
Recherche Coopérative sur
Programme no 25

WALTER THIRRING
Free Energy of Gravitating Fermions
Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1972, tome 14
« Conférences de J. Bros, P. Schapira et W. Thirring et un texte de R. Gérard et A.H.M.
Levelt », , exp. no 3, p. 1-26
<http://www.numdam.org/item?id=RCP25_1972__14__A3_0>

© Université Louis Pasteur (Strasbourg), 1972, tous droits réservés.

L’accès aux archives de la série « Recherche Coopérative sur Programme no 25 » implique l’ac-
cord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utili-
sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RCP25_1972__14__A3_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


FREE ENERGY OF GRAVITATING FERMIONS 

par Val ter THIRRING 

ABSTRACT 

We calculate rigorously, in a suitable thermodynamic 
limit, the free energy of a System of nonrelativistic 
fermions which interact with attractive r 1 - potentials. 
It is shown that the effective field approximation becomes 
exact in this limit and results in the temperature-dependent 
Thomas-Fermi équations. 



1. INTRODUCTION 

(1.1) 

describing Ν particles interacting with r potentials is the relevant 
quantity if weak and nuclear interactions as well as relativistic effects 
can be neglected. In spite of the vast domain of applicability only few 
results have been rigorously derived from it, if Ν > 2. Dyson and 
Lenard ^ have shown that, for κ = 0, Ze. = 0 and certain combinations 

i 1 

of statistics, the ground state energy of (1.1) for large Ν is pro-
2) 

portional to N. Lebowitz and Lieb announced a proof that the free 
energy then is well-behaved. 

3) 
Lévy-Leblond proved that, for κ > 0 and le. = 0, the ground 

i ̂ ~ 7/3 
state energy for identical fermions is proportional to Ν for large N. 

. . -7/3 We propose to calculate exactly the limit N -> °° of N 
for nonrelativistic identical fermions interacting with their gravita-
tional forces. The reason why this can be done is that, owing to the long 
range of the force, the temperature-dependent Thomas-Fermi équations 
become exact. 

The System exhibits an interesting thermie behaviour which 
resembles certain features of stars and which has been discussed previously 
for simplified models ^\ 

There is a région where the microcanonical lieat capacity is 
négative. In the canonical ensemble that région is bridged by a phase transition. 

In this paper we shall concentrate on the mathematical problem 
of the asymptotic equality of the exact and the Thomas-Fermi free energy. 

The quantum mechanical Harailtonian 
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We dénote by F(N,S ,R) the free energy of a System of Ν 
4" 3 

identical fermions enclosed within a spherical volume — R at 
3 

température ï = 1/kS (k = BoltzmannTs constant), The fermions interact 

with their gravitationl forces only. We will choose units 1\ = 1, 

Fermion mass = 1, and κ = gravitation constant = 1. 
The free energy is defined by 

- w w . e . R ) τ - β ί ^ Λ " 4 J , ^ - h r l ) 

e = T R ^ > T Τ,Ν E 1 = 1 1 = ^ = 1 ί1·2) 3fv^R) 

where 3f(N,R) is the Hubert space of square integrable, complex valued, 
-> -> -> 

totally antisymmetric wave fonctions of Ν arguments x^, x^,.·., x^ 
--> 

which vanish if at least one j x. j ̂  R, By the unitary transformation 
-1 1 

χ -> R χ, ρ -* Rp expression (1.2) can be rewritten as 
Ν 

-3F(N,B,R) _ -β{^"2.Σ· p 2 - ̂ R" 1 , |x. - Χ ; Γ \ Ί ^ 
" T la(N,l) e W 1 i'J-1 1 J ( 1- 3 ) 

We will investigate the limit X -> ̂  of 

λ" 7 / 3 F(XN, λ" 4 / 3β, A " 1 / 3 R ) (1.4) 

for fixed Ν, β, R and for ΧΝε IN* 

The limit along the particular Mrayff (1.4) is dictated by the Thomas-Fermi 
équations and their law of corresponding states. It means that the System 
becomes hotter and contracts if Ν is increased. The usual limit 1/3 . -2/3 (g constant, R ~ Ν ) could be taken if we would choose κ - Ν 
It should also be noted that for non-interacting particles the two limits 
coïncide since 

