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A LOWER BOUND ON THE GROWTH EXPONENT

FOR LOOP-ERASED RANDOM WALK IN TWO DIMENSIONS

Gregory F. Lawler
1

Abstract. The growth exponent α for loop-erased or Laplacian random walk on the integer lattice is
defined by saying that the expected time to reach the sphere of radius n is of order nα. We prove that
in two dimensions, the growth exponent is strictly greater than one. The proof uses a known estimate
on the third moment of the escape probability and an improvement on the discrete Beurling projection
theorem.

Résumé. L’exposant de croissance α pour la marche aléatoire à boucles effacées ou “laplacienne” sur
le réseau Zd est défini de la manière suivante : le nombre moyen de pas au moment où la marche issue
de l’origine atteint la sphère de rayon n est d’ordre nα lorsque n tend vers l’infini. Nous montrons que
lorsque d = 2, l’exposant de croissance est strictement supérieur à 1. La preuve utilise une estimation
connue concernant le moment d’ordre trois de la probabilité de fuite, ainsi qu’un raffinement de la
version discrétisée du théorème de projection de Beurling.
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1. Introduction

Loop-erased or Laplacian random walk (LERW) on the integer lattice Zd, d ≥ 2, is a non Markovian, nearest
neighbor, self-avoiding process. This process was originally studied because it is a nontrivial process that is
self-avoiding, although there is very strong numerical and nonrigorous analytic evidence [4, 6, 9, 16] to believe
that it is not in the same universality class as the usual self-avoiding walk. There has been a recent interest in
the LERW because of the connection between loop-erased walk and uniform spanning trees [16–18].

There are a number of ways to define the loop-erased walk. If d ≥ 3, one can take an infinite simple random
walk and erase the loops chronologically to produce a self-avoiding path. This is well-defined for d ≥ 3 since
the simple random walk is transient. A somewhat modified definition is needed in two dimensions, and since
this paper will concentrate on d = 2 we will give this definition, which also works for higher dimensions. If
ω = [ω(0), . . . , ω(n)] is any nearest neighbor path in Zd, we define the loop-erased path L(ω) as follows. Let

s0 = sup{k ≤ n : ω(k) = ω(0)},

and if sj < n,

sj+1 = sup{k ≤ n : ω(k) = ω(sj + 1)}.
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If l is the smallest index so that sl = n, the loop-erased path is given by

L(ω) = L[ω(0), . . . , ω(n)] = [ω(s0), . . . , ω(sl)].

Note the L(ω) is a self-avoiding, nearest neighbor path whose initial and end points are the same as those of ω.
Let S(k) denote a simple random walk in Zd, d ≥ 2, starting at the origin. Let

Cm = {x ∈ Zd : |x| < m},

with boundary

∂Cm = {x ∈ Zd \ Cm : |y − x| = 1 for some y ∈ Cm}.

Let

σm = inf{k : S(k) ∈ ∂Cm}.

Let Λn be the set of nearest neighbor, self-avoiding paths ω = [0 = ω(0),. . . ,ω(l)] of any length l such that
ω(k) ∈ Cn, k < l, and ω(l) ∈ ∂Cn. If n ≤ m, there is a measure on Λn, µn.m obtained by considering the unique
initial segment of L(S[0, σm]) that is in Λn. We define the measure µn as the limit as m tends to infinity of the
measures µn,m. It can be shown ([9], Chapter 7) that the limit exists, and the measures {µn} are consistent.
Hence this gives a measure on infinite self-avoiding paths. This measure is the same as the measure produced
by a process Ŝ(n) with the following non Markovian transition probabilities ([9], Chapter 7). If x ∈ Zd, and
ω = [ω(0), . . . , ω(k)] is a finite self-avoiding path, let

fm(x, ω) = Px{S[0, σm] ∩ ω = ∅}

(here we make the natural identification of a path with its range). Then if |x− ω(k)| = 1,

P{Ŝ(k + 1) = x | [Ŝ(0), . . . , Ŝ(k)] = ω} = lim
m→∞

fm(x, ω)∑
|y−ω(k)|=1 fm(y, ω)

·

Also from the discrete Harnack principle ( [9], Th. 1.7.6), there exists a constant c such that if ω ⊂ Cm/2,

c−1 fm(x, ω)∑
|y−ω(k)|=1 fm(y, ω)

≤ P{Ŝ(k + 1) = x | [Ŝ(0), . . . , Ŝ(k)] = ω} ≤ c
fm(x, ω)∑

|y−ω(k)|=1 fm(y, ω)
·

In fact, it can be shown (see [13]) that if n ≤ m/2, ω ∈ Λn,

c−1µn ≤ µn,m ≤ cµn. (1.1)

We are interested in the exponent that measures the rate of growth of Ŝ. This exponent is often phrased in
terms of the mean squared distance E[|Ŝ(n)|2]. We will use a different, but presumably equivalent, formulation.
(While we have not shown rigorously that these formulations are equivalent, we certainly expect them to be.)
Let

σ̂n = inf{k : Ŝ(k) ∈ ∂Cn}.

We would like to define the exponent α = αd by the relation

E[σ̂n] ≈ nα,
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where ≈ indicates that the logarithms of boths sides are asymptotics. Intuitively we say that the paths of the
loop-erased walk have fractal dimension α. If d ≥ 4, it is known [9,11] that α = 2, with logarithmic corrections
in four dimensions. Since we have no proof that α exists for d = 2, 3, to be precise we should define α and α to
be the lim inf and lim sup, respectively, of

log E[σ̂n]

logn
·

By slight abuse of notation we will write α ≥ s to mean α ≥ s and α ≤ s for α ≤ s. For d = 2, 3, there is an
upper bound [9]

αd ≤
d+ 2

3
, (1.2)

but numerical simulations [6] indicate that this bound is not sharp. The right hand side is exactly the Flory
predictions for the corresponding quantity for the usual self-avoiding walk (see [15] for more details about
self-avoiding walks and the Flory predictions). This prediction is still expected to be correct for the usual self-
avoiding walk in two dimensions, but is expected to be slightly lower than the actual value in three dimensions.
The conjectures imply that the LERW goes to infinity faster than the usual simple random walk. By comparison
to uniform spanning trees and the Potts model [16], nonrigorous conformal field theory [4,16] has been used to
conjecture that

α2 =
5

4
·

There is no reason to believe that α3 is a nice rational number; numerical simulations do suggest that α3 < 5/3.
The rigorous inequality α ≥ 1 is immediate. By comparison to the intersection exponent in three dimensions [3],
it can be proved that α3 > 1, but no such inequality has been shown in two dimensions. The purpose of this
paper is to prove1

α2 > 1.

