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OPTIMAL HEAT KERNEL BOUNDS
UNDER LOGARITHMIC SOBOLEV INEQUALITIES

D. BAKRY, D. CONCORDET, M. LEDOUX

ABSTRACT. We establish optimal uniform upper estimates on heat
kernels whose generators satisfy a logarithmic Sobolev inequality (or
entropy-energy inequality) with the optimal constant of K. Off-diago-
nals estimates may also be obtained with however a smaller distance
involving harmonic functions. In the last part, we apply these methods
to study some heat kernel decays for diffusion operators on IR" of the
type A — V - VU for some smooth potential U with a given growth at
infinity.

1. INTRODUCTION AND MAIN RESULT

Let, for example, M be a Riemannian manifold of infinite volume, and let dv
denote its Riemannian volume element. In the study of heat kernel bounds,
various functional inequalities have been used in the past years: Sobolev
inequalities [Varopoulos (1985)] (with n > 2)

17Bjums <€ [ VS0, £ € C ), s)

logarithmic Sobolev inequalities [Davies (1989)] or entropy-energy inequali-
ties [Bakry (1994)]

[ Frog o< 1og(0/|Vf|2dv), feczon, [Fa=1, 1
and Nash inequalities [Carlen et al. (1987)]

IS <l [V sEd, g e c . )

As shown in these papers, these three functional inequalities are all equiv-
alent to a common upper bound on the heat kernel pi(x,y) on M given

by

!
sup pi(,y) < —, t>0. (1.1)

z,yeM tn/
In particular, the inequalities (S), (LS) and (N) are equivalent, for possibly
different C' > 0 but for the same (analytic) dimension n (> 2 in case of (S)).
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392 D. BAKRY, D. CONCORDET, M. LEDOUX

This may also be shown directly [Bakry et al. (1995)]. Actually, the previous
inequalities belong to a whole family of equivalent inequalities of the type

(1-6)/2
HfHTSCHin(/ |Vf|2dv) L FecE(n

with L e 1_s
_:_—I_;v 06[071[7
ros q
and ¢ = 2n/n — 2. The logarithmic Sobolev inequality (LS) corresponds to
the limiting case r = 2 and # = 1 (cf. [Bakry et al. (1995)]).
When M = R"™ with Lebesgue measure dz, the best constants in the three
inequalities (S), (LS) and (N) are known. Namely
nn2/n
(z(n+D1B")

min(n — 2) 7

C =

where |B"| denotes the volume of the unit ball B” in R”, in case of (S)
[Aubin (1982)],
2((n +2)/2)+2/n

nAN|Bn[2/n 7

C =
where A denotes the first non-zero Neumann eigenvalue of the Laplacian
on radial functions on B™, in case of (N) [Carlen et al. (1993)]. For (LS), the
task is easier [Carlen (1991)]. One may simply start with the logarithmic
Sobolev inequality [Gross (1975)] for the canonical Gaussian measure 7,
on R” with density ¢, (z) = (27)~"/? exp(—|z|?/2), that indicates that, for
every smooth function ¢ on R" with [¢?dy, = 1,

/92 log g*dry,, < 2/ IVg|*dy,.
Set f? = ¢, ¢g” so that ff2dac = 1. Then
2 T 2
An integration by parts easily yields
/f2 log f2dz < 2/ IV f|2dz — g log(27) — n.

Changing f into A"/2f(Az), A > 0, which still satisfies the normalization
ff2dac =1, shows that, for every A > 0 thus,

/f2 log f2dz < 2/\2/ IV f|2dz — g log(27) — n — nlog \.

Optimizing in A, we get that for every smooth f on R” with ff2dac =1,

/f2 log f2dz < g log(%/|Vf|2dx). (1.2)
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OPTIMAL HEAT KERNEL BOUNDS 393

Since we started from the logarithmic Sobolev inequality for v,, with its best
constant for which exponential functions are extremal,

is the best constant in the inequality (LS) on R™ (with respect to Lebesgue
measure). To further convince ourselves that this constant is optimal, one
may note that among all functions ® : RT — R such that, for every smooth
function f on R™ with [ f*dz =1,

/f2 log fAdz < @(/ |Vf|2dav)7 (1.3)

2u
#) = 5 log ()
is actually best possible. Indeed, apply (1.3) to f%(z) = A"¢,(Az), A > 0.
Since ff2dx =1, we get

jv(32) 5 <o)

The claim follows by setting u = nA?/4.

