is clear that the treatment given so far calls for resummation
procedures which allow a decent interpretation within the physical
Fock spacealluded to in chapter I. This can be done as follows.
First of all, in general ®{eqk Will induce nonvanishing field
vacuum expectation values (2) = F . One can first perform the
change of variable -

g=9-F <=

One can show”]that the Green functions for (p' can be computed
from the Lagrangian -

L(Y)= L(G4F)

with the dimension assignment given by

“20 -
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g 9 'pe
Aé (S?'*f) 2 qz'(‘r) F N;.m? ’
and the Ward identity reads
a2t Ta'{"(x) X'>s <T Doy X>+ Z $x) 4 <,TX’)
+ :Z: J(X-YR) (gf")'r <Tx,‘}>

y) ->
where J and ‘I')' are respectively deduced from Noeth’ %gbreak
by the substitution rule 2 - _‘f'-f-f according to the

above formula. The introduction of the s parameter and its use

as indicated in Chapter II allow to perform the necessary resum-
mations. On the other hand, the equivalence theorem described in
chapter II then asserts the existence of a dimension four effective
Lagranginn (without & linear term) which yields the Green's func-
tions <T_).('). One should however be carcful that composite opera-
tors w D such that

T, X'> a KT w X
(TJp. Xy = <Tdw Wlgmt i )(+F)

=g Y]
KT DEX'> = KT Dwy X’
z, Loy i) (47) _
are only kn to have the same maximum dimension as J’ . D’
respectivel . ¢

The determination of % by the requirement that Ward identities
be fuifilled is thus in general incomplete at this stage, since

only the dimension of goes unchanged through the change of
effective Lagrangian, except in the case of a linear symmetry break-
ing. Ig the case of a non linear symmetry breaking, the structure

of is not arbitrary. Together with a term of given dimen-
sion and covariance under G, it must contain all terms correspond-
ingl ? the ambiguities compatible with covariance and power count-
ing* °. The question then arises to recover in the 42 version the
information which characterizes the covariance of the breaking.

It is conjectured that this information can be recovered by study-
ing the high momentum behaviour of two point and three point Green's
functions via e.g. the Callan Symanzik equations.
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Alternatively, let ofz be an irreducible tensorial term in
J&; % .

s, bl (‘s Tij dg for some representation {T} of g .

Then, the following Ward identity holds:

T L6 £15) Xy < Tj{-:;“(x) LWX>
= Sheg) EY < Tl x>+ Seey) el <TL x)
[ of
+ kZéx S(x-%)EQ < T £(y)X)
One may thus look for Dd in the form Dd= Z D:

if imk vas of the form Z Of"

and determine the covariant operators D? characterized by
their maximum dimension and the fulfillment of Ward identities
of the typel83

TS DX y= < T D Dy X'
+ S0eg) Y LTDI XD+ S0 77 <TTX)

r 2 S(x-'me,f <TDIX)

keX
/
-+ kZex cS(x-xk) (@ﬁf:)k < le?‘(g) X/‘}>

where the time ordered products involving pairs of composite
operators may eventually not be the conventicnal ones.
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Once tne characteristics of the initial Lagrangian have been re-
covered, through highly non linear, recursively soluble relations
between the coefficients of ’4 (values of vertex functions

at zero momentum) two kinds of situations may occur. If enough
parameters are left undetermined so that all physical masses of
stable particles can be chosen as free parameters, one has a

theory in a physical Fock space phys the perturbation

parameter being y , Wwhich counts the number of loaps in
Feynman diagrams, If not, no perturbative treatment known at
present can describe the situation in terms of the correct phy-
sical Fock space,

The algebraic complexity of the general situation looks at the
moment forbidding, and the more lymmofric treatment indicated
in Chapter IV is by far more attractive since there all opera-
tors retain all the symmetric aspects which are completely hid-
den irn the formalism. The only reason, other than compu-

tational, which calls for a study of the d‘; formalism is

the present lack of treatment in the present framework of sys-
tems for which, because of the group structure, some symmetric
mass parameters vanish. This is admittedly a weakness of the
formalism and calls for a more complete study of the interre-~
lations between the various solutions to the decomposition
problems posed by the causality requirement. In these more
difficult cases, one may either first suitably approximate the
theory by one in which no vanishing mass parameter is involved
and study some zero mass limit, This is the method examplified
in Chapter IV, Alternatively one may modify the starting point
as will be shown in Chapter V and directly define the desired
theory.
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IV. Gauge Invariant Quantization of the Goldstone and Higgs Mode]

The general formulation of the previous sections will now be
applied to the examples of the Goldstone and the Higgs model. We
begin with the discussion of the Golédstone model. B. Lee and
K. Symanzik developed two alternative methods of quantizing the
Goldstone model[1,2) . In B. Lee's work the model is regularized
and quantized in a gauge invariant menner. It is then shown that
the regularization can be removed for the renormalized Feynman
em~litudss. In the treatment that follows we use B. Lee's method
of gauge invariant quantization but without introducing a regula-
rization. Instead we will deal directly with the unregularized,
but properly renormalized, Feynman amplitudes. It will be shown
that the desired properties of the model follow easily as an appli-
cation of the general theorems given in Section II and III. The
connection to Symanzik's method will be discussed later.

