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GOODNESS OF FIT TEST FOR ISOTONIC REGRESSION

Cécile Durot
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Abstract. We consider the problem of hypothesis testing within a monotone regression model. We
propose a new test of the hypothesis H0: “f = f0” against the composite alternative Ha: “f 6= f0”
under the assumption that the true regression function f is decreasing. The test statistic is based on the
L1-distance between the isotonic estimator of f and the function f0, since it is known that a properly
centered and normalized version of this distance is asymptotically standard normally distributed under
H0. We study the asymptotic power of the test under alternatives that converge to the null hypothesis.
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1. Introduction

We consider the following regression model

Yi = f(xi) + εi, 1 6 i 6 n,

where Y1, . . . , Yn are the observations, f is an unknown regression function with support [0, 1], ε1, . . . , εn are
independent, identically distributed random variables with zero mean and for every i, xi = i/n. The regression
function f is assumed to be monotone, say decreasing. We wish to test the hypothesis H0: “f = f0” where f0 is
a given decreasing function. For this purpose, we use the L1-distance between the function f0 and the isotonic
estimator of f defined in Section 2. The test procedure is based on a central limit theorem, proved by Durot [4],
for the L1-distance between the isotonic estimator and the true regression function f : a centered version of
this L1-distance converges at the n−1/2 rate to a Gaussian variable with variance independent of f . This result
provides a test statistic which is asymptotically standard normally distributed under the hypothesis H0.

The nonparametric theory of hypothesis testing in regression models is now well developed. Many of the
test procedures proposed in that context are based on either a kernel estimator or an estimator obtained
by projection (on a polynomial or spline basis for example), see Eubank and Spiegelman [6], Härdle and
Mammen [10] and Staniswalis and Severini [17]. The main drawback of these methods is that they require the
choice of a smoothing parameter. Several authors have proposed approaches that avoid this arbitrary choice,
see Barry and Hartigan [2], Eubank and Hart [5], Hart and Wehrly [11], Stute [18]. Most of them consider a
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Université d’Evry-Val-d’Essonne, boulevard F. Mitterrand, 91025 Evry Cedex, France; e-mail: atocquet@maths.univ-evry.fr
c© EDP Sciences, SMAI 2001



120 C. DUROT AND A.-S. TOCQUET

test statistic which is itself a smoothing parameter selected from the data by minimizing some empirical risk
criterion.

The test procedures mentioned above apply in particular for a regression model where the regression func-
tion f is known to be decreasing. However, it is more relevant in that case to use a procedure that takes
into account the monotonicity assumption. That is the reason why we propose a new test that involves the
isotonic estimator, the construction of which is based on the monotonicity assumption. The isotonic estimator
is entirely data driven and does not require any arbitrary choice of parameter. Our test procedure can thus be
easily implemented. Moreover the isotonic estimator is known to be locally adaptive, in the sense that it works
as well as the best regressogram estimator (with arbitrary partition). (A precise meaning of this property in
terms of L1-risk is to be found in Reboul [12], Prop. 2.2.) One can thus expect that our test has a good ability
for detecting local perturbations of the null hypothesis. We thus focus here on the study of the asymptotic
power of the test under alternatives Hn: “f = f0 + cnΛn” where {cn} is a sequence of numbers that tends to
zero as n goes to infinity and where the function Λn may depend on n and if so is defined as a local bump.
More precisely, we are interested in the minimal rate of convergence for cn so that the test has a prescribed
asymptotic power. We prove that the minimal rate is n−5/12 if Λn does not depend on n and n−3/8 if Λn is a
local bump.

This article is organized as follows. We describe the test procedure in Section 2 and state the result concerning
the asymptotic power of the test in Section 3. Section 4 is devoted to a simulation study comparing the power
of the test developed in Section 2 with that of the likelihood ratio test. Proofs of theoretical results are given
in Section 5.

2. Model and test procedure

We consider the following regression model

Yi = f(xi) + εi, 1 6 i 6 n. (2.1)

The regression function f is decreasing over [0, 1] and for every i ∈ {1, ..., n}, xi = i/n. The errors ε1, . . . , εn
are independent, identically distributed random variables with zero mean and E|εi|p <∞ for some p > 12.

Our objective is to test the hypothesis H0: “f = f0” where f0 is a given decreasing function defined over
[0, 1]. The test procedure is based on the isotonic estimator f̂n of f , defined as the left-continuous slope of the
least concave majorant of F̂n, where

∀t ∈ [0, 1], F̂n(t) =
1
n

n∑
i=1

Yi11xi6t. (2.2)

More specifically, our test statistic is a properly centered and normalized version of the L1-distance between f̂n
and f0. The asymptotic distribution of the L1-distance between f̂n and the true regression function depends on
a process defined as the location of the maximum of a drifted Brownian motion. This location process is called
Groeneboom’s process and is defined as follows:

Definition 2.1. Let W be a standard two-sided Brownian motion originating from zero. Then, the Groeneboom
process V associated with W is defined by:

∀a ∈ R, V (a) = sup
{
u ∈ R,W (u)− (u− a)2 is maximal

}
·

If the errors’ variance σ2 is known, we propose to use the test statistic

Sn =
n1/6

σ
√

8k

{
n1/3

∫ 1

0

|f̂n(t) − f0(t)|dt− Cf0,σ
}

(2.3)
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where k and Cf0,σ are defined from Groeneboom’s process V as follows:

k =
∫ ∞

0

cov(|V (0)|, |V (b)− b|)db and Cf0,σ = 2E|V (0)|
∫ 1

0

∣∣σ2f ′0(t)/2
∣∣1/3 dt.

From Theorem 2 of Durot [4], Sn is asymptotically standard normally distributed under the null hypothesis
H0, provided f0 is decreasing over [0, 1] and twice differentiable with non vanishing first derivative and bounded
second derivative (that is f0 satisfies regularity condition R0 defined below):

Under H0, Sn
D−→ N (0, 1) as n→∞.

This theorem suggests the following testing procedure:

Definition 2.2. Assume we are given the regression model (2.1) where xi = i/n and the εi’s are i.i.d. with
mean zero and E|ε1|p <∞ for some p > 12. Suppose f̂n is the isotonic estimator of f, f0 satisfies R0 and Sn
is defined by (2.3). The isotonic test for goodness of fit with asymptotic level α rejects the null hypothesis H0:
“f = f0” if |Sn| > zα/2, where zα/2 is the upper α/2 percentage point of the standard normal distribution.

We present the test with σ2 known for the sake of simplicity. If σ2 is unknown and bounded away from 0, then
one can use our results for testing f = f0 with a plug-in estimator σ̂2

n for σ2, provided n1/6(σ̂2
n − σ2) = oP(1).

One can find in the literature many estimators of σ2 that satisfy this last property. For example, one can
consider the following estimator defined by Rice [14]:

σ̂2
n =

1
2(n− 1)

n−1∑
i=1

(Yi+1 − Yi)2. (2.4)

Its bias and its variance are in our setting respectively of order O(n−2) and O(n−1). One can also use general-
izations of this estimator as defined by Hall et al. [9].

The isotonic test for goodness of fit can easily be implemented since the constants 2E|V (0)| and 8k are known
to be approximately equal to 0.82 and 0.17 respectively (see Groeneboom [7]). Moreover, the isotonic estimator
is entirely data driven and easily computable via the “Pool-Adjacent-Violators” algorithm or a similar device
(see Barlow et al. [1]).

