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ABSTRACT. A theory of random walks on the mapping class group and Teichmiiller space
is developed. We prove convergence-of sample paths in the Thurston compactification and
show that the space of projective measured foliations with the corresponding harmonic
measure can be identified with the Poisson boundary of random walks. The methods
are based on an analysis of the asymptotic geometry of Teichmiiller space and of the
contraction properties of the action of the mapping class group on the Thurston boundary.
We prove, in particular, that Teichmiller space is roughly isometric to a graph with
uniformly bounded vertex degrees. Using our analysis of the mapping class group action
on the Thurston boundary we prove that no non-elementary subgroup of the mapping
class group can be a lattice in a higher rank semi-simple Lie group. For studying boundary
behavior of bounded range invariant Markov operators on Teichmiiller space we establish
a Harnack inequality, which is then used for discretization of corecurrent operators.
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0. INTRODUCTION

The mapping class group T' = Mod(g) = Diff* (M)/Diffo(M) of a closed C* surface
M of genus g > 2 consists of isotopy classes of orientation preserving diffeomorphisms of
M. This group plays a fundamental role in the topology in dimensions 2 and 3. A study
of the dynamics of I was initiated by Thurston [Th]. He constructed a space PMF of
projective measured foliations of M on which I' acts, and used this action to classify the
elements of I' into finite order ones, reducible, and pseudo-Anosov. This classification
generalizes the classification of elements of Mod(1) = SL(2,Z) into elliptic, parabolic,
and hyperbolic ones. Thurston also showed that topologically PMF is a sphere of
dimension 6g — 7, that it is the boundary of a compactification of Teichmaller space Ty
of genus ¢, and that the natural discontinuous action of I' on T; by isometries extends
to an action on PMF. This picture gives a vast generalization of the genus 1 case, in
which T; is the hyperbolic plane H2, and PMF is its circle at infinity [FLP].

The action of I' on Teichmiiller space has been used to solve the Nielsen realiza-
tion problem [Ke2] (every finite subgroup of I' can be realized as a finite subgroup of
Difft (M)), and the dynamics of the action of I' on PMF — to prove algebraic results
about I'. For example, McCarthy [Mc| proved a Tits alternative theorem for I'; and
Ivanov [Iv2] showed that Out(I') consists of 2 elements for g > 3.

Another far reaching generalization of the action of SL(2,Z) on H? is provided by
the Gromov theory of hyperbolic spaces and groups [Gr]. Although for g > 2 neither
Teichmiiller space Ty is a Gromov hyperbolic space [MW], nor the mapping class group
I' is a word hyperbolic group (as it contains rank 2 abelian subgroups generated by
Dehn twists about disjoint curves), they still share some important global properties
with general Gromov hyperbolic spaces and groups as we shall see below (actually, our
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approach is based on exploiting these properties), and apparently can be considered as
prospective examples for a future “semi-hyperbolic” theory.

From a completely different perspective one can often understand groups from study-
ing boundary behavior of the group, more specifically, measure type preserving group
actions on boundaries naturally associated with the group. The most spectacular ex-
ample is the Mostow—-Margulis rigidity theory [Mar], [Mo], [Zi].

Another example is the Patterson—Sullivan theory of conformal densities on the
sphere at infinity of Cartan-Hadamard manifolds. In the constant curvature case this
notion is non-trivial (conformal density does not belong to the Lebesgue measure type)
only for groups with co-infinite volume [Pa}, [Su]; however, this is not so if the curva-
ture is non-constant. For example, in the cocompact case the corresponding conformal
density is directly connected with the Bowen-Margulis (maximal entropy) invariant
measure of the geodesic flow [Ka3]. For a discrete group G of isometries of a Cartan—
Hadamard manifold G-invariant conformal densities are obtained by taking weak limits
(with respect to the visibility compactification) of the normalized family of measures on
the G-orbit of a reference point o with exponential weights proportional to e~(¢:90)
as s tends to the critical exponent of the Poincaré series ) g e~ sd(0,90),

Generally speaking, one may try to construct “boundary actions” of a discrete group
G by taking limits of sequences of probability measures on G tending to infinity. A
natural sequence of this kind is the sequence of n-fold convolutions p, of a given prob-
ability measure u on G. It turns out that one can associate with the pair (G,u) a
probability measure space (0G, v) endowed with an ergodic action of G which is called
the Poisson boundary. The harmonic measure v is p-stationary (i.e., v = 3 u(g)gv),
and the Poisson formula f(g) = (f, gv) (a direct analogue of the classic Poisson formula
for bounded harmonic functions in the disk) establishes an isometry between the space
of bounded u-harmonic functions on G (those that satisfy the mean value property
flg) =3, f(gz)u(z) Vg € G) and the space L*°(0G,v). The Poisson boundary was
first introduced by Furstenberg for semi-simple Lie groups [Ful], and can be defined in
a number of various equivalent ways (see [Kall]).