Since (S), (LS) and (N) all imply the heat kernel upper bound (1.1), one
may wonder if one of these inequalities with the optimal Euclidean constant
could yield the optimal Euclidean heat kernel bound

the function

(z,y) < 71 t>0 (1.4)
su T . .
x,yepMpt = (47rt)”/2’

It is possible that this is the case for the three inequalities. The main result
of this note is that this is the case with the logarithmic Sobolev inequality
(LS). The proof of this result appears as a consequence of the very pre-
cise study of uniform upper estimates on the heat kernel under functional
inequalities between entropy and energy developed in [Bakry (1994)]. We
present below this result in the context of abstract Markov semigroups of
[Bakry (1994)]. We obtain by the same method the sharp bounds on the
norm |||, , of the heat semigroup on R" as an operator from L into L.
Various comments complement this first section. In particular, we deduce
from our main result that a complete Riemannian manifold of dimension n
with non-negative Ricci curvature that satisfies (LS) with the best constant
of R™ is necessarily isometric to R™. In Section 2, we discuss the off-diagonal
upper bounds on the heat kernel. We namely observe that, again with the
methods of [Bakry (1994)], we may obtain the optimal estimates provided
the distance is replaced by a smaller one that takes into account the struc-
ture of harmonic functions. In the last section, we use the tool of functional
inequalities between entropy and energy to study diffusion operators on R”
defined by Lf = Af — Vf . VU for some potential U. According to the

growth of U at infinity, we obtain various heat kernel estimates that extend
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394 D. BAKRY, D. CONCORDET, M. LEDOUX

and clarify some of the results of [Kavian et al. (1993)]. After this work was
completed, we became aware of the recent paper [Carlen et al. (1995)] by
E. Carlen and M. Loss where the authors obtain optimal estimates for vis-
cously damped conservation laws also relying on Gross’s method and on the
sharp logarithmic Sobolev inequality on R™. They do not consider however
the general implication we establish in Theorem 1.2 below.

We first turn to (1.4) and describe, to begin with, the framework in which
we will formulate most of our results, refering to [Bakry (1994)] for further
details. On some measure space (E & ,u) let L be a Markov generator asso-
ciated to some semigroup P f( ff y)p:(z, y)du(y) continuous in L2 (y).
We will assume that L and IF’ are invariant and symmetric with respect to
p. We assume furthermore that we are given a nice algebra A of (bounded)
functions on F dense in the L?-domain of L, stable by L and P, and by the
action of C'* functions which are zero at zero. (The stability by P, may
not be satisfied even in basic examples such as non-degenerate second order
differential operators with no constant term on a smooth manifold. This
assumption is however not strictly necessary and is mostly used for conve-
nience in order to unify the treatment of a number of various cases that
would require each time a separate standard analysis.) We will mainly be
concerned here with the case when p is infinite. (Although [Bakry (1994)]
is mainly concerned with finite measure spaces, all the results from [Bakry
(1994)] used here immediately extend to arbitrary measure spaces.) We de-
note by || ||, .. 1 < p < ¢ < oo, the operator norm of P; from L”(x) into
L2(p). Note that

1Py oo = suppe(z,y)

where the supremum is understood in the ess sup sense.

We may introduce, following P.-A. Meyer, the so-called “carré du
champ” operator ' as the symmetric bilinear operator on A x A defined
by

Note that I'(f, f) > 0. We will say that L is a diffusion if for every C'*
function ¥ on R¥, and every finite family F' = (fy,..., fx) in A,

LU(F) = VU(F) - LF + VVU(F) - (F, F).

This hypothesis essentially expresses that L is a second order differential
operator with no constant term and that we have a chain rule formula for
L, T(Y(f),9) = V(HT(f,9), f,g € A. By the diffusion and invariance

properties,

Jetn-Lnan= [wore. i fea

One basic operator is the Laplace-Beltrami operator A on a complete
connected Riemannian manifold M. In the preceding setting, the “natu-
ral” measure p is only determined from the Riemannian volume element dv
up to a constant dy = cdv. For A the class, say, of C'>° functions on M
(that is however not stable by the heat semigroup in the non-compact case),
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OPTIMAL HEAT KERNEL BOUNDS 395

L(f, f) is simply the Riemannian length (squared) |V f|* of the gradient V f
of f € A. The previous abstract framework includes a number of further
examples of interest (cf. [Bakry (1994)]). For example, one may consider
L = A+ X where X is a smooth vector field on M, or more general second
order differential operators with no constant term. We may also consider
infinite dimensional examples such as the Ornstein-Uhlenbeck generator on
R" Lf(1) = Af(x) — 2 V ().