Theorem 1.1. There exist positive constants c, ε such that if d = 2, for all n,

E[σ̂n] ≥ cn1+ε.

Throughout this paper we use c, c1, c2 for positive constants whose value may change from line to line. For the
remainder of the paper we will assume that d = 2. By (1.1), to prove this estimate for a given n it suffices
to consider the simple random walk up to time σ2n; erase loops from this path; and give an appropriate lower
bound on the number of points before time σn that are not erased. Let V (j, n) be the event that j ≤ σn and
that S(j) is not erased in producing L(S[0, σ2n]). More precisely,

V (j, n) = {j ≤ σn;L(S[0, j]) ∩ S[j + 1, σ2n] = ∅}.

Note that if σ̂n,2n is the analogue of σ̂n for walks stopped upon reaching ∂C2n,

σ̂n,2n =
∞∑
j=0

I[V (j, n)],

1After this paper was completed, Kenyon [7] proved that α2 = 5/4.
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where I denotes the indicator function. Hence in order to prove the theorem it suffices to prove that there exist
c, ε such that for n2 ≤ j ≤ 2n2,

P[V (j, n)] ≥ cn−1+ε. (1.3)

The distribution of L(S[0, j]) is the same whether we consider S(0) or S(j) as the origin, i.e. “reverse” loop-
erased walk has the same distribution as LERW ( [9], Lem. 7.2.1). To prove (1.3) it suffices to prove the
following estimate. Let S1, S2 be independent simple random walks starting at the origin with corresponding
stopping times σ1

n, σ
2
n. Then for some c, ε,

P{L(S1[0, σ1
n]) ∩ S2(0, σ2

n] = ∅} ≥ cn−1+ε. (1.4)

That is, the probability that a simple walk and a loop-erased walk get to distance n without intersecting is
greater than cn−1+ε. This is the main estimate of this paper.

Assume for ease that Si is defined on the probability space (Ωi,Pi) and let Ei denote expectations with
respect to Pi. Define the Ω1 random variable

Xn = P2{S
2(0, σ2

n] ∩ L(S1[0, σ1
n]) = ∅}.

It can be shown that,

E[X3
n] � n−2, (1.5)

where � means that both sides are comparable, i.e., bounded by a constant times a multiple of the other side.
The upper bound for E[X3

n], at least up to logarithmic corrections, can be found in [9]; this and the inequality
E[X3

n] ≥ [E(Xn)]3 give the estimate (1.2). The lower bound is what is needed in this paper; the proof will
appear in [5] as well as the analogous result for three dimensions, but since we need it, we will give a proof of

E[X3
n] ≥ cn−2 (1.6)

in this paper.
The discrete Beurling projection theorem [8] states that if ω is any simple random walk path in Z2 connecting

the origin with ∂Cn, then

P2{S
2(0, σ2

n] ∩ ω = ∅} ≤ cn−1/2.

The probability on the left is maximized (at least up to a multiplicative constant) when ω is a half line, in which
case this probability is also greater than c1n

−1/2. This theorem implies that Xn ≤ cn−1/2, and hence

E[Xn] ≥ cnE[X3
n].

This is not good enough to get (1.4); in fact this only allows us to conclude the trivial inequality α ≥ 1. However,
a typical loop-erased walk is more crooked than a straight line. The main technical tool in this paper is an
upper bound on the escape probability for walks in terms of a particular quantity that measures crookedness.
In particular, we will show that there is a c and a δ > 0 such that for all large n

P1{Xn ≥ cn
−1/2−δ} ≤ n−3. (1.7)

In particular,

E1[X3
n;Xn ≤ cn

−1/2−δ] ≥ c1n
−2,
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and hence,

E1[Xn] ≥ cn−1+2δ.

This gives (1.4).
The improvement on the discrete Beurling projection theorem is of independent interest. Let Cm = Cem and

suppose ω is a self-avoiding random walk path starting at the origin ending at Cm. Let

ηk = inf{t : ω(t) ∈ ∂Ck}.

For each 0 < δ < π/2, let

Zδ,m = Zδ,m(ω) =
m−1∑
k=0

I{| arg(ω(ηk+1))− arg(ω(ηk))| ≥ δ}.

We will prove the following. If S is a simple random walk, let

τm = σem = inf{t : S(t) ∈ ∂Cm}.

Proposition 1.2. For every δ, a > 0, there exist c < ∞, β > 1/2, such that if ω is any self-avoiding random
walk path connecting 0 with ∂Cm with

Zδ,m ≥ am,

then

P{S(0, τm] ∩ ω = ∅} ≤ ce−βm.

We first prove a corresponding proposition for Brownian motion using the relationship between harmonic mea-
sure and extremal distance. This method has been used before, see, e.g., [20], to give probabilistic proofs of
the Beurling projection theorem. The result for random walk is obtained using a strong approximation derived
from the Skorohod embedding.