λ"1 F . (XN,6,X1/3R) = X~ 7 / 3 F n (XN,X~4/3B,X~1/3R) K=U K-u 

holds. 
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We define 

with 

_ , _ AN 
Κ = \ λ R Σ PT (1.6) 

i=l L 

and for various interactions V. 
For 

-2 -1 λ Ν -> -1 V = λ R Σ |χ. - x.| (1.7) 
JT i,j=l 1 J 

. I . 

we have 

f(A,V^) = λ" 7 / 3 F(XN,À" 4 / 36,À"" 1 / 3R) (1.8) 

i.e. the function of which we want to study the limit λ °°. If Ν 
has been chosen sufficiently large, β and R small ^ the limit is the 
desired free energy since then 

lim f(X,Vj -f(l,Vj = F(N,6,R) (1.9) 

For technical reasons we cannot directly prove our assertion for the 
singular Newton potential 

v-(x,y) = |χ - yf \ (î.io) 
Jf 
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We shall have to replace it by 

s 
ν <î,y) = Σ v a^(x) ̂ (y) (1.11) 

a=l 

where Φ are the normalized and real eigenfunctions appearing in the • a 
expansion of the continuous potential (y > 0) 

-, -μ I x~y I °° 

Ix - y I a=l ' 

considered as an intégral kernel operator. 
The *^ satisfy the équation 

( 3 1 - e" Y'^L 
d y — — fa(y) = v a<fa(x) (1.13) 

lyki | x _ y ! 

with positive eigenvalues Ν . 
a 

Again for technical reasons we include the self-interaction and define 

-2 -1 λ Ν - -* -1 S 2 V = - k λ ZR Σ ν (χ.,χ.) = - λ Σ J (1.14) ys . . MS ι' j T a i,j = l J a=l 

where 

/ V U λ Ν -
J a =(2RTJ .fx fa<*i> · ( 1 · 1 5 ) 

In chapter 2 we shall prove that thèse approximations are arbitrarily 
good in the sensé that 

lim lim lim if (λ,ν ) - f (λ,ν.} = 0 (1.16) 
μ->οο S-̂-oo X->oo ^ 

holds. This also shows that our resuit does not dépend on the singularity 
but on the long range of the Newton potential. In particular, the addi-
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tion of sufficiently short range forces will not affect it. 

Next we add to V a terra 
MS 

W [oj- λ"1 Σ (Ja - a/ (1.17) 
a=l 

where (σ_ , σ ,. . . , σ ) ε/îf. 
1 Δ s 

It will turn out that for suitable A fs the effect of this term is 
negligible: we prove in chapter 3 that 

lira { inf f(A,V + W ΓσΤ) - f(X,V )} = 0 (1.18) 
λ- σε* 8 P S U S 

is true. 
The interaction V + W ÂJ is linear in the operators J , it describes 

U s \i s a 
a systera of non-interacting particles in the external field generated by σ. 
We will demonstrate in chapter 4 that the barometric formula results in 
the limit λ -> °° : If the external field U: L0,lj ffc is a regulated 
function (i.e. the uniform limit of step functions, see réf. 9) and 

V = λ Σ U(|x.|) (1.19) 
i=l 1 

the corresponding interaction then 
1 

lira f(X,V) = - — - - R3[ dr4ur2g r-A-SU(r)) (1.20) 

where 

gB(z) - [ ln(l + β"^ ρ 2 + Ζ) (1.21) 
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and α is the solution of 

R 3 ^ dr 4πΓ2 gf (-a-gU(r)) = N. (1.22) 
J " 
0 

α is unique since g!(z) is strictly monotonie 
In chapter 5 it will be shown that lim and inf in (1.18) can be inter-

Λ S 
\~+<x> σε us s changed, that the infimum is actually attained for a σμ ε , and that 

us 
this σ is a solution of the self-consistency équation, i.e. 

s 
US ys M /*\ . r. U (χ) = Σ σρ ν φ (χ) satisfles -, a a Ta 

a=l 

ϋμ3(Ϊ) - - [ d3y νμ8(Ϊ,?) g ' g C - B R V 8 ^ ) - a W ) (1.23) 

with 

R 3 f d3x g*fi(-BR2 UMS(Î) - α μ δ) = N. 