In this setting, and following [Bakry (1994)], one may consider general
inequalities between the entropy ff2 log f*dy and the energy JT(f, f)dp of
a function f in A with [f*dp = 1. Assume that, for some ® : RT — R,
for every f € A with [f?du =1,

/Jﬂbgﬁmis¢(/FUme)- (1.5)

In most examples ® is concave, strictly increasing, and of class C'!, which
we assume throughout the argument below. Therefore, for every v > 0,
O(u) < P(v) 4+ D'(u)(u — v), so that (1.5) reads, for every v > 0 and every
f (and by homogeneity),

/f2 log f2dp < <I>’(v)/F(f, f)du—l—\Il(v)/ﬁdu

where U(v) = ®(v) — v®'(v). We thus deal equivalently with a family of
logarithmic Sobolev inequalities. Now, by the diffusion property, changing
f > 0into f?/2 shows that, for every f >0, v >0, p > 1,

[ 108~ [ gramtos [ g

2
p -1
< —P'(v /fp Lfd —I—\Ilv/fpd.
Choose now in this inequality a function v — v(p) > 0, p > 1. According to
[Bakry (1994)], we make then use of the fundamental argument of L. Gross
[Gross (1975)]. Namely, if

V(t) = e " ONP S|y, 20,

the preceding inequality will show that V/ < 0 and V' is non-increasing as
soon as p and m are chosen so that

p2(t) _ (I)I<U<p(t))) 4(1)& and  m'(t) = q’@(p(t))) P (1) ‘

P'(t) p(t) = 1) p(t)?

If this is the case, for every 1 < p < ¢ < o0,
1P, < e (1.6a)

P9 —

=tlpg = /pq (I)’(v(s))4(8 ) and m=my, = /pq \Il(v(s))d—f (1.6b)

s
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396 D. BAKRY, D. CONCORDET, M. LEDOUX

provided we can find a function v for which these two integrals are finite. The
optimal choice, that will be used throughout this work (cf. [Bakry (1994)]),
is given by v(s) = As?/(s — 1), where A > 0 is a parameter.

It might be worthwhile noting that, conversely, the previous bounds on
HPth,q imply that the corresponding entropy-energy inequality (1.5) holds.
This is a consequence of the following proposition.

ProrosiTION 1.1. Under the previous notation, assume that, for some 1 <
p < 0o and every ¢ in some neighborhood of p, ||P4||, , < e™ where t and
m are defined with (1.6b) through some function ®. Then, for every non-
negative f in A,

[ rr1oe e~ [ ragtos [ g
< @) g [ s ) [ g
4(p—1)
The proof reduces to check that if, for f > 0 in A,
Ue) = @ Py fIl .

where t(g) = t, pye, m(e) = My pte, then U'(0) < 0 amounts to the inequal-
ity of the proposition.

The main observation of this work is that the general method leading to
the bound (1.6) yields the optimal heat kernel bound (1.4) if we start from
a (LS) inequality for the generator L (or rather the carré du champ I') with
the best constant of R™

THEOREM 1.2. Assume that for every f in A with ff2d,u =1,

[ Frossran < 5 log(% e f)du)- (1.7)

Then,

1
sup py(z,y) < ( t>0

4rt)n/2’

(where the supremum is understood in the ess sup sense).

If
/f2 log f2dp < % log (C/F(ﬁ f)du)7 /f?du — 1,

for some C' > 0, by a simple change of variables,

C n/2
suppt(%y)é(ne ) , >0

8t

It is worthwhile mentioning that the logarithmic Sobolev inequality (1.7)
of Theorem 1.2 behaves correctly under tensor product. Namely, if two car-
rés du champ I'y and I'y satisfies such an inequality with dimensions ny and
no respectively, then the product operator I'y @ I's will satisfy this inequality
with dimension ny + no. This immediately follows from the classic product
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property of entropy together

397

with the linearized version of (1.7) (the in-

equality leading to (1.2)). This stability property is reflected similarly on
the heat kernel bound as can be seen from the example of the Euclidean

spaces.