Although the harmonic measure v on the Poisson boundary can be in a sense consid-
ered as a limit of the sequence u,, the Poisson boundary is a purely measure theoretical
object and does not require for its definition any a priori compactification of GG. Using
this invariant of the pair (G, ) Furstenberg proved that a discrete subgroup of a rank
one semi-simple Lie group cannot be a lattice in a higher rank semi-simple group, which
was one of the first results of rigidity theory [Fu2].

For any measure on an abelian, or more generally, a nilpotent group the Poisson
boundary is trivial (i.e., consists of a single point). This is equivalent to saying that
there are no non-constant bounded harmonic functions on such groups. For a general
amenable group there always exists a measure p with trivial Poisson boundary (but
there may also be measures with a non-trivial boundary). On the other hand, for any
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(non-degenerate) measure on a non-amenable group the Poisson boundary is non-trivial
[KV].

There is also a topological Martin boundary associated with the pair (G, u), which
is the boundary of the Martin compactification of G and is responsible for integral
representation of all positive u-harmonic functions. Note that the constructions of the
Martin and the Thurston boundaries are in a sense parallel. Using the Green kernel
(resp., the intersection function) one embeds the group (resp., the set S of homotopy
classes of simple curves) into the space of functions on itself, after which the boundary is
obtained by taking the closure in the corresponding projective space (the Martin kernel
is precisely the projectivization of the Green kernel). The Martin boundary considered
as a measure space with the representing measure of the constant harmonic function
1 is isomorphic to the Poisson boundary, so that the Poisson boundary retains only
“significant” (up to measure 0) information about the Martin boundary. However, in
a sense the Martin boundary is a “less functorial” object than the Poisson boundary,
and describing the Martin boundary in intrinsic terms is a much more difficult problem
than that of describing the Poisson boundary (see [K5], [K11]).

Due to the fact that the sequence of measures i, is obtained by iterative convolutions
with the measure y, these measures can be presented as one-dimensional distributions
of a Markov chain (random walk) on G with transition probabilities p(g, ¢’) = u(g~tg’)
determined by the measure p. In other words, if we start at time 0 from the identity
of the group, then the position of the random walk at time n is g, = y1y2 - - - Yn, Where
~i, © 2> 1 are independent p-distributed increments of the random walk. Now one can
not just consider the convolutions u, (which describe the position of the random walk
at time n), but also look at the individual behavior at infinity of the sample paths
g = {gn}, n > 0 (a.e. with respect to the probability measure P in the path space
G%),

In terms of the path space (G% P) the Poisson boundary can be defined as the
space of ergodic components of the time shift. Thus, if the group G is equivariantly
embedded into a topological space B, and P-a.e. sample path g = {g,} converges to
a limit goo = m(g) € B, then the space B with the corresponding harmonic measure
A = 7(P) on it is necessarily a quotient of the Poisson boundary with respect to a
certain G-invariant partition. Such quotients are called p-boundaries (this definition
is equivalent to the one given in [Fu3]). The Poisson boundary is then the mazimal
p-boundary. ‘

The problem of describing the Poisson boundary of (G, i) consists of two parts:

(1) To find (in geometric or combinatorial terms) a y-boundary (B, \);
(2) To show that this y-boundary is maximal.

In other words, first one has to exhibit a certain system of invariants of stochastically
significant behavior of sample paths at infinity, and then to show completeness of this
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system. If a certain compactification of the group G has the property that sample
paths of the random walks on G converge a.e. in this compactification (so that it is a -
boundary), and this y-boundary is in fact isomorphic to the Poisson boundary of (G, ),
then it means that this compactification is indeed maximal in a measure theoretical
sense, i.e., there is no way (up to measure 0) of splitting further the boundary points
of this compactification. Note that this property has nothing to do with solvability of
the Dirichlet problem with respect to this compactification. For example, the Dirichlet
problem is trivially solvable for the one-point compactification; on the other hand, even
if the boundary of a certain group compactification can be identified with the Poisson
boundary, it does not imply in general that the Dirichlet problem is solvable (or even
that the support of the harmonic measure is the whole topological boundary).

One can ask the question about identification of the Poisson (resp., Martin) boundary
for Markov operators arising in various situations. For example, see [Bi], [MP] for a
description of Euclidean domains for which the Poisson boundary can be identified
with the topological boundary. For pinched Cartan-Hadamard manifolds the Martin
(thereby the Poisson) boundary was shown to coincide with the sphere at infinity [AS],
[Anl]. In the discrete setup the most general result on the description of the Martin
boundary is its identification with the hyperbolic boundary for finite range random
walks on hyperbolic graphs satisfying a strong isoperimetric inequality (in particular,
for random walks determined by finitely supported measures on word hyperbolic groups)
[An2]. Note that the Martin boundary methods usually do not use group invariance.
For random walks on general Lie groups the Poisson boundary was described by Raugi
[Ra]; however, his approach strongly depends on the structure theory of Lie groups and
can not be applied for discrete groups.

