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EFFICIENT ESTIMATION OF FUNCTIONALS OF THE SPECTRAL DENSITY
OF STATIONARY GAUSSIAN FIELDS

CARENNE LUDENA!

Abstract. Minimax bounds for the risk function of estimators of functionals of the spectral density
of Gaussian fields are obtained. This result is a generalization of a previous result of Khas'minskii
and Ibragimov on Gaussian processes. Efficient estimators are then constructed for these functionals.
In the case of linear functionals these estimators are given for all dimensions. For non-linear integral
functionals, these estimators are constructed for the two and three dimensional problems.

Résumé. Nous considérons le probleme d’estimation d’une fonctionnelle de la densité spectrale d’'un
champ gaussien. Nous établissons tout d’abord des bornes inférieures asymptotiques pour le risque
minimax. Dans le cas des champs de dimension 2 ou 3, nous construisons ensuite des estimateurs effi-
caces, c’est a dire atteignant asymptotiquement ces bornes inférieures, pour des fonctionnelles linéaires
et des fonctionnelles intégrales non linéaires de la densité spectrale.
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1. INTRODUCTION

It is a well known result that if in a parametric setting the log of the likelihood ratio has a certain quadratic
expansion in a local asymptotic sense (LAN families) then, for any sequence of estimators, lower bounds to the
maximum of a risk function can be found (see, for example, Le Cam et al. [18] for a general survey). Here the
quadratic expansion is taken with respect to the parameter and only small asymptotic changes in the value of
the parameter are considered. A sequence of estimators is efficient if the risk function asymptotically achieves
these lower bounds. This was shown by Hajek [14] for a sequence of sufficiently regular i.i.d. observations.
Moreover, it has been shown that lower bounds may also be obtained in infinite dimensional settings (see for
example Levit [19], Millar [22], Donoho et al. [10] and Birgé et al. [3]). Also, the sequence of observations need
not to be i.i.d. provided it has a certain regularity (see for example Efroimovich [12]).

Our main interest in this article is to find lower bounds for the maximum of the risk function of estimators of
sufficiently regular functionals of the spectral density of Gaussian fields. This is an infinite dimensional problem
based on dependent observations. However, the non parametric problem can be turned into a parametric one
when one approximates it in terms of a first order expansion on the value of the functional. Thus, if Gaussian
fields with sufficiently regular spectral densities are considered, then the classical LAN theory may be applied
in order to obtain lower bounds. This is what was done by Khas'minskii et al. [15] in the one-dimensional case.

Keywords and phrases: Efficient estimation, Gaussian fields, periodogram, tapered periodogram, spectral density, Toeplitz
matrices.
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It turns out that the regularity conditions on the spectral density that ensure this LAN behavior are related to
the asymptotic behavior of the trace of products of certain Toeplitz matrices and their inverses. In Lemma 1
we study this asymptotic behavior under L? type conditions. This Lemma is based on a result due to Doukhan
et al. [11] (see also Avram [1]).

In order to obtain lower bounds that give uniform results over a class of functions, an additional
precompactness condition must be introduced. For this it seems necessary to require uniform bounds (in
norm) on the functions and their inverses. Let us also mention that the same kind of restrictions appear when
a Banach algebra approach is used to deal with this type of problems (see Bouaziz [4]).

Once lower bounds are given, it is necessary to construct efficient estimators to verify that these bounds
are indeed attainable. Periodogram based estimators are biased for dimensions greater than or equal to two
(see Guyon [13]). Hence, weighted versions of the periodogram must be considered instead. In the case of linear
functionals it is possible to construct efficient estimators based on the so called unbiased periodogram. In this
case the bias depends on the regularity of the convolution of the spectral density with the function defining the
linear functional. The estimator will be efficient if the linear functional is sufficiently smooth. The unbiased
periodogram, however, is not positive definite. We deal with this difficulty by considering tapered periodograms
(see Dahlhaus [6] and Yao [23]). In this case, restrictions on the dimension of the problem must be introduced.

For non-linear integral functionals, estimators are constructed using a first order expansion of the functional.
In order to control the bias, a minimal equicontinuity condition in L., is required of the spectral density. We
also indicate how these results can be extended to a more general class of functionals provided one can explicitly
control the bilinear form defining the second derivative.

This LAN property for stationary Gaussian fields and the construction of efficient estimators were previously
considered in Ludena [20], under more restrictive conditions on the regularity of the spectral density.

The article is organized as follows. In Section 2 we give the main result which deals with minimax type
bounds for risk functions. In Section 3 we construct efficient estimators for linear functionals of the spectral
density. In Section 4 we consider efficient estimators of smooth integral non-linear functionals and in Section 5
we include the proofs of the stated results.

2. LOWER BOUNDS

Let X = {X;,t € Z%} be a centered, real, Gaussian stationary field (process if d = 1) with spectral density
fo € L*(T) with T = (—n, 7% identified with the d-torus.

For k, j € Z¢ denote the usual scalar product by < k, j >. For n € Z¢ consider L,, the rectangular lattice in Z%
with vertices (i1,... ,%q) 0 < i; <nj,j =1,...,d. The cardinality of this subset is |L,,| = Hle n;. We assume,
for the asymptotic results, that all n;, ¢ =1,... ,d tend to infinity at the same rate, i.e., if m,, = min{n;} and
M,, = max{n;}, then m, 1M, — c, a positive constant. By L,, — s we mean the set of points t € 7% such that
t+ s € Ly,. Finally, for any given function g € L'(T), we denote by g its s'® Fourier coefficient.

Now consider a certain fixed enumeration 7 of the elements of L,,. Define, for a given function g € L(T),
T7(g), the “Toeplitz” matrix of size |L,| associated to 7, as the |L,| x |L,| matrix whose term (m,!) is given
by

Gr=1(m)—r—1(1) = /Tg(k)e““ (mr (0> dx,

If d = 1 this is the usual Toeplitz matrix, and if 7 is a row or column enumeration, this is the usual block-Toeplitz
matrix. In most cases we shall omit 7 in the notation. Indeed, we are mainly interested in the asymptotic
behavior of quadratic forms of this kind of matrices or their inverses, and the order of the enumeration (which
only changes the order of the eigenvalues) does not alter this behavior.

Let £,, 1 < p < 00, be the closure of the trigonometric polynomials in the space L,(T) (Lo = C), endowed
with the norm || ||,.

Assume that we observe X over L,,. We denote the vector of observations by x™ = (mfl(l), . ,m771(|Ln|)),
according to the enumeration 7. Let ‘x™ stand for the transposed vector. Throughout this article x, shall denote
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the observation taken at site s, regardless of the enumeration 7. Our aim is to estimate a certain functional of
the spectral density ¢(fo) based on these observations.