Thèse are the well known température dépendent Thomas-Fermi équations for 

particles interacting with the potential ν . In réf. 5 we discuss 
ys 

uniqueness and properties of its solutions. In particular, we demonstrate 
that the solution is insensitive to small changes of ν (and can there-

u s 
fore be calculated on a computer): we shown that U tends with μ,s -> 00 

to a solution U of the Thomas-Fermi équation with the Newton potential. 
α and F converge to the corresponding values. 

Putting (1.16), (1.18), (1.20), and the results of chapter 6 
together, we arrive at the final resuit: 

For ail Νε/Nj β > 0 and R > 0 we have 
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lim λ" 7 / 3 F(XN, λ" 4 / 3β, X" 1 / 3R) = 
\-*x> 

R 5 [ ,3 π , , f d3p 1 Να 
- — d χ U(x) — 1 ~ . - —-

2 J J (2π)3 H 2 β · 
^ β + R U(x))+ a 

x 1 + e 
R3 , , d3 - β(£ + R2U(x)) - α 

d χ — C _ R £n(l + e ) (1.24) 
β J J (2u)J 

where U(x) and α are determined by 

- - f A f A r - i & · « > 

1 l x 1 + e 

and 

η 3 f Λ 3 ί d3p 1 
R J d χ I ^ = N. (1.26) 

' < 2 ï ï ) B(f- + R2U(x)) + α 

If (1.25) and (1.26) admit, as is actually the case, for some values 
Ν, β, R several solutions, that one for which the right-hand side of 
(1.24) is smallest is to be chosen. 
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2. REPLACING BY V Jf^ PS 

The operator of (1.7) is bounded with respect to Κ of 
(1.6) : for ail Ψε2) - J is the standard domain of Κ such that Κ 

7) K . 
is self-adjoint - there exist positive numbers a and b such that 

IIVj, Ψ|| < a II Ψ II + bll Κ Ψ|| (2.1) 

holds. The infimum of ail such b, the K-bound of Vp, is zéro ̂ \ Thérè­
se 

fore, according to an investigation by Maison , ί(λ,κ^) of (1.5) 
exists, is entire in κ, and holomorphic in (3 in the half-plane 
Re 3 > 0. The derivative with respect to κ can be expressed as an 
expectation value of the interaction: 

h f ( A ' K V = < V k V
 ( 2 · 2 ) 

where 

< a > = ^ A N > 1 ) . (2 3) 
A v _ -λβ(κ+ν) 

ΐ Γ^λΝ,1) 6 

The domain of the self-adjoint operator Κ + V̂ , is also Φ̂ .. The 
eigenfunctions *P of (1.13) are continuous, hence the operators J are • a a 
bounded, and so is V Thus, f(X,V ) exists as well. 

ys ys 
The différence between V and V g* is 

ys Jf 
AN 0 0 

V,s " V = V " ^ λ'^Νμ + h a " 2 r _ 1 Σ Σ V JP(X.)/(X.) (2.4) 
μ Ί* Y i,j=l a=s+l J 

with 
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By Mercer's theorem the sum (1.12) converges uniforraly in * Ŝ , 
consequently the norm of the last term in (2.4) converges to zéro uni­
forraly with respect to λ if s->°°. Therefore, 

lira lim [f(A,V ) - f(A,V +VV)] = 0 (2.6) 

holds for ail μ > 0 in virtue of the gênerai property 

| f (λ,Α + Β) - f (λ,Α) j < |! Β j] . (2.7) 

Now, V̂ 7 is smaller than -Vj^ thus the (K + V^) - bound of V̂ 7 is also 
zéro. Consequently, the mapping t ^ f(A,V^+ t V^) is entire. For 

real t it increases with t since £ 0 and it is concave (this is 

a gênerai property of f(A,A + tB)). We then find 

0 < f(X,V^+ Vy) - f(λ,ν̂ ) 

(2.8) 

< 5 F f ( x ' V + ϋ V t - o - < V Y V · 

It is now our task to show that the expectation value of the Yukawa-inter-
action V vanishes uniformly in λ if μ+°°. For this we will calculate 

-1/5 
a lower bound of Μ Κ - ν γ. 

