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FREE ENERGY OF GRAVITATING FERMIONS

par Walter THIRRING

ABSTRACT

We calculate rigorously, in a suitable thermodynamic
limit, the free energy of a system of nonrelativistic
fermions which interact with attractive r_l - potentials.

It is shown that the effective field approximation becomes
exact in this limit and results in the temperature-dependent

Thomas-Fermi equations.



1. INTRODUCTION

The quantum mechanical Hamiltonian

>2
NP § e = KM, M,
H= L =— + . ! (1.1
. 2M. vt g >
i=1 71 gy | ox - x. |

L . . . . . -1 . .
describing N particles interacting with r potentials 1s the relevant
quantity if weak and nuclear interactions as well as relativistic effects
can be neglected. In spite of the vast domain of applicability only few

results have been rigorously derived from it, if N > 2. Dyson and

Lenard L have shown that, for « = 0, Zei = 0 and certain combinations
i
of statistics, the ground state energy of (1.1) for large N is pro-

2)

portional to N. Lebowitz and Lieb announced a proof that the free

energy FN then is well-behaved.

Lévy-Leblond 3 proved that, for « > O and Zei = 0, the ground
L ,.7/3

. . . . . 1
state energy for identical fermions 1s proportional to N for large N.

—7/3F

We propose to calculate exactly the limit N » o of N N

for nonrelativistic identical fermions interacting with their gravita-
tional forces. The reason why this can be done is that, owing to the long
range of the force, the temperature—dependent Thomas—Fermi equations

become exact.

The system exhibits an interesting thermic behaviour which
resembles certain features of stars and which has been discussed previously

4)

for simplified models

There is a region where the microcanonical heat capacity is

negative. In the canonical ensemble that region is bridged by a phase transitionm.

In this paper we shall concentrate on the mathematical problem

of the asymptotic equality of the exact and the Thomas-Fermi free energy.



We denote by F(N,8,R) the free energy of a system of N
identical fermions enclosed within a spherical volume %? R3 at
temperature T = 1/k3 (k = Boltzmann's constant)., The fermions interact
with their gravitationl forces only, We will choose units i; =1,

Fermion mass = 1, and « = gravitation constant = 1.

The free energy is defined by

N >2 N - -1
-gls rp; =% = I x, - x.| '}
e BF(N,B,R) = Tr i=1 L iTj=l * J (1.2)

;HN,R)e

where ErGN,R) is the Hilbert space of square integrable, complex valued,
. R . -> > >

totally antisymmetric wave functions of N arguments Xy Kypreey X

which vanish if at least one f;i! > R. By the unitary transformation

-1 , .
x> R "X, p-> Rp expression (l.2) can be rewritten as

—
P

-2 > X ,
B4R " T P2 - W |k,

~BF(N,8,R ; - x.| 7}
e BF (N, B8,R) - N.1) e iz 1 ie)=1 1 ] (1.3)

T

We will investigate the limit X - « of

A_7/3 4/3 -1/3

FOON, A 78, R) (1.4)

for fixed N, g, R and for iNeN.
The limit along the particular "ray" (1.4) is dictated by the Thomas-Fermi
equations and their law of corresponding states. It means that the system

becomes hotter and contracts if N 1is increased. The usual limit

1/3 -2/3

(g constant, R ~ N ) could be taken if we would choose « ~ N .

It should also be noted that for non-interacting particles the two limits

coincide since

-1 1/3

A O F _ (ON,B,»x /3, M3
=0

GNLa B,

=7/3
A F<=O

R) = )

holds.



