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Abstract : Let G be the semi-direct product of JR*+ and Md and // a 
probability measure on G which is absolutely continuous with respect to the 
right Haar measure. Let p,*n be the nth power of convolution of //. Under 
quite general assumptions on fi, one may prove that there exists p G]0,1] 

such that the sequence of Radon measures (——/**n)n>i converges weakly to 

a non-degenerate measure when n goes to +00. 

Resume : Soit G le groupe produit semi- direct de M*+ et de Md et u une 
mesure de probabilité sur G absolument continue par rapport à la mesure de 
Haar à droite. On note p,*n la ntème convolée de /x. Sous des hypothèses as
sez générales sur //, on établit l'existence d'un réel p €]0,1] tel que la suite 

n 3 / 2 

de mesures de Radon ( — ~ l i * n ) n > \ converge vaguement vers une mesure non 

nulle lorsque n tend vers +00. 

Key words : Random walk, local limit theorem, factorisation, ratio-limit 
theorem 
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I Introduction 

Fix a norm ||.|| on Md,d> 1, and consider the connected group G of transformations 

g: Rd -> Md 

x i—• g.x = ax + b 

where (a, 6) G J F + x Md. 
Let a (resp. b) be the projection from G on JR*+ (resp. on Md). Consequently, any 
transformation g G G is noted (a(</),6(#)) (or # = (a, 6) when there is no mistake) ; for 
example, e = (1,0) is the unity in G. 

The group G is also the semi-direct product of and Md with the composition law 

V<7 = (a, 6), V<7' = (a', 6') € G gg' = K , a&' + 6). 
Recall that G is a non unimodular solvable group with exponential growth and let mp 

be the right Haar measure on G : rap (da db) = . Note that if d = 1, the group G is 
a 

the affine group of the real line. 
Let fi be a probability measure on (?, fi*n its nth power of convolution, ft the image of 

fx by the application g = (a, 6) i -» g = ( - , - ) and /J the image of // by the application 
a a 

g h-f ( j T 1 . If A is a Radon measure on JRd, // * A denotes the Radon measure on Md defined 
by fi * A(y>) = / <p(g-x) t*(dg) \{dx) for any continuous function tp with compact 

JGxRd 

support from Md into JR. Lastly, Sx is the Dirac measure at the point x. 
In the present paper, we prove under suitable hypotheses that the probability n satisfies 
a local limit theorem : there exists a sequence (a n ) n >o oi positive reals, depending only 
on the group when fx is centered, such that the sequence (an //* n) n>o converges weakly 
to a non-degenerate measure. This problem has been already tackled by Ph. Bougerol in 
([3]) where he established local limit theorems on some solvable groups with exponential 
growth, typically the groups NA which occur in the Iwasawa decomposition of a semi-
simple group. The affine group of the real line is the most simple example of such a group. 
In this particular case, Ph. Bougerol proved that, for a class R of centered probability 
measures // satisfying some invariance properties, the sequence (n 3 / 2 /z* n ) n > 0 converges 
weakly to a non-degenerate measure on G. His method is roughly the following one : if 
satisfies some invariance properties, it can be lifted on the associated semi-simple group 
in a measure m M (not necessary bounded) which is bi-invariant under the action of a 
maximal and compact sub-group. In a second step, using theory of Guelfand couples, he 
showed that the measure raM satisfies a analogous of the local limit theorem established 
in ([2]). The aim of the present paper is to obtained such a local limit theorem when the 
measure /x does not belong to the class R. 
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This work is connected to the ones of N.T. Varopoulos, L. Saloff-Coste and T. Coulhon 
([12]) where there are some estimations for the heat diffusion kernel on a Lie group that is 
not necessary unimodular. There are also closed relations with the study of the asymptotic 
behavior of some processes in random environment ([1]) . 

We have the 

Theorem A 
Let f/, be a probability measure on G satisfying the conditions 

Al) \i has the density (f>^ with respect to the Haar measure mr> on G 

A2) there exists a > 0 such that I (exp(a\Log a(g)\) + \\b(g)\\Q) fi(dg) < +oo 
J G 

AS) f Log a(g) p(dg) = 0. 
JG 

/""/* da 

A4) there exist f3,q €]l ,+oo[ such that J WJ 4>l(a,b)db — < +oo. 

Then, the sequence of finite measures (n3/2/z*n)n>o converges weakly to a non-degenerate 
Radon measure v0 on G. 

Using L. Elie's results ([5]), one can prove, under additionnal assumptions on that the 
double equation / /*i / = i/*// = i/ has one and only one solution (up to a multiplicative 
constant) in the space of Radon measure on G ; more, it is possible to obtain the explicit 
form of this solution. Using a ratio-limit theorem due to Y. Guivarc'h ([9]), the measure 
I/Q of theorem A may be identified, up to a multiplicative constant. More precisely, we 
have the 

Theorem B 

Suppose that hypotheses of theorem A hold and assume the additionnal conditions 

Bl) the density <f>^ of fi is continuous with compact support 

5 2 ) ^ ( e ) > 0 

Then, the measure UQ of theorem A may be decomposed as follows 

vo = (Sx ® A ) * ( — ® A x ) 
a 

where A (resp. \\) is, up to a multiplicative constant, the unique Radon measure on Md 

which satisfies the convolution equation \i * A = A (resp. JT* A i = \ \ ) . 
More, for any positive and continuous function <p,<p ^ w ^ compact support in G, we 
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have uo(<p) > 0 and 

When the probability measure p is not centered (that is Log a(g) p(dg) ^ 0) we use a 
classical method which consists to operate by a relativisation in order to bring back the 
study to the centered case. One can then easily obtain the 

Theorem A' 
Let ft be a probability measure on G satisfying the conditions 

Al) fi has the density <j>ß with respect to the Haar measure mu on G 

A'2) there exists a > 0 such that for any t € M / (exp(t\Log(a(g)\) + \\b(g)\\a) K^g) < +oc 

J G 

A'3) / Log a(g) p(dg) ^ ¿ 0 , p{g € G : a(g) < 1} > 0 and p{g € G : a(g) > 1} > 0. 
JG 

Then, there exists a unique t0 G M and p = p(p) €]0,1[ such that 

lGa{g)^ p(dg) = jàj^igf K*9) = PU*)-

More, if there exist q € ] 1 , +oo[ and ß €]1—*o5 +oo[ such that J ^J^^(a> )̂̂ & < + 0 0 ' 
nz'2 

the sequence (——/^* n)n>i converges weakly to a non-degenerate Radon measure VQ on G. 