Following Dyson ^ we décompose this Hamiltonian as follows: 

η η ^ 2 -μ|χ.-χ. I 

" ~ l / s κ - ν ϊ · . - . V · " ι · â " 4 % V > « · * > 
i _ i J - i x. - X. 

1 J 

9) 

ΛΜ -μ χ.~χ. 
λΝ 1 ι j 1 

ν γ = \ À " V Ζ ^ . (2.5) 
i+j=i | X i - χ I 
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where 

1/5 5/3 2 η = λΝ, M = μ 1 λ ' R (λΝ - 1) and 

α = \ λ R 

Each of the lu is an Hamiltonian describing the motion of 
n-1 particles of mass M in the attractive Yukawa-potential of the n'th. 
The particles do not interact. The ground state of tu is obtained if 
the η particles are filled into the η lowest states (recall that we deal 
with fermions). 

The single particle bound states lie certainly higher than those 
2 2 2 of the hydrogen atom, namely = -Μα /2v with multiplicity ν (ν = 1,2,...)· 

However, the Yukawa-potential can bind at most states, for which number 
the upper bound 

oo 1. 
η ^ 2j| dr r 2Μα \ . j sup r 2Ma t 
° S \\ r 5 < r>,0 r > 

(2.10) 
2 (IMa 3/2 

μ 

is known ^ \ η corresponds to a hydrogen atom principal quantum number 
ο ν with ν /ο = η , therefore the ground state of h. is higher than ο ο j ο ι 

- \ Ma 73n ^ - 2a ΜζΜα/μ)1. ο 

We conclude that μ Κ - is bounded from below by -2ηα^Μ(Μα/μ)2 

so that we obtain 

0 < V y < μ~1/5(Κ + R̂  N 5 / 2) . (2.11) 



- 11 -

It remains to show that < K > is bounded independently of λ. 
V 

The mapping 

- f (tK+2V^) 
t - " Τ χ log Τ ^ ( λ Ν ) 1 ) e ' (2.12) 

is analytic in the half-plane Re t > 0, increases with real t and is 
concave. Hence the derivative with respect to t for t=2, which is 
just < κ · > ττ > is smaller than 

V 

2 f ( x , y " 2 f ^ 2 V a / 2 

where the suffix β/2 means that définition (1.5) applies with β being 
replaced by β/2. 

The first terra can be bounded above by -> 
λΝ ρ 2  

_ β.Σ _L 
1 ι rp "3λΚ 1 Ί Ί / η ι-12 

" ̂ l 0 S ^ , 1 ) Ê » - Τ^(ΛΝ,λ 1 / 3Κ) 6 

which is nothing else but the usual free energy for non-interacting 
fermions. It is known that the free energy of a System of λΝ non-

4tt 3 
interacting particles within a spherical volume λ — R , if divided by λ, 
converges with X-+°° towards the well-known limit. Since XN ε M there is 
an upper and a lower bound, f (N,B,R) ̂  f(X,0) ̂  f (N,B,R), so that 

f ( * , y ^ f(X,0) ̂  fD(N,g,R) (2.13) 

holds for ail X. 

The second term can be bounded from below since with Lévy-Leblond1 s 
3) . . . . . . 

estimate for the ground state of identical fermions with gravitational 
2 7/3 

interaction, we find Κ + 2KV^^ -Κ Ν for ail R and X so that 
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7/3 

Κ + 2Vy $ - 2Ν and 

ί(λ,2ν^)β/2 * A, f(A,U);/4 - 2N 7 / 3 > ̂  fL(N,|,R) - 2N 7 / 3 (2.14) 

holds for ail λ. 