A powerful technique for describing the Poisson boundary for random walks on groups
is provided by ergodic methods, more specifically, by the entropy theory of random walks
[KV], [Kal], [De2]. It leads to several simple geometric criteria of boundary maximality
which allow one to identify the Poisson boundary with “natural” boundaries for word
hyperbolic groups, groups with infinitely many ends, discrete subgroups of semi-simple
Lie groups, cocompact lattices in rank 1 Cartan-Hadamard manifolds, polycyclic groups
under mild conditions on the measure p (finite first moment is sufficient) [BL1], [Kal],
[Ka7], [Kal0], [Lel]. It is this technique that we are using in this paper.

The main results of the paper are the following.

Theorem 2.2.4. If p is a probability measure on the mapping class group I' such that
the group generated by its support is non-elementary, then there ezists a unique u-
stationary probability measure v on the space PMF, which is purely non-atomic and
concentrated on the subset UE C PMF of uniquely ergodic foliations, and the measure
space (UE,v) is a p-boundary. For any x € Ty and P-a.e. sample path g = {gn} of the
random walk (T, p) the sequence gnz converges in PMF to a limit F = F(g) € UE,
and the distribution of the limits F(g) is given by the measure v.
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In particular, for any = € T, the sequence of measures p, * §, converges weakly to
the measure v.

Theorem 2.3.1. If, in addition, the measure u has a finite entropy and finite first
logarithmic moment with respect to the Teichmiller distance, then the space (PMF,v)
is the Poisson boundary of (G, u).

Since Teichmiiller space has exponentially bounded growth (Theorem 1.3.2), these
conditions are satisfied if the measure p has a finite first moment > u(y)dr(o,v0) with
respect to the Teichmiiller distance and, in particular, if it has a finite first moment
with respect to a word metric on I' (Theorem 2.3.2). Thus, it turns out that indeed the
Thurston boundary is a mazimal boundary of the mapping class group from a measure
theoretical point of view.

Our analysis of the action of I' on probability measures on PMF allows us to give a
new proof of the fact that I" is not isomorphic to a lattice in a semi-simple Lie group, a
result first proved by Ivanov [Ivl]. Actually, we prove a stronger result (Theorem 2.4.1),
that any subgroup of I' which satisfies a natural non-elementarity condition (NE) (see
below) cannot be a lattice in a semi-simple group of rank > 2.

Passing from random walks on I" to I'-invariant Markov operators P on Teichmiiller
space T, we prove (under appropriate geometric assumptions) in Theorcm 3.3.2 that if
the quotient operator P on the moduli space M, = T4 /T is recurrent, then the Poisson
boundary of P coincides with the Poisson boundary of I' with a certain measure y
(depending on P). If, moreover, P is positively recurrent (i.e., I has cofinite volume

‘with respect to the unique I'-invariant stationary measure of P), then almost all sample
paths of the Markov chain determined by P converge to UE C PMF, and PMF with
the corresponding harmonic measure is the Poisson boundary of P (Theorem 3.4.2). In

particular, this result applies to the geodesic random walks on T, considered earlier by
Masur [Mad].

This paper is intended to be interdisciplinary, appealing to specialists from different
areas. It is inevitable therefore that extra space is needed to explain things that might
be self evident to experts in one area. ‘

The paper is organized as follows.

In Section 1 we review the relevant parts of the Thurston theory of measured folia-
tions and of Teichmiller theory. §§1.1 and 1.2 are devoted to elementary properties of
the action of the mapping class group I" on the space PMF of projective measured folia-
tions. In §1.3 by using recent results of Minsky [Mi] we prove that the Teichmiller space
is roughly isometric to a graph with uniformly bounded vertez degrees (Theorem 1.3.2),
which means that the “volume” of Teichmiiller balls grows at most exponentially with
the radius (we say that Teichmiiller space has ezponentially bounded growth). In §1.4 we
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prove several auxiliary results on the Teichmiiller geodesic lines in 7} (close analogues of
the corresponding properties of Gromov hyperbolic spaces). Finally, in §1.5 we consider
contracting properties of the action of the mapping class group on probability measures
on PMF, which are a key ingredient of our proof of convergence of random walks on T
(once again these properties are analogous to those of the action of the isometry group
on the hyperbolic boundary of a Gromov hyperbolic space). We say that a sequence
gn € I is universally convergent if it tends to infinity in I and for any simple closed curve
a € § on M the sequence g;; ' converges in PMF. If g, is such a sequence, then there
exists a foliation ' € PMF such that for any z € Ty all limit points of the sequence
gn are contained in the set {H : i(F,H) = 0,i(F,a) =0 < i(H,a) =0Va € S}
(Lemma 1.5.4). Hence, for any probability measure v on PMF satisfying a natural
non-degeneracy condition all weak limits of the translations g, v are concentrated either
on the set F' = {H : i(F,H) = 0} C MZN for a certain minimal foliation F, or on the
set Zp = {H : i(F,a) =0 <= i(H,a) = 0 Va € S} for a certain non-minimal F
(Lemma 1.5.6).