Note that the isotonic estimator f̂n is comparable to the estimator defined by Brunk [3], which is the
nonparametric least-squares estimator obtained under the constraint f(x1) > ... > f(xn). Brunk’s estimator is
indeed the left-continuous slope of the least concave majorant of the so-called cumulative sum diagram. This
diagram is composed of the points of the Cartesian plane P0 = (0, 0) and for i = 1, . . . , n, Pi = (xi, F̂n(xi))
where F̂n is given by (2.2). If F̂n is non decreasing, then the isotonic estimator is exactly equal to Brunk’s
estimator. In Durot’s paper [4], the distinction between Brunk’s estimator and the isotonic estimator, and thus
which of these two estimators is used, does not appear clearly. Considering the proof, one can however easily
check that Durot’s Theorem 2 holds for both estimators.

3. Asymptotic power

The aim of this section is to study the asymptotic power of the isotonic test for goodness of fit, under the
alternative Hn:“f = fn”, where

fn = f0 + cnΛn (3.1)

{cn} is a sequence of positive numbers that converges to zero as n goes to infinity and {Λn} is a sequence of
functions with ||Λn||2 = 1. We consider functions Λn of the form Λn(.) = δ

−1/2
n φ

(
. −x0
δn

)
where φ is defined
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from R to R with support [0, 1], ‖φ‖2 = 1, x0 lies in [0, 1[ and δn is positive. The support of Λn is then
[x0, x0 + δn]. The sequence {δn} is taken such that either Λn does not depend on n (we simply take δn = 1 and
x0 = 0) or Λn is a local bump which simply means that δn tends to zero as n goes to infinity.

We are interested in evaluating the minimal rate of convergence for cn (that is the smallest cn up to some
constant) for which the test has a prescribed asymptotic power. The choice of the L2-distance cn between fn
and f0 to measure the gap between Hn and H0 is motivated by the relationship between this distance and the
Hellinger distance in the case of Gaussian errors and by the role of the Hellinger distance for hypothesis testing
via the testing affinity.

We need some regularity assumptions, namely
- R0: f0 is decreasing on [0, 1] and twice differentiable with non vanishing first derivative and bounded

second derivative;
- Rn: fn is decreasing on [0, 1] and twice differentiable with bounded second derivative. Moreover, there

exists some positive k1 that does not depend on n such that inft∈[0,1] |f ′n(t)| > k1.

It is worth noticing that the monotonicity assumption on fn requires cnδ
−3/2
n to be bounded whenever x0 6= 0,

and that the assumption Rn is fulfilled whenever for example φ is twice differentiable with a bounded second
derivative and cnδ

−3/2
n is small enough. We state the following result concerning the asymptotic power of the

isotonic test for goodness of fit defined in Definition 2.2.

Theorem 3.1. Assume we are given the regression model (2.1). Let f0 be some function that satisfies R0 and
let fn be defined by (3.1). Let H0 and Hn be the hypothesis defined respectively by H0: “f = f0” and Hn:
“f = fn”. Assume fn to satisfy Rn and cnδ

−3/2
n to be bounded. Then for every α ∈ (0, 1) and β ∈ (α, 1), there

exists some positive γ such that the isotonic test for goodness of fit with asymptotic level α has an asymptotic
power greater than β (that is lim inf

n→∞
Pfn

(
|Sn| > zα/2

)
> β) whenever

cn > γ
(
n−5/12 ∨ n−1/2δ−1/2

n

)
for all large enough n.

Assume cnδ
−3/2
n to be bounded. Assume moreover cn > γ′n−3/8 for some positive γ′ and all large enough n.

Then, cn > γ′
4/3
n−1/2c

−1/3
n . For all γ > 0, there thus exists some γ′ > 0 such that cn > γ′n−3/8 implies

cn > γn−1/2δ
−1/2
n . The following corollary is thus a straightforward consequence of Theorem 3.1:

Corollary 3.1. Assume we are given the regression model (2.1). Let f0 be some function that satisfies R0 and
let fn be defined by (3.1). Let H0 and Hn be the hypothesis defined respectively by H0: “f = f0” and Hn:
“f = fn”. Assume fn to satisfy Rn and cnδ

−3/2
n to be bounded. Then for every α ∈ (0, 1) and β ∈ (α, 1), there

exists some positive γ such that

lim inf
n→∞

Pfn
(
|Sn| > zα/2

)
> β

whenever cn > γn−3/8 for all large enough n.

The meaning of Theorem 3.1 and Corollary 3.1 is that the minimal rate of convergence for the distance cn so
that the test has a prescribed asymptotic power depends on δn but is anyway smaller than or equal to n−3/8.

For the sake of simplicity, we assume cnδ
−3/2
n to be bounded. If the perturbation is added to f0 at the point

zero (that is if x0 = 0), then the assumption Rn is fulfilled whenever for example φ is decreasing, non negative
and twice differentiable with a bounded second derivative. In this case, cnδ

−3/2
n does not have to be bounded.

If x0 = 0 and if Rn is fulfilled with cnδ
−3/2
n not necessarily bounded, one can calculate the minimal rate of

convergence cn so that the test has a prescribed asymptotic power. This minimal rate is given in Tocquet [19] for
Gaussian errors and bounded ||fn−f0||∞. It still depends on δn, is smaller than or equal to n−5/12∨n−1/2δ

−1/2
n ,
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Table 1. Empirical levels (in %) of the tests using the 5% bilateral Gaussian critical value 1.96.

σ

n Test 0.5 0.7 1 1.5

200 Ŝn 9.73 9.43 9.40 9.77
ŜBn 10.73 10.57 10.33 10.73
T̂n 7.20 6.70 6.13 5.33
T̂Bn 7.33 6.83 5.67 5.23

1000 Ŝn 7.57 7.67 8.23 8.60
ŜBn 8.00 7.90 8.50 8.80
T̂n 5.70 5.40 4.90 4.80
T̂Bn 5.97 5.67 5.10 4.70

and equals n−1/2 whenever n1/2δn and (nδn)−1 are bounded (the width of the perturbation has to be larger
than n−1 in order that the perturbation can be detected). From the relationship between the L2-distance, the
Hellinger distance and the testing affinity within the Gaussian regression experiment, the rate n−1/2 is known
to be the optimal rate. The arguments of the proof are closely related to those developed in the proof of
Theorem 3.1, but additional technical difficulties, because cnδ

−3/2
n can go to infinity with n, make the proof

cumbersome.

4. Simulation study

In this section, we study the behavior of the isotonic test for goodness of fit in a simulation experiment, in the
case where the errors are normally distributed. We first study the level of the test, comparing the asymptotic
level (which is fixed a priori) to the level obtained for finite n. We then study the power of our test, comparing
it with the likelihood ratio test’s. Part of the results, which reflects the observed behavior over the entire
experiment, are presented in Tables 1 and 2. The sample size n is set at 200 and 1000 and the asymptotic
level α is set at 0.05.

Let us study first the level. For completeness, we study the test procedure described in Section 2 and also
the test procedure that involves Brunk’s estimator instead of our isotonic estimator (see the end of Sect. 2).
Moreover, it emerges from simulation studies that the actual levels of these two test procedures significantly
differ from the asymptotic level. We thus propose two other test procedures, the levels of which are closer to
the fixed asymptotic level.

We fix n ∈ {200, 1000} and draw a sample (ε1, . . . , εn) from the Gaussian distribution N (0, 1). We fix
σ ∈ {0.5, 0.7, 1, 1.5} and for every i, we generate

Yi = f0(xi) + σεi,

where xi = i/n and f0(x) = 5 − 10x. We then build from Y1, . . . , Yn the test statistics Ŝn, T̂n, ŜBn and T̂Bn as
follows. Ŝn is the test statistic studied in Section 2:

Ŝn =
n1/6

σ̂n
√

0.17

(
n1/3

∫ 1

0

|f̂n(t) − f0(t)|dt− 0.82
∫ 1

0

|σ̂2
nf
′
0(t)/2|1/3dt

)
,
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Table 2. Percentage of rejections of H0 in 3000 samples using simulated 5% critical values,
when the regression function f is given by (4.1) and the test is based on T̂n (straight) or LR
(italic).