The outline of the paper is as follows. In Section 2 we derive the estimate on E[X3
n]; the argument is similar

to that in [11] where a corresponding result was proved for d = 4. The next section gives exponential estimates
on the probability that the loop-erased walk is very straight. The goal of Section 4 is to prove the analogue of
Proposition 1.2 for Brownian motion. The derivation uses a relationship between escape probabilities in two
dimensions and a quantity, extremal distance, of a domain. The last two sections derive the result for random
walk. Section 5 reviews the necessary facts about the strong approximation and then Section 6 uses this to
obtain the result. A similar idea with added complications has been used in [12,14] to estimate probabilities that
paths of random walks do not intersect each other with the corresponding probabilities for Brownian motion.

This research is partially supported by the National Science Foundation. I would like to thank the referee
for useful comments.

2. Third moment

In this section we derive (1.6). If A ⊂ Z2, let

Esn(A) = P{S(0, σn] ∩A = ∅}.

Lemma 2.1. Suppose A ⊂ Z2 contains at least one nearest neighbor of the origin. Then for all n ≥ 1,

Esn(A \ {0}) ≤ 4Esn(A).
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Proof. Let A′ = A \ {0}, and

ηn = inf{t > 0 : S(t) ∈ ∂Cn ∪ {0}}.

Since A′ contains a nearest neighbor of the origin,

P{S(0, ηn] ∩A′ 6= ∅} ≥
1

4
·

Let Zn be the number of visits to 0 by S before leaving Cn,

Zn =
σn∑
t=0

I{S(t) = 0}.

Then by iterating above

P
{
Zn = k + 1, S(0, σn] ∩A′ = ∅

}
≤

(
3

4

)k
P
{
S(0, σn] ∩A = ∅

}
.

Summing over k gives the lemma.

If S is a simple random walk starting at the origin, define the random variable

Xn = Esn(L(S[0, σn])).

It is the goal of this section to show that

E[X3
n] ≥ cn−2,

for some constant c. By the lemma, it suffices to show that

E[(X ′n)3] ≥ cn−2, (2.1)

where

X ′n = Esn(L(S[0, σn]) \ {0}).

Let S1, . . . , S4 be independent simple random walks starting at the origin with stopping times σ1
n, . . . , σ

4
n.

Let

Θn = S2(0, σ2
n] ∪ S3(0, σ3

n] ∪ S4(0, σ4
n].

Then, by independence,

E[(X ′n)3] = P
{

Θn ∩ [L(S[0, σ1
n]) \ {0}] = ∅

}
.

2

Let [Si(t)]1, [S
i(t)]2 denote the first and second components of the random walk Si. Let A1

n, . . . ,A
4
n, denote

the rectangles,

A1
n =

{
(x, y) ∈ Z2 : −2n ≤ x ≤

n

4
;−

n

4
≤ y ≤

n

4

}
,
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A2
n =

{
(x, y) ∈ Z2 : −

n

4
≤ x ≤ 2n;−

n

4
≤ y ≤

n

4

}
,

A3
n =

{
(x, y) ∈ Z2 : −

n

4
≤ x ≤

n

4
;−2n ≤ y ≤

n

4

}
,

A4
n =

{
(x, y) ∈ Z2 : −

n

4
≤ x ≤

n

4
;−

n

4
≤ y ≤ 2n

}
.

For n2 ≤ t1, t2, t3, t4 ≤ 2n2, let Un(t1, . . . , t4) be the event that the following holds:

Si[0, ti] ⊂ Ain, i = 1, 2, 3, 4;
|Si(t)| ≥ n, n2 ≤ t ≤ ti, i = 1, 2, 3, 4.

Let Vn(t1, . . . , t4) be the event

Vn = {Θn ∩ [L(S[0, σ1
n]) \ {0}] = ∅}.

We will show that ∑
n2≤t1,t2≤2n2

P[Un(t1, t2, n
2, n2)] ∩ Vn(t1, t2, n

2, n2)] ≥ cn2. (2.2)

By the obvious monotonicity this implies

P[Un(n2, n2, n2, n2) ∩ Vn(n2, n2, n2, n2)] ≥ cn−2.

From this (2.1) follows easily.
Let S5 be a random walk starting at the origin and let Gn be the event that the following four conditions

hold:

[S5(t)]2 ≤
n

8
, 0 ≤ t ≤ 4n2,

5n

4
≤ [S5(t)]1 ≤

7n

4
,

5

4
n2 ≤ t ≤

7

4
n2

[S5(t)]1 ≤ n, 0 ≤ t ≤ n2,

[S5(t)]1 ≥ 3n, 2n2 ≤ t ≤ 4n2.

It is easy to see from the invariance principle that there is a constant c such that

P[Gn] ≥ c.

Now start another random walk S6, independent of S5, starting at a point x ∈ Z2, chosen from the discrete
ball of radius n/16 around (3n/2,−2n). Note that the number of points in this ball is comparable to n2. Let
Hn be the event that the following conditions hold:

11

8
n ≤ [S6(t)]1 ≤

13

8
n, 0 ≤ t ≤ 4n2,
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−
n

4
≤ [S6(t)]2 ≤

n

4
,

5

4
n2 ≤ t ≤

7

4
n2

[S6(t)]2 ≤ −
3n

2
, 0 ≤ t ≤ n2,

[S6(t)]2 ≥
3n

2
, 2n2 ≤ t ≤ 4n2.

Again, by the invariance principle, there is a constant c, independent of the starting point, such that if x is in
the ball of radius n/16 around (3n/2,−2n),

Px[Hn] ≥ c,

and hence for such x by independence Px(Gn ∩ Hn) ≥ c (here the x refers to the starting point of the walk
Hn). By summing, we get ∑

x

Px(Gn ∩Hn) ≥ cn2.

Consider the loop-erased path L(S5[0, 4n2]). On the event Gn ∩Hn we can see from geometric considerations
that the paths L(S5[0, 4n2]) and S6[0, 4n2] must intersect, and the points of intersection must occur in the set{

(x, y) :
11

8
n ≤ x ≤

13

8
n,−

1

8
n ≤ y ≤

1

8
n
}
.

Let ρ1 = ρ1
n be the smallest time t such that the point S5(t) is included in the loop-erased path and S6[0, 4n2].

