RECHERCHE COOPÉRATIVE SUR PROGRAMME Nº 25

J. J. DUISTERMAAT

Fourier Integrals II

Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1973, tome 15 « Conférences de : R. Balian, H.J. Borchers, J.J. Duistermaat J.P. Eckmann, H. Goldschmidt et C.V. Stanojević », , exp. n° 3, p. 1-15

http://www.numdam.org/item?id=RCP25_1973_15_A3_0

© Université Louis Pasteur (Strasbourg), 1973, tous droits réservés.

L'accès aux archives de la série « Recherche Coopérative sur Programme nº 25 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

FOURIER INTEGRALS II.

J.J. DUISTERMAAT

* * *

I would like to give some impression about the theory of Fourier integral operators of Hörmander [2]. Perhaps the best way to show how this theory can be used is to apply it to the well-known Cauchy problem for hyperbolic equations. As an illustration we shall also give an interpretation of the W K B-type results for the Schrödinger equation due to Maslov [5]. For regularity and existence theorems for equations Pu = f and the construction of parametrices for large classes of operators P, see [1]. We start with a brief review of the calculus.

1. REVIEW OF THE CALCULUS.

If A is a distribution in \mathbb{R}^n then A is \mathbb{C}^∞ in a neighborhood of $\mathbf{x}_0 \in \mathbb{R}^n$ if and only if $\mathbf{A}.\mathbf{u} \in \mathbb{C}_0^\infty(\mathbb{R}^n)$ for some $\mathbf{u} \in \mathbb{C}_0^\infty(\mathbb{R}^n)$ with $\mathbf{u}(\mathbf{x}_0) \neq 0$. Because of the Paley-Wiener theorem this in turn is equivalent to the condition that the Fourier transform of A.u is rapidly decreasing at infinity. In formula:

(1.1.)
$$\langle A, ue^{-it} \langle ., \xi \rangle \rangle = O(t^{-k})$$
 for $t \to \infty$, any k.

It is assumed that the estimates in (1.1.) hold uniformly in $|\xi|=1$. So we can find the singularities of A by testing with the rapidly oscillating test function $u(x)e^{-it} < x, \xi > 0$ with small support, and looking at the asymptotic behaviour as the frequency t

approaches $+\infty$. The test function u is used in order to localize with respect to the x-variables. Localizing also with respect to ξ (normal to the wave front $\langle x,\xi \rangle = \text{constant}$) this leads to the definition of the wave front set W F(A):

If $(\mathbf{x}_0, \boldsymbol{\xi}_0) \in \mathbb{R}^n \times \mathbb{R}^n \setminus \{0\}$ then we say that $(\mathbf{x}_0, \boldsymbol{\xi}_0) \not\in \mathbb{W} F(A)$ (1.2.) if and only if (1.1.) holds for some $\mathbf{u} \in \mathbb{C}_0^\infty$ with $\mathbf{u}(\mathbf{x}_0) \neq 0$ and uniformly for all $\boldsymbol{\xi}$ in some fixed neighborhood of $\boldsymbol{\xi}_0$. On a manifold X we no longer have invariantly defined linear phase functions $\mathbf{x} \to \langle \mathbf{x}, \boldsymbol{\xi} \rangle$. In this case we obtain an invariant definition of $\mathbb{W} F(A)$ by saying that for any $(\mathbf{x}_0, \boldsymbol{\xi}_0) \in \mathbb{T}_{\mathbf{x}_0}^*(X) \setminus 0$ (that is $\mathbf{x}_0 \in X$, $\boldsymbol{\xi}_0 \in \mathbb{T}_{\mathbf{x}_0}^*(X)$, $\boldsymbol{\xi}_0 \neq 0$) we

(1.3.)
$$\langle A, ue^{-it\Psi} \rangle = O(t^{-k})$$
 for $t \to \infty$, any k.

have $(x_0,\xi_0) \notin W F(A)$ if and only if

Here $u \in C_0^{\infty}(X)$, $u(x_0) \neq 0$, $\Psi \in C^{\infty}(X)$, Ψ is real valued, $d\Psi \neq 0$ on supp u, $\xi_0 = d\Psi_{(x_0)}$. The phase function Ψ may depend on additional parameters and it is assumed that (1.3.) holds locally uniformly with respect to these parameters.

A special class of distributions are the <u>Fourier integrals</u>
A defined by

(1.4.)
$$< A, u > = \int e^{i\phi(x,\theta)} a(x,\theta)u(x)dxd\theta$$
, $u \in C_0^{\infty}(X)$.