σ = 0.5, n = 200 σ = 1, n = 200
(δ, x0) c′ = 10 c′ = 20 c′ = 30 c′ = 10 c′ = 20 c′ = 30

(1, 0) 23.90 87.90 99.97 8.97 29.57 67.57
18.40 75.23 99.43 8.50 23.47 54.33

(0.5, 0.25) 22.50 83.90 99.93 8.80 26.20 61.50
18.43 74.23 99.50 8.50 22.97 52.90

(0.3, 0.35) 21.03 77.17 99.40 8.23 22.20 50.77
18.07 73.53 99.30 8.27 21.87 50.07

σ = 0.5, n = 1000 σ = 1, n = 1000
(δ, x0) c′ = 5 c′ = 10 c′ = 20 c′ = 5 c′ = 10 c′ = 20

(1, 0) 22.30 90.40 100 9.00 30.47 95.53
19.93 81.50 100 8.80 26.47 90.70

(0.5, 0.25) 22.03 88.10 100 8.37 29.30 95.57
19.80 81.47 100 8.77 25.93 91.13

(0.3, 0.35) 21.33 83.63 100 8.23 26.33 90.07
19.30 81.53 100 8.77 26.13 91.37

(0.1, 0.45) 15.57 7.07
18.47 8.00

where σ̂2
n is Rice’s estimator of σ2 given by (2.4); T̂n is given by

T̂n =
n1/6

σ̂n
√

0.17

(
n1/3

∫ f0(0)

f0(1)

|Vn(a) − g0(a)|da− 0.82
∫ 1

0

|σ̂2
nf
′
0(t)/2|1/3dt

)
,

where Vn is the generalized inverse function of f̂n and g0 is the inverse function of f0; ŜBn and T̂Bn are defined in
the same way as Ŝn and T̂n respectively, but where the isotonic estimator f̂n is replaced by Brunk’s estimator f̂Bn .
One can prove by using the same arguments as Durot that under the null hypothesis, all of these test statistics
converge to a Gaussian distribution N (0, 1) as n goes to infinity, provided f0 satisfies the regularity condition
R0 (see Sect. 2). Therefore, for every Sn ∈ {Ŝn, T̂n, ŜBn , T̂Bn }, the test procedure that rejects H0: “f = f0” if
|Sn| > zα/2 (where zα/2 is the upper α/2 percentage point of the standard normal distribution) is of asymptotic
level α. The empirical levels (percentage of rejection of H0: “f = f0” using the 5% bilateral Gaussian critical
value 1.96) computed from 3000 samples are reported in Table 1 for the four tests.
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It is seen in Table 1 that the level of the test procedure is only slightly affected by the choice of the estimator
of f (isotonic or Brunk’s estimator). The normal approximation for the distributions of Ŝn and ŜBn is misleading:
the actual levels are significantly greater than 5% even for n = 1000. That is the reason why we considered the
tests based on T̂n and T̂Bn . The replacement of∫ 1

0

|f̂n(t)− f0(t)|dt =
∫
R
|Vn(a) − g0(a)|da

by
∫ f0(0)

f0(1)
|Vn(a)− g0(a)|da (and the analogue with Brunk’s estimator) indeed allows to correct this failing; the

empirical levels for T̂n and T̂Bn are rather close to 5%.
The most natural test to compare our test’s power with in the case of Gaussian errors is the likelihood ratio

test. Since Brunk’s estimator f̂Bn is the maximum likelihood estimator under order restriction f(x1) > . . . >
f(xn), the likelihood ratio test rejects the null hypothesis H0: “f = f0” if

LR =

n∑
i=1

(Yi − f0(xi))2

n∑
i=1

(Yi − f̂Bn (xi))2

exceeds a critical value. The aim of the simulation study reported here is thus to compare with each others the
powers of the test procedures based on LR, Ŝn, T̂n, ŜBn and T̂Bn . One can prove (by using the same arguments
as in the proof of Th. 3.1) that the result of Theorem 3.1 concerning the asymptotic power of the test procedure
based on Ŝn still holds for the test procedures based on T̂n, ŜBn or T̂Bn . But no distribution theory is available
for LR, so we use 5% critical values obtained by simulations for the five test procedures considered here. These
critical values have been obtained from those 3000 samples used for the computation of the empirical levels of
Table 1.

The regression function considered under the alternative is

f(x) = f0(x) + c′δ−1/2

(
0.52 −

(
x− x0

δ
− 0.5

)2
)3

11x06x6x0+δ. (4.1)

The monotonicity constraint here is c′ < δ3/2250
√

5/3. In the results we report here, four values for (δ, x0):
(1, 0), (0.5, 0.25), (0.3, 0.35), (0.1, 0.45) and two values for σ: 0.5, 1 have been selected. The choice of c′

depends on n: c′ is taken to be 10, 20, 30 for n = 200 and 5, 10, 20 for n = 1000.
We fix n, c′ and (δ, x0) and draw a sample (ε1, . . . , εn) from the Gaussian distribution N (0, 1). We fix σ and

for every i ∈ {1, . . . , n} we generate

Yi = f(xi) + σεi.

We compute then the five test statistics and the percentages of rejection of H0 (using simulated critical values)
over 3000 samples. Considering the previous results about the behavior of Ŝn and ŜBn under H0, it seemed not
relevant to present results on the power of the tests based on these statistics. Moreover, the test based on T̂Bn
is in most cases less powerful than the test based on T̂n. For the sake of simplicity, we thus only present in
Table 2 the results concerning the power of both tests based on T̂n and LR.

The test based on T̂n is better than the likelihood ratio test in general. The likelihood ratio test is marginally
better in the case where δ = 0.1. The parameter x0 has been chosen here in order that the bump is centered.
The results obtained over the entire experiment show that when x0 = 0, the test based on T̂n is slightly less
powerful comparing to the case x0 6= 0. However the general behavior observed here carries on: test based
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on T̂n is better than the likelihood ratio test except in the case of very thin bumps (δ and c′ small). These
results show also that the test based on Ŝn is in most cases the most powerful among the five tests.

5. Derivation of results

If hn denotes the isotonic estimator of some regression function h and C is a positive number, then the
isotonic estimator of Ch is Chn. It thus suffices to prove Theorem 3.1 in the case where σ = 1, so we assume
in the sequel σ = 1.

To study the asymptotic behavior of Sn under Hn, we consider both inverse functions of f̂n and f0. This
key idea comes from Groeneboom [7]. We recall that the (generalized) inverse h−1 of a non increasing, left-
continuous function h defined on [0, 1] is given by

∀a ∈ R h−1(a) = inf{t ∈ [0, 1], h(t)< a}

with the convention that the infimum of an empty set is 1. Let F̂n be the empirical process defined by (2.2)
and let define the “argmax” of a process {X(u), u ∈ I}, I ⊂ R by

argmax
u∈I

{X(u)} = sup{u ∈ I,X(u) is maximal}

with the convention that the supremum of an empty set is the infimum of I. The inverse function Vn of f̂n is
given by: ∀a ∈ R, Vn(a) = argmaxu∈[0,1]{F̂n(u)− au}. Therefore,

∀a ∈ R, Vn(a) = argmax
u∈[0,1]

{
1
n

n∑
i=1

εi11xi6u +
1
n

n∑
i=1

fn(xi)11xi6u − au
}

(5.1)

under the hypothesis Hn. Because Vn is more tractable than the isotonic estimator f̂n, we use the following
identity, where g0 stands for the inverse function of f0:∫ 1

0

|f̂n(t) − f0(t)|dt =
∫
R
|Vn(a)− g0(a)|da. (5.2)

Moreover, it is proved in Lemma 5.2 that Vn can be approached by a process Un defined by

∀a ∈ R, Un(a) = argmax
u∈[0,1]

{
W (u) +

√
n

(∫ u

0

fn(s) ds− au
)}

, (5.3)

where W is a standard two-sided Brownian motion. So we deal with Un instead of f̂n in the proof of Theorem 3.1.
The proof is organized as follows. Probabilistic tools are given in Section 5.1. The proofs of these probabilistic
tools are postponed to Section 5.4. In Section 5.2, Theorem 3.1 is proved in the case where n1/3cnδ

1/2
n > η for

all n and some large enough η > 0. Theorem 3.1 is finally proved in the case where n1/3cnδ
1/2
n is bounded in

Section 5.3. Throughout the proof, we will use the following notation.