In order to do this we assume that the (unknown) spectral density fo belongs to a closed class F C L2(T)
such that there exist m and M such that

f inf > 0 2.1
}161}_15{ f(A) >m >0, (2.1)
sup ||flls < M < o0 (2.2)
feF
and there also exist positive functions w; satisfying the condition w;(h;) — 0 for |h;| = 0,i=1,...,d, and
sup (- +R) = ()2 < Zw i) (2.3)

Consider the class of functionals ¢ : L?(7) — R, which are Gateaux differentiable in an open neighborhood of
F. For fixed f we can identify the derivative of the functional with a function in L?(7") which we call Dg(f).
Let ® be the subclass of these functionals that satisfies:

sup sup [ D(f)]| < oo (2.4)
PED fEF
and
f inf |D > . 2.
Inf inf [|DS(f)f]| 2 m >0 (2:5)

Here ||-|| stands for the L? norm. We assume that D¢(f) is an even function for all ¢ € ® and f € F.
Now let ®,, be the set of all estimators ¢,, of ¢ (f) based on x5, and let W be the set of all non decreasing
symmetric loss functions w over RT, w(0) = 0 that satisfy for all A € R

+o00 1
/ w(y) exp {—5)\2y2}dy < oo0.

Our main result is the following

Theorem 2.1. If conditions (2.1-2.4) and (2.5) are satisfied and if we define for f € F and ¢ € @

A—hm lim inf 1nf sup  Eg{w(|Ln|"?(¢n — ¢(9)))}
0 |Ln|=o0 ®n lg—fl|<5

then,

> —— / Va@n)!2| fDo(f) 7) e da. (2.6)

This result is a multidimensional extension of an earlier result of Khas’minskii et al. [15]. These authors consider
(as in Hajek [14]) the problem of efficient estimation in a local asymptotic sense. For completeness, in what
follows we recall Hajek’s classical definition of LAN families.

Consider the sequence (using Hajek’s notation) 2™ of observations with a joint distribution given by P, (-, ),
where 6 belongs to an open set O, in R. Let 8* be the true value of . Let us define P, = P,(-,6*) and
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P,i=(,0"+ n~1/2t) and let Z—?D be the Radon-Nikodym derivative of the absolutely continuous part of the
measure () with respect to the measure P. Then given

dP,
rn(t,ac”):?n’t heR

and n such that * +n=1/2t € ©, we have
Definition 2.2. P, ; is Locally Asymptotically Normal (LAN) if

log 7y (t, x™) = tAg« — 1/26°Tgx + Z,,(6*,1)

where Ag« z N(0,Tg+) and Z,,(0*,t) — 0 in P,, probability for all ¢ € R and 'y« > 0.

Hajek showed in this context the existence of lower bounds for the maximum risk in a local asymptotic sense
for any sequence of estimators.

The proof of the existence of lower bounds given by Khas'minskii and Ibragimov is based on the fact that
the infinite dimensional problem of estimating in L?(7) can be transformed into a parametric one, based on
the value of the functional in the true spectral density, which satisfies classical LAN conditions.

In order to extend these results to fields, making use of Toeplitz matrices techniques, the following lemma is
required.

Lemma 2.3. If f,g € F, and if || flloo <M, ||gllcc < M, then for p > 2

Tr{(Tu(£)T(0))” — Tu((F0)?)] = ol Lu|MP) 27)
and
1 p_ g ? —0 p
Tr(T () Ta(9)) Tn<( f) )] = of| Lal 7). (2.8)

In equations (2.7) and (2.8), the term o(|L,,|M?) is uniform in f,g € F which satisty ||f|lcc < M, ||g]lcc < M.
Also note that ‘L—ln‘Tr(Tn(h)) = [ h(}) dX for any integrable function h.

For d = 1 the original proof of Theorem 1 in Khas'minskii et al. [15] required (2.1) and the existence of
08 > 1/2 such that

sup 1+ k%) f2 < .
fefzk:( k™) fi

However, Bouaziz [4] has shown using Banach algebra techniques that Lemma 2.3 holds under (2.1) and an
alternative set of conditions of the type

sup Z(l + k) f2 < M < 0o, and sup ||f]lec < M < 0. (2.9)
fer k feEF

Using this result, it can be shown that for d = 1 under (2.1) and (2.9) Theorem 2.1 is still true.

3. ESTIMATION OF LINEAR FUNCTIONALS

In this section we consider estimators of linear functionals of the spectral density f which is assumed to
belong to the class F described above. We are interested in estimators which are efficient for the quadratic loss
function in the sense described in the previous section, namely, estimators which satisfy a CLT with |Ln|1/ 2
rate, and have minimum variance.
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By the Riesz Representation Theorem the continuous linear on L?(7) functional ¢ can be identified with
a L*(T) function ¢(X), such that ¢(f) = [-d(A)f(X) dX. Clearly, Do(f)(A) = ¢(A) for all f € F. In what
follows we shall use this integral notation which we hope will not be confusing.

Consider the following estimator of ¢(f),

L(¢) = /T SN (A) dn

where
1 1<s
S T
s€L, teL,—s

is the usual periodogram.
It was shown by Guyon [13] that the bias of the periodogram cannot be controlled at the CLT rates for
dimensions greater than one. He proposed estimators based on the unbiased periodogram defined as

I7(6) = /T SOV (V) d.

Here

ei<s,)\>

§ xsstrt

teL,—s

LN =52 Y

C
SE€ELy s

with

Cs = H (nk — |sk])-

keL,
Assume ¢(\) belongs to a class ®, such that
sup #? < oo and (3.1)
sup |5]%|ds| < 0. (3.2)

‘We then have

Theorem 3.1. Assume that F and ® satisfy conditions (2.3, 2.5) of Section 2 and conditions (3.1) and (3.2)
then

Vi = |Ln|"2(I}($) — EI;(9))

converges in distribution to a centered Gaussian r.v. with variance 2(27)?||f¢||? for each f € F and ¢ € ®.
Also

sup sup E[|Ly|'/*(L;(¢) — 6(f))] = o(1).
PED fEF
As a Corollary, I (¢) is asymptotically efficient for the quadratic loss function.
The unbiased periodogram is unfortunately not positive definite. One possible solution is to consider
estimation based on the tapered periodogram [5,6,8,23]. We assume w.l.o.g. that n = n 1, where 1 is
the vector of ones in Z? (L,, is a hypercube of edge length n).
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Define

u/e ifu<e
he(u) =<1 fe<u<l-—e (3.3)
he(l—u) ifu>1-—c¢

with e =n""7, v > 0.
Let j = (j1,-.-,7a) and A = (A1,...,Aq). Define

za.