Section 2 is devoted to the proofs of the Theorems on the random walks on I'. We
say that a subgroup I of the mapping class group I satisfies condition (NE) (is non-
elementary) if it is not a finite extension of the stabilizer of a set For Zrp (which is
a direct analogue of the notion of non-elementary groups of isometries of hyperbolic
spaces). For proving Theorem 2.2.4 we use the following idea of Furstenberg applied
first to the discrete subgroups of SL(2,R) [Fu3]. Take an arbitrary p-stationary prob-
ability measure v on PMF which exists by compactness considerations. Then by the
Martingale Convergence Theorem the sequence of translations g, converges weakly to
a (random) limit A(g) for a.e. sample path g = {g»}, and the measure v is an integral
of the limit measures A\(g). Using weak dissipativity of the action of I on PMF\ MIN
(established in §1.2) we show that the measure v (hence, a.e. limit measure A(g)) is con-
centrated on MZIN. Further, for proving that the measure v is concentrated on UE we
use the fact that for any Teichmiiller geodesic ray determined by a non-minimal foliation
its projection to the moduli space T, /T tends to infinity [Ma3]. Then convergence of
sample paths follows from the contraction properties established in §1.5 (cf. with anal-
ogous convergence theorems for semi-simple Lie groups [GR] and for hyperbolic groups
[CS], [Kal0], [Wo2]). In particular, the Poisson boundary of any probability measure
whose support generates a non-elementary subgroup is non-trivial, which implies that
any non-elementary subgroup is non-amenable.

For proving maximality of the Thurston boundary (Theorem 2.3.1) we use a geometric
“strip criterion” due to Kaimanovich [Ka7], [Kal0]. Under the conditions of finiteness
of the entropy of p and of its first logarithmic moment it requires considering a u-
boundary (B, v4+) simultaneously with a fi-boundary (B, v_) for the reflected measure
i(g) = p(g™"). If there exists an equivariant measurable map assigning to a.e. pair
of points (F_,Fy) € B_ x By a “strip” S(F-,Fy) C T which is sufficiently “thin”
in the sense that intersections of a.e. strip with balls in T, grow polynomially, then
(B+,v4) is the Poisson boundary of (G, ). These strips are easily constructed by using
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Teichmiiller geodesic lines determined by any pair of distinct uniquely ergodic foliations.
For deducing Theorem 2.3.2 from Theorem 2.3.1 we use the fact (established in §1.3)
that Teichmiiller space has exponentially bounded growth.

For proving Theorem 2.4.1 we use the following remarkable result of Furstenberg
which he used in his rigidity theorem [Fu2], [Fu3]. If G is a lattice in a semi-simple Lie
group of rank > 2, then there exist a probability measure y on G with suppu = G and
a number € > 0 such that for any two y-harmonic functions f; and f; on G conditions
0< fi(9) <1Vge G and fi(e) > 3 — ¢ imply that min{f1(g), f2(g)} does not tend to
zero as g — oo. By using our description of the unique y-stationary probability measure
v on PMJF we are able to construct for any probability measure ¢ on a non-elementary
subgroup I C T and any € > 0 two closed disjoint subsets Q,,Q, contained in MIN
such that vQ; > 1 —¢, and for any F € MZIN there is a neighborhood of F which does

not intersect Q, and -Q_z simultaneously. Then Lemma 1.5.6 implies that the harmonic
functions fi(g) = gv(Q;) have the property that min{fi(g), f2(¢9)} — 0 as g tends to
infinity in IV, so that I cannot be a lattice in a higher rank semi-simple group.

In Section 3 we consider bounded range I'-invariant Markov operators on Ty (i.e., such
that the step lengths are uniformly bounded). For continuous time diffusion processes
the elliptic Harnack inequality automatically follows from boundedness of geometry
of the generating operator; under appropriate “bounded geometry” and irreducibility
conditions on the transition densities we prove in Theorem 3.2.2 a general Harnack
inequality (uniform equivalence of the probability measures obtained by the balayage
of §-measures to the complement of sufficiently large balls) for bounded range Markov.
operators on continuous state spaces (it applies, for example, to geodesic random walks
on Riemannian manifolds).