Notation 1.

– [m,M ] (resp. [mn,Mn]) stands for the range of f0 (resp. fn);
– g0 (resp. gn, Vn) stands for the inverse function of f0 (resp. fn, f̂n);
– I = n−1/3 logn;
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– the functions dn and Ln are defined by: for all real number a,

dn(a) =
∣∣∣∣f ′n(gn(a))

2

∣∣∣∣2/3 and Ln(a) = sup
t∈[gn(a)−I,gn(a)+I]∩[0,1]

|f ′′n (t)| ; (5.4)

– P (resp. E, resp. var) stands for the probability (resp. the expectation, resp. the variance) under the
hypothesis Hn.

5.1. Some probabilistic tools

Probability inequalities are provided in the following lemma:

Lemma 5.1. Let gn be the inverse function of fn, where fn satisfies the regularity condition Rn. Let Vn be the
process defined by (5.1), where xi = i/n, the εi’s are independent and identically distributed random variables
such that E|εi|p is finite for some p > 2. If supt,n |fn(t)| is finite then there exists some cp > 0 such that for all
t > 0, a ∈ R, n ∈ N∗

P (|Vn(a) − gn(a)| > t) 6 cpt−3p/2n−p/2.

Let Un be the process defined by (5.3) where W is a standard two-sided Brownian motion. There exists some
C > 0 that only depends on k1 such that for all t > 0, a ∈ R, n ∈ N∗

P (|Un(a) − gn(a)| > t) 6 2 exp
(
−nCt3

)
.

Since for all positive random variable X, EX =
∫∞

0 P(X > x) dx, this lemma ensures on the one hand that for
all q ∈ (0, 3p/2) there exists some positive constant cq such that

sup
n∈N

sup
a∈R

E
(
n1/3|Vn(a)− gn(a)|

)q
6 cq (5.5)

and on the other hand that for all q > 0, there exists some positive constant c′q such that

sup
n∈N

sup
a∈R

E
(
n1/3|Un(a) − gn(a)|

)q
6 c′q. (5.6)

It is stated in Lemma 5.2 below that the process Vn can be approached by the process Un. Moreover, it
is stated there that the integration range of

∫
R |Vn(a) − g0(a)|da can be restricted to a well chosen bounded

interval providing an error of order OP(n−1/2). This lemma is the starting point of the proof of Theorem 3.1.

Lemma 5.2. Let g0 denote the inverse function of f0, where f0 is decreasing on [0, 1] and let fn be defined
by (3.1). Suppose that fn satisfies Rn and that supn,t |fn(t)| is finite. Let [m,M ], [mn,Mn] denote the range
of f0 and fn respectively.

Let Vn be the process defined by (5.1), where the εi’s are independent and identically distributed random
variables with mean zero and variance one, xi = i/n. Then

E
∫
R
|Vn(a) − g0(a)| da = E

∫ Mn∨M

mn∧m
|Vn(a) − g0(a)| da+ O(n−2/3). (5.7)

Assume that E|εi|p is finite for some p > 12 and the εi’s are defined on some rich probability space. Assume
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moreover cnδ
−3/2
n and n1/6cnδ

−1/2
n to be bounded. Then there exists some standard Brownian motion W such

that

E
∫
R
|Vn(a)− g0(a)| da = E

∫ Mn∨M

mn∧m
|Un(a)− g0(a)| da+ O(n−1/2),

where Un(a) is given by (5.3).

The following lemma is a technical lemma that will be useful to study the asymptotic expectation of the
test statistic Sn. It allows to approach the random variable n1/3(Un(a)− gn(a)) by a normalized Groeneboom
process at time zero.

Lemma 5.3. Let f0 be a decreasing function and let fn be defined by (3.1). Let Un be the process defined
by (5.3) where W is a standard two-sided Brownian motion. Suppose cnδ

−3/2
n to be bounded and fn to satisfy

condition Rn. Let gn be the inverse function of fn, Ln and dn be defined by (5.4) and let a be a real number
such that for all n, [− logn, logn] ⊂ [−n1/3gn(a), n1/3(1− gn(a))] and 4n−1/4(logn)7/2Ln(a) 6 1. Then, there
exist some positive constants D1 and D2, some integer n0 that all do not depend on a and some Groeneboom
process Va,n such that

n1/6E
∣∣∣n1/3(Un(a) − gn(a))− dn(a)−1Va,n(0)

∣∣∣ ≤ D1n
−1/12(logn)9/2Ln(a) +

D2

logn

whenever n ≥ n0.

5.2. Proof of Theorem 3.1 in the case where n1/3cnδ
1/2
n > η

We use Notation 1.
Let Sn be the random variable defined by (2.3) where σ = 1 and let η be some large enough positive number.

Fix α ∈ (0, 1) and β ∈ (α, 1). Suppose that n1/3cnδ
1/2
n > η for all large enough n. Since ‖fn−f0‖1 = cnδ

1/2
n ‖φ‖1,

we get for large enough η and n,

P(|Sn| 6 zα/2) 6 P
(
n1/6

{
n1/3cnδ

1/2
n ‖φ‖1 − n1/3‖f̂n − fn‖1 − Cf0,1

}
6 zα/2

√
8k
)

6 P
(
n1/3‖f̂n − fn‖1 >

η

2
‖φ‖1

)
.

One can easily check that ‖f̂n − fn‖1 = ‖Vn − gn‖1. Moreover gn(a) = g0(a) for all a /∈ [m ∧mn,M ∨Mn].
Therefore (5.5) and (5.7) prove that n1/3E‖f̂n − fn‖1 is bounded. Markov’s inequality then yields

lim sup
n→∞

P(|Sn| 6 zα/2) 6 1− β,

whenever η is large enough.

5.3. Proof of Theorem 3.1 in the case where n1/3cnδ
1/2
n is bounded

We use Notation 1. We assume without loss of generality that the εi’s are defined on some rich enough
probability space so that Hungarian constructions hold (see Lem. 5.2). We assume moreover cnδ

−3/2
n and

n1/3cnδ
1/2
n to be bounded.
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Let Sn be the random variable defined by (2.3) where σ = 1. Let decompose Sn into the sum of a bias term
Bn and a centered random term S′n. More precisely, n1/6cnδ

−1/2
n is bounded so we define Bn and S′n by

Bn = n1/6

{
E

(
n1/3

∫ M∨Mn

m∧mn
|Un(a)− g0(a)|da

)
− Cf0,1

}
, (5.8)

S′n = n1/6

{
n1/3

∫ M∨Mn

m∧mn
|Un(a) − g0(a)|da− E

(
n1/3

∫ M∨Mn

m∧mn
|Un(a)− g0(a)|da

)}
(5.9)

where Un satisfies the second assertion in Lemma 5.2. By identity (5.2) and the second assertion in Lemma 5.2
we then have

√
8kSn = Bn + S′n +OP(1). The main issue to prove Theorem 3.1 is thus to prove the following

proposition:

Proposition 5.1. Let f0 be some function satisfying R0 and let fn be defined by (3.1). Assume we are given
the regression model (2.1) under the hypothesis Hn: “f = fn”. Let Bn be defined by (5.8) and S′n be defined
by (5.9). Assume fn to satisfy Rn and suppose n1/3cnδ

1/2
n and cnδ

−3/2
n to be bounded. We have the following

results:

1. suppose n1/3cnδ
−1/2
n to be bounded. Then there exists some positive B such that for all n, Bn > O(1) +

Bn5/6c2n. Moreover, var(S′n) = O(1);
2. suppose δn to converge to zero as n goes to infinity and suppose n1/3cnδ

−1/2
n > 1 for all n. Then there

exists some positive B such that for all n, Bn > O(1)+Bn1/2cnδ
1/2
n . Moreover, var(S′n) = O(1 +n2/3c2n).