d"(\) = > h(j)zje <> with b (j) =

JELn

he(jr/n).-

1

Now define for each 1 <[ < d

n ..
= 3 /e

si=1

and
Er()‘) = Z he e i< A> HH )\l

The tapered periodogram is given by

'
H,(0)

IT\) = (3.4)

For ¢ € ® and f € F consider the convolution t = ¢ * f. Assume that there exist § > 0 and B such that

0
supsup sup |—t(x + h ——t <B hy|? 3.5
upsupsup | 5 —t(z + h) )l ZI 1 (3.5)

for k=1,...,d. We have the following result,

Theorem 3.2. If F and ® satisfy (2.3, 2.5) and (3.5) then for f € F, € ® and v < 1+ % (1- %) we have

sup sup L, ' *B(I] (6) = 9(1) = o(1) (3.6)
ped feF
LU (0) = BIT(6) B N 0,220 [ 202000, (5.7

Furthermore if condition (2.2) is satisfied, then for all z € R,

supsup Tim [P { (Lol 2(IF(6) = (1)) < 2} — P{e < 2}| =0 (3.8)

¢e® feF | Ln| o0

Jor & ~ N(0,2(2m)¢ [ $*(N) f2(N)dN).

As a result of the uniform convergence in (3.8), I1(¢) is asymptotically efficient for any w € W.
The condition imposed on 7 yields that d < 2(1 + 3). For d = 2 it is enough that § > 0. For d = 3 the
condition # > 1/2 must be satisfied. It is not possible to have d > 3.
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4. NON LINEAR FUNCTIONALS

The results in this section deal with estimators of integral non linear functionals for Gaussian fields under
certain regularity conditions for the spectral density and the non linear functional. The regularity conditions
on the spectral density are used to control the bias in the multiparametric setting. There are also certain
restrictions that appear in order to control the remainder of the first order expansion of the functional. If higher
order expansions are possible, less regular spectral densities could be considered.

Throughout this section we require instead of (2.3) that there exist 8 > 0 and B such that

sup sup —fa:+h——f <B hy|? 4.1
upsup |5 f(z+ 1) Z| | (11)
fork=1,...,d.

We assume that L, is a hypercube of edge length n. Also that we can write ¢ thb ,A) dX in a

rather abusive notation, which we hope will not be confusing. We require ¢(g), g 6 L2(7') to be Contmuously
differentiable in the Fréchet sense. We shall call D¢(g) the derivative at point g, as before. We remark that
for a given g, Dg(g) : T — R can be identified with a function of L?(7). Because of the integral form of
the functional, we have that the derivative can be written as D¢(g)(x) = 0/0ud(u, x |(g($) o Forge L3(T),
the second derivative, D?¢(g) can also be identified with a L?(7T") function, which because of the integral form
of the functional can again be written as D?¢(g)(z) = 6%/0u¢(u,z |(g(x) ) Now, assume there exist k£ and
0 < § < 1, such that

82
Il < amdd [z, ) — (s, e < Koy — sl (42)

Actually, we deal with integral functionals in order to control the bilinear form which defines the second
derivative of the functional (in order to control the remainder of the Taylor series). More generally, we could
consider functionals of the spectral density ¢(f) such that the bilinear form which defines its second derivative
can be written as

D260 = [ [ Ky nh(uha) day (43)

for any function h € L? and such that if h € C(T), then
up | | Ko h(s) dylloc < M 1]

Assuming additionally the Holder condition for the second derivative

I(D?6(f) = D*¢(9))(h, W)l < KILf = glI°lIR],

it is not difficult to show that in this more general setting the proof of Lemma 6 (Sect. 5) is essentially the
same. We have preferred to give the proof only for integral functionals for simplicity in the notation. We
remark that condition (4.3) is trivially true for functionals for which the bilinear form of its second derivative is
defined by a bounded kernel Ky s)(x,y). In the case of integral functionals we would formally have D2o(f)(x,y)
= D%¢(f)(x)do(x — y), where & is the usual Dirac delta.
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Let K : R — R be a symmetric, non negative and bounded density function supported over 7. Then define
K(u) :R? = R as

Consider the following kernel estimator of f,

1 u—x
fu(z) = 7 /7’K< - ) IZ(u)du, (4.4)
h=n"¢ and I! defined in (3.4).

Based on this pointwise estimator, we construct an estimator of ¢(f), improving the evaluation of ¢(f3,) with
a linear term based on the derivative of the functional. Define,

bn(f) = B(fu) + /T D(f)NUIT — f) (V) dA. (4.5)

We have the following result,

Theorem 4.1. Assume that F and ® satisfy (2.4, 2.5, 4.1) and (4.2). Assume that vy defined in (3.3) and ¢
defined in (4.4) satisfy

7<1+l<1_%> (4.6)

B 1+49)
d 2
+o0+s 5 0
and that B defined in (4.1) and § defined in (4.2) satisfy
g <2(140)(1+8)/5. (4.8)
Then for f € F and ¢ € P,
sup sup | Lu| /2 E(¢n (f) — $(f)) = o(1) and (4.9)
Ped feF
Ll 2(60(1) = B6u(£) B N 0,220 [ (Doln) 2 (a (410)

Remark 4.2. As a consequence of the above set of restrictions we have d < 3 as in Theorem 3.2. For d = 2,
0 has to be greater than 1/4 and for d =3, 8 > 7/8 (if § = 1).

Remark 4.3. For d = 1 the proof of Theorem 4.1 yields that the most severe restriction on the regularity of
the spectral density is given by the error of a first order expansion. This error is given by a term of the type
|f — full?, with f;, defined in equation (4.4) (as d = 1 we may use v = 1 in Eq. (3.3)). This suggests the
convenience of studying estimators based on a second order expansion of the nonlinear functional ¢.

As a corollary of Theorem 4.1 it follows from the results in Section 3 that ¢, (f) is an asymptotically efficient
estimator of ¢(f) for the quadratic loss function.

Requiring from ¢ to be Fréchet differentiable on the entire L? can be a restrictive condition for certain
interesting examples. Consider, for example, the functionals ¢p and ¢g, corresponding to the Burg entropy
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and the Shannon entropy respectively, which are not Fréchet differentiable on the entire L? but only are so on
the set F of spectral densities satisfying (2.1). In both cases a slight modification to the proof of Theorem 4.1

yields the asymptotic minimum variance Gaussian behavior of the estimator defined in Theorem 4.1. Consider
the Burg entropy functional

o5 (f) = /T log f(A) dA

and the Shannon entropy functional

os(f) = /T F(N)log f(N) dA.