Here $\theta=(\theta_1,\dots,\theta_N)$ are auxiliary variables called <u>frequency variables</u>. The <u>phase function</u> ϕ is a real valued homogeneous C^{∞} function of degree 1 on $X\times\mathbb{R}^{n}\setminus\{0\}$ without stationary points (that is $d_{(x,\theta)}\phi\neq 0$ everywhere). For the <u>amplitude</u> $a(x,\theta)$ we may think of a C^{∞} function on $X\times\mathbb{R}^{n}$, a=0 in a neighborhood of v=0 (where ϕ is singular) and a=0 for x outside some compact subset of X, and finally $a(x,\theta)\sim \sum\limits_{j=0}^{\infty}a_{j}(x,\theta)$ for $|\theta|\to\infty$ where $a_{j}(x,\theta)$ is homogeneous of degree μ - j. The space of such amplitude functions will be denoted by $S^{\mu}(X\times\mathbb{R}^{n})=$ space of symbols of growth order μ . A function $f(x,\theta)$ is called homogeneous of degree d (with respect to d) if $f(x,\theta)=t^{d}f(x,\theta)$ for all t>0.

If μ is too large, the integral (1.4.) will be defined as

the limit of similar integrals with the amplitude replaced by a sequence $a^{\left(k\right)}\in S^{-\infty}(X\times\mathbb{R}^N)=\bigcap_{\mu}S^{\mu}(X\times\mathbb{R}^N) \text{ approaching a in a suitable manner as }k\to\infty\text{ .}$ An equivalent interpertation can be given using partial integrations.

In order to find W F(A) we write

$$< A, ue^{-it\Psi} > = \iint e^{i[\phi(x,\theta) - t\Psi(x)]} a(x,\theta) u(x) dx d\theta =$$

$$= t^{N} \iint e^{it[\phi(x,\theta) - \Psi(x)]} a(x,t\theta) u(x) dx d\theta .$$

From the method of stationnary phase it follows that this integral is rapidly decreasing as $t \to \infty$ unless $d_{(x,\theta)}[\phi(x,\theta) - \Psi(x)] = 0$, that is

(1.5.)
$$d_{\mathbf{x}}\phi(\mathbf{x},\theta) = d\Psi(\mathbf{x}) , d_{\theta}\phi(\mathbf{x},\theta) = 0 .$$

Consequently W F(A) $\subset \Lambda_{\phi}$, where

A complete asymptotic development for < A,ue $^{it\Psi}>$ can be given if the stationnary points of $\phi-\Psi$ are non-degenerate, that is if $Q=d^2(\phi-\Psi)$ is non singular whenever $d(\phi-\Psi)=0$. In this case

(1.7.)
$$< A, ue^{-it\Psi} > = t^{N} (\frac{2\pi}{t})^{(n+N)/2} e^{-it\Psi(X)} \cdot |\det Q|^{-\frac{1}{2}} \cdot e^{\frac{\pi i}{4}} \operatorname{sgn} Q$$
.

. $a(x,t\theta).u(x)$ + terms of lower order as $t \to \infty$.

Here Q is taken at the isolated stationnary point (x,θ) of ϕ - Ψ . The non-singularity of Q implies that

(1.8.)
$$d_{(x,\theta)} d_{\theta} \varphi$$
 has maximal rank N

which in turn means that the set

$$C_{\varphi} = \{(\mathbf{x}, \theta) \in \mathbf{X} \times \mathbf{R}^{\mathbb{N}} \setminus \{0\} ; d_{\theta} \varphi(\mathbf{x}, \theta) = 0\}$$

is a C^{∞} submanifold of $X \times \mathbb{R}^{\mathbb{N}} \setminus \{0\}$ of dimension (n + N) - N = n. Moreover the non-singularity of \mathbb{Q} implies that the mapping

$$(1.10.) C_{\mathfrak{G}} \ni (x,\theta) \mapsto (x,d_{\mathfrak{X}}\varphi(x,\theta)) \in \Lambda_{\mathfrak{G}} \subset T^{*}(X) \setminus 0$$

is an immersion of C_{ϕ} into $T^*(X)\setminus 0$ yielding Λ_{ϕ} as an n-dimensional C^{∞} submanifold of $T^*(X)\setminus 0$. Finally, if (1.8.) holds whenever $d_{\theta}\phi(x,\theta)=0$ (in this case the phase function ϕ is called <u>non-degenerate</u>) then the condition that Q is non-singular is equivalent to the condition that the graph

$$\{(x,d\Psi(x)) \in T^*(X) ; x \in X\}$$

of the function $d\mathbb{Y}$ intersects Λ_{ϕ} transversally. Note that (1.5.) just means that $d\mathbb{Y}$ and Λ_{ϕ} intersect at (x,ξ) , $\xi=d\mathbb{Y}(x)=d_{x}\phi(x,\theta)$.