Proof. We simply use (1.6) with

n 2u
S(u) == logl — ).
(v) 2 Og(nﬂe)
Hence ¢'(u) = n/2u and
n 2u
Wlu) = 2 10g(nﬂ'e2)'
Then [P, ., <e™ with
n [Tds n
t=t\)=— [ — =—
() 8N Ji s 8
and \ 2\ g
n [~ 2 s s
—mn =21 L5 )48
m=m(}) 2/1 Og(nﬂ'e2 8—1)82

where A > 0. From the first equality, A = n/8t. The second yields

log (
log (
log (

NS N3 NS

nre’

nre’

nmw

ds

g2

27

00 2
/1 log(ss_ 1)

/01 log (r(1 - r))dr

n

)*5

n

)-:
2\

e2)+n

27

with the change of variable r = 1/s. Since A = n/8t,

n 1
which yields
" 1
1P2]]1 00 < €™ = an)"

and the result. The proof is complete.

ad

It is clear that the same proof yields upper bounds for HPth , for every
t>0and 1 <p<q<oo. Namely |||, , <e™ where

t= tp,q(/\)

and

m=my,(A) =

n

)

20 s?

/%_i(l_l)
» 52 8A\p ¢
n 5
nme? s—1

/q
log(
Y4
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398 D. BAKRY, D. CONCORDET, M. LEDOUX

After some calculations very similar to the previous ones, we find that

1 — RO ﬂ(l_l)
(-5 TPE Ly ]F
HPtprﬂ < [l—l)l_% yp (— - g) . (1.8)

qi(1 -2

3 =

It is less clear however why these bounds should be optimal on R". The
next proposition answers this question positively. These bounds (1.8) and
their optimality may also be shown to follow from the work of E. Lieb [Lieb
(1990)] on Gaussian maximizers of Gaussian kernels.

ProposITION 1.3. With the preceding notation, let & be such that (1.5)
holds and || P, = e™ where

00 2
t:/l (I)I(SA—S 1)%

/ ds
m =
5—1

Jor some XA > 0. Then, for every 1 < p < g < 00,

Hl,oo

and

Iy, =
patip,q

q 2
foa :/p (I)I(SA;S 1)%
= [ V(2%

The proof of the proposition is easy. By the hypothesis,

| P

where

and

HPtl,p+tp,q+tq,oo Hl,oo = HPtHI,oo =" = eml’p-l_mp’q—l—mq’“ .

But now also, by the semigroup property,

1Bt 4t gt tac g oo S NP 1P N NP

< eml,p‘l'mp,q Ty, 00

so that it is impossible that [P, [| < e™r< for some p < ¢. This re-
sult clearly applies in the Euclidean case to prove that (1.8) are actually
equalities in this case. It moreover implies the somewhat surprising follow-
ing observation. For every 1 < p < ¢ < r < oo, and every t > 0, there is an
unique s such that

1B, = 115 gl Peslly

p,q

Indeed, since ®'(u) = n/2u in this case, one may define A > 0 by

" As? ds "ds
t=t,,(N)= [ & — :
pr(Y) /p (5—1)4(5—1) 8x ), 2
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OPTIMAL HEAT KERNEL BOUNDS 399

Set then s =t, ,(A) and the claim follows from the preceding argument.

In order to efficiently use Theorem 1.2, it would be worthwhile to know
how to establish (LS) with sharp constant in a Riemannian or abstract set-
ting using curvature-dimension hypotheses. Before inspecting this question
more closely, let us observe the following.

ProprosiTION 1.4. Let M be a Riemannian manifold of dimension n and
non-negative Ricci curvature. If, for every non-negative f in C(M),

75lim (47Tt)”/2Ptf = c/fdv, then the heat kernel p,(x,y) on M satisfies
— 00

C
<——=, t>0.
N

Proof. 1t is an immediate consequence of the Li-Yau inequality [Li et al.
(1986)] for Riemannian manifolds with non-negative Ricci curvature, that
ensures in particular that, if f > 0,

Pf =2

for every t > 0 (where P; denotes the heat semigroup on M). In another
words, at every point, the function ¢*/2P,f is increasing in t. But then,
(47t)"/2 P, f increases to ¢ fdu so that

c
HPtHI,oo < (47Tt)n/2 )