Then
1
N

which is well defined and bounded over F. Consider the truncated functional

Dop(f)(A) =

o5 (f) =/Tlog(f(A)v%) dA.

It follows that ¢¥¥ satisfies

ID*¢% (f) = D*¢5 (9)ll < CN?||fllollglloll f — gll (4.11)

with C independent of N. Considering the similar truncation ¢ (f) of ¢s(f), we have the following corollary
of Theorem 4.1

Corollary 4.4. If F satisfies (2.1) and (4.1) then there exists n = n(8,7,¢,3), n > 0 such that for N = O(n")

n?E($N(IT) - ¢5(f)) = o(1) (4.12)
n(@N (IF) — EoN (IT)) B N(0,2(2m)*) (4.13)
and
n?B(gN (IT) - ¢s(f)) = o(1), (4.14)
nd2(63 (IT) — BY (IT)) B A (0,2(27) / log(F(N)) + 12f2(A) dN). (4.15)
T
5. PROOFS

Proof of Lemma 2.3: In order to prove this Lemma we will follow the ideas of the proof of Theorem 1 in
Avram [1] and those of Theorem 5.1 in Dahlhaus [7] on the convergence of the trace of products of Toeplitz
matrices and their inverses.

We also need a result obtained by Doukhan et al. [11]. Actually, they deal with tapered Toeplitz matrices
(tapering functions are introduced in Sect. 3), so that non tapered matrices are just a particular case. Let T,,(f)
be the Toeplitz matrix associated with a function f. We have that T,,(f) is a Hermitian matrix, and if f is real
valued and even, then T,,(f) is real and symmetric.
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Let A be a linear operator on a finite-dimensional euclidean space K of dimension di. Assume A is symmetric,

and let A;, j =1,...,dx be its eigenvalues. The p-Schatten norms (for symmetric operators) are defined as
follows:
di
1A, = D ()P for 1 < p<oo
j=1
Ao = | max Aj for p = oo.

We have the following result,
Proposition 5.1. (Doukhan et al. [11]) Let f belong to L,(T), 1 < p < co. Then,

ITa()llp < 1Ll P11 £ - (5.1)

Proof of (2.7): Actually (2.7) is a particular case of the more general result,

Lemma 5.2. Let {f*}1<k<, be a collection of functions that satisfy the conditions of Lemma 1. Then,

/ H f¥(z) dz = o(MP). (5.2)

Following Avram [1], the proof of (5.2) is done by induction on the number s < p of those f* which are
non-polynomials. First assume f*, k = 1,... ,p are polynomials (s=0), then (5.2) holds by multilinearity. Now,
for I € Z% let F; % f* be the Féjer polynomial of f*. By the induction hypothesis,

—Tr
|Ln|

k

—Tr

T /Fl*f ka ) dx = o(MP). (5.3)

T (F; * f1> H Tn(fk)
k=2

Consider the first term of the r.h.s. of (5.3). Given € > 0, there exists | € Z¢ such that ||F} * f — f||2 < ¢ for all
f € F. Then it follows by Proposition 5.1 that

1 1
o | w(F* f = HT < I T, (Fy = f* - HT (")
" 1
1 _ _
< L—IITn(Fz*fl—fl)lleHTn(f’“)Hzés(%)d(” RV

| Ln k=2

In our case we have used pr = oo because the functions are bounded, and have approximated by the Féjer
polynomials in Ly. As a consequence of the equicontinuity condition in (2.3), since F is a closed, uniformly
bounded (by condition (2.2)) and equicontinuous class of functions from L?, by the Fréchet-Kolmogorov theorem,
there exists a uniform bound over all this class.

Similarly, the second term of the r.h.s. of equation (5.3) tends to [~ f*(x) [];_, f¥(x) dx at the stated rates,
for all f € F. O

Proof of (2.8): For the proof of the second part of Lemma 2.3 we shall use a less general version of Theorem 5.1
in Dahlhaus [7]. In our case, we require the uniform continuity condition given by (2.3).

Lemma 5.3. Assume that f belongs to F where the latter satisfies (2.1) and (2.3). Assume that g € Loo. Then

Tr(T (F)T(g)) n((%) Y < o(|Lal). (5.4)
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Proof of Lemma 5.3: We follow the same line of proof as Dahlhaus [7] and shall divide the proof into several
lemmas. Assume without loss of generality that L, is a square of edge length n. Given a matrix A, consider

its norm ||Al|cc. We have
'A'A
4= s (Z22)

/
zecnt \ LT

where A’ is the conjugate transpose of A. Then,

Lemma 5.4. Under conditions (2.1, 2.2) and (2.3) if || f]lco < M we have

Da(f) = |1 = Tu(H)2T((2m)* )" T0(£) 2115 = o(| Lo | Mm). (5.5)
Proof of Lemma 5.4: We have that the Lh.s. of (5.5) is equal to

| Ln| = 2Tr[Ta(F)Ta(((2m)*F) D] + Tr((Tn(HTn((2m)* ) 7H))°)-

The proof follows from (2.7), using conditions (2.1-2.3) and || f]|c < M. We have used that

/ f@)@m)* f~ (z) da =/ (f(z)(@m)*!f~H(2))dz = |La|.
T T

O

Lemma 5.5. Let f and g be two positive, even functions with ||gllcc < M and ||f e < m, then

T (f) 2 Tu(9) |0 = O(Mm).
Proof of Lemma 5.5: As T, (f) is invertible, we have
_ _ z'To(g)x g X, mje™ 7
) 2T0) e = IT(0)Tof) ™2 = s T8 < fg TS ey < Mo

O

Now, continue with the proof of Lemma 5.3 as in the proof of Theorem 5.1 in Dahlhaus [7]. |

Proof of Theorem 2.1: Tt is essentially the same as in Khas’minskii et al. [15]. Let

- [ g if[g|<N
INZNV 0 iflgl >N

and let gy be an approximation to gy satisfying (2.3). Define

N (N) = (FNDS(HH NN (F D))l 72

Let 8 = ¢(f) and
fr(N) =) + (7 = 0) fn(NYn ().