We define

, _ .1 =BAK + V)
f(a,V) - log T&(AN,l) e (1.5)
with
cra o AN
K—gx’/3R22§§ (1.6)
i=1
and for various interactions V.
For
AN
v = -2t g 1321—;{ 1 (1.7)
& i,j=1 )
it
we have
f(x,v’) N F(XN,A_4/3B,‘A_1/3R) (1.8)

i.e. the function of which we want to study the limit X - «, If N

6)

has been chosen sufficiently large, B and R small the limit is the

desired free energy since then

lim £(X,V :f(l,Y') = F(N,B,R) (1.9)

Aore

For technical reasons we cannot directly prove our assertion for the

singular Newton potential

7L (1.10)

- > > >
(x,y) = (x =y

w



We shall have to replace it by

o w

Vus(x,y) = L va_yg(X) f;(y) (1.11)

where qQ. are the normalized and real eigenfunctions appearing in the
expansion of the continuous potential (u > 0)

> >
1 - e—U}X_Y|

| e B

Y 42 () ) (1.12)

- >
Ed a=1

considered as an integral kernel operator.

The ‘fa satisfy the equation

‘—>~>
oM x-|

d’y P = v L (1.13)

> >
yia Y
with positive eigenvalues Va

Again for technical reasons we include the self-interaction and define

AN S
vV o= - L7 (x;%,) = = 2 R (1.14)
ne i,j=1 *"° . a=l 2
where
v L AN N
= [ b | 2
P ¢4 RCHR ACTR 1:15)

In chapter 2 we shall prove that these approximations are arbitrarily

good in the sense that

lim lim lim {f(A,VuS) -f(,V,} =0 (1.16)

\
P> So0 A> ’

holds. This also shows that our result does not depend on the singularity

but on the long range of the Newton potential. In particular, the addi-
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tion of sufficiently short range forces will not affect it.

Next we add to Vus a term
s
W \OJ= A E (J - Oa> (1.17)

where (ol, Opsrers os) gﬁf.

It will turn out that for suitable o's the effect of this term is

negligible: we prove in chapter 3 that

lim { inf £(A,V _+W [o]) - £(4,V )} =0 (1.18)
o geRS e .

is true.

The interaction Vus + wps :01 is linear in the operators Ja, it describes
a system of non-interacting particles in the external field generated by o.
We will demonstrate in chapter 4 that the barometric formula results in

the limit X - = : If the external field U: :O,l] *'”2 is a regulated

function (i.e. the uniform limit of step functions, see ref. 9) and

-1 AN N
V=2 zoUu(ix.q) (1.19)
. i
1=1
the corresponding interaction then
1
)
lim £(0,V) = - No 1 R3‘ dr4nr2g (=a=BU(r)) (1.20)
. 5 8
x~700 B =} O
where
r3 ! 2+
85(2) = | 9—R~§ In(l + e 2P 72 (1.21)

(27)



and o 1s the solution of

R f dr b4’ g, (-a-8U(r)) = X, (1.22)
0

o 1is unique since g'(z) 1is strictly monotonic.

In chapter 5 it will be shown that 1lim and inf in (1.18) can be inter-

. e . Aro . 0% us s
changed, that the infimum is actually attained for a o "¢ °, and that
this o"° is a solution of the self-consistency equation, 1i.e.
s > s -
ik (x) = ¢ o"% v «f (%) satisfies
a=1] & ala
s - 3 > > 2 >
Mt ) = - ( &y v G,y g'B(—sR sy - o"%) (1.23)
with
23 { N g'B(-BRZ Sy - oSy = w.

These are the well known temperature dependent Thomas-Fermi equations for
particles interacting with the potential v s In ref. 5 we discuss
uniqueness and properties of its solutions. In particular, we demonstrate
that the solution is insensitive to small changes of v (and can there-
fore be calculated on a computer): we shown that U"®  tends with Hy8 >
to a solution U of the Thomas-Fermi equation with the Newton potential.

a and F converge to the corresponding values.