More precisely, ρ1 is defined by the conditions:

L(S5[0, ρ1]) ∩ S5[ρ1 + 1, 4n2] = ∅, S5(ρ1) ∈ S6[0, 4n2].

Note that on Gn ∩Hn, n2 ≤ ρ1 ≤ 2n2. Let

ρ2 = inf{t : S6(t) = S5(ρ1)}.

Again, on Gn ∩Hn, n
2 ≤ ρ2 ≤ 2n2. Hence∑

x

∑
n2≤t1,t2,≤2n2

Px[Gn ∩Hn; ρ1 = t1; ρ2 = t2] ≥ cn2, (2.3)

where the outer sum is over all x in the ball of radius n/16 about (3n/2,−2n).
We define the random walks S1, . . . , S4 in terms of S5, S6. Let

S1(t) = S5(ρ1 − t)− S5(ρ1), t = 0, 1, . . . , ρ1,

S2(t) = S6(ρ2 − t)− S6(ρ2), t = 0, 1, . . . , ρ2,

S3(t) = S5(ρ1 + t)− S5(ρ1), t = 0, 1, 2, . . . , n2,

S4(t) = S6(ρ2 + t)− S6(ρ2), t = 0, 1, 2, . . . , n2.

Then in terms of these random walks, we can see that∑
x

Px[Gn ∩Hn; ρ1 = t1; ρ2 = t2] ≥ P [V (t1, t2, n
2, n2)].
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This combined with (2.3) gives (2.2) and hence proves (2.1).
We note that a similar argument will work in d = 3. One complication arises in that one must show that the

loop-erasure of S5 and the random walk S6 intersect with positive probability independent of n. This is not an
issue in two dimensions since the continuous curves must cross. For a proof of

E[X3
n] ≥ cn−1

in three dimensions, see [5]. This proof can also be adapted easily to prove the upper bound

E[X3
n] ≤ cnd−4.

Here, one essentially needs only the trivial estimate that the probability that S5 and S6 intersect is of order
one, although a few other minor technicalities arise.

3. Crookedness of loop-erased walk

Let S be a simple random walk in Z2 and

τn = σen = inf{t : S(t) ∈ ∂Cn}.

Let Ŝn(j) denote the walk obtained by erasing loops from S[0, τn]. This gives a measure on self-avoiding paths
starting at the origin and ending upon reaching ∂Cn. If k ≤ n, let

τ̂k,n = inf{t : Ŝn(t) ∈ ∂Ck}, τ̂k = inf{t : Ŝ(t) ∈ ∂Ck}.

Let

Ŵn,δ =
n∑
k=1

I
{
| arg[Ŝn(τ̂k,n)]− arg[Ŝn(τ̂k−1,n)] | ≤ δ

}
,

W̃n,δ =
n∑
k=1

I
{
| arg[Ŝ(τ̂k)]− arg[Ŝ(τ̂k−1)] | ≤ δ

}
,

Proposition 3.1. For every M <∞ and every ε > 0, there exist δ > 0 and c <∞ such that for all n,

P{Ŵn,δ ≥ εn} ≤ ce
−Mn.

P{W̃n,δ ≥ εn} ≤ ce
−Mn.

The second inequality follows immediately from the first and (1.1), so we will only prove the first. We will
actually prove the following stronger proposition. Standard large deviation estimates for binomial random
variables (see, e.g. [2], Th. 9.3) can be used to derive Proposition 3.1 from Proposition 3.2.

Proposition 3.2. For every ε > 0, there exist a δ > 0 and a K <∞, such that for any K ≤ k ≤ n− 1,

P
{
| arg[Ŝn(τ̂k,n)]− arg[Ŝn(τ̂k−1,n)] | ≤ δ | Ŝn(t), t = 0, . . . , τ̂k−1,n

}
≤ ε.

Fix k ≤ n− 1 and suppose we know

[Ŝn(0), Ŝn(1), . . . , Ŝn(τ̂k−1,n)].
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Analysis of the loop-erasing procedure shows that to determine the distribution

{Ŝn(t) : τ̂k−1,n < t ≤ τ̂n,n},

we can do the following: start another simple random walk S1(t) at Ŝn(τ̂k−1,n) with corresponding stopping
times τ1

n and condition the walk so that

S1(0, τ1
n] ∩ Ŝ[0, τ̂k−1,n] = ∅;

then, erase loops from this conditioned path. Let x ∈ ∂Ck and let B(x, δek) represent the discrete ball of radius
δek about x. Proposition 3.3 will show that the probability that the conditioned random walk enters this ball at
any time tends to zero as δ → 0. Since the loop-erased path is a subpath of the conditioned path, the probability
it enters the balls also tends to zero. From this we conclude Proposition 3.2. Before stating and proving this
proposition, we review some facts about simple random walks (see [9], Sect. 1.6, for more details). Suppose the
simple random walk starts at the origin and B is a discrete ball of radius δen centered at some y ∈ ∂Cn. Let Kδ

be sufficiently large such that every discrete ball of radius δen has has at least δ2e2n points provided n ≥ Kδ.
If we let V denote the number of visits to B before leaving the ball of radius en+1, then standard estimates give

E0[V ] ≤ c1δ
2,

and if z ∈ B, and n ≥ Kδ,

Ez[V ] ≥ c2δ
2 log(1/δ).

In particular,

E0[V | V ≥ 1] ≥ c2δ
2 log(1/δ).

and hence

P0{V ≥ 1} ≤ c[log(1/δ)]−1. (3.1)

Proposition 3.3. There exists a constant c <∞ such that the following is true. Let Kδ be as above, k < n−1,
and let ω = [ω(0), . . . , ω(r)] be a random walk path with ω(0) = 0;ω(t) ∈ Ck, t < r;ω(k) ∈ ∂Ck. Let S be a
simple random walk with stopping times τm and let B be a discrete ball of radius δek centered at y ∈ ∂Ck+1.
Then if r ≥ Kδ,

Pω(k)
{
S(0, τn] ∩ B 6= ∅ | S(0, τn] ∩ ω = ∅

}
≤ c[log(1/δ)]−1.