As classicel Lagrangian we propose

(IV.1) alf,_l.(s). % ¢ by - (7:-' 53“")‘?'3"&. (9'?)3' %@(‘P*?’)

with

(p:.%.i_ (Trsy+ity)

1/2 4/2, 1/
Tz 2, P, L=2 "X ,6 GaZ U
\P and A denote the properly normalized fields. Their vacuum
expectation values are required to vanish

(Iv.3) {PY=<KX»=0

while it is assumed that

(IV.L) QJ; #:C)

Expressed in terms of the fields { and X (Iv.1) is to bve
interpreted as an g-dcpendent Lagrangian in the sense of Chapter
II. We recall that the parameter g only serves to specify the sub-
traction procedure and is set equal to one finally.

s) is a polynomial in § with

§,(0)=0

of which only the value

(1)=&,
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at s = 1 is relevant,

The parameter W is restricted to a permissable range which
will be given later. It can be shown that the Green's functions
of the theory do not depend on the value of W [h).

For 59- 0 (IV.1) 13 the Lagrangian of the Goldstone model.
Fo mally it is gauge inveriant, but the gauge symmetry is spon-
tineously broken due to (IV.h4). The model deseribes two particles
¥ and TL which are associated with the fields § or X resp. The
T -particle has zero mass and represents the Goldstone particle.
The @ -particle is unstable since it can decay into TC -particles
by the interaction term 433(* preser< in the Lagrangian (IV.1).

For 8° # 0 the gauge symmetry is explicitly broken by the
term proportional to cp-rcp“ . In this case the model is called
the ex:licitly broken Goldstone model. It describes two massive
particles @ and TC of mass M and associated with the fields
P or % . We always assume W< M. The Q" -particle is stable only
for M £ 2K . In the unstable case M denotes an appropriate mass
parameter related to the complex pole of the kp -propagator [5] .
In the Goldstone limit So'—’O the TC -particle becomes massless,
i.e. R —=0.

Unfortunately, the Lagrangian (IV.1) is not meaningful for

é% = 0 since some of its coefficients are infrared divergent. In
orde. to bypass infrared problems the case &, # 0, or H# 0, is
considered first. Then the perturtation expansion is well-defined
with finite coefficients of the Legrangian (IV.1). Eventually
the Goldstone limit H-—»0 is ~pplied yielding Green's functions
and S-matrix of the Goldstone model,

Apart from g and U the independent parameters of the
theory will be the Q’-mass M (or an appropriate mass parameter M
in thie unstable case), the T -mass i and a suitably defined coup-
ling constant g.Five renormalization conditions are required to
hold at s = 1 {6) . These conditions uniquely determine the
parameters P, h _, Sb, v . %, as power series in g with coefficients
depending on M, p and e , but independent of g.

We now determine the free part of the Lagrangian (IV.1) fol-
lowing the instructions of Chapter II. Let xef}Q denote the sum
of all terms in i‘ff which are quadratic in Y and X or their deri-
vatives.

CRERYR 12 (3x?%)

‘1?g£f<3== 532
(- < S h, $T7 )08

(Iv.5)

2

L STE SIC TR

; A ay
- sy ng 8% ) X
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The free part of the effective Lagrangian is defined by (IV.S)
with the coefficients replaced by their zero order values:

-\"“-\
(Iv.6) &P,#O- .-f—- LAY ' - :1_ 3/")( pLid

-

-3 M) ¢ L e X,

élm -, = 4
<
(v.rr MYs)a [é:_:zo (- Sw+3h,sYy),

. ) 2 2..2
{(9)a Ui (7;- Swe b S*25°)
The mags parameters M2,&2 equal the values of (IV.7) at s = 1

M:.- Mz(4) ' [;*-2= t:L:’.(/‘)

Since Qo ) W, h-o. A, &ve independent of s ve obtain

2 , .2
(1v.8) Ll.m ho 'U;:.-.' E.:- b&.
g0 :

Mz( §)= 53- E‘-z-% M wf’+ s* (% (ML R3)- w:')

(Iv.9)

6= 3 £ 100 3 (F O 1)-30)

'U.To denotes the zero order value of W,

Since we need the theory in the range O ¢ s <1 we impose the
consistency coandition