Because of the homogeneity of ϕ , Λ_{ϕ} is <u>conic</u> in $T^*(X)\setminus 0$, that is $(x,\xi)\in \Lambda_{\phi} \Rightarrow (x,t\xi)\in \Lambda_{\phi}$ for all t>0. Secondly it turns out that Λ_{ϕ} is <u>Lagrangean</u>, that is the canonical 2-form σ of $T^*(X)$ vanishes on Λ_{ϕ} . (On local coordinates σ is given by $\sigma=\Sigma \ dx$, Λ $d\xi$, θ .). Conversely every conic Lagrangean submanifold Λ of $T^*(X)\setminus 0$ is locally equal to Λ_{ϕ} for some nondegenerate phase function ϕ .

Now the asymptotic expansion (1.7.) leads to an invariant definition of the principal symbol a of A at $(x,\xi)\in \Lambda_{\phi}$. Here "invariant" means independent of the testing phase function Ψ for which the graph of $d\Psi$ intersects Λ_{ϕ} transversally at (x,ξ) . Because of the factor $|\det Q|^{-\frac{1}{2}}$ the principal symbol is a density of order $\frac{1}{2}$ on Λ_{ϕ} , and because of the factor $e^{\frac{\pi i}{4}} \operatorname{sgn} Q$ it has its values in a complex line bundle L over Λ_{ϕ} with structive group Z mod. 4. L is called the line bundle of Keller, Maslov and Arnold in [2].

Now let Λ be any conic hagrangean submanifold of $T^*(X) \setminus 0$. A global Fourier integral distribution A of order m corresponding to Λ , notation $A \in I^m(X,\Lambda)$, is defined as a locally finite sum of Fourier integrals A_j defined by phase functions ϕ_j , amplitudes a_j , number of frequency variables N_j , such that:

(1.11.) The Λ_{ϕ_j} are a locally finite system of conic neighborhoods in Λ

 $((x, \theta_j))$ only restricted to the conic support of $a_j)$, and

(1.12.)
$$a_{j} \in s^{m+n/4-N}j^{2} (X \times \mathbb{R}^{N}j \setminus \{0\}.$$

Of course A also admits an asymptotic expansion as in (1.7.) , leading to the definition of the principal symbol of A as an element of $s^{m+n/4}~(\Lambda~,~\Omega_{1}~\otimes~L)~.$

THEOREM 1.1. . - If Λ is a closed conic Lagrangean submanifold of $T^*(X)\setminus 0$ then the mapping:

$$(1.13.) Im(x,\Lambda)/Im-1(x,\Lambda) \rightarrow sm+n/4(\Lambda,\Omega_{\frac{1}{2}} \otimes L)/sm+n/4-1(\Lambda,\Omega_{\frac{1}{2}} \otimes L)$$

assigning to each $A \in I^m(X,\Lambda)$ its principal symbol, is an isomorphism.

This theorem is fundamental in all global constructions involving Fourier integrals since it says that for every $a \in S^{m+n/4}(\Lambda,\Omega_{\frac{1}{2}}\otimes L)$ there exists an $A \in I^m(X,\Lambda)$ with principal symbol equal to a, and secondly if A_1 , $A_2 \in I^m(X,\Lambda)$ have the same principal symbol modulo $S^{m+n/4-1}(\Lambda,\Omega_{\frac{1}{2}}\otimes L)$, then $A_1-A_2 \in I^{m-1}(X,\Lambda)$.

If X and Y are C^{∞} manifolds and K is a distribution in $X \times Y$, then $< Av, u > = < K, u \otimes v >$, $u \in C^{\infty}_{0}(X)$, $v \in C^{\infty}_{0}(Y)$, defines a continuous linear mapping $A : C^{\infty}_{0}(Y) \to \mathcal{P}'(X)$. If K is smooth then $(Av)(x) = \int K(x,y)v(y) dy$.