Assuming that a I'-invariant Markov operator P on T} is corecurrent (i.e., the quo-
tient Markov operator P on the moduli space M, = T,/ is recurrent in the sense of
Harris, so that its sample paths visit infinitely often any positive measure subset of
M,), we then use the Harnack inequality for a discretization of P, which allows one
to put a measure u on the group I' (identified with an orbit I'o, o € T,), such that
the Poisson boundary of (I, ) is the same as the Poisson boundary of the operator
P. More precisely, the restriction of any bounded P-harmonic function to the orbit
o is p-harmonic, and, conversely, any bounded pg-harmonic function can be uniquely
extended from I'o to a P-harmonic function on Ty (Theorem 3.3.2). This discretization
is based on the balayage method introduced by Furstenberg [Fu3] and Lyons—Sullivan
[LS] (see also [An2], [BL2], [Kad]). In view of the results from Section 2 it implies that
PMF with a uniquely determined I'-invariant system of harmonic measures on it is a
quotient of the Poisson boundary of the operator P (Theorem 3.4.1). If the quotient
operator P is positively recurrent, then the measure u can be chosen to have a finite first
moment with respect to the Teichmiiller distance, and the sample paths {z,} on T, can’
be approximated by the sample paths of the random walk (G, 1) well enough to ensure
that {z,} converges a.e. to UE C PMUF (this also gives a new proof of convergence



POISSON BOUNDARY OF TEICHMULLER SPACE 9

of sample paths for the modified geodesic random walk on Ty first proved in [Mad] by
analyzing the train tracks decomposition). Then by the results of Section 2 P MF with
the corresponding harmonic measure is the Poisson boundary of P (Theorem 3.4.2).

In conclusion we formulate several open questions connected with the results of the
paper. First, what can one say about the type of the harmonic measure v = v(p) on
PMF determmed by a measure p on I'? It is known that for the sphere at infinity of the
universal cover M of a compact negatively curved manifold the Lebesgue measure type,
the harmonic measure type (correspondmg to the Brownian motion on M ), and the
Patterson-Sullivan measure type are pairwise singular in the general case (see [Le2]).
In our situation there is a smooth (Lebesgue) measure type on PMF (concentrated in
fact on UE [Mal]). Further, one may define “conformal densities” on PMF by using
the usual limit procedure. In a sense, the mapping class group I should be considered
as having “cofinite volume” in T}, so that one may expect that the Patterson—Sullivan
measure type would be unique and also concentrated on UE. Apparently, it should be
singular with respect to the Lebesgue measure type as the Teichmiiller space should be
considered as having “non-constant curvature” with respect to the Teichmiiller metric.
One might expect that the harmonic measures v(u) are singular with respect to both
Lebesgue and Patterson-Sullivan measure types for any finitely supported u (note that
in the Riemannian situation this question is still open).

~Another question is connected with invariant measures of the geodesic flow on the
moduli space My = T, /T'. Recall that the Lebesgue measure types determines a (unique)
ergodic invariant measure of the geodesic flow on M, [Mal], [Ve]. Is the same true about
the harmonic (or about the Patterson-Sullivan) measure type? By a general result on
Poisson boundaries I' acts ergodically on the square of the Poisson boundary of any
symmetric measure p on I' and on the square of the Poisson boundary of any reversible
corecurrent invariant Markov operator on T, [Ka9] (it is also known that the measure p
obtained from discretization of an invariant Markov operator P on T by using Theorem
3.3.2 can be chosen symmetric if P is reversible [BL2]). Thus, one might expect to obtain
(at least, in some situations) a harmonic invariant measure of the geodesic flow on M,
from the square of the harmonic measure on PMF. Note, however, that all known
constructions of the harmonic invariant measure of the geodesic flow for hyperbolic
spaces and groups require a rather strong almost multiplicativity property of the Green
kernel [An2], [Ka8].

The end of proof is denoted by the sign . On several occasions we had to subdivide
proofs into separate claims, in which case the sign A denotes the end of the proof of

each claim.
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1. ASYMPTOTIC PROPERTIES OF TEICHMULLER SPACE

Basic references for the material on measured foliations and Teichmiiller theory in
this section are [FLP], [Be], and [Ga].

1.1. The space of projective measured foliations.

For a closed surface M of genus g > 2 let $ be the set of homotopy classes of simple
closed curves on M given the discrete topology. The geometric intersection number of
a,B € S, ie., the minimal number of intersections of any two their representatives,
is denoted by i(c,3). Let RS be the space of non-negative functions on S given the
product topology. The quotient of Ri\ {0} with respect to the multiplicative action of
R is the (compact) projective space PRS. ‘

The map

a i, a)

determines an embedding of S into Ri which projects to an embedding of § into PRf_.
The closure of the set {ra, r > 0,0 € S} in Rf_ is denoted by M F, and the closure of the
embedding of § into PRﬁ (i.e., the quotient of MJF with respect to the multiplicative
action of Ry ) is denoted by PMF.