M) 70 K920
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As long as M » O, t})»o the model is not expected to suffer from
infrared problems. One snould therefore avoid vanishing mass
values in the range O § s £ ) by imposing the stronger condition

» 2
(v.10)  MYs)>0, Wi(s)>0 i M*>0, t20.
This res<ricts the permissable values of W by

- 4 2 3,2
(zv.11) u)f:>_iM.,zt\,

Particular convenient is a choice of W for which
2 . 2,2 4 me 2
— "i M- — -é
(1v.12) W, gl:ﬁé h V2= 2( (*_L)>2 M-z ¢

With this the s-dependence (IV.9) of the masses becomes
Mi(s)a p2+ s* (ML)

2 2.
IO~

Hence the TU -mass isindependent of g while the & -mass has the
simple form (IV.13).

With the free Lagrangian (IV.6) involving the g-dependent
masses (IV.7) the perturbation expansion (II.14) of the Green's
functions is completely determined.

The main advantage of this gauge invariant formulation is
that partial current conservation follows quite naturally, es-
sentially by following the classical derivation. The current
operator is defined by taking the minimal normal product of the
classical Noether current

| . * 4

V. 1k = [3 - ]

(TV. 14) (JE-_LN POYT- PTRY

More rrecisely, the symbol N means that the minimal normal product
shoulcd he applied to each monomial of the current expressed in

terms o and;)( . According to Chapter III the Green's functions
of this current operator satisfy the Ward identities

LT 500 G- @) eee D= L2 S(ru) KT G P
Ll $-1) KT @ug)ees @XM )eery
+1 %@ ¢ T (@) FX0) PUere PH)orc)

(IV.13)
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%Wl T 4100 G §°(5)e00) =
%- S(x-tt) € T pa)er s P¥%)0d
sy = o S06%) LT @luuns @)
+L %-5) (T (<fo<>- ‘?*(x))wm)... P¥k)eee

In operator form the law of partial current conservation becomes
(Iv.16) Bre) = i §_o__(.§)( 0¥
at‘c] (x)= b V3 ) ({)(X))

(IV.16) follows from (IV.15) by applying the reduction formulae
to the fields \p and ?( of arguments u. and v..

It can be shown that in the Goldsfone lifit H —» 0 the time-
ordered Green's function and the S-matrix exist [7]) . The current
of the Goldstone model is conserved,

It is characteristic for the gauge invariant approach that
- apart from the linear term - the fields‘# and )C only appear
in the gauge invariant combirnations of the Lagrangian (IV.1).
Without destroying the gauge invariant form of the non-linear part
the Lagrangian (IV.1) may be replaced by an s-independent Lagrangian
of type (II.43-U45). As was discussed in Chapter II such Lagrangians
suffer from a summation problem in finite order of perturbation
theory. In the present case the Lagrangian contains terms of the
form

(v N YN0, N, Y N, ()

where the coefficients do not vanish in zero order [8] . Thus an
infinite number of Feynman diagrams sppears in any given order of
perturbation theory.

On +the other hand the equivalence theorem (equ. (II.46-LT))
allows to construct an equivalent Lagrangian which contains only
N, ~products and does not involve a summation problem in finite
order. The Lagrangian is of the form

(1v.18) fef; = ; CJ Nq (NJ)

where the Mj denote the monomials
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¢t X% X, 9% 9P gAY, X X

The perturbation expansion based on [IV.18) represents Symanzik's
method of renormalizing the explicitly broken Goldstone model [3].
While .he Lagrangian is not manifestly gauge invariant, the coef-
ficients of the coupling terms are courrelated in such a way that
the Ward identities hold in the desired form.

The renormalization of the Higg: model was first developed
by B, Lece by applying Symanzik's method to a regularized version
£9]. B. Lee and Zinn-Justin extended the method of gauge invariant
quantization to Higgs-Kibble models including the non-Abelian
case [10} . In the remainder of this chapter we use the approach of
geuge iavariant quantization ¢o0 renormalize the Abelian Higgs model
by applying the general methods of Chapter II and III. As s-depen-
dent lLaszrangian we propose

i’da( @*(D”?) (fz,, S‘w‘)w ho (9*¢)°
(1v.19) ‘Ia (S) L, B, :.5. m? 'Bl:‘B (%Bﬁf
- (444"

DH,-. QH—L&B@, : Bt&)l:at( BV“ ngé"

with

42 K <
(1v.20) B)m 23 At‘ ) Bez Bt @, o.aByel, M =Z3m

4 s

== (T4+~SU;+ L’t:)

4/3 —4/2, 4/2

Tz, QP , =% X, =28V
Q), ?( and A“_ denote the properly normalized fields. Their va-
cuum =zxpectation values are required to vanish while it is assumed
that
(Iv.2i) ' Vo #0

The gauge class used in (IV.19) is the analogue of the Gupta-
Bleuler or Stueckelberg gauge in (massive) electrodynamics. The
treatment of the Higgs model 1n the 't Hooft gauge will be discus-
sed in Chapter V.
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For So‘ Oand m= 0 {IV.'9' is the Lagrangian of the Higgs mo-
del. The model described by (IV.19) for So = O, but non-vanishing
original photon mass m # O will be called the pre-Higgs model. In
both cases the Lagrangian (IV.19) is formally gauge invariant, but
the gauge symmetry is spontanecusly :roken due to (IV.21).