Theorem 3.1 follows from Proposition 5.1 in the case where n1/3cnδ
1/2
n is bounded. Assume indeed cnδ

−3/2
n

and n1/3cnδ
1/2
n to be bounded. Assume moreover cn > γ(n−5/12 ∨ n−1/2δ

−1/2
n ) for some large enough γ. Fix

α ∈ (0, 1) and β ∈ (α, 1). We have
√

8kSn = Bn + S′n + OP(1), so

P(|Sn| 6 zα/2) 6 P
(
|S′n| > Bn + OP(1) − zα/2

√
8k
)
.

By Proposition 5.1, for all positive C we have lim infn→∞Bn > C provided γ is large enough. Fix ε > 0. It
thus follows from Markov’s inequality that there exists some γ0 such that

lim sup
n→∞

P(|Sn| 6 zα/2) 6 lim sup
n→∞

4 var(S′n)
B2
n

+ ε

whenever γ > γ0. There exists some A > 0 such that δn > An−1/4√γ since cn > γn−1/2δ
−1/2
n and cnδ

−3/2
n

is bounded. Using again Proposition 5.1 we obtain lim supn→∞ P(|Sn| 6 zα/2) 6 1 − β whenever γ is large
enough.

The end of this section is devoted to the proof of Proposition 5.1. The proof is organized as follows. We first
build a sequence Zn in such a way that

Bn = n1/6 (Zn − Cf0,1) +O(1). (5.10)

The results stated in Proposition 5.1 concerning the asymptotic expectation Bn of the test statistic are derived
from the asymptotic behavior of n1/6(Zn−Cf0,1). Results concerning the asymptotic variance of the test statistic
are finally proved. For the sake of simplicity, we assume throughout the proof x0 to be zero. Recall we assume
also σ = 1.
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• Construction of Zn

Suppose first that δn converges to zero as n goes to infinity. We assume without loss of generality that mn = m

and m+ n−1/6 < f0(δn + I). Then [m ∧mn,M ∨Mn] = I(1)
n ∪ I(2)

n ∪ I(3)
n where

I(1)
n = [m,m+ n−1/6] ∪ [fn(n−1/3 log2 n),M ∨Mn],

I(2)
n = [m+ n−1/6, f0(δn + I)],

I(3)
n = [f0(δn + I), fn(n−1/3 log2 n)],

I(3)
n being an empty set whenever f0(δn + I) > fn(n−1/3 log2 n). Since cnδ

−3/2
n and n1/3cnδ

1/2
n are bounded,

n1/6cnδ
−1/2
n is also bounded and the length of both intervals defining I(1)

n is of order of magnitude O(n−1/6).
If V (0) is the location of the maximum of {W (u)−u2, u ∈ R} then for every x > 0, |V (0)| can be larger than x
only if there exists some u with |u| > x for which W (u) − u2 > W (0). Time-inversion property of Brownian
motion thus implies

P (|V (0)| > x) 6 2 exp(−x3/2) (5.11)

for all x > 0. Therefore, E|V (0)| is finite. By (5.6) we thus get for all Groeneboom process V :

n1/6

∫
I(1)
n

E
∣∣∣n1/3 (Un(a)− gn(a)) − V (0)dn(a)−1

∣∣∣da = O(1).

Fix now a ∈ I(2)
n . Since a 6 f0(δn + I), we have gn(a) = g0(a) and Ln(a) 6 ‖f ′′0 ‖∞. Assumptions of Lemma 5.3

are thus fulfilled for large enough n. Therefore, for all a ∈ I(2)
n , there exists some Groeneboom process Va,n

such that

n1/6

∫
I(2)
n

E
∣∣∣n1/3 (Un(a)− gn(a)) − Va,n(0)dn(a)−1

∣∣∣ da = O(1).

Suppose n1/6δn to be bounded. Then, the length of the interval I(3)
n is of order of magnitude O(n−1/6) and for

all a ∈ [m ∧mn,M ∨Mn], there exists some Groeneboom process Va,n such that

n1/6

∫ M∨Mn

m∧mn
E
∣∣∣n1/3 (Un(a) − gn(a))− Va,n(0)dn(a)−1

∣∣∣ da = O(1). (5.12)

Suppose now that there exists some positive constant C such that n1/6δn > C for all large enough n. Then,
sup

a∈I(3)
n
Ln(a) = O(1 +n1/2cnδ

1/2
n ) and the assumptions of Lemma 5.3 are fulfilled for all a ∈ I(3)

n whenever n

is large enough (recall that n1/3cnδ
1/2
n is bounded). We also have sup

a∈I(3)
n
Ln(a) = O(1 + cnδ

−5/2
n ) and the

length of I(3)
n is of order of magnitude O(δn + n−1/3(logn)2). So (5.12) still holds for some Va,n in the case

where n1/6δn > C. If δn converges to zero as n goes to infinity, there thus exists for all a some Groeneboom
process Va,n such that (5.12) holds. One can easily prove that (5.12) still holds for some Va,n whenever δn = 1
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for all n since in that case Ln(a) is bounded uniformly in a and n. Let thus define

Zn = E
∫ M∨Mn

m∧mn
|Va,n(0) + ψn(a)| dn(a)−1da, (5.13)

where ψn(a) = dn(a)n1/3(gn(a)− g0(a)). Then (5.10) holds.

• Asymptotic expectation of the test statistic

Let Zn be defined by (5.13). We get

Zn > 2E
∫ 1

0

|Vt,n(0) + ψn ◦ fn(t)|
∣∣∣∣f ′n(t)

2

∣∣∣∣1/3 dt

where for every real number t, Vt,n is a Groeneboom process. Since f0 and fn satisfy the regularity conditions
R0 and Rn respectively, there exists some positive constant C such that∣∣∣|f ′n(t)|1/3 − |f ′0(t)|1/3

∣∣∣ 6 Ccnδ−3/2
n

∣∣∣∣φ′( t

δn

)∣∣∣∣ ·
Let V be a Groeneboom process. Inequality (5.11) holds for all x > 0 so E|V (0)| is finite and

n1/6E|V (0)|
∫ 1

0

(
|f ′n(t)|1/3 − |f ′0(t)|1/3

)
dt = O(1).

Therefore (recall σ = 1 and x0 = 0) n1/6(Zn − Cf0,1) > O(1) + B′n where

B′n = 2n1/6

∫ 1

0

∣∣∣∣f ′n(t)
2

∣∣∣∣1/3 (E|V (0) + ψn ◦ fn(t)| − E|V (0)|) dt.

The distribution of V (0) is symmetric about zero, so

E|V (0) + ψn ◦ fn(t)| − E|V (0)| =
∫ |ψn◦fn(t)|

0

P(|V (0)| < u)du.

But ψn ◦ fn has support included in the support [0, δn] of fn − f0 and therefore

B′n = 2n1/6

∫ δn

0

∣∣∣∣f ′n(t)
2

∣∣∣∣1/3 ∫ |ψn◦fn(t)|

0

P (|V (0)| < u) dudt.

Suppose first n1/3cnδ
−1/2
n to be bounded. Since the density h of V (0) has a bell shape curve (see Groeneboom [8]),

we have: ∫ |ψn◦fn(t)|

0

P (|V (0)| < u)du > (ψn ◦ fn(t))2
h (|ψn ◦ fn(t)|) .