A measured foliation on M is determined by a finite number of points P, € M and
an atlas of coordinate charts (z;,y:) : U; — R? on the complement M \ {Px} such that
for any two overlapping charts

ijfij(whyi)? y]=:i:y,+C

The foliation is defined by the lines y = Const, and the transverse measure of the
foliation is |dy|. The foliation has a standard form of a pg-pronged singularity at each
point P. For any o € §,

i(Fa) = inf / 1dy] .
[eTaland? o

where the infimum is taken over all representatives ag of the class a.

Two measured foliations F, G are equivalent if i(F,a) = 1(G,a) Vo € S. Topolog-
ically, it means that there is a finite sequence of homeomorphisms homotopic to the
identity (and preserving the transverse measure) and of Whitehead moves or their in-
verses that take F' to G. So, points from MF can be identified with equivalence classes
of measured foliations on M. A

There is a natural action of Ry on the space of measured foliations: rF, r > 0 is
topologically the same measured foliation as F' with the transverse measure scaled by r.
Thus, points from PMF are identified with equivalence classes of projective measured
foliations. Topologically PMF is a sphere of dimension 6g — 7 [FLP].
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The embeddings & < MF,S — PMF have the following geometric interpretation:
any homotopy class a € S gives rise to a measured foliation for which all closed regular
leaves are homotopic to @ and form a cylinder with the transverse measure across the
cylinder being 1 [FLP]. In particular, this foliation has the same intersections numbers
with curves from S as a.

The intersection number i(-, ) extends to a continuous function on MF x MF, and
i(rlFl,rze) = Tlrzi(Fl,Fz) VFi,F, ¢ MF, ri,ry € Ry.

So, given two projective measured foliations Fy, F; € PMJF we can say whether their
“projective intersection number” is zero or non-zero and use the notations i(Fy, Fy) = 0
and i(Fi, F3) > 0, respectively.

Below we shall often identify a measured foliation F € MUF with its projective
class {rF, r > 0} from PMF and vice versa. However, we shall always distinguish

between convergence in MJF and projective convergence in PMF; a sequence F,, € MF
PMF

converges to F' € MF in PRi (notation: F, — F) if there exists a sequence r, > 0
such that 7, F, — F in RS (notation: r, F, Mz F), ie, rat(Fa,0) 2> i(F,a) Ya € S.
We shall say that a sequence F,, € MF tends to infinity if there exists H € MF such

that ¢(Fy,, H) — oo (notation: F, M% 00).

We shall often use decompositions of the surface M into spheres with three holes

( “pairs of pants”). Every such decomposition is determined by a disjoint system of

homotopy classes of 3g—3 simple closed curves A = {ay,... a3g_3} C S (i.e., i(a, ;) =
0), and conversely, any disjoint system A consisting of 3g — 3 simple closed curves

determines a pants decomposition and is maximal in the sense that for any § € S\ A .

there is o € A with i(a,8) > 0.

Lemma 1.1.1. Any distinct sequence a, € S tends to infinity in MF.

Proof. Take a pants decomposition of M determined by curves B,...,083,. If o, in-
tersects each B; a bounded number of times, then a, must "wrap” around some 3; an
unbounded number of times, and therefore must intersect some curve crossing B; an
unbounded number of times. O

A foliation F' € MF is minimal if i(F,a) > 0 for any a € S. Topologically, it means
that F is equivalent to a foliation all of whose leaves are dense. Denote by MIN the
subset of PMF which consists of projective classes of minimal foliations. For a foliation

F € PMF let )
F={GePMF:i(F,G)=0}.
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If F € MIN, then all foliations from F are also minimal, and F is the set of all
foliations topologically equivalent to F', so that

FrnG < i(FG)=0, FGecMIN (1.1.1)

is an equivalence relation on MZN [Re]. The equivalence class F, F e MIN is closed
and has the natural structure of a convex set (of transverse measures). If F consists of
a single point, the foliation F is called uniquely ergodic. Denote by UE C PMF the set
of uniquely ergodic projective measured foliations.

Let MZA be the quotient of the set MZN with respect to the equivalence relation
~ (L.1.1).

Lemma 1.1.2. There exists a countable family {B;} of Borel subsets of MIN which
are unions of classes of the equivalence relation ~ and separate any two such classes,

i.e., for any 2\ # F, € MIN there ezists a set B € {B;} such that either ﬁl C
B, F, N B = @, or the other way round.