Proof. Fix kδ ≤ k < n− 1, δ > 0, and ω,B as in the statement of the theorem (but constants in this proof are

independent of all of these). Let

a1 = inf{t : S(t) ∈ ∂Ck+(1/2)}, b1 = inf{t : S(t) ∈ ∂Ck+2},

and for j > 1,

aj = inf{t > bj−1 : S(t) ∈ ∂Ck+(1/2)}, dj = inf{t > bj−1 : S(t) ∈ ∂Ck+1}, bj = inf{t > aj−1 : S(t) ∈ ∂Ck+2}.
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Standard estimates (see [9], Sect. 1.6 and 3.1) tell us that for k ≥ Kδ, x ∈ ∂Ck+2,

Px{τk+1 > τn} � Px{τk+(1/2) > τn} � c[n− k]−1,

P
{
S[aj, bj ] ∩ B 6= ∅ | S(t), t = 0, 1, . . . , aj

}
≤ c[log(1/δ)]−1,

P
{
S[bj, aj+1] ∩ B 6= ∅ | S(t), t = 0, 1, . . . , bj

}
≤ c[log(1/δ)]−1.

Also (see [9], Lem. 2.5.3),

P
{
S[aj , bj] ∩ ω 6= ∅ | S(t), t = 0, 1, . . . , aj

}
≥ c.

Let j∗ be the largest j such that

{bj < τn}.

Then the estimates above show there exists a u < 1 such that

P
{
j∗ = j;S[0, bj] ∩ B 6= ∅;S[0, bj] ∩ ω = ∅

}
≤ cjuj[log(1/δ)]−1[n− k]−1.

Summing over all j we get for x ∈ ∂Ck+(1/2).

Px
{
S(0, τn] ∩ B 6= ∅;S[0, bj] ∩ ω = ∅

}
≤ c[log(1/δ)]−1[n− k]−1.

But it is easy to see for x ∈ ∂Ck+(1/2),

Px
{
S(0, τn] ∩ B = ∅;S[0, bj] ∩ ω = ∅

}
≥ c[log(1/δ)]−1[n− k]−1.

(To see this we bound by the probability that

S(0, a1] ∩ B = ∅, S[0, bj] ∩ ω = ∅

times the probability that d2 > τn.) This gives the proposition.

4. Extremal length and escape probabilities

There is a close relationship between escape probabilities for planar Brownian motions and a quantity known
as extremal length. In this section we will review some of the basic facts about extremal length, and then use an
extremal length estimation to estimate escape probabilities. For more details about extremal length, see [1,19].

Let Γ be a collection of piecewise smooth curves γ : [0, 1]→ C. Suppose ρ : C→ R is a measurable function
with

a(ρ) =

∫
C
ρ2 dx dy <∞.

Let

L(ρ) = L(ρ,Γ) = inf

∫
γ

ρ d|z|,
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where the infimum is over all γ ∈ Γ. The extremal length ∆ = ∆(Γ) is defined by

∆ = sup
L(ρ)2

a(ρ)
, (4.1)

where the supremum is over all ρ with a(ρ) <∞. The case of greatest interest for us is where D is a bounded
domain; V1, V2 closed subsets of C; and Γ = Γ(D,V1, V2) is the set of all piecewise smooth γ with γ(0) ∈
V1, γ(1) ∈ V2, and γ(0, 1) ⊂ D. In this case we write ∆ = ∆(D,V1, V2). Extremal length is a conformal
invariant, i.e., if f : D→ D1 is a conformal transformation defined up to the boundary then

∆(f(D), f(V1 ∩ D̄), f(V2 ∩ D̄)) = ∆(D,V1, V2).

If D is the rectangle

D = {x+ iy : 0 < x < a, 0 < y < b},

and

V1 = {iy : 0 ≤ y ≤ b}, V2 = {a+ iy : 0 ≤ y ≤ b},

then

∆(D,V1, V2) =
a

b
,

with the supremum in (4.1) being taken on by ρ ≡ 1. If D is the split annulus

D = {reiθ : e−n < r < 1, 0 < θ < 2π},

with

V1 = {|z| = e−n}, V2 = {|z| = 1},

then D is conformally equivalent to a rectangle of sides n and 2π and hence

∆(D,V1, V2) =
n

2π
·

Suppose V2 is a closed set such that every γ: [0, 1]→ C with γ(0) ∈ V1, γ(1) ∈ V3, γ(0, 1) ⊂ D satisfies

γ(0, 1) ∩ V2 6= ∅.

Then ([19], Prop. 9.2)

∆(D,V1, V3) ≥ ∆(D,V1, V2) + ∆(D,V2, V3).

In other words, the extremal length satisfies a reversed triangle inequality. In particular if we let B denote the
unit disk and ∂n = {|z| = e−n}, then for any D ⊂ B,

∆(D, ∂n, ∂0) ≥
n∑
j=1

∆(D, ∂j , ∂j−1). (4.2)
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Let E be an interval in the unit circle

E = {eiθ : θ1 ≤ θ ≤ θ2},

with length l(E) = θ2− θ1. Let ∂r denote the circle of radius e−r as above, and let Γ1 = Γ1(r, E) = Γ(B, ∂r, E).
Let Bt denote a standard two dimensional Brownian motion, considered as a complex valued Brownian motion,
with stopping times

Tn = inf{t : |Bt| = en}.

By Pfluger’s Theorem ( [19], Th. 9.17) for 1 ≤ r ≤ 5,

l(E) =
1

2π
P0{B(T0) ∈ E} � exp{−π∆1},

where ∆1 = ∆1(B, ∂r, E). Let Γ2 = Γ2(r) be the collection of curves {γθ},

γθ(t) = e−iθ[(1− t)e−r−1 + te−r], 0 ≤ t ≤ 1.