For large enough N, ||(fD¢(f))n|l >0 .
If |7 — 6| is small then f,()\) is a spectral density,

1 1

KN|r -6
—_—— — <7:
ff

Ifr = Fll =17 = Ollen fIl < |7 = OIK N f]| = O(|7 - 0]), S

O(|r —6))
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and

Te v ew oy

where this last expression does not depend on 7 and satisfies (2.3).
Also, because of ¢’s differentiability

o(fr) = o(f) + (r—0) /Tf(A)Daﬁ(f)(()\)wN(A)d)\ +o(|r=0) =7+ o(7—0])

since [ fDO(f)bn =14 o(1).

Estimating ¢(f), when f belongs to the family f, is equivalent to estimating 7. Let P, ; be the distribution
of ™ with spectral density f,.

Using results of Davies (the proof can be found in Appendix II in Davis [9]) and Lemma 2.3 we have the
following lemma:

Lemma 5.6. If F satisfies conditions (2.1) and (2.3), if sup;cr ||df-/d7|so< CN and |7 — 6] = O(|L,|~/?),
then P, ; is LAN with asymptotic variance

ry 1 L df, L1 d
- | yand Ng=Pt——_2p |,
2~ 2(2m)1 /Tf a7 =0 and Bo = F o5 a7 qr b b=

The proof of Lemma 5.6 is given at the end of the proof of the theorem.
Following the definition of A it is clear that

A > lim liminf inf sup Ej {w(n*?(¢n — o(f-))}
0—0 |Lp|—o0 ¢n |r—6|<5

and now, because of Section 4 in Hajek [14], the above expression is bounded from below by
Hoe 1/2 oo In 172

27r*1/2/ w(yly / /2)exp {—1/2y*}dy = 27r*1/2/ w | y(2m)¥2V2 [ Fw?vd)\] exp{—1/2y*}dy.
oo —oo T

Letting N — oo the proposition is thus proved. [l
Proof of Lemma 5.6: Define 0 = ¢(fy). Let 7 = 6 4 t|L,,|~'/?, for some ¢t € R. Call

1 1 dP,,

_ —1
BT ar e (5:6)
From the definition of the multivariate Gaussian density, we have
dP, d & n ¢
_mr _ =2 -y, —1/2%y Sy g 5.7
dr dr /R\Ln\ € € Y ( )

where
(2 )k = / fretU=RAgy,
T

In the multidimensional case, k¥ and j are multi-indices so that matrix X may be considered (w..o.g.) by

columns. That is, (X)k; refers to the term in column m = (ji — 1)n + (jo — 1)n + --- + jq and row
= (k?l —1)n+(k2—l)n—|—~~—|—kd.
Since
82

_ston, t _gton, t
yeyie < Ve 1/2'y%ry dy = e i Xy —1/2%yry dy,
RIZnl RIZnl

Oz ;0xy,
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we have

dP, u dfT .
: =P, Z Z 2T i<k=IA> g\ —ajk—I—Zaclmmalkamj (5.8)

d A T dT
k€L, jEL, l,m

where X1 = (ajz). Set
(2, :/ %ei(j—k)/\d)\
TR T dT '
With this notation,

1

1 _ . _
Dg =3 TARE (X" S Xy X — Tr(X, 55)] - (5.9)
n
We have,
1. E(Ap) =0.
2. Var(Ag) = %ILIWI 3" cZ where g; are the eigenvalues of X, ' 5.

3. cump,(Ag) = %WTT(Ze_lﬂé)m.

In order to prove the first part of the lemma, we must show that

Ty 1 _odf
A - = 22T 1
Var(de) = 5 2(27r)d/7rf ar 7= (5.10)
and that
lim  cumm,(Ag) = 0. (5.11)
| Ly |—o00

In order to complete the proof, we must verify that the sum of remaining terms of the logarithm of the likelihood
ratio minus Ay tends to zero in probability. The proof can be found in Davis [9] (¢f. Th. 4.2). We shall give a
sketch.

Set

A, = 1/2[10g det(Xy) — logdet(X;) +* Xnﬂglxn —txny-lyn
—t| L |7V 2 [t X, T X X — Tr( 2,1 X)) + 1/2t2T ). (5.12)
We want to show that A, tends to zero in probability. It will be shown that both the expectation and the
variance tend to zero. First, we calculate the expectation.
t2
—T
2|Ly|

E(A,) =1/2 |logdet(Xy) —logdet(X,) + Tr(I — ZgX-1) + r(l — 252

From linear algebra it is known that,

TPl < Ifloo and [T0(F) ™ oo < 1/ loos (5.13)
Tr(AB) < [|All2 [|Bll2, (5.14)
[ABll2 < || All2|Bllso, (5.15)
[Alloe < 1All2 < |[Lal"?]| Alloo- (5.16)
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Also if || Alloo < 1 then
1 1
log [T + A] = Tr(A) + 5Tr(A%) < S| Al | AlI3/ (1 = [|A]lo0)® (5.17)

and if A = A(f) and B = B(¢) are differentiable, then

Tr(A(6)B(¢)) = Tr ([A(O) + H%A(el)] [3(0) + qb%B((ﬁl)]) (5.18)

for 0 < 6; <6 and 0 < ¢1 < &.
Call A= X1 — I. We have

E(An) < 1/6]Alloo | A3 — [|Alloo)® + 1/4[°Tr (252 (55)%) — Tr(A%)]
since
[Allco < 1120 = Zrllool|Z7 M loo < Kt|La| ™% <1 (5.19)
by the first expression in (5.13). Also, ||f; — flleo < KNt|L,|~*/? and || X700 < 0o again by (5.13).
Making use of the bounds obtained for ||A||s and the inequality stated in (5.15), it follows that the first

summand in E(A,) is O(|L,|~'/?). Defining A(t) = B(r) = Y-'(Zs — %,), using the relations |7 — 6|
=t|L,|71/2, A(9) = 0 and £ A(7) = L7157, in view of equation (5.18) we have that the second term is equal

to
t2 —2/ ¢/\2 —1 o y—1 v
AT TS (5P = 50 525, 5) (5.20)
Again by (5.13) we have that
155" = S5, oo <171 = fo, ' 1 = O(1Ln| 7V/). (5.21)
Rewrite (5.20) as
t* —2/y1/\2 —1yv y—1yv t* -1y’ -1y’ -1y -1y’
1/4mTr(29 (Xg)° — Xy Xy Xo) + 1/4mTr(291 LgXlg Xy — Xy Lo, Xp). (5.22)
n n

The first term in (5.22), following (5.14, 5.16, 5.17) and (5.21) is bounded by

1261121125 Mo O(|Ln | ~/?). (5.23)

By (5.13) this expression is bounded as df(;(') and f~!(-) are bounded. The second term in (5.22) can be
controlled in an equivalent fashion.
Now consider the variance. We have Var(4,) =23, L, ¢ with ¢; the eigenvalues of