Let us now get briefly the ideas of our approach. Fix a probability space ( f i , ^ , JP) 
and let gn = ( a n , 6 n ) , n = 1 , 2 , b e G-valued indépendant and identically distributed 
random variables of law p defined on 2 P ) . Note Tn the cr-algebra generated by 
the variables < 7 i , # 2 r ' * >5n- F° r a n Y ^ > 1 , put G* = gi---gn = ; a direct 

n 

calculation gives A" = aia 2 • • • an and 5 " = ^ a xa 2 • • • a^-ifr*. Lastly, introduce the 

variable M n = rnax(0, Lo<jf A\,Log A\ • • •, Logr A"). 

Put >t = {# € G : a(g) > 1} and consider the transition kernel P 4 associated with the 
couple ^4) and defined, for any Borel set B C G, by 

€ G P ^ , 5 ) = / lAcnß(gh) p(dh). 
JG 

In the same way, put A1 = {# € G/a(g) > 1} and let P4/ be the operator associated 
with the couple (/z,.A'). Following Grincevicius's paper, we are led to what we call the 
Grincevicius-Spitzer identity ([8]): 
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for any continuous function <p with compact support in G. This formula allows to bring 
back the study of the asymptotic behavior of the sequence (fi*n)n>i to the one of the 
powers of the operators P4 and It is the first main idea of this paper. 

The second main idea relies on the Grenander's conjecture, proved by Grincevicius in 

([8]) on a weaker form : if / Log a(g) fi(dg) = 0 and d = 1, the asymptotic distribution 
JG 

of the random variable \Log B%\ is the same as the asymptotic distribution of Mn. One 
may thus expect that the asymptotic behavior of the sequence (</n)n>o is quite similar to 
the one of the sequence (A*, e#p(M n )) n > 0 ; we will justify this in section 3. 

Section 2 is devoted to the study of the behavior as n goes to +00 of the sequence 
(Log j4£, M n ) n >o and in section 3 we establish theorems A and B. 

II A preliminary result 

Troughout this section, Xi, X2 • • • are indépendant real valued random variables of law p 
defined on a probability space (fi,,F,iP). Let (Sn)n>0 be the associated random walk on 
JR starting from 0 (that is So = 0 and Sn = X\ + • • • + Xn for n > 1) ; the law of Sn is 
the nih power of convolution p*n of the measure p. Note Tn the a-algebra generated by 
the variables X21 • • •,X n^n > 1. Lastly, put Mn = max(0,Si, • • •, Sn). 
The study of the asymptotic behavior of the variable Mn is very interesting since seemingly 
many problems in applied probability theory may be reformulated as questions concerning 
this random variable. A few papers have been devoted to this subject ; in the present 
section we find the behavior as n goes to +00 of the probability P[[Mn € [a, /3]] n [Mn — 
Sn € [7,£]] where X [7,6] C jR+ x Following Spitzer's approach ([11]), we 
have to introduce the two following waiting times T+ and T_ with respect to the filtration 

(^»)»>i : 
T+ = inf{n > 1 : Sn > 0} and T_ = inf{n > l : S n < 0}. 

The variable T+ (resp. TL) is classicaly called the first ascending (resp. descending) 
ladder epoch of the random walk ( 5 n ) n > 0 ([H]> [6]). We note px+ (resp. p^S) the law of 
the variable Sr + (resp. Sr_). 

In the second part of this section, we show that the study of the sequence (M n , Mn — Sn)n>i 
is closely related to the one of the sequences (E[[T+ > n]]<p(Sn)])n>i and (J£[[T_ > 
n l î vK^rODnM for a suitable bounded Borel function <p on JR. The first part of this section 
is devoted to the study of these last sequences. 
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II-a A local limit theorem for a killed random walk on a half 
line 

In this part, we study the behavior as n goes to +00 of the sequence > n]; <p(Sn)])n>i 
; the proof goes along the same lines for the sequence (E[[T- > n]; <p(Sn)])n>i. 

Introducing the operator i^o,+oo[ defined by 

€ M I)oi+oo[<p(x) = l]_oo,o](aO / l]-oo,o](* + V)<fi(x + y)p(dy), 
J MX 

we obtain Vn > 1 E[[T+ > n];(p(Sn)] = ^]o,+oo[(/?(0)- This section is thus devoted to the 
asymptotic behavior as n goes to +00 of the nth power of the operator i^o,+oo[-

The following result is already well known ([10]). The proof given here is quite different 
from the classical one and is based on the following idea : we prove, under suitable 

+00 

hypotheses on p, that the function z »-+ ^ P*n(<p)zn m a Y be analytically extended on a 
n=0 

certain neighbourhood of the unit complex disc except the pole 1. So the approximation 
of this function around its singularity may be translated into an approximation of its 
Taylor coefficients. We have the 

Theorem II. 1 Suppose that 

i) the law p of the variables Xn^n > 1, is absolutely continuous with respect to the 
Lebesgue measure A on JR. 

ii) the characteristic function t —» p(t) = E[ettXl] belongs to JLi(JR) 

Hi) a1 = E[Xl\ < +00 and E[XX] = 0. 