With (2.13) and (2.14) we bave established an λ-independent 
bound for <K> . ïhis resuit together with (2.11), (2.8) and (2.6) 
complète the proof of équation (1.16): 

lim lim lim if(A,V ) - f(X,V )} = 0. 
Vis Jf 
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The fluctuation on the right-hand side can be further estiraated 
by 

13) 

3. THE EFFECTIVE FIELD APPROXIMATION 

It has been démonstrated in the preceding section that, for the 
purpose of calculating the free energy, the original interaction can 
be approximated by a finite sum of squares of bounded hermitian operators J . 

a 
In this chapter we shall show how a further simplification is achieved if 
a product of operators is replaced by the product of the operator and its 
expectation value. The justification of replacing a field by what is 
usually called the effective field was originally demonstrated by 

12) 
Bogoliubov jr. in connection with the BCS~ theory of superconductivity. 

Let us define 
8 9 9 9 -β{λΚ+ Σ Γ-J +t(J -<J >.) +j J 1 } 
=
 L a a a y Ja aA 

4>(t,j) = " J ln Tr e a~ l (3.1) 

where 
S 2 -β{λΚ + Σ Γ-J +j J J } 
a=l a 

<A>. = Τ Γ A 8 (3.2) 
J s Γ 2 ^ 

β{λΚ + Σ l-J +j J J j 
Tr e a=l 

for j ε <RS. 

φ (t,j) is increasing and concave in t, hence 

5 2 0 < 4>(l,j) " Φ(Ο,ΰ) = 6(j) < Σ <(J - <J > ) > (3.3) 
a=l a 

holds. 
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Now, the intégral 

1 1 
6(ζ)β/ά3 .../djo o(j) (3.5) 

0 1 0 S 

defines a ζ eR S with Ο ̂  ζ 4 1, and since <2 || J || holds -
recall that 6(j) is the différence between two <j>!s the derivative of 
which with respect to j is an expectation value of J - we arrive at 

a a 
s 

δ(0) < 6(ξ) + Σ 2 ||j [Ι . (3.6) a=l a 

ό(ξ) can now easily be estimated by 

5<ς) < ς ^2i | J aii + y5||j h - il & ,[mc.j ]] n > o . ? ) 
a=l ρ 

so that 

0 ̂  φ(1,0) - φ(0,0) (3.8) 

a=l S a *a 

+ 2-k v3/4 -7/4 * ' λ-1/12}  

a « a « a 

has been established. We have used that the double commutator is equal to 
^ X 3 / J R j v Γ (V*(x.))^ and that 

3 i=l a 1 

f ' = sup |vf(x)j (3.10) 
3 leS1

 , a 
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are both finite since the eigenfunctions if are continuous and continuous-
ly differentiable in (cf. équation (1.13)). 

With the positive definite operator W [σ] as defined in (1.17) 
one finds by comparing (1.5) with (3.1) 

λ"1 φ(0,0) = f(X,V ) (3.11) 
ys 

N< σε*« f ( À' V' M S + W l J s M > 

^ f ( A' v
Us + V E<j>J) - λ _ 1 Φ(1.0) 

which, together with (3.8) proves équation (1.18), namely 

lim { inf f(X,V + W Γσ] ) - f(X,V )} = 0. 
ms ys ys L J ys λ-*» σε FR 
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4. THE BAROMETRIC FORMULA 

With 

σ(χ) = Σ ι / - ^ 0 a f a ( ^ ( 4 e l ) 

a=lf R λ ν 
a 

and 

S 2 I 2 ^ 
U(x) = - Σ R ν II — a iê (χ) (4.2) 

a=l 3 R \ v a 7 a 

a 
we may write for the interaction appearing in équation (1.18): 

ο Γ ο _̂  -1 ̂  Ν _̂  
V + W V = - ^ , d χ σ(χ) U (χ) + λ Σ U(x.). (4.3) PS-^ J Ι 

Ι=1 
si 

The first term on the r.h.s. of (4.3) is a c-number and will appear as an 
additive contribution to the free energy. It présents no problem for the 
limit λ ->• ». In this chapter we concentrate on the second term, in 
particular, we want to study the limit λ ->• 00 of 

φ(λ,υ,Ν) = ί(λ,λ Σ U(x.)) (4.4) 
1 = 1 1 λ Ν  

χ -3[λΚ + Σ U(x\)] 
= - ϋ 1 ο δ Τ Γ

Λ ( λ Ν , ΐ ) e i = U ^ -
λΝ \ /* \ 

1 - β Σ r + U l-jjj-

- ~ ΤΧ l 0 g Τ^(λΝ,λ 1 / 3Κ) e i = 1 L ' λ R / J 

for fixed β, R and various λ-independent external potentials U(x). 
k · . 