T, =1/2 [(291271 STARE 2912529—11) 29] :
n

Using the same arguments as for the expectation,

/ _ _ _ _ 1
Var(An) < 2 Sl S5t = S5 oo |55t = 55 oo = O (m) - (5.24)
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We remark that the above bounds are based on inequalities in (5.13) as applied to the difference |f — f-|.
To complete the proof of Lemma 5.6, the convergence in distribution of Ay is a consequence of Lemma 2.3.
This is just because its p-cumulants with p > 2 are given by

o Tr(Tu(f)Tn(0))”
27-1(p — 1)1 TR
([l
Proof of Theorem 3.1: We have
B(L(6) = 20t 3 SOk o o TH(T ()T, (2m))
[sk|<ng n
B 1 |Ln|171/d
= WTT(Tn@(%)df)) +0 (W)
EIi) = 200 3 ufe=21t Y oufi / o1 =253 £
[sk|<ng |sk|<nk

_ _9.d e _ -1
= [or—om sgzafbsfsé/ﬂLMzS:lSl%fs [ er+oqz

where O(|L,,|~?!) is uniform for f € F and ¢ € ®. Also, we have

Var(l ZZ&j;E Z T1T1+s Z x]mtﬂ 2m)? Yegeifsfr

l€L,—s JELn—

and

Var(I*(¢ Zz(ézf:E Z 1Ty Z zjxey; — (2m)2%esci fsfi

I€L,—s JELn—t
It follows that,

Var(1;(é)) = Var(l,(6)) g(%)“ZZ[c; | 60K Ll

L,l* —csc
o [7' | }
CsCt

|Ln|? — csc
csce|s[?[t]?

pulsl? |t|2[

L,? - 1
| n| CsCt —of=).
csce|s)?|t]? My

Let 75 be the eigenvalues of T,,((27)? f)T},(¢). We have

with

Var(La21u(6) = — 3 2.
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So that it follows from Lemma 2.3 that

2

Var(|Ln|1/2In () = m

Tr(T,(20)2f26%)) + O(my ) = 2(2) /T P26+ 0(m3h).

Now we shall use the fact that V;, is asymptotically Gaussian to show that V* also is so. Let ¢n be a
trigonometric polynomial of degree N, N = (Ny,..., Ng). In this case

Lion)= > . Y oufs

[s1|<N1 [sa|<Ng
where s = (s1,...,54), and
. 1
P = > mTips, s = B(miay).
|Ln] leL
n—S>S
Since V;, is Gaussian, then
c
L |Y/? (f - —r )
| n| s |Ln| s
is also Gaussian for any s such that |si| < N, k=1,...,d.
Let )
Fs - — Z LT+
s 1ehns
If we prove that
L] V3 (75 = 75) (5.25)

is asymptotically Gaussian, then we would have proved this property for |Ln|1/ 2V* in the case of trigonometric
polynomials since

Ll 2V (68) = |Lal'? D" $u(Fs = 1s),
[sk| <N

where the r.h.s. is a linear combination of terms given by (5.25).
In order to show the asymptotic normality of (5.25), we notice that we can rewrite this expression as

|Ln|3/2 . Cs
Ts — T
Cs s |Ln| s

and that ”;—”l tends to one because N is fixed. Thus, because both V,* and V,, have equivalent variances, we
can write

L2V (6) = N(0,0%), 0% = / & 2
T

or equivalently,
B (ewwn\lﬂvsww)) — Ut/ 20% (5.26)

Asymptotic normality in the general case is obtained by approximating ¢ € L?(T) by trigonometric polynomials,
and letting N — oo in (5.25). O

Proof of Theorem 3.2: The convergence in distribution of the Lh.s. of (3.7) is a consequence of Proposition 5.1,
given above, and has been proved in Doukhan et al. [11].
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To show the convergence to zero of the Lh.s of equation (3.6), we will verify that

ni/2E /T ST — )N = o(1), (5.27)

and that o(1) is uniform for any f € F and ¢ € ®. To verify (5.27) assume first that d = 1. Then

2

TGS 7Y eiui
/ﬁsin2u/2 Zh —h = ) eiug du

-
Tl | n il 1o
= NI E n' " e + g n' e % du

_p sin“u/ = Plverelit

2

v—1)\2 " |u|ﬁ+1 = iuj
=) e Ze + Z du (5.28)

j=nl=v
™ B+1 in(2nl— —1 2 ) _ 2 ™ B+1
= (n7*1)2/ |u|2 sin n Ju/ (67’("7”1 D) du< 4n7*1/ |u|2 Foi— (u) du
_psin“u/2 sinw/2 _x Sin“u/2
where F),(t) is the Féjer kernel. Now we use the fact that the Fourier coefficients of b(u) = Sli?l‘zﬁ:/; are of order
b = O(|k|=%). Tt follows that
[T uP 1/,1-vy1
n?~ / ———Fpi (u) du= 0" (n' )P, (5.29)
_psin®u/2

We have t(z) —t(0) =z fol Dt(6z) df. Thus, the Lh.s. of (5.27) can be written as

H21(0) /_:(t(u) B sm u/2 z_: ( (%)) e~ du

=0

- H21(0) / " - /O 1(Dt(0u)—Dt(0)) o x fl (h(ji)—h(%)) e | dy

_psin®u/2

LS TSy ¥ gl g e~ du
= H2(0)/Wsin2u/2/o 07 df x Z(h( —) h(n)) du. (5.30)

— =0

The second equality is true because

sin u/2 Z( =) (i)) exp —iuj

=0

is an odd function and Dt(0) is a constant, so that we are integrating an odd function over 7. The inequality is
a consequence of (3.5). So under the theorem’s conditions over 5 and 7, (5.27) follows from (5.29). Finally the
multivariate result is a consequence of the multiplicative structure of H,.(u) and the multidimensional Taylor
expansion of ¢(x). Notice that the bounds in equation (5.29) only depend on condition (3.5).
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The proof of (3.8) proceeds in the same manner as the proof of Lemma 2.3 in Khas’minskii et al. [15]. O

Proof of Theorem 4.1: Let us first notice that

ou(F)—8(f) = olf /D¢ ) — F)(N) dA
/ DS(F)(IT — F)(N) dr+ /T (Dé(f)~DS(F)UIT — F)(N) d.

Because of the regularity conditions over ¢ given in (4.2)

|¢(fn) — ¢(f) — /Tbe(fh)(fh — ) dA[ < | fn = £l S IDG(fu+0(fn — f)) — Do(fu)ll < Kll.fn — fII.