From the calculus of wave front sets it is known that if W F(K) does not contain points of the form $(\mathbf{x}, \mathbf{y}, 0, \mathbf{1})$ or $(\mathbf{x}, \mathbf{y}, \xi, 0)$, then A can be extended to a continuous linear map : $\mathcal{E}^{\bullet}(Y) \to \mathcal{B}^{\bullet}(X)$ and

(1.14.)
$$WF(Av) \subset WF'(A) \circ WF(v) .$$

Here

$$(1.15.) WF'(A) = \{((x,\xi),(y,-\eta)) \in T^*(X) \times T^*(Y) ; (x,y,\xi,\eta) \in WF(K)\}.$$

and in (1.14.) we let WF'(A) operate on WF(v) as a relation:

 $(1.16.) \ \ \text{WF'(A)} \ \ \circ \ \ \text{WF(v)} \ = \ \{(x,\xi) \in \text{T}^{*}(X) \ ; \ \exists (y,\eta) \in \text{WF(v)} : \ ((x,\xi),(y,\eta)) \in \text{WF'(A)} \}.$

Now a Fourier integral operator of order m defined by the relation $C = \Lambda'$ from $T^*(Y)$ to $T^*(X)$ simply is defined as an operator A with kernel $K \in I^m(X \times Y ; \Lambda)$. The set of all such operators A will be denoted by $I^m(X,Y;C)$. Note that $W F(Au) \subset CoW F(u)$ since $W F(K) \subset \Lambda$, if we assume that C does not contain points of the form $((x,\xi),(y,0))$ or $((x,0),(y,\eta))$.

The condition that Λ is Lagrangean in $T^*(X \times Y)$ means that $\sigma_{T}^*(X) - \sigma_{T}^*(Y)$ vanishes on $C = \Lambda'$. If C is the graph of a mapping $\Phi: T^*(Y) \setminus C \to T^*(X) \setminus 0$ this would mean that Φ preserves the canonical 2-forms, that is Φ is a canonical transformation. It is homogeneous of degree 1 because C is conic. In general C will not be the graph of a mapping (we will see some natural examples below) and C then is called a homogeneous canonical relation from $T^*(Y)$ to $T^*(X)$.

THEOREM 1.2. . - Let C_1 and C_2 be homogeneous canonical relations from $T^*(Y)$ to $T^*(X)$ and from $T^*(Z)$ to $T^*(Y)$ respectively, such that

C₁ × C₂ intersects the diagonal in $T^*(X) \times T^*(Y) \times T^*(Y) \times T^*(Z)$ transversally and not in points $(x,0,y,\eta,y,\eta,z,0)$, and the projection of the intersection to $T^*(X) \times T^*(Z)$ is a proper mapping.

Then the image $C_1 \circ C_2$ is a homogeneous canonical relation from $T^*(Z)$ to $T^*(X)$.

Secondly, if $A_1 \in I^{m_1}(X,Y;C_1)$, $A_2 \in I^{m_2}(Y,Z;C_2)$ and

the projection from the intersection of Supp A₁ × Supp A₂ with

(1.18.)

the diagonal in X X Y X Y X Z to X X Z is proper,

then $A_1 \circ A_2 \in I^{m_1+m_2}(X,Z; C_1 \circ C_2)$ and the principal symbol of $A_1 \circ A_2$ is equal to the product of the principal symbols of A_1 and A_2 .

The last sentence should be read as follows. If

 $\begin{array}{l} c_1=(x,\xi,y,\eta)\in C_1 \text{ , } c_2=(y,\eta,z,\zeta)\in C_2 \text{ then there is a canonically defined} \\ \text{bilinear mapping } (a_1,a_2)\to a_1.a_2 \text{ from the fiber of } \Omega_1\otimes L \text{ over } C_1 \text{ at } c_1 \\ \text{and the fiber of } \Omega_1\otimes L \text{ over } C_2 \text{ at } c_2 \text{ to the fiber of } \Omega_1\otimes L \text{ over } C_1 \text{ over } C_1 \text{ over } C_2 \text{ at } c_2 \text{ to the principal symbol of } A_j \text{ at } c_j\in C_j \text{ , } j=1,2 \text{ then the principal symbol of } A_1\circ A_2 \text{ at } (x,\xi,z,\zeta)\in C_1\circ C_2 \text{ is given by} \end{array}$

the sum being extended over the finitely many (y,η) such that $(x,\xi,y,\eta)\in C_1$ and $(y,\eta,z,\zeta)\in C_2$.