The function h is continuous and ||ψn ◦ fn||∞ is bounded. Moreover, there exist some subinterval In of [0, δn]
with length of order δn and some positive constant C such that inft∈In |ψn ◦ fn(t)| > Cn1/3cnδ

−1/2
n . By (5.10)

there thus exists some B > 0 such that Bn > O(1) + Bn5/6c2n.
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Suppose now that there exists some positive constant D such that Cn1/3cnδ
−1/2
n > 2D for all large enough n.

Then

B′n > 2n1/6

∫
In

∣∣∣∣f ′n(t)
2

∣∣∣∣1/3 ∫ |ψn◦fn(t)|

D

P (|V (0)| < D) dudt.

By (5.10) there thus exists some B > 0 such that Bn > O(1) + Bn1/2cnδ
1/2
n .

• Asymptotic variance of the test statistic

In the sequel we use the following convention: for all real valued function h, all x > y,
∫ y
x
h(t)dt = 0. Let S′n be

the random variable defined by (5.9). We write var (S′n) = I
(1)
n + I

(2)
n , where

I(1)
n = 2n

∫ M∨Mn

m∧mn

∫ M∨Mn

a+n−1/3
cov (|Un(a) − g0(a)|, |Un(b) − g0(b)|) dbda,

I(2)
n = 2n

∫ M∨Mn

m∧mn

∫ a+n−1/3

a

cov (|Un(a)− g0(a)|, |Un(b)− g0(b)|) dbda.

We first state several covariance inequalities that will be used to provide upper bounds for both I
(1)
n and I

(2)
n .

It is assumed that both f ′n and f ′0 are bounded away from zero so

sup
a∈[m∧mn ,M∨Mn]

|gn(a)− g0(a)| = O(cnδ−1/2
n ). (5.14)

Cauchy–Schwarz inequality and (5.6) then yield

sup
a,b∈[m∧mn,M∨Mn]

|cov (|Un(a)− g0(a)|, |Un(b)− g0(b)|)| = O(n−2/3 + c2nδ
−1
n ). (5.15)

The second covariance inequality we use in order to estimate I(1)
n and I

(2)
n brings independent variables in.

The idea is to use the following consequence of Cauchy–Schwarz inequality. Let D, D′, E and E′ be random
variables. If E and D are independent, then

|cov(D′, E′)| 6 E1/2(D′2)E1/2(E − E′)2 + E1/2(E2)E1/2(D −D′)2. (5.16)

For every real numbers a and b such that a < b let Dn(a, b) and En(a, b) be defined by

Dn(a, b) = argmax
u∈[ 3gn(b)−gn(a)

2 , gn(b)+gn(a)
2 ]∩[0,1]

{
W (u) +

√
n(Fn(u)− bu)

}
,

En(a, b) = argmax
u∈[ gn(b)+gn(a)

2 ,
3gn(a)−gn(b)

2 ]∩[0,1]

{
W (u) +

√
n(Fn(u)− au)

}

where Fn(u) =
∫ u

0 fn(s) ds. Since Brownian motion’s increments are independent, Dn(a, b) and En(a, b) are
independent for all a < b. Moreover, we will prove that the L2-distance between Dn(a, b) and Un(b) (resp.
between En(a, b) and Un(a)) is small. From the definition of Dn(a, b) and Un(b) we have |Dn(a, b) − gn(b)|
6 |Un(b) − gn(b)|. Moreover, either Dn(a, b) = Un(b) or |Un(b) − gn(b)| > (gn(a) − gn(b))/2. It thus follows



GOODNESS OF FIT TEST FOR ISOTONIC REGRESSION 133

from triangular inequality and the Cauchy–Schwarz inequality that

E1/2 | |Dn(a, b)− g0(b)| − |Un(b) − g0(b)| |2

6 2E1/4 |Un(b)− gn(b)|4 P1/4

(
|Un(b)− gn(b)| > gn(a) − gn(b)

2

)
· (5.17)

One can obtain the same kind of upper bound for E1/2 | |En(a, b)− g0(a)| − |Un(a)− g0(a)| |2. This implies
by (5.16, 5.14) and Lemma 5.1 that there exist some positive A and C such that for all a < b,

| cov(|Un(a) − g0(a)|, |Un(b) − g0(b)|)| 6 An−1/3(n−1/3 + cnδ
−1/2
n ) exp

(
−nC(gn(a)− gn(b))3

)
. (5.18)

We propose a last covariance inequality that applies in the case where both a and b lie in [m ∨ mn, f0(δn)]
and a < b. In that case, gn(a) = g0(a) and gn(b) = g0(b). Moreover, there exists some positive K such that
gn(a) − gn(b) > K(b − a) since cnδ

−3/2
n is bounded. By using the same arguments as above combined with

Lemma 5.1, one can easily check that there exist some positive A and C such that

|cov (|Un(a) − g0(a)|, |Un(b) − g0(b)|)| 6 An−2/3 exp(−Cn(b− a)3). (5.19)

We now provide upper bounds for I(1)
n and I

(2)
n . Suppose first n1/3cnδ

−1/2
n to be bounded. There exists some

positive constant K such that gn(a)− gn(b) > K(b−a) whenever a and b lie in [mn,Mn]. By (5.15) and (5.18),
there thus exist some positive constants A and C such that∣∣∣I(1)

n

∣∣∣ 6 An1/3

∫ M∧Mn

m∨mn

∫ M∧Mn

a+n−1/3
exp

(
−Cn(b− a)3

)
dbda +O(1)

6 A
∫ M

m

∫ ∞
1

exp
(
−Cx3

)
dxda+ O(1).

Hence I
(1)
n is bounded. It follows from (5.15) that I(2)

n is also bounded, so var(S′n) is bounded whenever
n1/3cnδ

−1/2
n is bounded.

Suppose now that δn converges to zero as n goes to infinity and that n1/3cnδ
−1/2
n > 1 for all large enough n.

Then we can assume mn = m. On the one hand, inequality (5.19) holds whenever both a and b lie in [m, f0(δn)]
and a < b. Therefore,

n

∫ f0(δn)

m

∫ f0(δn)

a+n−1/3
cov (|Un(a)− g0(a)|, |Un(b)− g0(b)|) dbda = O(1).

We have M ∨Mn − f0(δn) = O(δn). Moreover, gn is strictly decreasing from [m,Mn] onto [0, 1]. Therefore,
b 7→ n1/3(gn(a) − gn(b)) is one-to-one over [m,Mn] for all fixed a ∈ R. By (5.18) and change of variables, we
thus obtain (recall that n1/3cnδ

1/2
n is bounded)

n

∫ M∨Mn

f0(δn)

∫ M∧Mn

a+n−1/3
cov (|Un(a)− g0(a)|, |Un(b)− g0(b)|) dbda = O(1).

Likewise, a 7→ n1/3(gn(a)− gn(b)) is one-to-one over [m,Mn] for all fixed b ∈ R. It thus follows from (5.18) and
change of variables that

n

∫ f0(δn)

m

∫ M∨Mn

f0(δn)

cov (|Un(a)− g0(a)|, |Un(b)− g0(b)|) dbda = O(1).
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Finally, the exponential factor in (5.18) is no more than one so

n

∫ M∨Mn

f0(δn)

∫ M∨Mn

M∧Mn

cov (|Un(a) − g0(a)|, |Un(b)− g0(b)|) 11b>adbda = O(n2/3c2n).