The proof is complete. Note that by the results of P. Li [Li (1986)], M is
isometric to R™if ¢ = 1 (cf. the proof of Corollary 1.6). Observe furthermore
that the proposition similarly applies to generators A —V log p for which the
results of [Li et al. (1986)] are also available (in which case the hypothesis on
non-negative Ricci curvature has to be replaced by the condition I's(f, f) >
L(Lf)?* as explained below). 0

What we actually conjecture, is that if 75lim (47Tt)”/2Ptf = c/fdv for ev-
—00

ery smooth f on a manifold M of dimension n and non-negative Ricci cur-
vature, then the logarithmic Sobolev inequality (LS) holds with its sharp
constant from R™, i.e.

9 c2/n
/f2 log f2dv < g log( ;Te /|Vf|2dv), /f2dv:1.

(Proposition 1.4 would then be a consequence of Theorem 1.2.) We have
not been able to prove such a result although we strongly conjecture that
it must be true. So far, we have only been able to prove the inequality
with a constant that misses the optimal one by a factor 1/log2. We present
this result in the context of the abstract geometry of Markov generators.
Introduce the “iterated carré du champ operator” by setting, for every f, ¢

in A,

202 (f,9) = LI'(f,9) — I'(f.Lg) — I'(g,Lf).
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400 D. BAKRY, D. CONCORDET, M. LEDOUX

We say that L is of curvature R € R and dimension n > 1 if for every f in
A,

D(f,f) 2 RE(F ) 4 (L)

By Bochner’s formula, the Laplace-Beltrami operator on a Riemannian man-
ifold of dimension n and Ricci curvature bounded below by R is of curvature
R and dimension n in the preceding functional sense.

ProrosiTION 1.5. Let L be a diffusion generator of curvature 0 and dimen-
sion n > 1. Assume that, for every f in A with [ fdu=1,

lim sup/Ptflog((47rt)”/2Ptf)du < —a (1.9)

t—00

n
2
for some a > 0. Then, for every f € A with [f*du=1,

[ Frossran < 5 1og(mfea e f)du)-

In particular, if (1.9) holds with o = 1, the inequality holds with the optimal
constant of R”.
Proof. 1t is a simple application of the argument developed in Section 6 of
[Bakry (1994)]. Let f > 0 in A with [ fdu = 1. By the semigroup properties,
for every ¢t > 0,

t

/flogfdu:/PtflogPtfdu—l—/O F(s)ds (1.10)

where

_ [ T(BS P S)
F(s) _/de,u.

Now, in the proof of Proposition 6.7 of [Bakry (1994)], it is shown that,
under the curvature-dimension assumption on L,

2
F'(s) < = F(s)?, s>0.
n

Hence,
f n 2t
/0 Fls)ds < 3 log 1+ = F(0)).

Together with (1.10) and the assumption on the behavior at infinity of P,
the conclusion immediately follows (changing f into f?). The proof is com-
plete. O

What we expect is that actually (1.9) with o = 1 appears as a consequence

of the fact that 75lim (47Tt)”/2Ptf = /fd,u for every f in A. We only checked
—00

so far (1.9) with o = log2. Let f be non-negative (for simplicity) and such
that [fdp = 1.1t is easy to see, by Jensen’s inequality, that, for every ¢ > 0,

/ Py flog((4xt)"? P, f)du = / S P (log((4mt)" > P f)) dp
§/flog((47rt)”/2P2tf)du.
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OPTIMAL HEAT KERNEL BOUNDS 401

In a Riemannian (or concrete) setting, we know (cf. the proof of Proposition
1.4) that (47t)™/?P;f is increasing (to 1) so that in this case

lim sup/Ptflog((47rt)”/2Ptf)du < —g log 2.

t—00

But Proposition 1.5 then only yields

[ Frogsran < 3 log(n—;/w, f)du) [ au=1.

Note finally that (1.9) with o = 1 is satisfied in R”. Let f be non-negative
on R” with compact support and such that [ fdz = 1. Then, for every z in
the support of f and every ¢ large enough,

(47Tt)n/2ptf($) — /e—|x—y|2/4tf(y)dy <1- %/M . y|2f(y)dy

Hence,
log((470)"*Pef (@) < =57 [ lo = RS0
Therefore,
d
Pt<10g<(477t)n/2ptf))($) < — 41t —|e—y—z|? /4t|Z| f( ) W
= [ (1 = ol + 20m) f )y,

(1.9) (with o = 1) follows as ¢ tends to infinity.
We conclude this section with a comparison theorem for Riemannian man-
ifolds with non-negative Ricci curvature.