For 85# 0 the gauge symmetry is explicitly broken by the term
proportional to ¢y+ﬁf In this case the model is called the ex-
plicitly broken pre-nggs medel. No infrared problems occur for

.# 0 and the Lagrangiar (IV.19) can be used for setting up renorma-
llzed perturbation theory without difficulties. For = 0 infra-
red divergencies occur for scme cocefficients of (IV.19), but the
Goldstone limit 80-70 and the subsequent Higgs limit m —»0 (in
the Landau gauge) may be applied yielding the Green's functions of
the pre-Higgs and the Higgs model.

Th» free Lagrangian of the explicitly broken Higgs model is

sfcl-fo=-i 5*"Fg M)Ay A~ d@‘Ar)a
(Iv.22) +4 (@J«P 3:“;;;,,, %X ‘a/"x) + W (s) A/‘B"X

<L MAS e 4 e X
Fuse 3R, -2, A,.p

The s—dependence cf the coefficients becomes (IV.9) and

&

mi(s)= M= stw?
(3
(Iv.23)

w C§):§ 5 W
with

1, - I.;m 1, W= 4dm ew
(Iv.2k) 0 ~ 12 €450

: ia M2
Lim h,oU’ = —QjB‘

€0
For M, m, B, v » O the free theory can be shown to be consistent
wit™> positive masses in the ranpge 0§ s £ 1 if tk,ls sufficiently
small and UY chosen to satisfy {(IV.11).
The particles of the theonry are determined from the free
Lagrangian (IV.22) at g = 1, Follewing is & table of the particles,
their masses and associated fields.

-35-
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Particle Mass [11] Field
Vector meson mt A&
O M \P
T X
A

) AKX

(most pav-icle

with

?Tf'a h12+ sz

(v.zs) XKrad (AmBpt)- 3y @mE ). st m

(s 1)+ Vi 1) At

In the Goldstone limit g, - 0, or equivalently t-L-PO, ‘the
TU -particle becomes massless (X ~p0) and recresents the Goldstone
particle of the massive Higgs model.

As usual an indefinite metric formulation is employed in
order to quantize the Lagrangian (IV.:9). In general, the S-matrix
will not be unitary since the ghost warticlc. of negative probabi-
lities participate in the intazrect.on. No physical interpretation
of the model is possible then. In the Goldstone limit, however, the
ghost particles are expected to decouple from the rest of the
system. The argument proceeds as in electrodynamjcs. The ghost
particles are described by the divergence A of the vector
potential. The field equation (II.29) of the vector potential
reads

tY,o4 3Ry pY - L
(1v.26) =, T +3 9 WA + M A= )
with the current operator

aan gt ie N[ - ¢ D¢)+ @D BT

The current operator is partially conserved

(Iv.28) arat‘:é ée(gxcp*): Se &*X

. =36~
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as follows from Ward identities similar to (IV.15)., (IV.26) and
(Iv.28) yield

(Iv.29) (D+dm‘)abAE= td e Z:lax

as field equation ofL d ALL . In the Goldstone limit 8.-’ 0
the divergence " becomes a free field

(Iv. 30) ([_'] ...c(mz} B&A&:Q

and the ghost particles decouple. Accordingly the S-matrix of the
massive Higgs model is unitary. By using differential equations
of the Callan-Symanzik type it can also be «shown that the Green's
functions are well defined in the Goldstone limit M -0 [12].

The only stable particles of the massive Higgs model are the
TC -particle and the free ghost particle.

In the limit m -»0, the pre-Higgs model passes over into the
Higgs model. The zero-mass Tf—particles decouple, with the massive
spin-one unstable particles of the pre-Higgs model becoming stable
in the limit. The massive spin-zero particles alsc become stable,
provided M € 2w. The Green's functions of the A&, Y and )( fields
can be shown_to exist in the lliggs limit, but only in Landau gauge
(ol =0) Li2).

The equivalence theorem (II.46 - LT) can be applied to cons-
truct an equivalent Lagrangian consisting of N)-products only.