Let Γ3 = Γ3(r, E) denote the set of curves obtained by combining any γ2 ∈ Γ2 with any γ1 ∈ Γ1. The way to
combine is to start with γ2; then take a curve in ∂r which goes from γ2(1) to γ1(0); and then follow γ1. Of
course, we must do a simple reparameterization to get a curve γ : [0, 1] → C. It is not difficult to show that
there is a c, independent of r and E, such that

∆(Γ3) ≤ ∆1 + c.

(In proving this one notes that one can restrict the set of ρ to those that are zero on ∂r.) Similarly, let Γ4 be
the collection of curves {γθ},

γθ(t) = e−i(θ+2πt)[(1− t)e−r−1 + te−r], 0 ≤ t ≤ 1,

and let Γ5 be the collection of curves obtained by attaching curves from Γ4 with curves from Γ1. Again we can
show that

∆(Γ5) ≤ ∆1 + c.

By comparison with Γ4 and Γ5, we can see that if h : [0, 1]→ C is any continuous curve with h(0) ∈ ∂r+1, h(1) ∈
∂r, then

∆(B, h[0, 1], E) ≤ ∆1 + c. (4.3)

Now suppose r ≥ 2 and h: [0, 1] → C is a continuous curve without double points with h(0) ∈ ∂r, h(1) ∈ ∂0,
h[0, 1) ⊂ B. Let D be the connected component of B \ h[0, 1] whose boundary includes ∂0. Let x ∈ ∂r ∩D (if
∂r ∩D = ∅, the conclusion we will obtain below is trivial). Let d be the distance from x to ∂D, and note that
d ≤ 2|x|; in particular, the closed disk of radius d about x is contained in the disk of radius e−r+2 about the
origin. Let f be a conformal transformation of D to the unit disk with f(x) = 0. Let δ be the smallest number
such that f(B̄(x, δ)) ∩ ∂2 6= ∅, where B̄(x, δ) denotes the closed ball of radius δ about x. Note that δ < d. By
conformal invariance of Brownian motion (or equivalently, by conformal invariance of harmonic measure),

Px{B[0, T0] ∩ h[0, 1] = ∅} = P0{B(T0) ∈ f(∂0)}.
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By Pfluger’s Theorem, the right hand side is comparable to

exp{−π∆(B, ∂2, f(∂0))}.

By (4.3), this is comparable to

exp{−π∆(B, f(B̄(x, δ)), f(∂0))},

which by conformal invariance of extremal distance equals

exp{−π∆(D, ∂B(x, δ), ∂0)}.

Since B(x, δ) ⊂ B(0, er−2), this last term is smaller than

exp{−π∆(D, ∂r−2, ∂0)}.

Combining all of this we get that there is a constant c such that if h is as above and x ∈ ∂r,

Px{B[0, T0] ∩ h[0, 1] = ∅} ≤ c exp{−π∆(D, ∂r−2, ∂0)}. (4.4)

Let h,D be as in the previous paragraph, and let A be the connected component of D∩{|z| > e−r} that contains
the unit circle in its boundary. Assume that ∂A ∩ ∂r 6= ∅. Note that if γ is a curve with γ(0) ∈ ∂r, γ(1) ∈
∂0, γ(0, 1) ⊂ D, then there exists an s ≥ 0 such that γ(s) ∈ ∂r, γ(s, 1) ⊂ A. Hence,

∆(D, ∂r−2, ∂0) = ∆(A, ∂r−2, ∂0).

It will be convenient if we conformally map this region by a logarithm. In this case ∂r is sent to Ur where

Uj = {<(z) = −j}.

We take an h : [0, 1]→ C satisfying

h(0) ∈ Ur, h(1) ∈ U0, h(0, 1) ⊂ {<(z) < 0},

and for each integer k we have the curve

hk(t) = h(t) + 2πi, 0 ≤ t ≤ 1.

Let G be the region bounded by Ur, U0, h[σr, 1] and h1[σr, 1]. The region A is the connected component of G
whose boundary intersects U0. Note that any curve connecting Ur to U0 in G has a subpath connecting Ur to
U0 in A. Since A ⊂ G,

area(A) ≤ area(G) ≤ 2πr.

If j is a positive integer, let Aj denote the connected component of A ∩ {<(z) < −j} whose boundary includes
a portion of Ur, and let Vj = Uj ∩ ∂Aj . Note that Vj is contained in an interval of length at most 2π, and that
every continuous curve from Ur to U0 staying in A hits Uj first in Vj . Fix some 0 < ε < 1/10. Suppose we can
find k integers 1 ≤ j1 < · · · < jk ≤ r such that the following holds. For each j ∈ {j1, . . . , jk}, there exists a
point zj with

<(zj) = −j +
1

2
,
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and such that for each w1, w2 ∈ B(zj, ε),

dist(w1, Vj + 2πl) + dist(w2, Vj−1 + 2πl) ≥ 1, (4.5)

for every integer l. In other words the portion of every path in A from Vj to Vj−1 outside of the 2πi integer
translates of B(zj, ε) must have length at least one. Note that

area
[
G \

k⋃
j=1

∞⋃
l=−∞

B(zj + 2πl, ε)
]
≤ 2πr − kπε2.

If we let ρ be the function that is 1 on

A \
[ k⋃
j=1

∞⋃
l=−∞

B(zj + 2πl, ε)
]
,

and zero elsewhere, we have

a(ρ) ≤ 2πr − kπε2,

and

L(ρ) ≥ r.

Hence

∆(A,Ur, U0) ≥
r2

2πr − kπε2
≥
r

π

[
1

2
+
ε2k

4r

]
·

Now fix a j and suppose s < t with h(s) ∈ Uj , h(t) ∈ Uj−1, h(s, t) ⊂ {<(z) < j − 1}. Suppose also that

=(h(t)) ≥ =(h(s)) + δ,

for some δ > 0. Note that

Vj ⊂
{
−j + iy : h(s) ≤ y ≤ h(s) + 2π

}
, Vj−1 ⊂

{
−j + 1 + iy : h(t) ≤ y ≤ h(t) + 2π

}
.