Putting (1.16), (1.18), (1.20), and the results of chapter 6

together, we arrive at the final result:

For all IJE”U, B >0 and R > 0 we have



Lim 2713 PO, x‘4/38, x‘1/3R) )
A0
5 (.3
& Sx v | 4P L - Ha
2 (2n)3 p? ) )
];]<l B(Em + RUEXE)+ a
N 1 +e
2
23 3 [ g3 - 8(%- + R7U(x)) = «
- d’x P gn(l + e ) (1.24)
5 (2m)°
| x[g1

where U(x) and o are determined by

> r 3 1 3
Ux) = - J 4x f d = - ! (1.25)
(x-x') (2m) P 2
|*|<l 8(2 + R U(X)) + QO
XIS 1 + e
and
r 3
R a3k | SP L = N. (1.26)
D an? pt . 2
%] <1 B(E”‘+ R7U(x)) + «a

1 + e

If (1.25) and (1.26) admit, as is actually the case, for some values
N, B, R several solutions, that one for which the right-hand side of

(1.24) is smallest is to be chosen.



REPLACING V., BY V

I 4 us

The operator VAV of (1.7) is bounded with respect to K of
(1.6) : for all %DK - QK is the standard domain of K such that K
is self-adjoint - there exist positive numbers a and b such that

Hv“,\“H sallvll +bilg vl (2.1)

holds. The infimum of all such b, the K-bound of Yl“ is zero 7). There-

. . . . . 8
fore, according to an investigation by Maison ), f()\,Kde) of (1.5)
exists, is entire in «k, and holomorphic in g in the half-plane
Re 8 > 0. The derivative with respect to «x can be expressed as an

expectation value of the interaction:

d -
= f()\,KV#) = <\“>KV’V (2.2)
where
T A e_xB(Ki-V)
< A > = —rzO\N’l) . (2.3)
\Y% -AR (K+V)

Trx(XN,l) e

The domain of the self-adjoint operator K + Vl is also ZK The
eigenfunctions "Fa of (1.13) are continuous, hence the operators Ja are

bounded, and so is Vus' Thus, f(A,Vus) exists as well.

The difference between V and V is
us 4

1 1 2 1 AN ® > -
_ _ _ oyl L 2" . .
VeV Vo-E AR N+ E AR z vafa(xl)t{a(xj) (2.4)
4 Y i, F1 a=s+l



%%, |

—H|X."X.

=2 -1 @{ e b

VY = 5 A R KA T . (2.5)
ixj=1 ]xl - le

?) the sum (1.12) converges uniformly in S1 x Sl’

consequently the norm of the last term in (2.4) converges to zero uni-

By Mercer's theorem

formly with respect to A if s»», Therefore,

lim lim Ef(A,VuS) - f(A,\:”+VY)] =0 (2.6)

g Ao

holds for all w > O 1in virtue of the general property

[£(OL,A + B) - £(O0,A) < [1BI], (2.7)

. - - _ .
Now, VY 1s smaller than 2”, thus the (K Y’) bound of VY is also
zero. Consequently, the mapping ¢t - f(k,Yy + t VY) is entire. For

real t it increases with t since VY 32 0 and it is concave (this is

a general property of f(x,A + tB)). We then find

0& BV g+ V) - £GLV

(2.8)
d

Vo, + t V.) = <V _> .
V4 Y t£=0 YV
v 4

It 1s now our task to show that the expectation value of the Yukawa-inter-

action VY vanishes uniformly in i 1f u»~., For this we will calculate
—1/5K -y

a lower bound of u y

Following Dyson 2 we decompose this Hamiltonian as follows:

> 2 —u| %, %, |

-1/5 " ? Py e Lo
! R'VY= - h.l‘, hi= ./~ (—233—&“_—;'—'-?) (2.9)

1=1 3=l lxi - xj]
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where

= ul/s X5/3 R2 (AN - 1) and

Each of the hi is an Hamiltonian describing the motion of
n—-1 particles of mass M in the attractive Yukawa-potential of the n'th.
The particles do not interact. The ground state of hi is obtained if
the n particles are filled into the n lowest states (recall that we deal

with fermioms).