If X = Y, $C = \text{graph of the identity}: } T^*(X) \setminus 0 \to T^*(X) \setminus 0$, then $I^m(X,X;I) = L^m(X) = \text{space of pseudo-differential operators of order } m$ on X. (If m is a positive integer then the partial differential operators of order m form a subclass of $L^m(X)$). The principal symbol of $P \in L^m(X)$ can be identified with a homogeneous function of degree m on $T^*(X) \setminus 0$. Finally, if in Theorem 1.3. either A_1 or A_2 is a pseudo-differential operator then the multiplication of the principal symbols reduces to the usual scalar multiplication.

It may happen that the principal symbol of $A_1 \circ A_2$ of order $m_1 + m_2$ vanishes identically although neither of the principal symbols of A_1 or A_2 vanish identically. An important case is treated below.

THEOREM 1.3. - Suppose $P \in L^m(X)$ has a principal symbol p. Let C be a homogeneous canonical relation from $T^*(Y)$ to $T^*(X)$ such that p vanishes on the projection of C in $T^*(X) \setminus O$. If $A \in I^{\mu}(X,Y;C)$ and (1.18.) holds for $P = A_1$, $A = A_2$, then $PA \in I^{m+\mu-1}(X,Y;C)$ with principal symbol of order $m + \mu - 1$ equal to

(1.20.)
$$\frac{1}{i} H_{\widetilde{p}} a + c.a.$$

Here a is the principal symbol of A , $\widetilde{p}(x,\xi,y,\eta)=p(x,\xi)$, $H_{\widetilde{p}}$

is the Hamilton field defined by \widetilde{p} . Finally C is the subprincipal symbol of order m - 1 of the operator P .

Recall that the Hamilton field H_f of a function f on a cotangent bundle $T^*(X)$ is the vector field given by $H_f = \Sigma \frac{\partial f}{\partial \xi} \frac{\partial}{\partial x_j} - \Sigma \frac{\partial f}{\partial x_j} \frac{\partial}{\partial \xi_j}$ on local coordinates. Let us restrict for simplicity that f is real and we are at a zero of f. Because the vector H_f spans the orthogonal complement of the tangent space of f = 0 (orthogonal with respect to the canonical : 2-form σ) it follows that H_f is tangent to any Lagrangean submanifold of f = 0. So H_p is tangent to C and (1.20.) makes sense.

2. INITIAL VALUE PROLEMS.

Let X_0 be a submanifold of X of codimension k. Then the restriction mapping $\rho: C^\infty(X) \to C^\infty(X_0)$ is a Fourier integral operator of class $I^{k/4}(X_0,X;R_0)$, with

(2.1.)
$$R_{O} = \{(\mathbf{x}_{O}, \xi_{O}, \mathbf{x}, \xi) : \mathbf{x} = \mathbf{x}_{O} \in X_{O}, \xi | T_{\mathbf{x}_{O}}(X_{O}) \}.$$

Note that R_0 , regarded as a relation: $T^*(X) \setminus 0 \to T^*(X_0)$ is neither a mapping nor injective. In order to see that ρ is such a Fourier integral operator it suffices to consider the case that $X = \mathbb{R}^n$, $X_0 = \mathbb{R}^{n-k}$ and then it is seen from the formula

(2.2.)
$$(\rho u)(x_0) = (2\pi)^{-n} \iint e^{i < x_0} u(y) dy d\eta$$
.

From the calculus of wave front sets it follows that ρ can be applied to any distribution u for which WF(u) does not contain any (x,ξ) which by R_0 is related to an element of the form $(x_0,0)\in T^*(X_0)$. In other words, ρ can be extended continuously to all $u\in \mathcal{B}^*(X)$ such that WF(u) does not meet the normal bundle X_0^{\perp} in $T^*(X)$ of X_0 .

If P is a pseudo-differential operator $\in L^m(X)$ with principal symbol p, then Pu $\in C^\infty(X)$ implies that p=0 on WF(u). Writing Pu $\equiv 0$ if Pu $\in C^\infty(X)$ we thus obtain that ρ can be extended to all distribution solutions of Pu $\equiv 0$, if the characteristic set

(2.3.)
$$N = \{(x,\xi) \in T^*(X) \setminus 0 ; p(x,\xi) = 0\}$$

does not meet X_0^{\perp} . In this case X_0 is called <u>non-characteristic with respect to</u> P .