Therefore, I(1)
n = O(1 + n2/3c2n). On the other hand, gn(a) = g0(a) and gn(b) = g0(b) for all a ∈ [m, f0(δn) −

n−1/3] and b ∈ [a, a+ n−1/3]. By the Cauchy–Schwarz inequality and (5.6) we thus have

|I(2)
n | 6 O(1) + 2n

∫ M∨Mn

f0(δn)−n−1/3

∫ a+n−1/3

a

|cov (|Un(a) − g0(a)|, |Un(b) − g0(b)|)| dbda. (5.20)

Conditions n1/3cnδ
−1/2
n > 1 and cnδ

−3/2
n = O(1) imply δ−1

n = O(n1/3). So by (5.15) we have I(2)
n = O(1 +

n2/3c2n). Therefore var(S′n) = O(1 + n2/3c2n) whenever n1/3cnδ
−1/2
n > 1 for all large enough n and δn = o(1),

which completes the proof of Proposition 5.1.

5.4. Proof of the probabilistic tools

Notation 1 is used throughout this section.

5.4.1. Proof of Lemma 5.1

For all a ∈ R, Vn(a) − gn(a) is the location of the maximum of the process Za,n − Da,n over In(a) =
[−gn(a), 1− gn(a)], where

Za,n(v) =
1
n

n∑
i=1

εi(11xi6v+gn(a) − 11xi6gn(a)), (5.21)

and

Da,n(v) = − 1
n

n∑
i=1

fn(xi)(11xi6v+gn(a) − 11xi6gn(a)) + av. (5.22)

Fix v ∈ [0, 1−gn(a)]. By definition of k1 we have fn(xi) 6 fn(gn(a))−k1(xi−gn(a)) for all xi ∈]gn(a), v+gn(a)].
Moreover card{i, xi ∈]gn(a), v + gn(a)]} ∈ [nv − 1, nv + 1] since xi = i/n. Therefore,

Da,n(v) > (a − fn(gn(a)))v − |fn(gn(a))|
n

+ k1

[
1
n

n∑
i=1

(xi − gn(a))11xi∈]gn(a),v+gn(a)]

−
∫ v+gn(a)

gn(a)

(x− gn(a))dx

]
+ k1

∫ v+gn(a)

gn(a)

(x− gn(a))dx

which implies

Da,n(v) > (a− fn(gn(a))) v − |fn(gn(a))|
n

− k1

n
+
k1v

2

2
·

By assumption fn is continuous so (a− fn(gn(a))) v > 0 for all v ∈ [−gn(a), 1 − gn(a)]. But supt,n |fn(t)| is
finite so there exists some positive c0 that does not depend on a or n such that

Da,n(v) > k1

4
v2 (5.23)
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whenever v2 > c0/n and v ∈ [0, 1 − gn(a)]. One can prove using the same arguments that (5.23) still holds
whenever v2 > c0/n and v ∈ [−gn(a), 0]. Fix t > 0. The first inequality in Lemma 5.1 is trivial whenever
t2 < c0/n so we assume t2 > c0/n and we get

P (|Vn(a)− gn(a)| > t) 6 P
(

sup
|v|>t
{Za,n(v) − k1v

2/4} > 0

)

6
∑
k>0

P

(
sup

t2k<|v|6t2k+1
{Za,n(v)} > k1t

222(k−1)

)
.

By Doob’s and Rosenthal’s inequalities (see Revuz and Yor [13] and Rosenthal [15]) there thus exists some
positive Kp that only depends on E|ε1|p and k1 such that

P (|Vn(a)− gn(a)| > t) 6 Kp

∑
k>0

(nt2k+1 + 1)p/2

(nt222k)p
,

which proves the first assertion of the lemma.
Expanding u 7→

∫ u
0
fn(s) ds in the neighborhood of gn(a), one can prove in the same way that for all t > 0,

P (|Un(a)− gn(a)| > t) 6 P
(

sup
1>|v|>t

{
1√
n

(W (v + gn(a))−W (gn(a))) − k1v
2

2

}
> 0

)
.

By time-homogeneity property of Brownian motion, the latter probability does not depend on a. Moreover, the
process

{
ut−1/2W (t/u), u ∈ R

}
has the same distribution as {W (u), u ∈ R} so change of variables u = t/v

yields

P (|Un(a) − gn(a)| > t) 6 2P
(

sup
06v61

{W (v)} >
√
nt3/2k1

2

)
·

The second assertion of the lemma now follows from exponential inequality.

5.4.2. Proof of Lemma 5.2

Fix a > Mn. Let gn denote the inverse function of fn. We have gn(a) = 0 and Vn(a)− gn(a) lies in [0, 1] so
for all t > 0,

P(|Vn(a)− gn(a)| > t) 6 P
(

sup
t<v61

{Za,n(v) −Da,n(v)} > 0
)
,

where Za,n and Da,n are given by (5.21) and (5.22) respectively. For all v ∈ [0, 1], Card{i, xi ∈]0, v]} ∈
[nv − 1, nv]. Thus

Da,n(v) > v(a −Mn)− sup
n,t
|fn(t)|/n.

Assume 2 supn,t |fn(t)| 6 nt(a−Mn) and t > 1/n. Then, Da,n(v) > v(a−Mn)/2 for all v > t. Moreover, E|ε1|2
is finite so one can obtain by using the same arguments as in the proof of Lemma 5.1 that there exists some
positive constant c such that

P (|Vn(a) − gn(a)| > t) 6 c

nt(a−Mn)2
(5.24)



136 C. DUROT AND A.-S. TOCQUET

for all t > 1/n, a > Mn and n > 1 with 2 supn,t |fn(t)| 6 nt(a−Mn). The latter inequality is trivial whenever
2 supn,t |fn(t)| > nt(a −Mn) and t > 1/n (provided c is large enough) so it holds for all t > 1/n and a > Mn.
By definition, f̂n can jump only at times i/n, i ∈ {1, . . . , n} so for all t > 0, we can have Vn(a) > t only if
Vn(a) > 1/n. By (5.24), there thus exists some positive c such that

P (|Vn(a) − gn(a)| > t) 6 c

(a−Mn)2

for all t ∈ (0, 1/n), a > Mn. There thus exists some positive c such that (5.24) holds for all positive t, n and all
a > Mn. Combined with Lemma 5.1 with p = 2, it proves that there exists some c′ such that for all a > Mn,

E|Vn(a) − gn(a)| 6 c′
(

1
n(a−Mn)2

+
∫ a−Mn

n−1(a−Mn)−2

1
nt(a−Mn)2

dt+
∫ ∞
a−Mn

1
nt3

dt

)
.

So by (5.5),

E
∫ ∞
Mn

|Vn(a)− gn(a)| da = O(n−2/3).

One can obtain in the same way that E
∫mn
−∞ |Vn(a) − gn(a)| da = O(n−2/3). Equality (5.7) then follows since

gn(a) = g0(a) for all a /∈ [mn ∧m,Mn ∨M ].
By Sakhanenko’s theorem, see Theorem 5 of Sakhanenko [16], we may assume (provided the εi’s are defined

on some rich enough probability space) that there exists some Brownian motion W0 such that

E

(
sup
k6n

∣∣∣∣∣
k∑
i=1

εi −W0(k)

∣∣∣∣∣
p)
6 nE|ε1|p.

Let W be the Brownian motion defined by W (u) = n−1/2W0(nu), u ∈ R. By exponential inequality and
Markov’s inequality there exists some cp such that for all t > 0,

P

(
sup
u∈[0,1]

∣∣∣∣∣ 1√
n

n∑
i=1

εi11xi6u −W (u)

∣∣∣∣∣ > t

)
6 cpn1−p/2t−p. (5.25)

Let Un be defined by (5.3) where W is some Brownian motion that satisfies (5.25). Let Ia,n = [−n1/3gn(a),
n1/3(1− gn(a))]. By definition, n1/3(Un(a) − gn(a)) is the location of the maximum of the process {Z(u), u ∈
Ia,n} where

Z(u) = n1/6W (n−1/3u+ gn(a)) + n2/3

∫ n−1/3u+gn(a)

0

fn(s) ds− an1/3u.