The single particle bound states lie certainly higher than those

2,2 . s e .
of the hydrogen atom, namely e, = -Ma"/2v"  with multiplicity vz(v =1,2,...).
However, the Yukawa-potential can bind at most n_ states, for which number

the upper bound

© |

f e_ur 2 e“ur 2
n_ g 2{ dr r 2Mo } .{sup r 2Ma }
o r r

0 r3;0
(2.10)
2Mo., 3/2
26 /
M
. 10) .
1s known .ong corresponds to a hydrogen atom principal quantum number

Vo with vo3/3 =n_, therefore the ground state of hi is higher than

Jr— L
C s Ve - 20%Mem/w L

-1/5
v

5

. 2
We conclude that K-V is bounded from below by =-2na M(Ma/u)

so that we obtain

- L
< 1/5(K + R? N5/2

0§ Vg <

). (2.11)
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It remains to show that <K>V is bounded independently of A.

" 4

The mapping

— (tK+2V*)

2
t > - i log Tﬁk(kN,l) e (2.12)

is analytic in the half-plane Re t > O, increases with real t and is
concave. Hence the derivative with respect to t for t=2, which is

just <K>V , 1s smaller than

v

2f(A,Y') 2£(x,2V )B/Z

where the suffix B8/2 means that definition (1.5) applies with £ being

replaced by £/2.

The first term can be bounded above by

>
AW p 2
_ 8.z Ei
1 o TBAK 1 1=
B o, 1) =7 o e T3y @

which is nothing else but the usual free energy for non-interacting

fermions. It is known 1 that the free energy of a system of AN non-
. . . Coq s . 3 . .
interacting particles within a spherical volume A %} R, 1f divided by A,

converges with A+~ towards the well-known limit. Since AN e N there is

an upper and a lower bound, fL(N,B,R) s £(x,0) & fU(N,B,R), so that
f(A,Y') S £(X,0) & fU(N,B,R) (2.13)

holds for all .

The second term can be bounded from below since with Lévy-Leblond's

. 3 . . . . . .
estimate ) for the ground state of identical fermions with gravitational

interaction, we find K + 2«V ‘K2N7/3 for all R and A so that



K+ 2V, 3 5K - 21‘37/3 and
FGL2V) o L s £y -2 s sy - w7 (2.1s)
a2 T T R R

holds for all .

With (2.13) and (2.14) we have established an A-independent
bound for <K>V . This result together with (2.11), (2.8) and (2.6)

complete the pfg;f of equation (1.16):

lim lim lim (f(x,Vv. ) - £(A,V )} = O.
‘ us W

e g AT
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THE EFFECTIVE FIELD APPROXIMATION

It has been demonstrated in the preceding section that, for the
purpose of calculating the free energy, the original interaction 2~, can
be approximated by a finite sum of squares of bounded hermitian operators Ja.
In this chapter we shall show how a further simplification is achieved if
a product of operators is replaced by the product of the operator and its
expectation value. The justification of replacing a field by what is
usually called the effective field was originally demonstrated by

. . 12) . . . ..
Bogoliubov jr. ) in connection with the BCS theory of superconductivity.

Let us define

s
2 2 2, q
BLAK+ El[ ARLICARLS VRS IENE
6(t,)) = - L In Ir e 2 (3.1)
where
S - 2
~8{AK + I [-J T+j J J}
a a a
Tr A e a=1
<A>, = (3.2)
] S . 2
BAK + & [-3 T+i 37}
- a "a a
Tr e a=1
for j e BF.

¢(t,j) 1s increasing and concave in t, hence

0§ #(1,3) = $(0,})

s
. 2
8(3) < i <(Ja <Ja>j) >j (3.3)

a=1

holds.

. . 13
The fluctuation on the right-hand side can be further estimated )

by
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s J1, 52500, 5260, 9)
6 ¢ ]300 A s <[Ja,[n<,Ja]]>j . (3.4)
3, 3,
Now, the integral
1 1
6(g)=fdjl...fdj 8§(3) (3.5)
0 ¢ 8