Now assume that p is real and that X_0 has codimension 1 . Let $Q_j \in L^{-j}(X)$, j=1,..., μ be a number of pseudo-differential operators. We want to find operators E_j , j=1,..., μ , such that

(2.5.)
$$\rho Q_{j} E_{k} = \delta_{jk} \cdot identity \text{ on } X_{0}.$$

Here $A \equiv B$ for operators A, B means that A - B is an integral operator with C^{∞} kernel. The operators E_j are the solution operators (modulo C^{∞}) of the Cauchy problem $Pu \equiv 0$, $\rho Q_j u \equiv f_j$, since $u = \sum E_j f_j$ satisfies these equations.

The idea is to try $E_j \in I^{\nu_j}(X,X_0; C_0)$ for some orders v_j and some canonical relation C_0 to be determined below. Because of (2.4.) we take C_0 such that $p(x,\xi)=0$ if $(x,\xi,x_0,\xi_0)\in C_0$. As remarked after Theorem 1.3 this implies that C_0 is invariant under $H_{\widetilde{p}}$. Since the <u>bicharacteristic strips of</u> P are defined as the solution curves in N of the vector field H_p , this means that $(x,\xi,x_0,\xi_0)\in C_0$ if $(\gamma,\eta,x_0,\xi_0)\in C_0$ and (x,ξ) is lying on the bicharacteristic strip passing through (y,η) . On the other hand (2.5.) leads to the condition $(x,\xi,x_0,\xi_0)\in C_0$, $x\in X_0 \Rightarrow x=x_0$ and $\xi|_{T_{\infty}}=\xi_0$. Conversely this situation should occur for every $(x_0,\xi_0)\in T^*(X_0)\setminus 0$ in order to get $R_0\circ C_0$ = graph of the identity : $T^*(X_0)\setminus 0 \to T^*(X_0)\setminus 0$. So we are lead almost automatically to the following definition of C_0 :

$$(x,\xi,x_0,\xi_0) \in C_0 \Leftrightarrow \text{There exists } (x_0,\eta) \text{ such that}$$
 (2.6.)
$$(i) \eta \Big|_{T_{X_0}(X_0)} = \xi_0 \text{ and } p(x_0,\eta) = 0 ,$$

(ii) (x,ξ) is on the bicharacteristic strip emanating from (x_0,η) .

Now the following theorem can be regarded as an interpretation of the results of Lax [3] and Ludwig [4] .

- (2.7.) No bicharacteristic curve emanating from X_0 is contained in a compact subset of X, and
- (2.8.) For each compact subset K_0 of X_0 , K of X there exists a compact subset K' of X such that every interval on a bicharacteristic curve with one end point in K_0 and the other in K, is contained in K'.

Secondly, if $Q_j \in L^{m_j}(X)$ have principal symbols q_j and

(2.9.) The matrix $q_j(x_0, \eta_k(x_0, \xi_0))$, j, $k = 1, ..., \mu$ is non-singular for every $(x_0, \xi_0) \in T^*(X_0) \setminus 0$,

then there exist $E_j \in I^{-\frac{1}{4}-m} j(X,X_0;C_0)$ satisfying the equations (2.3.) and (2.4.).

PROOF. - The transversality of the bicharacteristic curves means that

If e_j is the principal symbol of E_j then (2.4.), (2.5.) lead to the equations

(2.10.)
$$\frac{1}{1} \text{ H}_{p} \text{ e}_{j} + \text{c.e}_{j} = 0$$
, and

$$(2.11.) \sum_{\ell} \mathbf{r}(\mathbf{x}_{0}, \xi_{0}, \mathbf{x}_{0}, \eta_{\ell}(\mathbf{x}_{0}, \xi_{0})) \cdot \mathbf{q}_{j}(\mathbf{x}_{0}, \eta_{\ell}(\mathbf{x}_{0}, \xi_{0})) \cdot \mathbf{e}_{k}(\mathbf{x}_{0}, \eta_{\ell}(\mathbf{x}_{0}, \xi_{0}), \mathbf{x}_{0}, \xi_{0}) = \delta_{jk}$$

according to Theorems 1.3. , 1.2. respectively. Here r is the principal symbol of ρ . Because of (2.9.) the equations (2.11.) have unique solutions $\mathbf{e}_{\mathbf{k}}(\mathbf{x}_0, \mathbf{1}_{\mathbf{k}}(\mathbf{x}_0, \mathbf{1}_0, \mathbf{1}_0))$, \mathbf{k} , $\mathbf{k} = 1$,..., \mathbf{k} , which can be regarded as the initial values for the solutions $\mathbf{e}_{\mathbf{j}}$ of first order differential equation (2.10.) along the bicharacteristic strips.