Moreover n1/3(Vn(a)− gn(a)) is the location of the maximum of {Z(u) +R(u), u ∈ Ia,n} where

sup
u∈Ia,n

|R(u)| 6 cn−1/3 + n1/6 sup
t∈[0,1]

∣∣∣∣∣ 1√
n

n∑
i=1

εi11xi6t −W (t)

∣∣∣∣∣
for some c > 0, since supn,t |f ′n(t)| is finite. By (5.25)

P

(
2 sup
u∈Ia,n

|R(u)| > xη3/2

)
6 4pcpn1−p/3x−pη−3p/2 (5.26)
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whenever 4cn−1/3 6 xη3/2. Let z = n1/3(Un(a)−gn(a)) denote the location of the maximum of Z and for every
η > 0 let

Pa(η) = P
(
n1/3|Vn(a) − Un(a)| > η

)
.

For all positive x, η

Pa(η) 6 P
(
Z(z) − Z(n1/3(Vn(a) − gn(a))) > xη3/2

)
+ P

(
Z(z) − sup

|t−z|>η
Z(t) 6 xη3/2

)
,

where

Z(z) − Z(n1/3(Vn(a) − gn(a))) 6 2 sup
u∈Ia,n

|R(u)|.

Upper bounds for the last two probabilities are obtained using respectively (5.26) and Proposition 1 of Durot [4].
From now on, T denotes log(n). By Lemma 5.1 there exist some positive A, C such that

P
(
n1/3|Vn(a)− Un(a)| > η

)
6 ATx+ An1−p/3x−pη−3p/2 + 2 exp(−CT 3)

whenever a ∈ [mn,Mn], 4cn−1/3 6 xη3/2, η ∈ (0, 1) and c′T 2 6 −1/η log(2xη) for some large enough, positive c′.
Fix a ∈ [mn,Mn] and for all η > 0 let define

xη = n(3−p)/3(p+1)η−3p/2(p+1)T−1/(p+1).

The latter inequality holds whenever x = xη, η ∈ [n2(3−p)/9p, n−α] for some α > 0 and n > n0 for some large
enough n0 that does not depend on a. So for large enough n

n1/6

∫ n−α

0

Pa(η) dη 6 n(12−p)/18pT 2/3 + 2ATn1/6

∫ n−α

n2(3−p)/9pT 2/3
xη dη + 2n1/6−αe−CT

3
.

This upper bound does not depend on a and converges to zero as n goes to infinity since p > 12. Fix β ∈
(1/3(3p− 2); (p− 7)/6(p+ 1)). We have Pa(η) 6 Pa(n−α) for all η > n−α. The integral n1/6

∫ nβ
n−α

Pa(η) dη thus
also converges to zero as n goes to infinity uniformly in a ∈ [mn,Mn] whenever α is small enough. Finally it
follows from Lemma 5.1 that n1/6

∫∞
nβ Pa(η) dη uniformly converges to zero as n goes to infinity. Since we have

EX =
∫∞

0
P(X > x) dx for all positive random variable X it follows that

lim
n→∞

n1/2 sup
a∈[mn,Mn]

E|Un(a)− Vn(a)| = 0.

By (5.5, 5.6) this implies

n1/2

∫ Mn∨M

mn∧m
E|Un(a)− Vn(a)| da = O(1)

whenever Mn −M = O(n−1/6) and mn −m = O(n−1/6). Lemma 5.2 then follows from (5.7).
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5.4.3. Proof of Lemma 5.3

Let first define a process Ũn that approaches the process Un: for all a ∈ R let

Ũn(a) = argmax
u∈[gn(a)−I,gn(a)+I]∩[0,1]

{
W (u) +

√
n(Fn(u) − au)

}
where Fn(u) =

∫ u
0
fn(s) ds and I = n−1/3 logn. For every a ∈ R, either Ũn(a) = Un(a) or |Un(a)− gn(a)| > I.

By Lemma 5.1 there thus exists some positive C such that

E|Ũn(a)− Un(a)| 6 2 exp(−C(logn)3)

for all a ∈ R. Therefore, it suffices to prove that there exist some positive constants D1 and D2 such that for
large enough n,

n1/6E
∣∣∣n1/3(Ũn(a) − gn(a))− dn(a)−1Va,n(0)

∣∣∣ ≤ D1n
−1/12(logn)9/2Ln(a) +

D2

logn
· (5.27)

Fix a with [− logn, logn] ⊂ [−n1/3gn(a), n1/3(1−gn(a))]. Let W1 be the Brownian motion defined for all v ∈ R
by W1(v) = n1/6(W (n−1/3v + gn(a)) −W (gn(a))). Let Z be the process defined by

∀v ∈ R, Z(v) = W1(v) − v2dn(a)3/2,

and let z be the location of the maximum of Z. It is worth noticing that there exists some Groeneboom
process Va,n such that z = dn(a)−1Va,n(0). Moreover, n1/3(Ũn(a) − gn(a)) is the location of the maximum of
{Z(v) +R(v), |v| 6 logn} where

sup
|v|6logn

|R(v)| 6 Ln(a)n−1/3(logn)3/6. (5.28)

For every positive η, let Pa(η) denote the following probability:

Pa(η) = P
(∣∣∣n1/3(Ũn(a) − gn(a))− dn(a)−1Va,n(0)

∣∣∣ > η
)

where by definition, dn(a)−1Va,n(0) = z. For every positive x and η,

Pa(η) 6 P
(
Z(z)− Z(n1/3(Ũn(a)− gn(a))) > xη3/2

)
+ P

(
Z(z)− sup

|t−z|>η
Z(t) 6 xη3/2

)
.

Moreover, if |z| 6 logn then

Z(z) − Z(n1/3(Ũn(a)− gn(a))) 6 2 sup
|v|6logn

|R(v)|.

Fix η ∈ (0, 1], x > 0 and suppose

(logn)3 6
(
η log

(
1

2xη

))−1

·
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By (5.11) and Proposition 1 of Durot [4] there exists some positive A that does not depend on a or n such that
for large enough n,

Pa(η) 6 P
(

2 sup
|v|6logn

|R(v)| > xη3/2

)
+ Ax logn+ 4e−k

2
1(log n)3/8.

Let ε be a positive real number such that ε < 1/18 and for all η ∈ [(logn)−1n−1/6, n−ε] let define xη =
n−1/3η−3/2(logn)3(Ln(a) + 1). If 4n−1/4(logn)7/2Ln(a) 6 1 then for every η ∈ [(logn)−1n−1/6, n−ε], we have
log(2xηη) < 0 whenever n is large enough. If n is large enough, every pair (η, xη) thus satisfy the above
conditions. By (5.28) we thus have

Pa(η) 6 An−1/3(logn)4η−3/2(Ln(a) + 1) + 4 exp(−k2
1(logn)3/8) (5.29)

for all η ∈ [(logn)−1n−1/6, n−ε]. We thus get for large enough n:

n1/6

∫ n−ε

0

Pa(η)dη 6 2
logn

+ 2An−1/12(logn)9/2(Ln(a) + 1).

Since Pa is a decreasing function, and since for all real number a, n1/3|Ũn(a) − gn(a)| is less than or equal to
n1/3|Un(a)− gn(a)|, equation (5.11) and Lemma 5.1 yield

n1/6

∫ ∞
n−ε

Pa(η)dη 6 n1/6(logn)Pa(n−ε) + n1/6

∫ ∞
logn

4 exp(−C ′η3)dη

for some positive constant C ′. By assumption, ε < 1/18. Moreover (5.29) is available for η = n−ε and
EX =

∫∞
0
P(X > x) dx for all positive random variable X. The last two inequalities thus imply (5.27), which

completes the proof of the lemma.

The authors wish to thank a referee for useful advice that led to the simulation part of this article.
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de la distance l1, Ph.D. Thesis. Université Paris Sud, Orsay (1998).