In contradistinction to (IV.19) the non-linear part of the Ny~
Lagrangian is not manifestly gauge invariant. This N, -version
of the Higgs model represents B. Lee's original approach in the
language of the normal product formalism,

-37-
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Chapter IV: References and Footnotes

02
L2]
033
Lud
(53
{61

€73

[8.]

L9l
(101

[QRP]

L2}

The material of this section will be published in a series
of papers byJ,H Lowenstein, M. Weinstein, W. Zimmermann
(pert I and II),and J.H.Lowenstein, B. Schroer (part III).

B. Lee, Nucl. Phys. B9, 649 (1969).

K. Symanzik, Lett. Nuovo Cimento 2, 10 (1969) and Commun. Math.
Phys. 16, 48 (1970).

For the proof see part II of ref. [1].

For problems concerning unstable particles in perturbation
theory we refer to M. Veltman, Physica 29, 122 (1969) and part
III of ref. [1].

For t?e formulation of the renormalization conditions see
ref. [1].

K. Symanzik, Lett. Nuovo Cimento 2, 10 (1969) and Commun.
Math. Phys. 16, 48 (1970).
F. Jegerlehner and B. Schroer, to be published.

By appropriate choice of W one of the coefficients can be
made to vanish in zero order, but not both.

B. Lee, Pnys. Rev. D5, 823 (1972).

B. Lee and J. Zinn-Justin, to be published.

The values given are the masses in zero order. Only for stable
particles may the zero order values be identified with the

exact masses by suitable normalization conditions.

See ref. [1) , part III.
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V., Models with vanishing Symmetric Mass Parameters

As stressed in chapter III, the combinatorics of intermediate
renormalization comes into conflict with the possible occurrence
of vanishing mass parameters, and, in particular, another descrip=-
tion of symmetry breaking has to be found if the group structure
implies .ie vanishing of some mass parameters., Typical examples
of such symmetries are chiral symmetries, when spin 1/2 fields are
involved, and pauge symmetries, although no difficulty should in
principle arise if the physical masses are to be non vanishing.
in such cuses, one may first consider the classical theory as a
limit of & theory where no vanishing mass parameter occurs,
quantize the latter and let the spurious mass parameters go to
zero. This is the road chosen in Chapter IV, The only alterna-
tive stravepgy which is known at present (1) is to investigate the
structure of the classical Legrangian which describes the tree
approxination of the theory to be constructed, characterize the
symmetry ‘ria the Ward identities which express the classical
Noether theorem in presence of external sources, and look for an
Ly, Lagrangian for which Ward identities of the type found in the
tree approximation hold in finite renormalized form, in the sense
that no composite operator different from those found in the tree
approximation occur, with, however, possibly different coefficients.,
In case such a program cannot be completed, with composite operators
occurring with their naive dimension, renormalized Ward identities
are said to contain anomalies - e.,p, of the type found in the
trace 1dentity for the energy momentum tensor cf. Ch, III. There
exists at the moment, unfortunately, no reneral theorem which
allows to predict from the group structure the presence of
anomalies.

Sinez the present propram is still at a very experimental
stage, ve shall content ourselves with the description of two
examples: the C model with nucleons and the Abelian Higgs Kibble
model treated in 't Hooft's gauge.

2}

1» The T model involving nucleons

Choosing for simplicity the chiral group to be U(4)xU(4),
and denoting the meson field (W,¥), the nucleon field, Y , the
Lagrang. an in the tree approximation is obteained from the formal
Lagre:z7 an

Cd = Gyl oy + g¥or indsy)+ L (3umatr L 302%)

- %3'(1'(’:;3 @“z),. % Ctt“...c‘“)a-& Co

formal
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o 4
by the field translation C=0C+F , under the con=-
straint that no term linear in &’ remains, '
We thus obtain

theza '@3%3({)+3F¢‘q)+g$<&f»m’3‘s)¢
4. b - M aFipr_ ml, 3AF3 3
+% (aPTta LNy '> __%_2:.. 14 23 &
_ 2 (raodf AFe (o)
4

2
with the constraint C= 3»?34- m*F
This Lagrangian may be written as follows

L =T (b’ 13 +M)qJ + g P (oMY
+4 . Wet, 43 w9’ ' d%- mrc"‘

- g "_lé.;.‘.g_“w(ﬁc"*) 3 ."_”Sr_.-wc (Pec’?)

wvhere the following change of parameters was made:
MagF
m +JF2 mm
Mz+3.7\F2' m2

which implies g" ‘Ih'—__ﬂ'
2M*
(Instead of M, m,, Mq-, we could have chosen as
parameters M, ml-, e, F
The Ward 1dent1t1es are most easily obtained by applying
Noether's theorem to al * source term and performing the
field translation afterwards. The result is