Then, for any continuous function <p with compact support on JR~, we have 

Um n 3 / 2 E[[T+ > n] ; <p(Sn)} = / <p(z) UT_ * X.(dx) 
n-++oo (JV27T . / J R " X J R ~ 

where A _ denotes the restriction of the Lebesgue measure on JR~ and UT„ the o-finite 
•foo 

measure X^(PT_)* n -
72=0 

Proof - Using relations P5(a) and P5(c) in Spitzer's book, page 181 ([11]) (see also [6], 
chap. XVIII), one obtains 

-foo -foo 

Vz € C , \z\ < 1, Va > 0 £ znE{[T+ > n] ; e° 5"] = £ ®[*T- exp{aST_)]n 

n=0 n=0 
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+<x> +00 0 

and so J2 EW+ > n ] Î
 e*Sn] = J2Ei exp(aST„)]n = / eax UT„(dx) 

n=0 n=0 J ~ ° ° 
(Note that —00 < JE[Sr_] < 0 which ensures that the above series converge ([6],[11]). 
Consequently, we have 

/

0 ro pax 

UT„*\-{dx) = / —UT_{dx) 
-00 J—00 CL 

+00 aSn 

= £ > [ [ T + > n ] ; î - ] . 
n=0 ° 

Thus, to prove theorem 2.1, it suffices to show that 

Va > 0 lim n 3 ' 2 E[[T+ > n) ; e o S »] = ~ 4 = £ ^[[3+ > " ] 5 — ]• 

Note that 2E[[r+ > n] ; e o 5 n ] is the nth Taylor coefficient of the function <j>a defined by 
+00 

V* G C , |*| < 1 <f>a(s) = £ zn®[[T+ > n] ; eaS»]. 
n=0 

Recall the Spitzer-identity ([ll],P5(c),p.l81) 
4-00 n 

V* € C , |*| < 1 <£a(*) = exp(A(z)) with A(*) = Y] —E[[Sn < 0] ; e a 5 " ] . 

By the local limit theorem on JR, one can easily see that <j)a has a continuous extension on 
the closed unit complex disc. We will prove that in fact <f>a may be analytically extended 
on a neighbourhood of the unit complex disc containing the unit circle except the point 1. 
We next translate the behaviour of <j>a around the point 1 into an asymptotic equivalent of 
its nth Taylor coefficient at 0. Since this method is of indépendant interest, we state it in 
the following general lemma, inspired by ([?]), and which may be compared to the classical 
Darboux method, or to the Tauberian theorems, although the conditions of validity differ 
appreciably. 

Lemma IL2 Let G{z) be analytic in a domain 

Dp# = {*/* ^ 1, |*| < py \arg(z - 1)| > 9 with p>l and 0 < 6 < 

Assume that 

i) the function y/1 — z G{z) is bounded on DPie 

ii) there exists C > 0 such that lim y/1 — z G(z) = C. 
z6DPte 
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Then, the nth Taylor coefficient gn ofG(z) at the origin admits the asymptotic equivalent 

C 
gn ~ .— as n —> +00. 

\fnri 

Hence, to prove theorem 2.1, we have to extend analytically the function </>a on a set Dpj. 
The Fourier inversion formula leads to 

+00 

V*-€ C , \z\ < 1 A\z) = £ znE[[Sn+1 < 0] ; eaS^} 
n=0 
+00 -o 

= £>n / eax(j><n^\x)dx 
n=0 J ~ ° ° 
+ OO 1 r 

= £ * n / eax(^-J pln+1\t) e-itxdt) dx 

where ha denotes the Fourier transform of the function eax
 l]-oo,o] (i-e. ha(t) = ——r)* 

a + ^ 
This new expression of A' will allow us to extend analytically the function <j>a. We have 
the 

Lemma IL3 Let f be an integrable and continuous function on M. Then, there exist 

p > 1 and 0 G]0, —[ such that the function 
¿i 

z „ f -M—dt 
Jul — zp(t) 

is analytic on the region DPf$ defined in lemma 2.2. 

To apply lemma 2.2, we shall need the 

Lemma IL4 Let f be an integrable, continuous and bounded function on M and Dp¿ 
the set described in lemma 2.3. We have 

l i m ^ I r ^ * - — / ( « ) • 

JR 1 - zp(t) (T 

Setting in lemmas 2.3 and 2.4 f(t) = p(t) ha(t), we obtain 

lim VT^z <j>'a(z) = —T=E«[P+ > n] ; —]. 

file:///fnri
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Moreover, without loss of generality, one may suppose that the function z i-> \ / l — z <j>f

a{z) 
is bounded on DPie (if it is necesssary, one can modify the values of p and 6). The claim 
follows readily from lemma 2.2 and the well-known relation between the Taylor coefficients 
at 0 of <f>a and the ones of <f/a. • 

We now prove lemmas 2.2, 2.3 and 2.4. 

Proof of lemma 2.2 - The nth Taylor coefficient can be computed using Cauchy's residue 
theorem as d 

where the contour T simply encircles the origin and is inside the domain of analyticity of 
the function G. For fixed a > 0,1 < r < p and 0 < e < r — l ,we take the specific contour 
(depicted on Fig. 1) T = r£,a,r = T ° a U r^> r U r»,r, denned by 

It* = {z/\z-l\ = e,\arg(z-l)\>a} 
Tier = - 1| > e, |*| < r, \arg{z - 1)| = a} 
Tl,r = {z/\z\ = r,\arg(z-l)\>a} 

Figure 1 - Diagram showing the contour T€t0ttT 

Q 
The function F(z) = G(z) - is analytic on DPig ; thus, for \z\ < 1, we have 

v 1 — z 
+°° 1 r dz 

F(z) — ]C / n 2 " / » = ~r~ / F(z)-£+i- Note that this last integral does not 
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depend on a > 0, r G]l, p[ and c €]0, r — 1[. If we put M = sup | \ /1 — zF(z)\, we obtain 

| _ L / F(z)—\ < MV~C 

| _ L / F(z)—\ < M 

On the other hand, we have 

| J - / F(z)~^j\ < - SUP \VT=1F(Z)\ f+°° - p ; * — 

v n * e r } i a i r 

Thanks to these inequalities, one can prove that lim \fn fn = 0. By hypothesis ii), for 

every 6 > 0, one can choose r > 1 such that sup — zF{z)\ < 6 ; we thus have for 

| * - l |<r - l 
n > 1 

M V i M K6 
| / n | - (1 - c)»+i ^ r « x / T ^ 7 ^ ' 

2>K S 
Let e goes to 0 ; for n large enough, one obtains | / n | < — 7 = - , which gives the expected 
convergence. 

1 + °° 2n ! 1 + e(n) 
Now, we have , = a n 2 n with a n = i , ' = .— with lim c(n) = 0. Putting 

V I ~ 2 ^ 4 n ( n ! ) 2 V7Tn n-++oo 

everything together, we have thus shown that 
Q 

£n = fn + Can ~ —= as n - > +00. 