Proof. The sets B; are provided by train tracks [Pe], [Ke3]. ’

A train track is a 1-dimensional branched submanifold of the surface M. It has a
finite number of switches which we can assume are trivalent, i.e., for every switch there
is one large branch which forms a C! path with each of the other two small branches,
whereas the small branches form a cusp. A winged branch is one which is large at each
of the switches at its endpoints. We will assume that the domains complementary to
the track have at least 3 cusps each. A train track is complete if every complementary
component is simply connected and has exactly 3 cusps.

The set of weights w; > 0 on the branches of a train track 7 which are normalized
by requiring > w; = 1 and satisfy the switch condition (the weight of the large branch
equals the sum of the weights of the small branches) is a polyhedron A(7). This polyhe-
dron parametrizes the set of foliations (also denoted A(7)) carried by 7: one runs groups
of leaves along the branches, assigning transverse measures according to the weights;
then one fills in each complementary region with p cusps with a p-pronged singularity.
If 7 is a complete train track, then A(7) is the closure of an open set in PMF. If a
track 7 carries a minimal foliation, then all complementary domains of 7 are simply
connected. We use the notation 7y < 7 to mean that every foliation carried by m is
carried by 7».

There are two basic operations on train tracks: reduction and splitting.

Any face of the polyhedron A(r) is determined by the condition w; = 0 for a certain
branch of 7. In this case we can erase that branch, so that any foliation corresponding
to this face is carried by a track with one branch and one complementary domain less
(the foliation then has a saddle connection). Given a foliation F' € A(7) we can continue
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this process until all weights lie in the interior of the polyhedron A(7) corresponding to
a reduced track 7.

The other operation is the splitting of a track T along a chosen winged branch. The
result is two train tracks 7' and 7" such that A(r) = A(7') U A(7"). The intersec-
tion A(7') N A(7") has codimension 1 and is the set of foliations carried by both 7/
and 7' with weight 0 assigned to their corresponding branches obtained from splitting
the winged branch. Erasing these branches gives a track 7 (degeneration of T) such
that A(7") N A(7") = A(T). Every foliation carried by T has a saddle connection. To
make the splitting process well defined, fix, once and for all, a winged branch for each
combinatorial type of train tracks.

Now start with a minimal foliation F carried by a complete train track 7 = 7.
Reducing if necessary, we may assume that F lies in the interior of the polyhedron
A(7). Split the track =, and take 7 to be either 7’ (resp., 7”’) if F is in the interior of
A(7") (resp., A(")), or T if F is carried by 7. Applying the same procedure to 71, and
so on, we find that every minimal foliation F has an infinite expansion 7o > 1 > ... by
train tracks. This expansion has the property that two minimal foliations are equivalent
if and only if they have the same sequence of combinatorial types [19],[m],.. ..

Since the number of different combinatorial types of tracks is finite, and subsets of
MIN C PMUF obtained by fixing any first n combinatorial types [7o],...,[m] are
Borel, we are done. d

1.2. The mapping class group.

Let Diffo(M) and Diff* (M) be the group of all diffeomorphisms of M homotopic to
the identity and the group of all orientation preserving diffeomorphisms of M, respec-
tively. The mapping class group

I' = Mod(g) = Difft (M) /Diffo(M)

is finitely generated and naturally acts on S and MF (thereby on PMF). The inter-

section number is I'-invariant, i.e.,
i(gFl,gF2)=i(F1,F2) VgeTl, F1,F, e MF.

In particular,

o

gF =(gF) VgeTl, Fe MIN,

so that the group I' acts on m as well.
Note that there are two equivalent ways of defining the I'-action on MF: one geo-
metrical, and the other one using the embedding F + i(F,-) of MF into the space of
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functions on S and the I'-action on S, so that the intersection numbers of the foliation
gF, g €', F € MF are by definition

i(gFaa)=i(F7g—la)a aES

One can associate with any ¢ € § an element v, €.I" which is called the Dehn twist
about o [FLP]. IR

Lemma 1.2.1. For any a,0 € S with i(a,0) > 0 there ezists a sequence T, — 0 such
that

TnYeC o.

Proof. The curves y}a wrap more and more around 0. Consequently, for any two curves

B1,B2 € S with i(o,8;) >0
' i(Ysa,P1) 5 (o, f1)
v i(’y}}a,,@z) "i(U,ﬂz) ’

where the denominator and the numerator in the left-hand side tend to infinity. O

Lemma 1.2.2. ¥or any a € S its D-orbit in S is infinite.

Proof. Take o € S such that i(a,0) > 0, and let v, be the Dehn twist about . By
Lemma 1.2.1, if the T'-orbit of « is finite (so that the set {yFa} is also finite), then
i(o,w) = 0 for any w € §, which is impossible. O

Remarks. 1. Lemma 1.2.2 also immediately follows from the more general fact that the
action of I' on PMF is minimal [FLP].