So (2.10.), (2.11.) have a unique solution e_j . Taking $E_j^{(0)} \in I^{-\frac{1}{4}-m} j(\mathbf{X}, X_0; C_0)$ arbitrarily with these principal symbols, we obtain that

$$PE_{j}^{(0)} \in I^{m-\frac{1}{4}-m}_{j}^{-2}(x,x_{0}^{0}; C_{0}^{0}),$$

$$\rho Q_{j}^{E_{k}^{(0)}} - id. \in L^{-1}(x_{0}^{0}).$$

Solving similar equations for the principal symbols of operators $E_j^{(r)} \in I^{-\frac{1}{4}-m}j^{-r}(X,X_0;C_0)$ we obtain recurrently

$$P(E_{j}^{(0)} + ... + E_{j}^{(r)}) \in I^{m - \frac{1}{4} - m_{j} - r - 2}(X, X_{0}; C_{0}),$$

$$P(E_{j}^{(0)} + ... + E_{j}^{(r)}) - id. \in L^{-r - 1}(X_{0}).$$

By taking asymptotic sums of the amplitudes we obtain operators $E_j \in I^{-\frac{1}{4}-m} j(x,x_0^-;C_0^-) \text{ such that } E_j^-(E_j^{(0)}+\ldots+E_j^{(r)}) \in I^{-\frac{1}{4}-m} j^{-r-1}(x,x_0^-;C_0^-)$ for all r, and we see that these operators solve (2.4.) and (2.5.) .

Note that (2.9.) is satisfied if $Q_j = (\frac{\partial}{\partial n})^{-j-1}$, n = transversal vectorfield to X_0 , by looking at a Vandermonde determinant. This leads to the classical Cauchy problem. The conditions of Theorem 2.1. are fulfilled if P is a strictly hyperbolic differential operator in the usual sense, that is if $\mu = m$ and

 $X = X_0 \times \mathbb{R}$, $X \times (t)$ is non-characteristic for P and the bicha-(2.12.) racteristic curves intersect $X_0 \times (t)$ transversally for all $t \in \mathbb{R}$.

Note that for general pseudo-differential operators there is no natural relation between μ and m since m may be any real number. Finally we remark that if $\rho(t)$ is the restriction operator : $C^{\infty}(X) \to C^{\infty}(X_{(t)})$ then the matrix of operators

(2.13.)
$$\rho(t)Q_{j}E_{k} \in I^{m_{j}-m_{k}}(X_{(t)}, X_{(0)}; R_{(t)} \circ C_{0})$$

transforms the Cauchy data at t = 0 to the Cauchy data at time t . Here $^{X}(t) = ^{X}_{0} \times (t) \quad \text{and} \quad ^{R}(t) \quad \text{denotes the canonical relation of the restriction operator} \quad \rho(t) \; .$

3. THE SCHRODINGER EQUATION FOR h - 0.

We consider solutions u(t,x,h) of the Schrödinger equation

(3.1.)
$$h \frac{i}{c} \frac{\partial u}{\partial t} = h^2 \Delta_x u + V(t,x) \cdot u$$

depending on h>0. We want to study their asymptotic behaviour as $h\to 0$ ("classical limit"). Dividing by h^2 and writing $\sigma=1/h$ we obtain

(3.2.)
$$\sigma \cdot \frac{i}{c} \frac{\partial u}{\partial t} = \Delta_x u + \sigma^2 \cdot V(t, x) \cdot u$$

and we are interested in the asymptotic behaviour for $\sigma \rightarrow \infty$. Now write

(3.3.)
$$u(t,x,\sigma) = \int e^{-i\sigma s} v(t,x,s) ds$$

= Fourier transform at σ with respect to a new variable s. Then we recognize the asymptotics for $\sigma \rightarrow \infty$ as a wave front investigation of the singularities of v. For v we obtain the equation

(3.4.)
$$Pv = \frac{1}{c} \frac{\partial^2 v}{\partial s \partial t} - \Delta_x v - V(t, x) \cdot \frac{\partial^2 v}{\partial s^2} = 0 ,$$

where P is a real operator, and all terms are of the same order 2. The only drawback of P is that the initial manifold t=0 in (t,x,s) - space is characteristic for the operator P. For this reason we prefer to work here with the relativistic Schrödinger equation

(3.5.)
$$h^{2} \frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} = h^{2} \Delta_{x} u + V(t,x) \cdot u$$

Applying the same trick we are led to the equation

(3.6.)
$$Pv = \frac{1}{c^2} \frac{\partial^2 v}{\partial t^2} - \Delta_x v + V(t, x) \cdot \frac{\partial^2 v}{\partial s^2} = 0 ,$$

where the operator P is strictly hyperbolic if V(t,x) < 0 for all t,x. $(V(t,x)=-m^2c^2$ for a free particle. (For the Dirac equation we obtain a hyperbolic system).