COROLLARY 1.6. Let M be a complete Riemannian manifold of dimension

n with non-negative Ricci curvature satisfying the logarithmic Sobolev in-
equality (LS) with the best constant of R", i.e.

/f2 log f2dv < — log( /|Vf| dv) /f2dv: 1.

Then M is isometric to R™.
Proof. Denote by V(z,r) the volume of the ball with center 2 € M and
radius r > 0 in M. By Theorem 1.2, for every z,y € M, t > 0,

1

ek (1.11)

pi(z,y) <

In particular, by the results of [Li et al. (1986)], M has maximal volume

growth, that is
lim inf Mnm)

r—00 T

>60>0.
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402 D. BAKRY, D. CONCORDET, M. LEDOUX

Li’s result [Li (1986)] then indicates that, for every z,y,z € M,

: __|B"]
tlig)lov<27\/g>pt(x7y) - (47T)n/2

where we recall that |B™| is the volume of the Euclidean unit ball. Together
with (1.11), we thus see that

liminf Vie,r)

r—00 |Bn|rn

> 1. (1.12)

Now, by Gromov’s comparison theorem (cf. [Carlen (1991)]), for s < r,

Viz,r) < V(z,s)
B = B

and, in particular, V(z,r) < |B"|r" as s — 0. But now, by (1.12), we also
get V(z,s) > |B"|s" as r — oo. Therefore V (z,r) = |B"|r" for every € M
and r > 0. By the case of equality in the volume comparison theorem, M is
isometric to R™. The corollary is established. O

2. OFF-DIAGONAL ESTIMATES

As is well-known [Bakry (1994)], [Davies (1989)], an entropy-energy (or log-

arithmic Sobolev) inequality of the type (1.5) also leads to off-diagonal up-

per bounds on the heat kernel in terms of the distance function defined as

d(z,y) = sup [f(z)— f(y)] (the supremum being understood in the ess
T(f,/)<1

)

sup sense).

Let us recall the general procedure of the method due to E. B. Davies (cf.
[Davies (1989)]). The idea is to derive from an entropy-energy inequality for
the generator L

[ Froe sran < @(/F(f, f)du) [fau=1.

an entropy-energy inequality for L*(f) = e "L(e"f), where ['(h,h) < A,
which depends only on @ and A > 0. This leads, via the method pre-
sented in Section 1, to a uniform upper bound on the kernel p}(z,y) =
pi(z,y)e@ =) of the semigroup P} = e~"P;(e”-) with generator L". We
thus bound in this way p(z,y) by

C(t,8)e)=hw)

Applying this result to Ak, ['(k, ) < 1, and optimising in A and h, leads to
some bound
pe(z,y) < SV (td(z,y))

Theorem 5.3 of [Bakry (1994)] yields an explicit form of the function V' in
terms of the entropy-energy function ® of L. Precisely,

pil,y) < VU for every t < T(d(z, y)),
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OPTIMAL HEAT KERNEL BOUNDS 403

where the functions V and T are parametrized by 7 and # in the following
way: if 7 is defined by

then
T

(d(z,y)) = %/TOO \/%d&

and if 6 is defined by

IR (O
=) et

then

_ /8 o 6—1 [~ U(s) .

(where we recall that ¥(s) = ®(s) — s®'(s)).
Let us use these bounds with the optimal entropy-energy function on R"”

O(u) = g log(Q—u)7 u > 0.

nmwe

After some computations, we get that

s () (152 (4522,

Unfortunately, this does not give the optimal bound on R™. In order to
improve this estimate, we introduce a new distance called the “harmonic”
distance defined by

d(z,y) = sup  [f(z) = f(y)]:

(s, f)<1,L=0

Note that d¥ = d on R™ (while d¥ = 0 on a compact Riemannian manifold).