. . . 5(3
defines a ¢ ERS with O ¢ Ea < 1l, and since |2_J_(.3_)| <2 H Jall holds -
recall that §(j) 1is the difference between two g's the derivative of

which with respect to ja is an expectation value of Ja - we arrive at

S
5(0) g 8(&) + £ 23 |l. (3.6)
a=1 a
¢(£) can now easily be estimated by
s
1
0 ¢ ozl el B, Des 1T
a=1
so that
0g 9(1,0) - ¢(0,0) (3.8)
8 1 | { !
T 148 % et
< agl{z g va R Nrax
=% 3/4 _-7/4 5 v-1/12
% 2
+2 v R Ng» 2 }

has been established. We have used that the double commutator is equal to

- - N
L oX 5/3 R 3 y (V\f(x,))z and that
a ._ a 1
1=1
fa - Sup l"a<x)E (3.9)
Xe$
1
P = swp [T (3.10)
® Zes ra

1



_15_

are both finite since the eigenfunctions (’a are continuous and continuous-—

ly differentiable in S1 (cf. equation (1.13)).

With the positive definite operator wus [cl as defined in (1.17)

one finds by comparing (1.5) with (3.1)
-1
AT ¢(0,0) = f(A,VUS) (3.11)
$inf £,V o+ qu[o])
oe RS
-1
SEOLV o+ w o[> 1) =07 61,0

which, together with (3.8) proves equation (1.18), namely

lim { inf £,V + W [o]) - £,V )} = 0.
e e RS ( us us[J ( us)
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4, THE BAROMETRIC FORMULA

With

- 5 2 >
O(X) = T—- Ga Qfa(X) (4.1)
a=l1 ¥R X v
a
and
s
2
U@ = - 1 Ry =— o ¢, (4.2)
a=1 ROy v, 214
a
we may write for the interaction appearing in equation (1.18):
. ) AN
Vs ol == Pxo®outo s s G, (3)
us us = J . 1
i=1
51

The first term on the r.h.s. of (4.3) is a c-number and will appear as an
additive contribution to the free energy. It presents no problem for the
limit X » «. In this chapter we concentrate on the second term, in

particular, we want to study the limit X - o of

IERY NN
¢ (A, U,N) = £(x,x Lz U(xi)) (4.4)
i=1
AN -
~g[AK + T UCx),
ity log Tal(AN’l) e 1=1 5 .
| Py {xl )
_ 1 )2 1/3
ey log TE;(AN,X1/3R) e i=1 ATTTR

-
for fixed B. R and various A-independent external potentials U(x).

L
Note that fixed U corresponds to o -~ A%, but this is no
a

difficulty for equation (1.18) since the infimum there extends over all of

R
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Another remark concerns rotational symmetry: the truncation of
the eigenfunction expansion (1.12) to (1.11) can always be done in such a
way that the rotational symmetry of vus(§,§) is preserved. Since then
Vus of (l1.14) is also invariant under rotations the expectation value
appearing in equation (3.11) of the J's will define a spherically symmetric
o(x). Therefore, the infimum in (3.11) needs to be with respect to
spherically symmetric o(x) only. Since U(x) of equation (4.2) equals
—R2 fd3y vus(§,§) 0(y) we have to consider spherically symmetric external

potentials only if s 1is chosen such that Vi is spherically symmetric.

The problem thus separates into a radial and an angular part.
Correspondingly, the eigenvalues ¢ of

2
H= g2+ <;1—}‘3—R>] (4.5)

can be labelled by a radial quantum number n and the angular quantum

number 4. A lower bound for the ¢'s 1s readily available

“a,g B(R—Z x—2/3‘52(1+1) + V) (4.6)
where
v = inf U(r) (4.7)
ogrgl

is finite since U 1is a finite sum of functions which are continuous in

the unit ball Sl'

For this reason U can be approximated by a piecewise constant
potential Us with a finite number g of steps:

for all n > O there is an integer g such that for
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i-1/2 . i | )
UT(r) = Ui = U( —) 1f ——— g r<g E’ i=l,...,8 (4.8)

we have

sup |U(r) - UT(r)I $n .
Osrgl

We furthermore consider a potential Uw which is UT + infinite
walls at r=i/g. This means that we impose in addition the restriction
that the wave functions have to vanish at r=i/g. Both UT and Uw are
extensions of the same potential Uo defined on the dense set of wave
functions vanishing at r=i/g. The intersection of this domain with the
1/3 R)).