Let

zj = −j +
1

2
+

[
h(s) +

δ

2

]
i.

Note that if we draw a sufficiently small ball around this point (we leave the high school geometry estimate to
the reader), that it satisfies (4.5) for some ε = εδ. Similarly if =(h(t)) ≤ =(h(s)) − δ, a similar fact holds using

zj = −j +
1

2
+

[
h(s)−

δ

2

]
i.

When we transform this argument back to the unit disk and use (4.4), we get the following lemma. (The ε in
this lemma corresponds to the ε2/4 above.)
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Lemma 4.1. For every δ > 0, there exists an ε > 0 and a c < ∞ such that the following is true. Let r
be a positive integer and h : [0, 1] → C a continuous function without double points with h(0) ∈ ∂r, h(1) ∈
∂0, h(0, 1) ⊂ B. For each integer j = 1, . . . , r − 2, let

νj = inf{t : h(t) ∈ ∂j}, Yj = | arg(h(νj))− arg(h(νj−1))|.

Let

W = Wr(h, δ) =
r∑
j=1

I{Yj ≥ δ}.

Then if x ∈ ∂r,

Px
{
B[0, T0] ∩ h[0, 1] = ∅

}
≤ c exp

{
−r(

1

2
) + εW

}
.

5. Strong approximation

We will need to use a strong approximation of a simple random walk and a Brownian motion in two dimen-
sions. The approximation we will use is derived from the standard Skorohod embedding of a one dimensional
simple random walk in a one dimensional Brownian motion. Let (Ω,F ,P) be a probability space on which
are defined a two-dimensional Brownian motion, Bt = B(t) = (B1

t , B
2
t ), and a one-dimensional simple random

walk, Wk, that is independent of the Brownian motion. As before, let

Tn = inf{t : |Bt| = en},

and let

Rk =
1

2
(Wk + k).

Let Sik be the simple random walk derived from Bit from the Skorohod embedding. This is obtained by setting
ηi0 = 0,

ηik+1 = inf{t ≥ ηik : |Bi(t)−Bi(ηik)| = 1},

and

Sik = Bi(ηik).

Since E[ηi1] = 1, one expects ηik − k to be of order k1/2 and hence B(ηik) −B(k) to be of order k1/4. Standard
techniques make this precise; in particular, since ηik has an exponential moment, we can derive exponential
estimates on the probabilities. In fact, one can show that there exists c, β such that

P
{

sup
0≤s,t≤e9n/8,|s−t|≤e5n/8

|Bit −B
i
s| ≥ e

3n/8
}
≤ c exp{−eβn}.

(In this section we let c, β be positive constants whose value may change from line to line.) Also,

P
{

sup
0≤k≤e9n/8

|ηik − k| ≥ e
5n/8

}
≤ c exp{−eβn}.
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In particular,

P
{

sup
0≤t≤e9n/8

|Bit − S
i(btc)| ≥ e3n/8

}
≤ c exp{−eβn}.

If we let

Sk = (S1(Rk), S2(k −Rk)),

it is easy to see that Sk is a simple random walk in Z2. Again, standard estimates given

P
{

sup
0≤k≤e9n/8

|Rk −
k

2
| ≥ e5n/8

}
≤ c exp{−eβn},

and hence

P
{

sup
0≤t≤e9n/8

|Bt − S(b2tc)| ≥ ce3n/8
}
≤ c exp{−eβn}.

Also note that

P{Tn ≥ e
9n/4} ≤ c exp{−eβn}.

We now let Un be the event

Un =
{
Tn ≤ e

9n/4; sup
0≤t≤Tn

|Bt − S(b2tc)| ≤ ce3n/4
}
.

This event is measurable with respect to the σ-algebra generated by

{Bt : t ≤ Tn} ∪ {Rk, k = 0, 1, 2, . . . }.

In particular it is independent of the σ-algebra generated by

{B(t+ Tn)−B(Tn) : t ≥ 0}.

We have sketched the proof of the following. The Brownian motion Bt in the lemma has variance parameter
1/2, i.e., Bt = B̃t/2, where B̃ is a standard Brownian motion.

Lemma 5.1. There exists a c, β such that a planar Brownian motion with variance parameter 1/2 and a two-
dimensional simple random walk Sk can be defined on the same probability space satisfying the following. For
each n, there exists an event En that is independent of

{B(t+ Tn)−B(Tn) : t ≥ 0},

with

P(En) ≥ 1− c exp{−eβn},

and such that on the event En,

|B(t)− S(btc)| ≤ e7n/8, t ≤ Tn−(1/2).
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Let

τn = inf{k : |Sk| = en}.

One can see that if V is any event that is measurable with respect to

{Sk : 0 ≤ k ≤ τn−(1/2)},

then V ∩En is also independent of the σ-algebra generated by

{B(t+ Tn)−B(Tn) : t ≥ 0}.

6. Bound for random walks

Let δ0, ε be such that Lemma 4.1 holds (for some constant c), and choose δ > δ0. We allow constants
c, c1, c2, . . . in this section to depend on δ0, δ, ε. The goal of this section is to show that a corresponding result
holds for simple random walk for δ, ε. We first use Brownian scaling to make a slight restatement of Lemma
4.1. If h : [0,∞)→ C is a continuous curve without double points with h(0) = 0, |h(t)| → ∞, t→∞, let

σn = inf{t : |h(t)| = en},

Yn = Yn(h) = | arg(h(σn))− arg(h(σn+1))|,

Wm,n = Wm,n(h, δ0) =
n−1∑
k=0

I{Ym+k ≥ δ0}.

Then Lemma 4.1 immediately implies the following.

Lemma 6.1. There exists a constant c such that for all nonnegative integers m,n and all h,

P0{B[Tm, Tm+n] ∩ h[σm, σm+n] = ∅} ≤ c exp{−n
1

2
− εWm,n}.