PROPOSITION 2.1. Assume we have an entropy-energy inequality (1.5). Then

d"(x, y)Q)

pe(,y) Sexp(m— n

where t and m are defined in (1.6b) (assumed to be finite).
Proof. The proof follows the same lines as the proof of (1.6a). Fix h with
Lh = 0 and I'(h,h) < 1 and consider P} = e~ P,(e*"-) whose generator
is given by L (f) = e~ L(e* f), A > 0. Then, for f > 0,

_/fp—lLAhfdlu:/F<e—Ahfp—17eAhf>dlu
= [r0 et Mp-2) [ 0 b
—A2/pr(h,h)du.
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The second term on the right-hand-side is equal to

p;Q/F(fp7h)dM: _,\—/prhdu_O

—/fp‘lLMfdu > —/fp‘lLfdu— /\2/fpdu.

Therefore, if, for every v > 0,

[ rr10g g = [ gramog [ g

2

< =00 g [ s v [

R N

2

< —¥'(v) ﬁ / fp‘lLMfdu

+( (v) + A% )/fpdu

According to the sketch of proof in Sectlon 17 this leads to the upper bound

so that

then

1B e < €7

where ¢ and m are given by (1.6b). Equivalently,

pila, ) < m I =h],

Optimizing in A > 0, and then in &, leads to the claim. Proposition 2.1 is

thus established. O
As a consequence of this proposition, if

O(u) = — log

n ( 2u
nmwe

) u >0,

we get that

1 d"(z,y)’
[ — - 7
pt($7y) = (47Tt)n/2 exp( At )

for every t > 0 and z,y, a formula that is of course optimal on R™. It would
be worthwhile to study further examples where d = d, as well as the
various bounds which may similarly be deduced through distances involving
harmonic functions.

Note also that if we are looking for a situation such that (1.5) holds
together with [|P4[|; ., =e™ in (1.6), then

d"(a, y)Q)

Pt(%y)épt(%w)exp(— .

for every t > 0 and z such that p;(x,z) = sup, pe(u, u).
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3. EXPLICIT BOUNDS FOR SOME LAPLACIAN
4+ POTENTIAL OPERATORS IN EUCLIDEAN SPACE

In this last section, we investigate heat kernel bounds for operators on R”
given by Lf = Af — VU - Vf where U is some smooth function whose
growth at infinity will determine upper estimates on the heat kernel for
small times. The invariant measure is du = e~Ydz (where dx is Lebesgue
measure on R") and T'(f, f) = |V f|>. The prime example is U(z) = |z|?
which is associated to the Ornstein-Uhlenbeck operator. This operator is
however only hypercontractive and not ultracontractive (i.e. sup pi(z,y) is
unbounded). We will actually be concerned with functions U that growth
faster than |z|* at infinity. Although we work for simplicity with the Laplace
operator A on R”, the results would hold similarly for an arbitrary generator
satisfying a logarithmic Sobolev inequality (1.5) in the abstract setting (and
with |VU|? replaced by I'(U)).

The next proposition transfers the optimal (LS) inequality for dz into a
logarithmic Sobolev inequality for u. It is the key argument in the applica-
tions.

ProprosITION 3.1. For every smooth f on R™ with ff2d,u = 1 and every
v >0,
)+ el

[2AU (z) — |[VU|*(2)] + U(ac)).

[ 10 P < 5 (10

where

wev

Proof. The proof is easy. We start with inequality (1.2)

2
/g log g?dx < — log( /|Vg| dw)

where fg2dx = 1. By concavity of the log function, for every v > 0,

/g log g?dx < — ( )
Set now ¢? = f?e~Y. Then ff2d,u =1 and
2 2 1 2 2
[1vatae= [ s2au- [ 1or-Svans g [ 2v0RGR

)

/f2 — 24U — [VU] —I—U)du.

It follows that

[ 108 £ < g(

Proposition 3.1 is established. O
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Assume now we can find a concave increasing function ® : RT — R such
that for every u > 0 there exists v > 0 with

2u
nmwev

g(logv -1+ ) + c(v) < (u). (3.1)

Then, by Proposition 3.1,

[ 108 o < @(/ IVf|2du)

for every smooth f on R™ with [f?dp = 1. We may then make use of the
general theory recalled in Section 1 to obtain bounds on the heat kernel of
L. Rather than to state a general result, let us inspect a number of examples
drawn from [Kavian et al. (1993)] (see also [Rosen (1976)]).