• 

Proof of lemma 2.3 - The variable X\ being centered, we have 

№ = 1 - y * 2 + 

where 8 is a bounded and continuous function vanishing at 0. Then -77-T = 1 + x(i) + iy(t) 
P \ ) 

with x(t) > 0 for t 7^ 0 quite small and lim = 0. Thus, there exist 77 > 0, p > 1 and 

0 €]0,^[ such that 

Vz£Dp<e,Vte]-r},V[ \l-zp(t)\ >0 . 
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It follows immediately that the function z k-> / . .dt is analytic on D ^ . 
./-77 1 — zp{t) y i 

On the other hand, since p is absolutely continuous with respect to Lebesgue measure on 
iR, we have sup \p(t)\ < 1 ([6]), which ensures that the function z / -—ffi^ dt 

t,\t\>v # # •/[-n,nlc 1 ~ *p(<) 
is analytic on a complex disc of radius pv > 1. The proof of lemma 2.3 is complete. • 

Proof of lemma 2.4 - Let Dpj be the set described in lemma 2.2 and recall the local 
expansion of p(t) around the origin : 

p(t) = P(t) + t26(t) 

<r2t2 

where P(t) = 1 — and 6 is a continuous function vanishing in 0. It is well known 
2 3 

that 6 is bounded by -cr 2 ([4]). To prove lemma 2.4, we need a series of inequalities. 

Key inequalities There exist C\, C25C3 in M*+ and Co in ]0,1[ such that, for any 
e €]0, e 0[, a € [0,2w — 0] and u € 1R, we have 

, ) | 1 _ ( 1 + ^ ) P ( ^ „ ) | ^ C i u 2 _ i 

c ¿1 

1 - ( 1 + u) 7 <rV 
ni)\ 1 > O a - € g 

iv) If A is a strictly positive real with P[\Xi\ < A] > 0, one can choose C3 > 0 such 

Mai, / o r any u € [—7-7=, -3-7=]' w e h a v e I I - ^ 3 U ~ L 

A y 6 . A y £ 6 

Proof - i) We have 

2 2 

| l - ( l + e e » " ) P ( v M l = e | - e i o + ^ - ( l + e O | 

> e ( ^ ( l - e ) - l ) 

ii) A similar argument gives 

l l - ( l + *c f a )P(yfr.) | > , f V _ c « , | _ e ^ 
6 2 2 

f a 2 u 2 

|sin0| — e——- if |sina| > |sin#| 
— (J u 

I cos 0| — € otherwise 
^ LI 
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Inequality Hi) may be obtained combining assertion ii) and the following local expansion 

|1 - zp(y/e u)| = ¡1 - zP(y/e u) - zt2u28{yfe u)\ 

iv) If one substitute P for p, one obtains 

| l - ( l + a f a )p (v^u) | > \1 - i>(V~e u)\ - e\p(y/~e u)\ 

> E[l - co^x/e uXi] - e 

> JB[l n j f l |<A](l - cosy/t uXi)] - c with JP[|Xi| < A] > 0 

> k eu2 E^x^^X2] ~ c where k is a positive constant 

The four equalities are thus established. • 

We are now able to give the proof of the lemma 2.4. Fix A > 0 such that JP[|Xi \ < A] > 0 
; since inf |1 — p(t)\ > 0, one may easily see that 

z e D P , 0 

\t\>A 

lim V T ^ I / / ( *L<ft = 0 . 

/ (*) 

To find the behaviour of / i, .dt as 2 —> 1, we shall use the following decompo-
J-A 1 — zp[t) 

sition 

Setting £ = \/e u and 2 = 1 + ee t o r with 9 < a < 2ir — 0 and using the local Taylor 
expansion around 0 of the function p, we obtain 

V T ^ I I(z) = e l-r-(1 + ce*«) / / ( V e «)u2^(Viu)V'£(u)du 

e 2 

with 0e(u) = ( 1 _ ( 1 + e e , a ^ ( ^ u ) ) ( i _ (i + ee^)P(y/-eu)y 

Let us use the "key inequalities". Put tj = m a a ; ( ^ " ' ^/^"^ ' S°' W e ^ a v e 

Vu € iR, |w| > rj Cxu
2 - 1 > 1 and C3U2— > 1 

which implies Vw € JR, |w| > rj if>e(u) < — ^ — z — 1 — — . 

( C i t i 2 - 1 ) ( C 3 U 2 - 1) 

On the other hand, one can choose small enough such that 

Ve< eo,Vu C 2 - e 7 - ^ - > ^ . 
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Consequently, since / and 6 are bounded and Jim£(f) = 0, we obtain, by the dominated 
convergence theorem 

lim z~i \/l — z I(z) = 0. 

To obtain the claim, it suffices to prove 

lim v T ^ I J(z) = — / ( 0 ) . 
Z-+1 (J 

z€DPte 

Indeed, replacing z with 1 + ee%a in the integral J(z) we have 

W u V ( 1 + £ e J O ) _ e i < t 

By the dominated convergence theorem, this last expression converges as e goes to 0 to 

the limit / (0 ) / — j - j uniformly on [#,27r — 0]. A direct calculation gives 

du _ 7 r \ / 2 

J-oo ti-*<r̂  f . a ere* 2 

The proof of lemma 2.4 is complete. • 

II-b A local limit theorem for the process (M n , Mn - 5„)„>o on 
U + x M+ 

We are now able to state the following theorem concerning the behaviour as n goes to +00 
of the sequence (E[<p(Mn,Mn — 5 n ) ] ) n > i where <p is a continuous function with compact 
support on JR+ x JR+. 

Theorem II. 5 Suppose that 

i) the law p of the variables Xn,n > 1, is absolutely continuous with respect to the 
Lebesgue measure on № 

ii) the characteristic function 1i-* p(t) = E[ettXl] belongs to JLi(iR). 