It then follows that we can write ¢, (f) — ¢(f) = An + B, + Cp, where |A,| < K| fn — f||* and n%/2B,, is
asymptotically Gaussian (for all f € F and all ¢ € ®) as seen in Theorem 3.2 for d < 3. Note that in this case
(3.5) is a consequence of (4.1). On the other hand,

C = / (D(fu) — DS(F))(N) (T — F)(N) dr = / D23(F)(fn — £)IT — £)() dA
T T
1
+ / (fr— HUL = HOV / (D*6(f + 6(fn — 1)) — D*6(F))(\) dBdA =T + L.
T 0

Because of (4.2) we have

1
L S/O 6° a9\ (fn — N)Uy = O Nfn = FI° < N = Dl 1T = Pl [1fn = FI°.

To prove the convergence in distribution of the Lh.s. of equation (4.10), we must verify that n%/2A,, and n%/2C,,
tend to zero in probability for all f € F and ¢ € ®.
The proof is completed by the following lemma:

Lemma 5.7. Assume that F and ® satisfy (4.1) and (4.2). Then, under the conditions of Theorem 4.1 for ~
and ¢ we have that n%/? A,, and n®?C,, tend to zero in probability for all f € F and ¢ € ®.

Remark 5.8. If the bilinear form which defines the second derivative of the functional ¢ (see Eq. (4.3)) is
defined by a two variable kernel Ky(f), bounded uniformly for f € F, the term C,, above is actually bounded
by K| fn — f|I*T° | IT — f||, which can be controlled in the same manner as || f;, — f||?>. Then Lemma 5.7 follows
using essentially the same arguments. The more general case described in (4.3) can also be controlled in a
similar fashion.

To prove Lemma 5.7 we will show that for all f € F and ¢ € @,

n*2E| fr = f* = 0, (5.31)

B (12 [ D205~ DNGE - ) ) =50 (5.32)
i
and

n2E| fr — fllallIX = fllall fn — fII° = 0. (5.33)
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In order to do this we need to give satisfactory bounds for E| f, — f|[5, with p = 2, 4.
It can be shown that (see Dahlhaus [5]):

e For v as defined above

1 1+8(1—7)
Ef&%:ﬂM+O<ﬁ )
Cou(I7 (1), IT (X)) = Co ('ﬂﬁ@*‘) ﬂg@*‘) ) (14 o(1)).

o There exists a family of summable functions L () such that |H; (\)| < KLZ(X) (see Dahlhaus [5], Eq. (6));
L7(N) <log®nLg(A) and [ Ly(A—p)Lg(=A+v) dX < Lypiqy1(v—p) (see Dahlhaus [5], Lem. 2). Although
Dahlhaus’ proofs are one-dimensional, the multiplicative structure of functions H,.(\) allows for a direct
generalization to higher dimensions. In this case n should be changed to n? and logn to logd n.

We are ready to calculate E|| fr, — f||?. First of all,
E|lfn — £I* < C (Bl fa — Eful® + E|Efn — £1%) -

Call

e = e (£)

With this notation

h=/@@—M§WML

Since for small enough h

/w@—uﬂu:L

then

It follows that
1
Bfy = = [ wla = (#00) ~ F@)in+0 (s )
and, hence, we obtain
IEfs— fI? = / / w(z — p)(f() — f(2))dp / w(e — N (FN) — f())dAdz

+O<EH%75)x/wu—AXﬂM—fuMMm+O<E§%rw)
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Expanding f(\) in a Taylor series, by (4.1) we have

d
[t =00 ~ @)=Y [l e - m)
=1

tof

o O

d
wlzr — )z — B — oA —o (L Y. (s
< ;B/ (w5 — pj) (@5 — pg) O(h™")=0 <n(1+ﬁ)4> (5.34)

(@ + 0(z — ) — g—a];(xl) dé du

in each of the above integrals. Thus

The latter bound is proved using the change of variables z; = .-

1 1’
2 _
|Efn— flI=0 <n1+ﬁ(1'y) + n(Hﬁ)C)

or more generally, for the case of p integrals we have

1 1 P
_fP — .
185~ 11 =0 (| sy + e ) (5.3
Second,

Bllfy - B =B [ [ [ (e~ muwte - NCoo(IF (), 17 () dNdde.

We see that

7%
Y SRR R ke,
T

It then follows that

[ ] [ vt = wute = Nia0-+ wdxduds - Sy = O
On the other hand,

[ [t = wute = Vit - ) Pdrdu = MLLCRES
and

/// wiE = — N)|Ha(A — p)|?dAdpdz = O(nd(+9).

Factorizing w(-) and H,(-) we obtain

E|fn - Efal? = O(n*9)(1 + o(1))

H2<0>
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and since H3(0) = O(n)
E|fn—Efnll> =0 (%) : (5.36)

Third, because of (5.35) we see that in order to study E|| f— f|| for even p, it is enough to consider E|| fr,—E fa|[5.
For this purpose we consider the centered even moments of order greater than or equal to 2 of the tapered

periodogram.
We have that

‘ [ B - Ehy @) (5.37)

is bounded by

K/ /Tpd w(z — o;)(IF — EIF)(aj)da| dz. (5.38)

Jj=1

As in the proof of Lemma 7 in Dahlhaus [5], we want to control the expectation of products of the centered
periodogram. As the underlying process is Gaussian, the expectation in equation (5.38) is the sum over all
possible ways of coupling a vector of size 2p. From the definition of d¥', and as the periodogram is centered,
this is equivalent to consider all couples (o, —ay) for 1 < j < k < p.

In order to formalize this construction, consider the set of all partitions P = {P = (P, Ps, ..., P,)} with

|Pjl =2, j=1,...,p of the table

Zn

ar b
az by
ap bp.

Here a; and b; stand for the corresponding position of a; and —a; in equation (5.38). Define now variables 3,, and
Bp, belonging to the set C = {B1, —f1, ... ,Bp, —Bp}, for each partition P = (Py, P, ... , P,), taking into account
the P; to which a; and b; belong. The sign depends on the order (given by that of the array) of appearance in
the correspondlng P;. We have Z —1 Ba; + By, = 0. We say we have a subtable if Zl “ Ba, + By, = 0, for some
1 < q1 < g2 < p. Since couples of the form (a;, —;) do not occur, we can decompose the table into at most
p/2 separate subtables of size 2.