Note that fixed U corresponds to σ - λ , but this is no 
a 

difficulty for équation (1.18) since the infiraum there extends over ail of 
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Another remark concerns rotational syrametry: the truncation of 
the eigenfunction expansion (1.12) to (1.11) can always be done in such a 

-> -> 
way that the rotational symmetry of ν (x,y) is preserved. Since then 

y s 
V of (1.14) is also invariant under rotations the expectation value 
MS 
appearing in équation (3.11) of the Jfs will define a spherically symmetric 
σ(χ). Therefore, the infimum in (3.11) needs to be with respect to 
spherically symmetric o(x) only. Since U(x) of équation (4.2) equals 
-R2 /d^y ν (x,y) a(y) we have to consider spherically symmetric external 

y s 
potentials only if s is chosen such that v^g is spherically symmetric. 

The problem thus séparâtes into a radial and an angular part. 
Correspondingly, the eigenvalues ε of 

2 
H = + U (-JJ3-)] (4.5) 

λ R 

can be labelled by a radial quantum number η and the angular quantum 
number l. A lower bound for the ε1s is readily available 

ε„ n >, 3(R"2 X" 2 /Va+l) + v) (4.6) n, i 

where 

ν = inf U(r) (4.7) 
0̂ r.<l 

is finite since U is a finite sum of functions which are continuous in 
the unit bail Ŝ . 

For this reason U can be approximated by a piecewise constant 
potential with a finite number g of steps: 
for ail Η > 0 there is an integer g such that for 
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UT(r) = U. = U( 1 " g
1 / 2 ) if ± - Z - A < r < | , i-l....»g (4.8) 

we have 

sup |u(r) - U (r)| < η . 
0*r<l 

We furthermore consider a potential which is + infinité 
walls at r=i/g. This means that we impose in addition the restriction 
that the wave functions have to vanish at r=i/g. Both U_ and UTT are 

T W 
extensions of the same potential U defined on the dense set of wave 

ο 
functions vanishing at r=i/g. The intersection of this domain with the 
domain of Κ gives the domain of H q = β(ρ2/2 + U o(r/A 1 / 3 R)). 

is not self-adjoint but has defect indices (g,g). Its self-adjoint 
extension H__ and H have domains Ή + 3 T 7 and ^3 + ̂  respectively 

W T O W ° 1 rp 
where ̂  TT and are g-dimensional subspaces. Clearly Λ > ε 

W T y n,£ η,Ζ 
and from the minimax-principle (E is an n-dimensional subspace) 

n 
ε " £ " i n £ * εΊ M t ) *ΊΚ*Μ1Φ < 4 · 9 > 

we learn 

W T T W 
n~g,£ η, Ζ τι,Ζ ^ η, Ζ η9Ζ 

(Vn > g, Vu). 

This implies for the partition functions the following inequali-
ties 

W - Σ v λ ε λ - Νλη — Σ ν n ε η η,Ζ η,Ζ η,£ η,Ζ η,Ζ η,£ 
Σ?β £ Σ? e (4.11) 
ν ν 

g οο ^ 
-Σ{ Σ ν Λ ε + Σ ν ε } + Νλη , £n=m,£ n,A n=g+l η,A n-g,£ 

^ Σ e 

ν 
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Σ? indicates the sum over ail occupation numbers compatible with 

Σ ν = λΝ. 
η, I 

In terms of the corresponding free énergies (4.4) we deduce from 
(4.6) and (4.11) 

- <KX,UW,N) - Νη ̂  - φ(λ,υ,Ν) (4.12) 