Hi) a2 = E[X2] < +00 and E[XX) = 0. 
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Then, for any continuous function (p with compact support on x M+, we have 

l i m n 3 / 2 E[p{Mn,Mn-Sn)\ = — = / / <p(x,y)\+*UT+{dx)UT_(<ly) 
n-^+oo ay/zTr Jo Jo 

1 y+oo r-foo 
+ —j= / / ¥>(«,y) ^ t + W A+ * UTMV) ay 2tt Jo Jo 

where A+ is the restriction of the Lebesgue measure on M+, C/y+ = J^(PT±)*N and 
n=0 

-f oo 
the image by the map x i—• —x of the potential UT_ = y^(pr , )* n -

n=0 

Proof - In his book, F. Spitzer introduces the variable Tn denoting the first time at which 
the random walk (Sn)n>o reaches its maximun Mn during the first n steps. Recall that 
Tn is not a stopping time with respect to the filtration (Tn)n>i ; nevertheless, it plays a 
crucial role in order to obtain the following identities 
V G C , | z | < l , V a , 6 > 0 

-foo -foo -f oo 

£ znE[e-aM" e-b(Mn-s")} = (£ znE[[T. > n) ; e-aSn})(J2 znE[[T+ > n] ; ebSn}) 
n=0 n=0 n=0 

•foo -foo 
£ znE[[T- > n] ; e" a 5 "] = £ znE[e-aS^)n 

n=0 n=0 

•foo -foo 
£ znE[[T+ > n] ; ebSn] = £ z n JB[e 6 5 r - ] n 

n=0 n=0 
foo 

„ v r+oo y+oo 
So X) ^ n e - 6 ^ " 5 ^ ] = / / e-axe~by UT+(dx) UT„(dy). 

n=0 ^° 4 , 0 

Consequently, we have 

/ / e - ^ e - 6 " A + * UT. (dx) UTJdy) = - £ M e - ° M " e - 6 ( M " - s " > ] 
Jo Jo a^0 

t+OO f+OO 1 +°° 

and / / e-axe~byUT+ (dx) A+ * UTMV) = t E JE[e"aMne"h^s^). 

To prove theorem 2.5, it thus suffices to show that 
i l l +oo 

lim nz'2E[e-aMn e-h{-M"-s^} = —t=(~ + 7) E E[e~aMn

 e->(A/n-s„)i n~++0° <tv27T a b £?0 

Using the same method than the one in section 2.1, one introduces the function (f>at, 
denned by 

+OO 
V* € C , \z\ < 1 <j>a>b(z) = ^ [ e - ° M " e - 6 ^ " - 5 " ) ] . 

n=0 
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We have <f>a>h{z) = exp(A(z) + B(z)) (and so <f>'afi{z) = (A'(z) + B'(z))exp[A(z) + B(z)]) 

with = 2 -E[[Sn > 0] ; e-° s »] and B(z) = £ < 0] ; e 6 s » ] . 
n = l n n = l n 

Following the proof of theorem 2.1, one may readily see that it is possible to extend 
analitically the functions A' and B' on a domain 

Dp,e = {z/z ^l,\z\< p,\arg(z-l)\>6 with p > 1 and 0 < 0 < |} 

and that we have 

, 1 1 1 +°° +°© 
lim VT=l^b(z) = — ( - + -)(£E[[T+>n]; e^])(5:JB[[r.>n]; e ^ ] ) . 

, 1 5 ^ a 6 n=0 n=0 

The proof is now complete. • 

III Proofs of theorems A and B 

M - a The Spitzer-Grincevicius factorisation 

Let us first recall and precise some notations. Let gn = (a n ,6 n ) ,n = 1,2, • be indépen
dant and identically distributed random variables of law p. Note Tn the cr-algebra gener
ated by the variables </i,#2?• • • ,9n,n > 1- For any n > 1, put = g\ • • • gn = (A",B") 

n 

; we have A" = ai • • • a n and BJ1 = ^ ai • • • a^ibk. More generally, for any 1 < n < m, 

m 

we will put A™ = a n • • • a m and J3™ = a n • • • dk-ibk. We also introduce the variables 
k=n 

5 n , M n and Tn defined by Sn = Log A" and 5 0 = 0, Mn = max(S0>Si,- • • , 5 n ) and 
T n = i n / {0 < fc < n/S* = M n } . 

In the same way, let p be the image of p by the application g 1-» ( - - 7 - 7 , ~ t ^ t ) ; if gn = 

«(5) 
(a n , 6 n ) , n = 1,2, • • • are indépendant and identically distributed random variables of law 

n 

p on G, we will put G? = gx • • • gny A" = âi • • • â n, = ]T âa • • • âk-Xbk,Sn = £o#A n with 
Jt=l 

SQ = 0 and M n = raa#(£o> .§1, • • •, Sn). Note ,Fn the cr-algebra generated by the variables 

Fix two positive functions tp and with compact support, defined respectively on J T + 

and Md. For technical reasons, we suppose, without loss of generality, that %j> is con
tinuously differentiable on Md. We are interested with the behaviour of the sequence 
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(]E[<p(An)il>(Bn)])n>i as n goes to +00 ; following ([8]), we have 

E[<p(A№(B?)) = è « [ [ r n = fc];V)(i4î)0(JB?)] 

= è Jg?[[i4{ > 1] n [i4* > 1] n ... n [A{ > 1] 

n № 1 < 1] n E t̂tî < 1] • • • n [A^i < 1] ; 

The last expectation can be simplified as it is clear that the terms A*, A*, • • •, A* are inde-
k b- n 

pendant of the terms A{J}, Ak

k\\ • • •, ; from the equality = A}(Ĵ  + ^ -Ai+Î&i) 

and by a duality argument, one obtains 

= £ JB[[i4i < 1] fl № < 1] n • • • n [i{ < 1] 

n < 1] n № < 1] • • • n < 1] ; 

v > ( % w i ( E i r 1 6 i + t 
A l ^ 1 j = l j = f r + l 

Put A = {g £ G : a(g) > 1 } and consider the transition kernel P4 associated with the 
couple (/x, A) and defined, for any Borel set B C G, by 

V<7€G PA(g,B)= [ lAcnt3(gh) (i(dh). 
JG 

Let us give the probabilistic interpretation of PA. Put TU = inf{n > 1 : G" € A } ; the 
random variable TA is a waiting time with respect to the filtration {Tn)n>\ and we have 
the following identity 

V n > l P%(e,B) = P[[TA>n]n[GÏ€ B]]. 