Ho is not self-adjoint but has defect indices (g,g). Its self-adjoint

domain of K gives an, the domain of Ho = B(p2/2 + Uo(r/k

have domains 20 +2w and 20 +2T respectively
W T

>
n,2 % “n,2
and from the minimax-principle (En is an n-dimensional subspace)

extension Hw and HT

wherefzw and QT are g-dimensional subspaces. Clearly ¢

W,T . m m
'’ = inf sup  (x(r) Y ’Hw X(r)T™) (4.9)
b2+ XEE LT g
n o] W,T n
we learn
W T T W
n-g,% n < En,l IR En,z s En,R MRS en,l o (4.10)

(Vn > g, "2).

This implies for the partition functions the following inequali-

ties

I'e si'e (4.11)
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' indicates the sum over all occupation numbers compatible with

In terms of the corresponding free energies (4.4) we deduce from

(4.6) and (4.11)

- ¢(>\’UW’N) - Nn S T ¢(>"U’N) (4.12)

< A—l (B—l log g - gv) + Nn - inf ¢(X,UW,N').

AN-gN ' AN

Now, the eigenfunctions of Hw have their support in one of the
shells (i-1) g rg & 1, we can therefore replace the radial quantum num—
ber n by the pair (i,m) where i labels the shell and m the radial excita-

tion in this shell. We shall require the following estimate later on:

58 R 23720 [rmg)? + (1) (B% v v ] (4.13)

W

< €. <
1l,m,%

(“mg)z + 2(2+1) (I%I>2 + 2Ui for 1> 1
Ler2 203
(ﬂmg)2 + 4l(l+l)g2 + 20y for i=1/].

Introducing the partition function of the i'th shell

(1) - T W
“ABY (A, ) ' m,t VM, Ei,m:2

e =1 e (4.14)
v

we obtain for the partition function with walls

-189 (A, U_,N) § 38 LI ¢(i)(x,Ni)
e = e . (4.15)

(Nl,...,Ng)
Z N.=N
1
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Since Uw is constant inside a shell the free energy ¢(i)(k,N)
is the fFee energy of non-interacting particles plus NUi' One knows 1D
that ¢(l>(A,N) decreases with increasing A. By standard arguments 11)
one can demonstrate that this property also holds for ¢(X,UW,N). Since
the latter is bounded below by ¢(A,0,N) - vN - which is known to converge
for A+ @ =~ we conclude that ¢(w,Uw,N) = iim ¢(A,Uw,N) exists.

>®

From (4.12) we deduce that ¢(«=,U,N) also exists and is

arbitrarily close to ¢(w,Uw,N) for n sufficiently small,

The explicit form of ¢(m,Uw,N) can be calculated by studying

the grand canonical ensemble,

The standard proof of the equivalence of the canonical and the
grand canonical ensemble can easily be formulated to apply to the case at
hand. The grand canonical partition function is the sum of those for the
individual shells which are the usual expressions for non-interacting
particles (this can be seen by inspecting the limits (4.13) of the eigen-
values). In the limit A = « the sums over eigenvalues approach integrals
in momentum space, and with n = 0 (g = «) the sum over shells becomes
a space integral. We will not write down all the necessary epsilontics

since this is an exercise in elementary analysis.

The result 1is

1 1

N

X

> (4.16)
V2

Ao

lim ¢(A,U,N) = = ﬁ% —I? %f dr Aﬂrzf de
0 0

-B(e+U(r)) - o

x In (1 + e )

with o being the unique solution of

i 1

f e -

N = R3 dr aan J de Ve (& . e8(€+U(r)) +c) 1 . 4.17)
2

OVZTT

v

This commletes the rwoof of the baro-etric formwla (1.20) to (1.22)
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. THE RESULT FOR V .

ot aisbaufitin ey U

It is a by-product of the investigations in the preceding
section that $(A,U,N) converges from above towards the limit., There-

fore, the limit and the infimum operation in equation (1.18) can be inter-

changed.
We have thus to investigate the infimum of
5 S Na r S
R - _ J _ L 3 i 3 2 - _ .
3 z va Oa g 2 R ! d7x gB(BR Eov, oa(fa(x) ag) (5.1)
a=1 . a=1
|

where o 1s a solution of

2

[ S 17}

1
R ; d3x g (B8R

8 v, %, f;(x) - 13) =N . (5.2)

1

. a
xSl

Since < depends on 2 this solution need no longer be unique.