^ λ"1 (β"*1 log g - gv) + Νη - inf <KX,U W >N') . 
XN-g^N^XN 

Now, the eigenfunctions of have their support in one of the 
shells (i-1) ̂  rg ̂  i, we can therefore replace the radial quantum num-
ber n by the pair (i,m) where i labels the shell and m the radial excita­
tion in this shell. We shall require the following estimate later on: 

^ R"2 λ~ 2 / 3 [Ormg)2 + AU+1) (f)2+2U.] (4.13) 

W 
v i,m,£ 

Γ (TTing)2 + £(£+1) (T^t)2 + 2U. for i > 1 1 

\ (Ttmg)2 + A£(£.+l)g2 + 2ϋχ for i » 1 J . 

Introducing the partition function of the i'th shell 

-λβφ(ί)(λ,Ν) , " mJ A v m >, ε* 
e = Σ e ' ' (4.14) 

ν 

we obtain for the partition function with walls 

-λβφ(λ,υΜ,Ν) V -λβ φ(ΐ)(λ,Ν.) 
e = Ζ e * (4.15) 

(Nlt...,Ng) 
Σ N.=N ι 
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Since is constant inside a shell the free energy φ^(λ,Ν) 
is the free energy of non-interacting particles plus NIL. One knows 
that φ^(λ,Ν) decreases with increasing λ. By standard arguments 
one can démonstrate that this property also holds for φ(λ,ϋ ,N). Since 

w 
the latter is bounded below by φ(λ,Ο,Ν) - vN - which is known to converge 
for λ -> « - w e conclude that φ(°°,Ι1τ,Ν) = lim φ(λ,υ,Ν) exists. W , w λ-*30 

From (4.12) we deduce that φ(00
>ϋ>Ν) also exists and is 

arbitrarily close to Φ(°°,υτ7,Ν) for η sufficiently small. 
w 

The explicit form of Φ(°°,υ ,N) can be calculated by studying 
the grand canonical ensemble. 

The standard proof of the équivalence of the canonical and the 
grand canonical ensemble can easily be formulated to apply to the case at 
hand. The grand canonical partition function is the sum of those for the 
individual shells which are the usual expressions for non-interacting 
particles (this can be seen by inspecting the limits (4.13) of the eigen-
values). In the limit λ -> 00 the sums over eigenvalues approach intégrais 
in momentum space, and with η 0 (g -> 00) the sum over shells becomes 
a space intégral. We will not write down ail the necessary epsilontics 
since this is an exercise in elementary analysis. 

The resuit is 
1 1 

lim φ(λ,ϋ,Ν) = - ̂  -R3 \\ dr 4π Γ
2[ * (4.16) 

χ m α + 8 " β ( ε + υ ( Γ ) ) " α) 

with α being the unique solution of 
1 1 . 

3 l , , 2 f de ̂  / 6(e+U(r)) +aVl /, N-,Ν N = R dr 4ττΓ - - 11 + e 1 β (4.17) 
J J /? π \ * 
Ο Ο Δ 

This co-Dictes the r-oc F of the baro™etric formula ('1.20) to (1.22) . 
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5 . THE RESULT FOR V . 

It is a by-product of the investigations in the preceding 
section that φ(λ,ϋ,Ν) converges frora above towards the limit. There-
fore, the lirait and the infimum opération in équation (1.18) can be inter-
changed. 

We have thus to investigate the infimum of 

5 s NCX r s 
Σ ν σ2 - - RJ ! d χ gp(6R Σ ν σ <f (χ) - α ) (5.1) 

2 a = 1 a a t β j 6β a = 1 a a Ta a; 

where α is a solution of 
σ 

R 3 ! d 3xg' 6(3R 2 Σ v a o a ̂ (x) - an) = Ν . (5.2) 
a= 1 

' M l 
Since α dépends on α this solution need no longer be unique. 

The derivative of (5.1) with respect to J is 
b 

R5 vb;cb - [ d3y g' (3R2 Ζ v a o a f a(y) - Ofb(y>;. (5.3) 
a=l 

Note that the derivative of does not appear because of the subsidary 
condition (5.2). 