Let ω : {0, 1, 2, . . .} → Z2 be a self-avoiding random walk path with ω(0) = 0, |ω(t)| → ∞, t→∞. Associated
with ω is the continuous path hω : [0,∞)→ C obtained by linear interpolation, i.e.,

hω(t) = ω(btc) + (t− btc)[ω(btc+ 1)− ω(btc)]

(where we consider Z2 as embedded in C). Let

σ̃n = inf{t : |ω(t)| ≥ en},

Ỹn = Ỹn(ω) = | arg(ω(σ̃n))− arg(ω(σ̃n+1))|,

W̃m,n = W̃m,n(ω, δ) =
n−1∑
k=0

I{Ỹm+n ≥ δ}.

Note that if σn are the times defined as above for h = hω,

σn ≤ σ̃n ≤ σn + 1.

In particular, for all n sufficiently large, if Ỹn ≥ δ, then Yn ≥ δ0. Therefore,

Wm,n(hω) ≥ W̃m,n(ω)− c1. (6.1)

Our goal is to prove the following.
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Lemma 6.2. There exists a constant c2 such that for all nonnegative integers m,n, and all ω as above,

P0{S[τm, τm+n] ∩ ω[σ̃m, σ̃m+n] = ∅} ≤ c2 exp

{
−n

1

2
− εW̃m,n

}
.

Let

bn = bn(δ, ε) = sup exp

{
n

1

2
+ εW̃m,n

}
P0{S[τm, τm+n] ∩ ω[σ̃m, σ̃m+n] = ∅},

where the supremum is over all ω and all positive integers m. Lemma 6.2 is equivalent to saying that the
sequence {bn} is bounded. It is obvious that b0 = 1 and since W̃m,n ≤ n,

bm+n ≤ e
nαbm,

where α = (1/2) + ε. If we show that there is a β > 0, and a c3 <∞ such that for all n,

bn ≤ c3

n−1∑
j=0

e−jβbj , (6.2)

then it follows that the bn are bounded (see, for example [12], Lem. 4.5). So to prove Lemma 6.2 it suffices to
prove (6.2) for n ≥ 3.

Let B be a Brownian motion starting at the origin in C and let S be the corresponding simple random walk
derived from the strong approximation as in Lemma 5.1. Let ω be a self-avoiding random walk path and h = hω
as above. For 1 ≤ k ≤ n− 1, let Uk = Uk(m,n) be the event

Uk =
{
B[Tm+k−1, Tm+k] ∩ h[σm, σm+n] 6= ∅; B[Tm+k, Tm+n−1] ∩ h[σm, σm+n] = ∅

}
.

Let U0 = U0(m,n) be the event

U0 = {B[Tm, Tm+n−1] ∩ h[σm, σm+n] = ∅},

and let V = Vm,n be the event

{S[τm, τm+n] ∩ ω[σ̃m, σ̃m+n] = ∅}.

Note that

V =
n−1⋃
k=0

(V ∩ Uk).

To prove (6.2) it suffices to prove that for some positive constants c, β,

P[V ∩ Uk] ≤ cbke
−kβ exp{−

1

2
n− εW̃m,n}. (6.3)

For k = 0, 1, this estimate follows immediately from Lemma 6.1 and (6.1) and hence we will assume k ≥ 2.
Note that

W̃m,m+k−2 +Wm+k+3,m+n ≥ W̃m,n − c3.
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Fix k and let E = Em+k+2 be the event as in Lemma 5.1 and write β1 for the β in that lemma. Note that

P[V ∩ Uk ∩E
c] ≤ P[Ec;B[Tm+k+2, Tm+n−1] ∩ h[σm+k+2, σm+n] = ∅]

≤ cP(Ec)P{B[Tm+k+3, Tm+n−1] ∩ h[σm+k+2, σm+n] = ∅}

≤ c exp

{
−eβ1k} exp{

1

2
(n− k)− εWm+k+3,m+n−1

}
≤ c exp

{
−

1

2
n− εWm,m+n−1

}
.

The second inequality uses the conditional independence and the Harnack inequality for Brownian motion
(harmonic functions), and the last inequality uses the trivial inequality Wm,m+k ≤ k. Note that Wm,n+m−1 ≥
W̃m,n − c.

Let F = Fm,k be the event

F =
{
S[τm, τm+k+1] ∩ ω[σ̂m, σ̂m+k+1] = ∅; dist(S[τm+k−2, τm+k], ω[σ̂m, σ̂m+k]) ≤ e15(m+k)/16

}
,

and let

ρ = ρm,k,ω = inf
{
t ≥ τm+k−2 : dist(S(t), ω[τm+k−2, τm+k]) ≤ e15(m+k)/16

}
.

By the discrete Beurling projection theorem (see [10], Lem. 2.3) for the more general version used here) and
the strong Markov property for random walk,

P{S[ρ, τm+k+1] ∩ ω[σ̂m, σ̂m+k+1] = ∅ | ρ ≤ τm+k} ≤ ce
−k/32.

Hence,

P(F ) ≤ cbk exp

{
−k

1

2
− εW̃m,m+k−2 − k

1

32

}
.

However, conditioned on the event E, the event F is independent of

{B(t+ Tm+k+2)−B(Tm+k+2) : t ≥ 0}.

Also

V ∩ Uk ∩E ⊂ F ∩ {B[Tm+k+2, Tm+n−1] ∩ h[σm+k+2, σm+n−1] = ∅}.

Hence from the strong Markov property for Brownian motion and the Harnack inequality,

P(V ∩ Uk ∩E) ≤ cbke
−k/32 exp

{
−n

1

2
− ε(W̃m,m+k−2 +Wm+k+2,m+n−1)

}
≤ cbke

−k/32 exp
{
−n

1

2
− εW̃m+n

}
,

which gives (6.3) and hence proves Lemma 6.1.
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