The derivative of (5.1) with respect to N is

W v

. 3 v 2 .
R™ v ic. - ‘ d’y g 5(;R Vo Oa«fa(y) - 3:)f%(Y):. (5.3)

a=1

1yi<l
Note that the derivative of & does not appear because of the subsidary

condition (5.2).

We see that the free energy (5.1) increases with Ty if
2
‘Ob“ > RN‘fb.
Hence the infimum in equation (1.18) can be restricted to an infimum over
‘ 2
the compact cube :Sai < 2ZRN  max ‘f .

1gbgs b

Since (5.1) is continuous and continuously differentiable with

S LS
o a0

v
a=

C e . . . s
respect to any ¢ the infimum is attained at a point <" (x) =

where all partial derivatives (5.3) vanish.

(5.2% and (5.3) are exactlv the self-consistency eauations (1.23) we

referred to in chanter 1
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. THE THOMAS-FERNI BOQUATTON .

In this section we shall demonstrate that solving the T.F.E. and taking the
limit w = ® , s = ® are interchancable operations : In terms of the potential the

equation can be written ,

PdeE 1

Lootx)=- Jal'v (X x') 2 ¢ (o)
ws (%) S, pe ) i\ﬁ.ﬂ'" 1+ P(t\-u‘“(x ) 4ol
A mass distribution which generates this potentlal is
Guat) = 2 | 4TE : -
P’S \Ii T 1 . (P(i‘\"uus(x)) +d»s

We have

3 (6.3
?p.s (x) 3% 0 aund é‘d X gN(x) a N . )
Let V‘ be an arbitrary positive number. Since 'U"“ converges uniformly to

’D’r‘ there exists s (l.l.) € N such that
lvm(xx)-«r,.\ X')| ¢V (o)
is valid for ?, x'€ SI,P.)O and s)so(y.).

From (i.4), (b.3) and (b 1) we deduce

(R )N ¢ - fadumt g o | 250 20

X X!

= o % ;
gld X PMS()‘ )VF(X,Y )- N;‘ < u‘P‘s(x) < NW (b.d)

for ‘L)O and s Y so(l.k).

We define o( by solving

\ 2 Tdiﬁ ! = N (o)
H" LR 1 TN
so that, as a consequence of (2.6), “b.1), (6.%5) and (b.V) we obtain
s > %o (s % s, () (b.t)

as (tL ,s)-independent bound.

Substituting (6,5) and (6.F) into ({.)) we find another bound
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“de Vs 1

< - 6 .
° 14¢
N . ‘ . . . 3/2 :
Qo(x) 1s continucus 1n (O,l] , and since lim X QO(X) exists we
X <% O
deduce 0£ x3/2 9 x) € ¢ (6.9)
- »s O '

for xeco,l] and with (P,s)—independent cO (if s SO(F)).
By inserting (g, 9) into (p A) one obtains
“NV\" gn—co gu_r&s(x) £ NV] (b.10)
and from this result, (¢.3}), and (b.D)
< & gQA-S(X) € ¢, (lo- 4A)
with ¢, and ¢, also independent on 'A and s (if s ), SO(H)).

1 2

The potentials ‘U-QAS: S, x Sl—)[R are continuous and converge with s-peo

1

. , . , . (1)
towards ‘U'P' It e supremum norm. According tu Ascoli's theorenm .

the family "j;kS ( t& rixed, s eN J 1s then equl- and uniformly continuous.
Because of (w.4{) the U}AS are also equicontinuous. with (. 4€) it follows,
again according to Ascoli's thecrem, that we can choose a uniformly con-
verging sequence out of the family UMS (tL fixed) the limit of wnich

we shall call UP‘ . T'he corresponding seqguence d‘\& (cf. equ. (2.6)) con~-
verges as well to an o .