In the same way, put A' = {g € G/a(g) > 1} and let P^/ be the operator associated with 
the couple (/i, A ' ) . Denoting T4 ' the waiting time with respect to the filtration (Tn))n>i 

defined by 2 > = inf{n > 1 : G? G A ' } , we have 

V n > l ^ ( c , B ) = P [ [ f ^ > n ] n [ G ? e f l ] ] . 

From the previous expression of JE[<£>(Aj we obtain the Spitzer-Grincevicius 
factorisation : 

Ar=0 

where 

y^xG a{g) a(g) 
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Ill-b Proof of theorem A 

The starting point of the proof is the Spitzer-Grincevicius factorisation. First, thanks to 
n-j 

the two following lemmas, we are going to control the sum ^ h,n(<P,i>) for fixed large 

enough integers i and j . 

Lemma IIL1 There exists A > 0 and C = C(A,</?, > 0 such that for any g 6 G and 
any I > 0, we have 

By theorem 2.1, the sequence (k3^2 I ct(g)xP^(e^dg))k>0 is bounded since 
JG ~~ 

/ a{g)xP%{e,dg) = E[[fA, > k) ;exp{\Sk)}. 
JG 

Hence, using lemma 3.1, we obtain for any 0 < k < n 

L G * { ^ { a(g) ^ ' ^ ^ ^ * fc3/2(n_fc)3/2-

Using lemma 3.2, one can thus choose two integers i and j , 0 < i < n — j < n such that 
n-j 

the sum n3^2 ^ i*,n is quite small as wanted. 

Lemma III.2 There exists a constant C > 0 such that, for any n € IN* and 0 < i < 
n — j < n, we have 

n-j i 1 1 
n 3 / \ 5 i f c 3 / 2 ( n - * ) 3 / 2 - c{Vi + 7j]-

Next, we look at the behaviour of the integral / y ( ~ 7 ~ r ) ^ ( ^ ^ ^ ^^)Pl

A(e,dh) as / 
JG a(g) a{g) 

goes to +oo. 

Lemma IIL3 For any g € G, the sequence 

converges to a finite limit as I goes to +oo. 
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Hence, for any i £ IN and any compact K C xlR, the dominated convergence theorem 
i 

yields the existence of a finite limit as n goes to +00 for the sequence (n 3^ 2
 hyn{y><> K))n>o 

where 

Ikin(^K) = JGlK(g) ( / G ^ ^ ) ^ ( % i ^ ( f e ) ) P r f e ( e , ^ ) ) Pifadg)). 

The proof of the existence of a finite limit for the sequence 

goes along the same line. The only thing we have now to verify is that the indicator 
function IK does not disturb too much the behaviour of the above integrals. 
Fix 0 < S < 1 ; according to lemma 3.1, we have 

£r[J{9eG:a(g)<s} JG a(g) a[g) 

< C(X, <p,p {n^k)3/2E[[fA, >k)D [Sk < LogS] ; exp(XSk)} 

< C(X,^) S ^ ± ^ n _ \ ) 3 / 2 E[[fA> > k] ; exp(^Sk)] 

i 1 

~ Cl6X/2]^(n-k)WV 

On the other hand, fix B > 0 ; according to lemma 3.1, we have 

J{geG:b(g)>B} JG a(g) a(g) 

< C(A,y ,0 )g ( n J ^ i E f e > fc] n > B] • exP(XSk)} 

* £ % W t l £ T^W* E[[TA' > k] ; exp(XSk) \\6h\m 

where the last inequality is guaranteed by the following 

Lemma III.4 There exists eo > 0 such that for any 0 < c < e0 

sup lzl2E[[fA, > I] ; exp{2eSl) | |£,| | £] < +oo. 
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Finally, using the Spitzer-Grincevicius factorisation, we have prove that, for any 77 > 0, 
one can find i , j G JV and a compact K C G such that for any n > i + j we have 

fc=0 k=n-j 

On the other hand, we have also proved that the sequence 

converges as n goes to +00. So (n3^2 lE[(p(Ai)*f)(Bi)])n>o converges to a finite limit as n 
goes to +00. Thus, by a standart argument in Radon measure theory, it readily follows 
that the sequence of measures ( n 3 ^ V * n ) n > i weakly converges to a Radon measure v0 ; the 
fact that 1/0 is not degenerated follows from the 

Lemma III.5 There exist an integer no and a compact set K0 C G such that 

inf n3'2E[gi".gneK0] > 0. 

n>no 

The proof of theorem A is now complete ; it just remains to establish the different lemmas. 

Proof of lemma 3.1. - Fix p > 1 such that - + - = 1. For any g G G and / > 1, we 
P Q 

have 

b(g) + j^aA^b, + b 
= f E[[aA\ < 1] n • • • n M J < 1] ; y > ( ^ ) ^ )] *„(a, 6) ^ -

J]o,i]xR a{g) a{g) a 

< IHI,£ <jJRti(a,b)db E[[aA\ < 1] n • • • fi [aAl

2 < 1] ; £ 

< H\\r£ ^1 JR4>l(a,b)db EHexplM^) < 1] ; ~ 

< <9)> №\pfQ y j j l{a,b)db i 7 iB[exp(-26M,_ 1 ) V = > ( ^ ) ] y for any e > 0. 

Since the support of y> is compact in ]0,+co[, there exists K — K(e,<p) > 0 such that 
Va > 0 \<p(a)\ < K ae ; so 
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Choosing e quite small such that - — e > 0 and 1 + e < /?, one thus obtains by theorem 

2 P 

The proof is complete. • 

Proof of lemma 3.2. - We have 

n 3 / 2 V - i _ _ £ _ V - i 

. 5 » k3/2(n - kf'2 " 3 / 2 ¿ ¿ 1 & , 2 ( l - i)3/2 

1 p-i dx 

The lemma follows from an elementary overestimation of this last integral. • 

Proof of lemma 3.3. - Without loss of generality, one may suppose g = e. For any 
n € JV*, set 

V»{h>>+) = nz'*E[[TA > n] ; v(AW(B?)}. 