Consider a partition which divides the table into p/2 separate subtables. For this partition the corresponding
term in equation (5.38) is,

2 2 2 p/2
_pd/ /T Hw z — o) /rzjl;[lf(ﬁaj) x j];[lﬂl(aj — Bay) [ Ha(—0y = B,)dB | da|dz.  (5.39)

j=1

Recalling the definition of w(x),

p
/H w(z — aj)| de = O(h~@=D4) — OnXE-1),
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So, as a consequence of equation (6) and Lemma 2 (a) in Dahlhaus [5] which give bounds for H(z) and its
integrals we obtain the upper bound for (5.39)

/2
n( f<A1>f<A2>L§<A1—A2>) % O(nAP=1¢) = O(n~4P/2~ (=10 Jog? 1) (5.40)
T2

In obtaining the latter bound we have used the fact that f(\) is bounded and have taken into account the
properties of the tapered periodogram (c¢f. Dahlhaus’ Lemma 2 (b)). Notice that (5.36) is just (5.40) when
p=2.

It is not difficult to show that an upper bound for each of the terms in equation (5.38) is given when we
consider partitions which lead to p/2 separate subtables. As the total number of partitions depends only on p,
the upper bound found in equation (5.40) yields an upper bound for equation (5.38).

Proof of Lemma 5.7: We have to show the convergence to zero of the Lh.s. of equations (5.31, 5.32) and (5.33).
Under (4.6, 4.7) and (4.8) the convergence to zero of the Lh.s. of equation (5.31) follows from (5.35) and (5.36).
On the other hand, since § < 1 we have

n2E|| fn = FlallIE = Fllallfn — FI° < n2(B| fu — FISENfn — FI*)YHENIE - F1I5)Y2.

Now because of (5.35) and (5.40), we have asymptotically

1 1 1
4 _
Ellfn=fllz = 0O (nd@so + nA(1+8)¢ B n2(1+ﬁ(1v))>

1 1 1
45 _
Bl =11 = O (e + i + sy )

Under the lemma’s assumptions we have

d2—-30)+d(1—¢)25 > 2d
41+ 6)C+46(1+6)¢ > 2d
41481 —7))+46(1+ (1 —7) > 2d

which asserts that the Lh.s. of equation (5.33) converges to zero provided we show that E| Il — f||} = O(1).
Following the same line of proof as that used for equation (5.35) we can show that |[EIL — f|| — 0. Thus it is
enough to verify that E| Il — EIT||4 is bounded. As before, we have that

IN

B [ (15~ BITR 0 du n2| | 500500 E 00 = (A + )

X )\2 — ) ( A1+ [L) d)\ld)\gd,u|

- 2 T(/waﬂl(u—w dA)2 dy = O(1).
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Finally, we have

IN

E / (I} — EIN)*(n) dp n~? / ( FOWFO)Hy (A — p)Hy (=M + p)
T T\JT?

X

2
H (X2 — ) H, (=M1 + 1) d)qd)\2> dpl

= pu /T ( /T SOV, (1 — V)2 dA)4 d = O(1).

Now consider the L.h.s. of equation (5.32). We rewrite this expression as

2
wk ([ DT~ B~ B o)+ w2 [ D27 D0 ) (B ~ P
T T*

X(It — EL)(x2)(frn — Efn)(1)(fn — Efn)(x2) dz + n’E /T2 D?¢(f)(x1)D*¢(f)(x2)(ELL — f)(x1)
X(EL) — f)(@2)(fn — Efa)(@1)(fn — Efa)(22) dz + n?2E /T2 D*¢(f)(x1)D*¢(f)(x2) (I — EL)(1)
X(I} = EID)(@2)(Efn — )(21)(fn — Efa)(z2) dz + n'E /T2 D*¢(f)(x1)D*¢(f)(x2) (I — EL)(1)

X(IF — EIN)(22)(Efn — f)(@1)(Efn — f)(22) dz + nP4E /T2 D*¢(f)(x1)D*¢(f)(x2) (I — EIL, ) (z1)

X(EIY — f)(@2)(Efn — [)(@1)(fn — Efn)(x2) dz + ndE/T2 D*¢(f)(x1)D*¢(f)(x2)(ELL — f)(x1)
X(ELY = f)(x2)(Efn — f)(@1)(Efn — f)(m2) dv = Ay + Ay + Az + Ay + As + Ag + Az

First, remark

wts ([ DL - B - Bfe) ds
= nd D2¢(f)(x2) D?¢(f)(za)w(zy — z2)w(23 — 24)

T4

xEH — EIT)(z;) de < O(n¥*~1), (5.41)

On the other hand, as in the proof of the convergence to zero of the L.h.s. of (5.33) it can be shown that for
odd p

\E(IF — EIT)(z1)...(IF — EIT)(z,) dz| = O(n=%/?). (5.42)
TP
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Thus, we have

Ay = 2B /T D29(F) () D)) (BIE — ()l — o2)
xw(zz — x4)(IL — EIT)(x2)(IT — EIT)(23)(IT — EIF)(24)
<l EIE = £l D0 [ wlor — 22)dos

T

nd(5/2+0)
x/T3|E(I — BIT)(22)(IT — EIT)(23)(IT — EIT)(z4)| <o(m).

The bound in equation (5.43) is a consequence of the properties of the tapered periodogram, the definition of
w(-) and equation (5.42).
Using (5.35) and going through essentially the same steps as in the case of Ay we have,

nd(6/2+0)
44=0 (—n3d+<1+ﬁ><) ' (5:43)

Again using the properties of the tapered periodogram, equation (5.35) and going through the steps of the proof
of equation (5.33) we have

Ay = O(n 24807
As = O(n=21+A)%
As = O(n~ (1+8(1— C)+(1+6)C))
A; = O(n? 2(1+8(1=7)+(1+8)¢ )))
This completes the proof, under the lemma’s restrictions on v, and 3. O

Proof of Corollary 4.4: The proof of (4.12) follows from

E(@5(f) = ¢5(f)) = E(65 (f) — 65 (f)) + (68 (f) — d5(f))-

The first term is o(n?/?) as ¢% satisfies the conditions of Theorem 4.1. The second term is zero for large enough
N, since f is strictly positive. The convergence in distribution stated in (4.13) is a consequence of Theorem 4.1
for fixed N. The result follows by choosing 1 small enough so that (5.31, 5.32) and (5.33) tend to zero in
probability, as n — co. The asymptotic variance in (4.13) follows because D¢y = ﬁ which tends to % as
N — oo.

The proof of statements (4.14) and (4.15) are obtained in a similar fashion. O

I would like to thank the anonymous referees, whose very helpful suggestions have improved the presentation considerably.
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