B“(TJ}L@) x>t'°°=Z. scx-xk)Q<T X >
£ 2 SR FCT X,

TeX

+ CLTrmX >
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where ek}represents an infinitesimal chirzl transformation on

tield (k (‘!1-»0',0’«9«1'(:(-}’—,1)'5&? Por-PiYs !

and
L, Qen) TYL3 @ +(MrA) T Y +9, (4the) Tow
a (1.4,; ha) P LTy ® + i(« b.)3. T _ 3(,”;,,%)“&
§ (4+ b¢) Qoo 4 1 (me+0y)0?
g {(44» £,,)n"‘+2(-4+€ )n o3y @M,)o"']
¥,

m%ﬁ- <4+ ﬁ)O’ 4 @4-&1)0'1{2]

vhich demends on 13 parameters, and for a current

C]& = (4+dw)rratc‘.,, (4+k) T ITT 4 Fl4+8y) 3T
+ ("“X) Y X&Xs .

such tha* a Ward identity identical with that obtained in the tree
approximation holds. This is poss:Lb.L.e mc‘ leaves freedom, without
varying F, to fix the masses of T , Y at their zeroth
order values Mg, Me ™M and to set equal to unity the residues
of the propagators of the ¥ and the Y fields at their respective
poles., The number of free parameters is just the number of para=-
meters occurring in the most general formal Lagrangian {nvariant
under chiral transformations, except for a linear breaking term.

31

2., The Abelian Higgs Kibble model in the 't Hooft gauge.

The interest of this model **ithin the general class of
spontanecusly broken gauge models is that it exhibits most
features characteristic of these models in so far as ultraviolet
behavicur is concerned, Infrared difficulties, on the other hand,
are avcided,

Ore starts from the formal Lagrangian

4] -

73/PE, 588



- 234 -

Lot - £ G G (D) (D) 4 1 %
- glgof- & (A pg ) rdTme

where, for the time being, the Faddeev-Popov term;E1ﬂu; whose
convenience will be seen later, is ignored. The mode corresponding
to broken symmetry is obtained by making the substitution

(9" ?&+’Uﬂbiqa

Q’be%ng determined by the ;gz;ition that no term linear in ¢,
survives: tF?’ g'tfz
A translat.on induced photon mass term yields a transverse photon
nese m?a et
The mass corresponding to the qa field is

M2z - W4 3gV2= 2907

The mass matrix corresponding to the coleed qh'?LAFquadrntic
form yields a degenerate eigenvalue at

X= ern
Before the introduction of the Faddeev Popov part of the Lagrangian
the only non gauge invariant part of the Lagrangian is given by
the gauge term

N NI
2 2
In terms of the new variables, the Lagrangian reads:
2 2
Cone= 3 20 P01+ 3 3.0.3%,- £ ¢
2 v
+Mm-£) AN L @QAT- 46, G D AN
- € A/* <(P4 ai‘% -, am‘&)"‘ fze‘z A)*A'P ((Pf" (P:)

FIVE 2 2
+ €m A/‘AF% - %,% (‘Pf-*‘*?z 2 2‘%\2‘1 <, ((p:-y— (P:)

vhere g waseliminated against e through the relations

2
2qvL M eim | > %‘%’ Y

-42-
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The restricted 't Hooft gauge is obtained for Pad.m whereby
the (fz QPAV‘ cross term vanishes, The gauge invariance is
best expressed by applying the integrated Noether theoren corre-
sponding to the gauge group to fermalt source terms, and per-
forming the field translation on the corresponding Ward identity,
which assumes the form

4. 4 .
O j‘d 51\ g* + source terms =a- max gx source terms

On the other hand, the question of the gauge invariance of the
physical scattering amplitudes first proceeds through the study
of the variation of the connected Green's functional under the
change of the gauge parameters Y~ (here, o, @ )

0. (2 (%)-{§2(8)

where use has been made of the fact theat thec%eiajs functional
is the lepgendre transform of the Lapgrangiean. Gauge
invariance is achieved if

<g>phys =0

for a suitable definition of physical states, In any event, it is
desirable to convert the Ward identity into an identity of the
Slavnov type:[i
% - es e
x

which requires the inversion of the - in general field dependent -
differential operator TVl. This is best achleved by introducing
the Faddeev Propov fields with Lagrangian & L EMC and source
terms $C +C§ . The Ward identity then reads

O= .a. my* Qx 4.3_ C i;\n!tc + Source Lerms
)

and the Slavnov 1dent1ty is obtained by integrating over y after
multiplication by CJ ) Using the equations of motion, the first

term becomes
(XS

wvhereas the second term vanishes if the Faddeev Propov ghost
fields obey Fermi's statistics:

43-
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dydsdt CC, 94 ¢ =0
d % ) 9 k
f 57y éh,
by virtue of the abelianness of the pauge group. In the non
abelian case,‘3l this term does not vanish, but assumes a partlcu-
larly simple form, independent of the gauge function: 52(:
wvhere T denotes the infinitesimal renerator of the internal Lie
algezbra of the gauge group, only in the case where the Faddeev
Popov ghost fields obey Fermi's statistics.