Fix i,j 6 IV such that 1 < i < n — j <n and consider 

vn(<p,4>,i,j) = nz'2E[[TA > n] ; <p{AZ№(Bi + A r ^ y + i ) ] . 

To obtain the claim, it suffices to prove that 

а) limsup limsup 1^(^ ,1 /0 - J>»(v>,^M,j)| = 0 
¿,¿—•+00 n—*-foo 

б) for any fixed i,j € IV, the sequence (^n(^> Vs*>i))n>i converges to a finite limit. 

To prove assumption a), we use the identity B" = B\ + A\B*+i + A™"3 B"-j+i ; since the 
support of if> is compact and tft is continuously differentiable, we have for some 0 < e < 1 

M v ^ ) - ^ , ^ M ' ) I < Cxn^ E[[TA>n)^{An

1){A\Y\\B^i\\i) 

< Cx n*l* £ E[[TA > n] ; V(A?)(i4}-1)«||6*IH 
Ar=i+1 

< CxIHU n 3 ' 2 £ E[[TA>k-l}; (At^Whm 

< dM^EiWhW'} £ E[[TA>k-l]; (Ai-1)'} 

the last inequality being guaranteed by theorem 2.1 and lemma 3.2. Let i and j go to 
+oo ; we obtain the claim a). 
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Next, we prove 6 ) . Fix two integers i and j ; we have the following equality 

vn(<P,i>,i,j) = I En(<p,$,g,h1,h2,--',hi)P^(e,dg)p(dh1)pi(dh2)-.-p(dhj) 

with 

Enfa^gMMs'-ihj) = E[[max(A%l>-.,A^)<-^}r) 

[ A » l ~ ^atfj' aTgMhTy" *"' a(g)a(h!)'--a(hj))]] 

tp(a(g)A^a(h1) • • • + a f o O ^ / i f a • • • hj)) 

Using theorem 2.5, one may see that, for any hi, • • •, hj € G, the sequence 
(n3t2En(<p,il>,g,hi,h2,-- jhj))n>i converges to a finite limit. To obtain the claim 6), 
we have to use Lebesgue dominated convergence theorem and so, we have to obtain 
an appropriate overestimation of n3/2En(<py il>,g, hi, h2y • • • ,hj). Since the support of (p is 
compact in ]0, +oo[, for any e > 0, there exists K = K(e, <p) > 0 such that Va > 0 \<p(a)\ < 
Kac. On the other hand, we have the inclusions 

[maz(4K, • • •, A£{) < C [max(l, 4g, . . . , A$) < - L ] because a(g) < 1 

and ^ ^ ^ 

K + 7 - m i n ( ^ ) ' aJgHhTy""'' « ( * ) a ( M - < W C № / " ^5)]" 
Consequently 

n3/2En(<p, if>,g, hu h2,---, hj) 

< CUWoon^EHgYiA^lyaihy • • • «(*,-)« 
x 1 1 , 
X a(gy<max(l,AtH • • •, A ? + 7 > (A^)^a(g)^1 

< CWUato^aihY • • • aihjY n^E[(A^)^max(h 4 g , • • •, i4£?)-*] 

< C| |V| |ooa(^)- 3 £ / 2 a(hty • • • a C ^ r n ^ J E K ^ / ' ^ m a x C l , A$l • • •, sinoe a(«r) < 1 

the last inequality being guaranteed by theorem 2.5. Then, by hypothesis A2, for e quite 
small, one may use Lebesgue dominated convergence theorem. The proof of claim b) is 
now complete. • 

Proof of lemma 3.4. - By a duality argument, it suffices to prove that, for some e > 0 

sup n3'2E[[TA > n] ; (A?)2' { W W ' ) < +co. 
71>1 
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n 

Using the identity J9J1 = ̂  A i " 1 ^ , we obtain 

E[[TA > n] ; (AW W i l l < £ e [ [ T a > n] ; ( A r W l N I ^ + x ) 2 ' ] -

From the definition of the waiting time T 4 , we have 

> n] ; ( A T W I I M ' M W * ] 

< E[[A\ < 1] fl • • • [A*" 1 < 1] n [a* < - i ] fi [Aj+J < - J ; - ] n • • • [A£ + 1 < - ¿ - 1 ; 

(AtT4e\\hT(Ai+1r] 

JG J{heG:a(g)a(h)<l} 

with 

< Jg?[[nuw(l , i^, . . . ,Ar*) < - T T - m ] ! ( ^ i " f c ) 2 £ l since a(g)a(h) < 1 

- a(g)^L(h)^E[eXp{~lMn-k)
 ™P(-MMn-k - Sn.k))] 

< I 5 L _ 

- « ( ^ ) W 2 a ( / l ) 2 W 2 ( n _ Jfe)3/2 

Hence, we have 

> n] ; (A?)* W I H < ^ ^ / ^ [ ^ l jGa(grl2Pk

A-\eM 

71 — 1 J 
One readily concludes, using hypothesis A2 and the fact that the sequence (n 3^ 2 ]P , . 

k=i k ' (n — k) ' 
is bounded. • 

Proof of lemma 3.5- By theorem 2.1, there exist n 0 € IV, C0 > 0 and [a,/?] C J T + 

such that 

V n > n 0 n3/2JE;[[r4 > n] fl [a < A? < /?]] > C0. 

On the other hand, we have 

n*l2E[[TA > n]f)[a < Ai < flnM > J5]] < ^E [ [2U > n]n[a < A? < /?] ; | | ^ | | c ] . 
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By lemma 3.4, we have sup n3/2E[[TA > n] (~l [a < A" < /?] ; | | e ] < +00 ; so, one can 
n > l 

choose B > 0 such that 

Vn > no n3'2E[[TA > n) n [a < A\ < /3) n [H^ l l < B]] > ^ . 

The lemma readily follows from the inequality 

n3'2E[[a < A" < /?] n [||Br|| < B]] > n3'2E[[TA > n) n [a < AJ <fl n [\\B?\\ < B}}. 