Take, to start with, U(z) = |z|*, @ > 2. Then, we may take

c(v) < Co/e=D 0y >,

where C' > 0 only depends on n and o and may vary from line to line below.
The function

®(u) =C(1+ ua/(2a_2)), u >0,

will then satisfy (3.1). As a consequence, the bound (1.6) yields, for every
t>0,

C
1Pelly oo < exp(m)-

Similarly, if U(z) = |z|*(log(1 + |z|*))®, @ > 1, we obtain

C
af(a—1
HPtHLoo < exp [Ct /( )exp(itl/(a_l))].

An interesting limiting case is obtained when o = 1 in the last example.
It is known from [Kavian et al. (1993)] that the associated semigroup is
not ultracontractive, but what is called immediately hypercontractive (i.e.
|1Plly o = o0 but |||, , < oo for every ¢t > 0,1 < p < g < oo) . This is
described by the bound

/ 1 Ct? Clogr
HPtqugexp[ 1—;10g2rexp( ; )]

where ¢ > 2, r = 4¢?/(q — 1), which is obtained by the same method.

ACKNOWLEDGEMENT
We thank L. Saloff-Coste for helpful comments leading to Corollary 1.6.

ESAIM: P&S, DECEMBER 1997, VoL. 1, pp. 391-407



OPTIMAL HEAT KERNEL BOUNDS 407

REFERENCES

AuBIN, TH. (1982), Nonlinear analysis on manifolds. Monge-Ampére equations, Springer.

Bakry, D. (1994), L’hypercontractivité et son utilisation en théorie des semigroupes,
Ecole d’Eté de Probabilités de St-Flour, Lecture Notes in Math. 1581 1-114,
Springer.

Bakry D., Cournon T., LEDOUX M., SALOFF-COSTE L. (1995), Sobolev inequalities in
disguise, Indiana J. Math. 44 1034-1074.

CARLEN E. (1991), Superadditivity of Fisher’s information and logarithmic Sobolev in-
equalities, J. Funct. Anal. 101 194-211.

CaARLEN E., Kusuoka S., STRoock D. (1987), Upperbounds for symmetric Markov tran-
sition functions, Ann. Inst. H. Powincaré 28 245-287.

CARLEN E., Loss M. (1993), Sharp constant in Nash’s inequality. Duke Math. J., Inter-
national Math. Research Notices 7 213-215.

CarRLEN E., Loss M. (1995), Optimal smoothing and decay estimates for viscously
damped conservation laws, with applications to the 2-D Navier-Stokes equa-
tion, Duke Math. J. 81 135-157.

CHAVEL 1. (1993), Riemannian geometry : a modern introduction, Cambridge Univ. Press.

Davies E. B. (1989), Heat kernels and spectral theory, Cambridge Univ. Press.

Gross L. (1975), Logarithmic Sobolev inequalities, Amer. J. Math. 97 1061-1083.

Kavian O., KERKYACHARIAN G., ROYNETTE (1993), Quelques remarques sur I’hypercon-
tractivité, J. Funct. Anal. 111 155-196.

L1 P. (1986), Large time behavior of the heat equation on complete manifolds with non-
negative Ricci curvature, Ann. Math. 124 1-21.

L1 P., Yau S.T. (1986), On the parabolic kernel of the Schrodinger operator, Acta Math.
156 153-201.

LieB E. (1990), Gaussian kernels have only Gaussian maximizers, Invent. math. 102
179-208.

RoseEN J. (1976), Sobolev inequalities for weight spaces and supercontractivity, Trans.
Amer. Math. Soc. 22 367-376.

Varopouros N. (1985), Hardy-Littlewood theory for semigroups. J. Funct. Anal. 63
240-260.

D. BAKRY, M. LEDOUX: DEPARTEMENT DE MATHEMATIQUES, LABORATOIRE DE STA-
TISTIQUE ET PROBABILITES ASSOCIE AU C.N.R.S., UNIVERSITE PAUL SABATIER, 31062
TouLousk, FRANCE. EMAIL: bakry@cict.fr, ledoux@cict.fr

D. CoNCORDET: UNITE DE BIOMETRIE, ECOLE VETERINAIRE DE TOULOUSE, 31067
TOULOUSE, FRANCE ET DEPARTEMENT DE MATHEMATIQUES, LABORATOIRE DE STATIS-
TIQUE ET PROBABILITES ASSOCIE AU C.N.R.S., UNIVERSITE PAUL SABATIER, 31062
TouLouse, FRANCE. EMAIL: concorde@cict.fr

ESAIM: P&S, DECEMBER 1997, VoL. 1, pp. 391-407




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /FRA <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