Written in full, in terms of the translated field

variables, the Slavnov 1dent1t1es read in the iree
app: oxlmatlons

CT (G0 R)E) B Bloe) A lhe)-o A (fn) B3~ RL3)
Clta)ess CLE) Tlg)ene TlL)S =

LT Clx) flt)ees (RE)(xr) v f lin)unes Tll)S

+

X2
;Z ST C) Glxe)ens @ (%) Ap(4)ese 3. C(§:) 000 C(u,»

m Z.i ST €0 ulegens Byi) A (1.
p
+ € LA TCOIGt)urtp) B (1,
k

£

by [0) BB Yo gl

B ) 3 @) TS

T Clo)ense C(Eg)ewe (A +e<,z;)(ez)...c( £ )Tt E(Lg)>°

/o
-Gl -
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The reason for including Feddeev Povov fields within the Slawnov
identities is that among other thinps, it is believed that they
will turn out to be relevant to the unitarity problem of the
physical S operator for the fully renormalized theory,

One can show that conversely, if such identities are to hold
in the ‘ree approximation the Laprangian must be of the form
initially postulated except for the possible occurrence of wave
function repormalization factors ZA , Z¢ in front of the terms

-3 G}v Al (D/,_CP)* (D{.‘.QP"’) , respectively, Written in

fu'’., the raddeev Popov contribution to &l . is

& Cg}c AC + pm CC 4 feﬁp4cc>
The Lag-cangian then depends on the following parameters:
E.A,m; Ed,/M/e,e,c(
whieh can be characterized as follows:
2A’m are related to the residue and pole of the transverse photon
propagator
2¢; M are related to the residue and pole of the (), field
propagator
S) is related to the common [3}‘”‘, (PZ,C-] ghost propagator
pole {41 )
o is related to the residue of the Faddeev Popov ghost
propagator T
e, is related. to the (P“(.‘)‘C{)A or @, ¢, A scattering.
Alternatively, g is related to (.94 3 C.p‘ q)_‘ scattering., In all
the following, we shall assume m,,M and the ghost mass to be
restricted by inequalities which insure the stability of all three
types of particles, In order that the physical scattering
amplitudes be gauge invariant, one sees that, by virtue of the
Slavnov identities, physical states should only contain q)‘, and
quanta.

The question is now to construct the most general dimension
four effective Lagrangian whose zeroth order approximation in
terms of the loop counting parameter coincides with tree and
inquire whether constraints can be put on the coefficients in such
a way trhat Slavnov type identities may hold.

Let then

-45-
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G = -2 (#b) G G mHa AL (11c) QA

A

+ 2 (A;A") + L (4+8,) ¢, 3%, - fj_éﬂ_r_u O

+ 4 (148,) %0, o, - 2 (.Pf.;. Az)cpj.g. (ﬁ_m-?;_)A,A'?o
+e(4+101)A,<p Y, - e(#g) coal“gg+ [4+3)A A%p?
.4.,_ (Ma),a*/: Oy = em(4+3 ) A, A"(ﬁ

S‘.,’ﬁzc why) Of < S (arh) @ - G (e )R
- &M (k) ¢ 2eM‘(.4 k)G,
+ "*“ ['a C Y'C- (fm»,A)cc pe (4+€) cy,C ]

+L, C@lc+n C@c+ s TANT ]

We novw look for an identity of the Slavnov *ype, recalling the
conservation of the number of Faddeev Popov ghost pairs, and the
invariance under charge conjugation:

Au s -Pu; e -G G ; C»C; THT.

One can use the effective equations of motion for C a,.A s, ¢
under the following combinations: (3] R

JN,EDD,‘A =csb5 8- A"+ jN,éE W
-.-.-csLE?f O SA/;*U;(EB/*J/&
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JN"E”‘&“‘* %+ MG
= &k Cg?a-’- Nll 6Jz

JrNs CO(9¢)= et J(c% N (@) + N [ {o]

223.0,3% + st \T s,

. Nsi{aﬁ%m 5%8%4, stzg'c‘t&}

where the bra.ckets { 5 indicate anisotropic normal products
and a‘ are simply related (within the
addltlon of mass terﬁs and the multiplication through wave
function renormalization coefficients) to the corresponding field
sources,

The reduction of anisotropic to isotropic normal product, as
well es the anisotropic use of the equations of motion for CP“(&
in the evaluation of 353& allows to cast these three iden-
tities into the form

o/
X,
b 4
'
§
1]