• 

III-c Proof of theorem B : identification of the limit measure 

We are not always able to explicit the form of the limit measure v0 ; nevertheless, if 
one assumes some additionnal hypotheses on / i , it is possible to identify i / 0 ? up to a 
multiplicative constant. In this section, we suppose that p satisfies hypotheses Al — A4 
and the two additionnal conditions 

J51) the density of p is continuous with compact support 

B2) <f>^e) > 0 

Remark- Note that under these conditions, the semi-group generated by the support 
of p is dense in G. More, there exist 7 > 0 such that 

p * p > 

The proof of theorem B is based on ([9]) and may be broken down into two steps ; first, 
we prove that the random walk of law p on G satisfies a ratio-limit theorem and secondly 
we show that the double equation p*v = v*p = v has a unique solution v0 ^ 0 (to 
within a constant multiple) in the class of Radon measures on G. het CK+(G)t be the 
space of positive continuous functions with compact support on G ; we have the 

Lemma IIL6 Under hypotheses Bl and B2, we have 

Vip e CK+{G), \/g<EG lim (69 * p*n(<p))1/n = 1. 
n—•-}-oo 

Since there exist 7 > 0 such that p * p > ip (see the above remark), we thus may apply 
the Proposition 3 in ([9]) and the previous lemma implies 

lim. w^ 'y 
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for any g € G and any function (p € CK+(G),"<p ^ 0. 

Now, let us recall the result established in ([9]) : 

Suppose that the semi-group generated by the support of \i is dense in G and that, for 
^ • ( n + l ) / \ 

any <p € CK+(G), the sequence n > i converges to a constant CQ which does not 
№ vP) " 

depend on <p. Then, if the equation i/*/x = //*i/ = c§v has a unique (to within a constant 
multiple) solution u0 ^ 0 in the class of Radon measure on G, we have for any (p and 
$ e CK+(G) such that u0(i/>) > 0 

i i m = nMm 

In the present case, we have CQ = 1 ; to prove the theorem, it suffices to establish the 

Lemma IIL7 Under hypotheses of theorem B, the equation v*\i = \i*v = v has one and 
only one ( to within a constant multiple) solution VQ ^ 0 in the class of Radon measure 
on G. Moreover, this solution may be decomposed as follows 

~~da 
VQ = (¿1 ® A ) * ( — <g> S0) * (Si ® A7) 

where A (respectively Xi) is, up to a multiplicative constant, the unique Radon measure 
on ]Rd which satisfies the convolution equation fi * A = A (resp. / 1 * A i = \x). 

By theorem A one can choose € CK+(G) such that the sequence (n3/2fi*n(if;))n>Q 

converges to 1 ; so, for any <f> € CK+(G) we have 

lim n 3 V > ) = ^ T T -

This achieves the proof of theorem B ; it remains to establish the two lemmas. 

Proof of lemma 3.6- Fix a function (p € CK+(G) and consider, for any integer n > 1, 
the set Kn(<p) = {gh^/g € Support((p) and h € Support(fjL*n)}. The sets Kn(<p),n > 1, 

are compact and we have Kn(<p) C Kn+i((p) and (J Kn(ip) = G. Then, there exits n 0 such 
n==l 

that the compact K0 of the lemma 3.5 is included in the interior of Kno(<p). Consequently, 

the continuous function g i-> / <p(gh)ii*no(dh) is strictly positive on K0 and so, there 
JG 

exists a constant C > 0 such that 

V</ € G t v{gh)n*no{dh) > C lKo(g). 
JG 
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It follows that, for any n > 1 

S g * n < n 9 + n \ V ) > C ii*n{K0) 
Q 

> - t t t with Ci > 0 by the lemma 3.5. 

It readily follows that for any g € G we have liminf(^ * ̂ *n((fi))l^n > 1. On the other 

hand, we have Vn > 1 ^ * A**n(v?) < IMloo which implies limsup(<^ * /x* n (v?)) 1 / n > 1. 

The proof is now complete. • 

Proof of lemma 3.7- First, let us describe the solutions of the equation v * // = v 
where v is a Radon measure on G. From ([5]), it is known that there exists a unique 
(up to a multiplicative constant) Radon measure Ai on JRd such that /J * Ai = Ai and 
that the extremal points of the cone of Radon measure u such that v * \i = u are 

~~da 
proportional, either to the right Haar measure or to the measures St\ z\ * (— <g> AA 

v w a 
where z € M d . Under the hypotheses Bl and 52, the base of Hp is compact ; thus, by 
Choquet's theorem, there exit C G iR + and a positive measure m on M such that 

t da 
u = C mD + / 8(iyZ) * (— ® Ai) m(dz) (*). 

• / JR CI 

Now, let us find the measures v satisfying the decomposition (*) and such that // * v = v. 

If a * i/ = i/, then 17 * 7J = V. Since rfi[)(dadb) = — — , it readily follows that, for any 
a 

positive Borel function (p on G, we have 

mD*Jl((p) = / <£>(aai,a&i + b)da f* ~p(dgi) 
JGXG a1 

= / ^<p(A,B) dA dB ~p{dgi) 
JGxG J\. 

= rnD((p) x ax ^(dgx). 
JG 

Since / a\ Ji(dgi) > 1, one obtains C = 0 in the decomposition (*). On the other hand, 
J G 

we have 

/ da 
j ( ( — ® A x ) * * /1) (<?) m ( d z ) 

«/ JR a 

= [ [ tp((a, -az + bjgt) —Xi(db) ~p{dgx) m(dz) 
JR JGxG a 

= f f ip(±,-a(z + ̂ -) + b)-Xl(db)fi(dg1)m(dz) 
JRJGXG a\ a\ a 

= [ [ <p(A9-A(atz + bx) + b) m(dz) fi{dgx) — \x(db) 
JRJGxG A 
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and / ( (— ® Xi) * 6(1-z\) (<p) m(dz) = / ip(Ay —Az + 6) m(dz) — Ai(d&). 
JR a JR A 

Then, the equality 

/ ( ( — ® Ai) * 6(i,-M) * (<p) m(dz) = / ( (— <g> A a) * <5(i,^)) (y>) m(ds) 

is satisfied for any positive Borel function (p if and only if \i * m = m ; by ([5]), this 
equation has one and only one solution A (up to a constant multiple). 
The proof of lemma 3.7 is now complete. • 
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