Now assume that we have highly oscillatory initial values

$$u(0,x,h) = e^{-i\frac{1}{h}} \Psi_0(x) a_0(x,\frac{1}{h})$$

$$\frac{\partial u}{\partial t}(0,x,h) = e^{-i\frac{1}{h}} \Psi_1(x) a_1(x,\frac{1}{h}),$$

with $a_j(x,\sigma) \sim \sum\limits_{k=0}^{\infty} a_j^{(k)}(x).\sigma^{\mu}j^{-k}$ for $\sigma \rightarrow \infty$, j=0,1. This implies

(3.8)
$$v_0(x,s) = v(0,x,s) = (2\pi)^{-1} \int e^{i\sigma s} \cdot e^{-i\sigma \Psi} 0^{(x)} a_0(x,\sigma) d\sigma$$

which is a Fourier integral with phase function $\sigma(s-y_0(x))$.

Similarly $v_1(x,s)=\frac{\partial v}{\partial t}(0,x,s)$ is a Fourier integral with phase function $\sigma(x-\Psi_1(x))$. (σ is the frequency variable). So these distributions belong to the class $I^{\mu}j^{-\frac{1}{2}}(X_0,\Lambda_j)$, where Λ_j = normal bundle of the manifold $s=\Psi_j(x)$.

It follows that $\mathbf{E}_{\mathbf{j}}\mathbf{v}_{\mathbf{j}}\in \mathbf{I}^{\mu}\mathbf{j}^{-3/4}-\mathbf{j}(\mathbf{X}_{0},\mathbf{C}_{0}\circ\Lambda_{\mathbf{j}})$, where $\mathbf{C}_{0}\circ\Lambda_{\mathbf{j}}$ is the Lagrangean manifold in $\mathbf{T}^{*}(\mathbf{X})\backslash \mathbf{0}$ obtained from $\Lambda_{\mathbf{j}}$ by applying the relation \mathbf{C}_{0} defined in (2.6.). In the general points $\mathbf{C}_{0}\circ\Lambda_{\mathbf{j}}$ will be the normal bundle of a manifold $\mathbf{S}=\Psi_{\mathbf{j}}(\mathbf{t},\mathbf{x})$ which in analogy with (3.8.) leads to an asymptotic expansion of the form

(3.9.)
$$u(t,x,\sigma) \sim e^{-i\sigma \Psi_0(t,x)} \sum_{k=0}^{\infty} a_0^{(k)}(t,x) \cdot \sigma^{\mu_0-k} + e^{-i\sigma \Psi_1(t,x)} \sum_{k=0}^{\infty} a_1^{(k)}(t,x) \cdot \sigma^{\mu_1-1-k} .$$

The points where $C_0 \circ \Lambda_j$ is not locally equal to the normal bundle of a manifold $s = \Psi_j(t,x)$ are called <u>caustics</u> in analogy with the terminology of geometrical optics. Of course (3.9.) are just the asymptotic expansions of the WKB-method. However we have given a proof, which is globally valid, that the solutions satisfy such expansions if the initial data do. Note that the asymptotic expansions are exact modulo terms of order - ∞ because the calculus of Fourier integral operators is exact modulo C^∞ . The WKB-method only gives results up to the caustics, whereas we also obtain asymptotic expansions at points lying beyond the caustics. Moreover, since we have an integral representation of the solutions, a more refined stationnary phase analysis also leads to certain asymptotic expansions at the caustics, at least in special cases.

REFERENCES

[1]	J.J.	DUISTERMAAT	and	L.	HORMANDER	,	Fourier	integr	al	oper	ators	II	,
							Acta Math	1. 128	(19	972)	, 183-	-269	١.

- [2] L. HORMANDER Fourier integral operators I,
 Acta Math. 127 (1971), 79-183
- [3] P.D. LAX

 Asymptotic solutions of oscillatory initial value problems, Duke Math.

 J. 24 (1957), 627-646.
- [4] D. LUDWIG Exact and asymptotic solutions of the Cauchy problem, Comm. Pure Appl. Math. 13 (1960), 473-508.
- [5] V.P. MASLOV Theory of perturbations and asymptotic methods, Moskov Gosd. Univ., Moscow, (1965), (Russian).