Iy = wanted terms + unwanted terms
J(ﬁ SE = wanted terms + unwanted terms
Nl@t(?aga = wanted terms + unwanted terms

Wanted terms are of the form jE a).,éAﬁ ) JE J? ) J'NzE‘P" 6? ,
- 2
f"é ¢ &, )

After repeated use of Zimmermann's identities unwanted terms can
be cast into the form of itegrals of the following monomials, all
counted with dimension

C4y,
c a,.A/‘) C'CP“(PZ

-47-
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ER @}, TRAM TR, TY 3 AN, ThOMY,,
c (P"q*z" c CP:- (PME A}'Aﬁcp‘t‘&/ c Q,A#({)f ! EA/‘-BI‘ 4 B,
Z M@, T3 A TN A A TAIOLA,
€ 24, d'q, TuC Alc.

There are 19 unwanted terms whereas the Lagrangian depends on 25
coefficients. One of which is connected with the normalization
of the Faddeev Popov ghost field. It turns out that one can

express the unwanted term Ng Ce.qQ, in terms of SCP&SE ,
wanted terms, and other unwanted terms, and, similarly

SNst'a'.q‘foin terms of' .(Nzﬂp‘(& 8&' . ,cwanted terms ax‘ad.other
unvanted terms, Imposing then the vanishing of the remaining 17

unvanted terms, one gets Slavnov identities of the form:

< T [3/‘ At"" (P+ SF) (PJ. + {&z N). ((R\ (Pz)) (Pq (X.)... (P4 cx")
Apilga)oes At (o) BL3.) o0 P Bp) C 4} €L, ) Tl )urn T()Y

n
== €(1s8) £ <T SO G, ) eeve )3

=1

+ (:-_:L/_:A) 2 T COurns B (84 3, T(g)e e e T )Y

L=q

r
+ m(“:é.z); {T Cl)oese (3, )eoe c‘:@;)...cpz(;,)....é‘cub)f

1+ H

G CT e 1 G e

- Z CT Clx)uvae Cléy e, [@A&@&)%+89“N1(w.)](ea)...

C (8 )eees T(U )Y
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()
where the coefficients &?’ L\;’12. Ph .PA' Hres Jo are
finite formal npower series in 9. Apart from the fact that O
only occurs in the combination & /{4+H) it is not known at present
whether simple relations automatically hold between these
coefficients because of the complicated wav in which they were
obtained, In particular, there is not & nriori reason why fiz
should vanish, In other wordi, had we started from a pauge
{‘unctzon of the form R = QPA + (-‘-L?z + P (P"L{,z ‘
in the tree approximation= the most general expression of
dimensicn 2 odd under charge conjugation - we would have cobtained
Y Slavggy identity involving g renormalized gauge function of the
form B~ = 3,.A/" +(P+SQ)({)2 +(C4a + SGM) N, @, o
and even when. vanishes the induced Sﬁz Nz(‘?,‘(&)term
may survive, In fact, if we believe that the tree approximation

TR (T B BE)) < Sfky)

survives through radiative corrections, one can see that the
NZ(CP_'(P,_) induced term has to be present.

Once the Slavnov identities have been obtained, there are,
besides the combination o /4+H) , seven parameters left free
which can be used to fulfill the following normalization conditions:
position of the poles,residues beins unity at these noles for the
transverse photon and {(f, oropagator, mass shell value of the three
or four , (or ¢, QA" ) vertices equal to the tree approxima-
tion value, and finally double vanishing of the inverse determinant
of the counled A, &, propapator matrix at pe = pn2, Lo
The lest condition combined with the Slavnov identity imp%ies that
the Faddeev Popov ghost propegator has a simple pole at p =Pm2,
whose residue can be normalized to one by means of the parameter
H, if one wishes to do so, The theory is then completely inter-
pretable within a Fock space with indefinite metric whose structure
will be reported elsewhere together with the appropriate
asymptotic theory.

The crucial test for the correctness of this renormalization
scheme of course relies on the check of unitarity and gauge
invariance of the physical S operator which has not yet been
attacked within the present framework, and, next the existence
of locel gauge invariant observables which leave the physical
subspace invariant, in the same way as in quantum electro-

dyna.mics 0[73
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Chapter V : References and Footnotes
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This is the strategy advocated by J. Schwinger in: J. Schwinger
"Particles Sources and Fields", Addison Wesley Pub. Co.,
Reading, Mass. (1970).

J. Schwinger, "Particles and Sources’, Gordon & Breach New
York (1970) (Brandeis 1967). See alco:
A, Rouet, R, Stora, Lectures given at the Universities of
Gen :va and Lausanne (1973).

Ch. III, Refs. L1] and [{81. The determination of an LA Lagran-
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