To these converging sequences of potentials and ®'s corresponds a sequence
of mass distributions which converges to a since (6£.2) is a continuous
mapping tR(S1)"‘——> C[R( 51) . The limiting functions satisiy the

conterpart of (A.4), namely

<> D
U'P'(K) = - &d‘x"\)’v\x)x')QF(x‘) . (4, i9)

If the family UP'S 14S more than one accumulation point it is irrelevant,

for the purpose of calculating the free energy, which we choose. They will



- 24 -

give rise to the same free energy since F

(11)

decreases with increasing

U»s

That lim F is equal to F_. follows from the fact that the con-
Uns lim ©

SH e - (5

S e

vergence of the potentials is uniform and S, 1s compact.

1
Because the limit q also satisfies (L. 44 ) we deduce
* tw? x|

1- (1+M>?-:'l)c

- e '§|
| T W, ) | & C, | dx

S, Ix - X' 1*
432
¢ S (zz < QWC:_ , (o 43)

Sa
i.e. the UPL are equicontinuous. Together with ((. 40) this implies
(using again Ascoli's theorem) that the family of potentials UP‘ has
. . . (12) . . .
an accumulation point which we shall call U . Likewise an accumulation
point q exists such that U is the potential generated by g as defined

with (2.5). By the same reasoning as for s-pep we arrive at the following

conclusion:

lim lim F = F (o, 4t)
U $ u
e S=p e ®
where U satisfies (2.9) with ®f and q being defined by (2.5) and

(2.6). If (2.9) allows many solutions only those for which FU is smallest
are to be taken into account since the remaining solutions cannot be

accumulation points of U



1)

2)

3)

4)

6)

7)

8)

REFERENCES

F.J. Dyson in Statistical Physics, Phase transitions and Super-—
fluidity, 1966 Brandeis University Summer School in Theoretical
Physics, lecture notes;

F.J. Dyson and A. Lenard, J.Math,Phys. 8 (1967) 423.

J.L. Lebowitz and E.H. Lieb, Phys.Rev.Letters 22 (1969) 631.

J.-M. Lévy-Leblond, J.Math.Phys. 10 (1969) 806.

W. Thirring, Z.Phys. 235 (1970) 339
P. Hertel and W. Thirring, Annals of Physics 63 (1971).

P, Hertel and W. Thirring, CERJ preprint TH.1338 (1971).

. 57 .
A typical ''meutron star' of 107" particles at a temperature of 5 MeV

and encleosed into a sphere of 100 km radius corresponds to

(A, )—4/3;, x_l/BR) with N =1, § = 60'52 K—2 m&a,

I ! 57 . . :
R =29 10" « m and A = 107", Since N, 5 and R are of order
unity (if measured in their natural units) and since & = 1057

is sufficiently large, we will describe the above 'meutron star"
by the limit A -~ <, For N = 1057, = = (5 MeV)—l and R = 100 km

we would have reached the same accuracy for x = 1.

T. Kato, Perturbation theory for linear operators, Berlin, Springer
1966.
There the infinite volume case is studied, however, the result

also holds for finite volume.

H.D. Maison, dAnalyticity of the partition function for finite

quantum systems, CERN preprint TH.1299 (1971).



- 26 -
9) J. Dieudonné, Eléments d'analyse, Tome I, Paris, Gauthier-Villars 1969.
10) B. Simon, J.Math.Phys. 10 (1969) 1123.
Again this estimate for infinite volume is a fortiori also valid

for finite volume.

11) D. Ruelle, Statistical mechanics - rigorous results, New York,

Benjamin 1961.

12) N.N. Bogoliubov jr., Physica 32 (1966) 933.

13) J. Ginibre, Commun.Math.Phys. 8 (1968) 26.