We see that the free energy (5.1) increases with ic^l if 
,ob, > R 2 N F B . 
Hence the infimum in équation (1.18) can be restricted to an infimum over 

2 the compact cube ; a j < 2R Ν max *Ρ, · a η . D lN<b̂ s 
Since (5.1) is continuous and continuously differentiable with 

μ S ^ M S 
respect to any c the infimum is attained at a point c (χ) Σ a tf (χ) 

. . a=l a ' a 

where ail partial derivatives (5.3) vanish. 
(5.2) and Î5-3) are exactlv the self-consistencv ecuations (1.23) we 

referred to in chaDter 1 . 
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β . THE THOMAS-FERMI EQUATION . 

In this section v;e shall demonstrate that solving the T.F.E. and taking the 
limit u -· 00 , s - 00 are interchanaable opérations : In terms of the potential the 
eauation can be written , 

*v*tx> « . i i V V î , î ' ) i — & L » U . 1 U „ · «.·«> 

A mass distribution which générâtes this potential is 

We have ' ^ 

Let V| be an arbitrary positive number. Since converges uniformly to 

ΛΤ|4 there exists Sq(|1) 6 IN such that 

is valid for x, xf £ S ̂  , |JL> 0 and s ̂  s ( ). 

From ((,-.«. 4), (fe. *i) and (b-4) w e deduce 

for JA.>0 and s ̂  s . 

We define by solving 

so that, as a conséquence of (2.6), ''(o-Z,), (<ο·5) and (fe.Vj) we obtain 

°tj*S ° U (s * s0(|A.)) (fe.î ) 

as (|i ,s)-independent bound. 

Substituting ((okS) and ((o.f ) into ((û.'JL) we find another bound 
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^^(x) is continuons in (0,1J , and since lim χ 9o^ X^ e x ^ s t s w e 

χ ̂  0 
deduce 0^ x 3 / 2 Ç (x) < c Q ((,,<?) 

for χ£^0,1^ and with ( ρ ,s)-independent (if s^(|4)). 

By inserting (fc,̂ ) into {fa rA) one obtains 

and frora this resuit, ((*.}), and (t.vJL) 

with and aiso independent on |A and s (if s ^s^(|4)). 

The potentiais ^"^^ : χ S^—• are continuous and converge with s-̂ Q£ 
Π 0 

towards in tne supremum norm. According TU Ascoli!s theoreni 

the family ( |JL fixed, s £ &| ) is then equi- and uniformly coacinuous. 

Because of the U are also equi cont LIIUÛUS . With ((o.^û) it follows, 

again according to Ascoli's theorem, that we can choose a uniformly con-

verging séquence out of the family U ( |JL fixed) the limit of wiiich 

we shall cali Up̂  . The corresponding séquence 0Î^(cf. equ. (2.6)) con­

verges as well to an o( . 
Γ 

To thèse converging séquences of potentiais and ^L's corresponds a séquence 

of mass distributions which converges to a Q since (io*X) is a continuous 
mapping ^fl^^^ ^ ( R ^ ^ ^ 4 ^ Π 1^ 1 :^ ηδ functions satisfy the 
conterpart of (A.4), namely 

If the family ^ |χ$ a a s more t. h an one accumulation point it is irrelevant, 

for the purpose of calculating the free energy, which we choose. They will 
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give rise to the saine free energy since F decreases with increasing 
(Π) Γ 

s 
That lim F is equal to Fn . „ follows from the fact that the con-

vergence of the potentials is uniform and is compact. 

Because the lirait Ο also satisfies (Ce. \\ ) we deduce 

il 

i.e. the U,| are equicontinuous. Together with (ίο> W) this implies 
r 

(using again Ascoli's theorem) that the family of potentials ^ jjL [ I A S 

(12) 
an accumulation point which we shall call II . Likewise an accumulation 

point ^ exists such that U is the potential generated by as defined 

with (2.5). By the same reasoning as for s-feo£ we arrive at the following 

conclusion : 

lim lim F = F ife.iH) 

where U satisfies (2.9) with and being defined by (2.5) and 

(2.6). If (2.9) allows many solutions only those for which F̂  is smallest 

are to be taken into account since the remaining solutions cannot be 

accumulation points of U 
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