2. Lemma, 1.2.2 means that for any o € § its stabilizer Staba C T" has infinite index
in I'' On the other hand, Stab « is infinite, because by Lemma 1.2.1 it contains the
infinite cyclic subgroup generated by 7,.

3. The number of I'-orbits in S is finite. Indeed, if a1, a2 are simple closed curves
whose complements are topologically the same, then there is a homeomorphism taking
a7 to ag. But there are only finitely many possible topologically different complemen-
tary regions.

For each F € PMF\ MIN let
Zp={H € PMF\MIN :i(H,a) =0 < i(F,a)=0Va €S},

so that Zy is the set of all H which have zero intersection with exactly the same curves
from S as F. It is clear from the definition that any two such Zp either coincide or are
disjoint, and that they partition PMF\ MZIAN. The next Lemma shows that the action
of ' on the complement PMF \ MIN is weakly dissipative in the following sense:
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Lemma 1.2.3. The partition {Zr} of PMF \ MIN has the following properties

(1) It is countable, i.e., there are countably many distinct sets Zp;
(ii) It s T-invariant, i.e., together with any set Zr it contains all its translations

(iii) For any set Zp the number of pairwise disjoint translations vZp, v € T 1is
infinite.

Proof. f F € PMF\ MIN, then the graph (not necessarily connected) G of compact
(critical) leaves of the foliation F' is non-empty, and i(F, o) = 0 iff & is homotopic to a
closed loop in Gp. Since any such graph has a bounded number of edges, there are only
finitely many combinatorial types of graphs. As I' is countable, there are therefore only
countably many graphs G; up to equivalence ~ by homeomorphisms homotopic to the
identity and Whitehead moves. Let

Bi={F€'PMf\MIN:gF~gi}.

Since Whitehead moves do not change the homotopy classes of closed loops contained in
the graph, each set B; is contained in some Zp, and so the partition {Zr} is countable.

Clearly,
ZyF =YZF V’}’EI‘,FE'PM.F\MIN,

so that this partition is I-invariant.

Given any F € PMF\MIN, the surface decomposes into a union of annuli in which
every leaf is closed, and minimal domains in which every leaf is dense in the domain.
The boundary of each domain is comprised of critical leaves of F' [FLP], [St]. Take:
a boundary curve a and a curve o that does not lie in a boundary with (e, o) > 0,
then i(F,a) = 0 and ¢(F,0) > 0. Denote by <, the Dehn twist about 0. Then by

Lemma 1.2.1 7gaP—Ai}fa, and i(F,vyra) = i(y;"F,a) > 0 for all n greater than a
certain number N. Thus, v;"F ¢ Zr and v;"Zr N Zr = @ for all n > N, so that the
sets Y2V Zp, i =0,1,2... are all pairwise disjoint. a

Remark. We do not know whether the sets B; = {F € PMF\ MIN : G ~ G;} are

in general smaller than the sets Zr or coincide.

1.3. Teichmiiller space.

A conformal structure x on the surface M is determined by an atlas of coordinate
charts (Uy, 2,), where {U,} is an open cover of M, and local uniformizers z, : U, = C
have the property that z, 0 z;! is analytic whenever defined. The Teichmiiller space T}
is the space of all conformal structures on M endowed with the Teichmailler metric

1
dr(e,y) = Floginf K(h),  z,y€Ty,
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where the infimum is taken over all quasiconformal maps h : z — y homotopic to the
identity, and K (k) is the maximal dilatation of A. The infimum in the definition of the
Teichmiuller metric is realized by a unique Teichmiller map, and for any two points
z # y € T, there exists a unique Teichmiller geodesic line (i.e., an isometric embedding
of R into T,) passing through = and y.

The group I' naturally acts on Ty by isometries, and this action is properly discontin-
uous. The stabilizer Stabx C I' of a point = € T corresponds to a group of conformal
self-mappings of the surface, so that card Stabz < 84(g — 1) V& € T, by Hurwitz’ The-
orem [FK, p.242]. For each such group, the set of fixed points is a lower dimensional
Teichmiiller space [Ga, p.151]. There are only countably many such finite groups. Thus,
in the case g > 2 points with non-trivial stabilizers lie on a countable union of positive
codimension subvarieties in Tj;. In the case g = 2 the situation is somewhat different as
there is the hyperelliptic involution vyo € I’ which fixes every point in Ty, so that {e,y0}
is a 2-element normal subgroup of I'. However, the quotient group I'' = T'/{e, v} acts
on Ty, and points with non-trivial stabilizers in I lie on a countable union of positive
codimension subvarieties in T5.

For any r € Ty and o € § let

Ext,(a) = sup inf p(a)?,

p Co~o

be the extremal length of the homotopy class a with respect to the conformal structure
z (here the supremum is taken over all conformal metrics p on z with area 1), and let

Ext, = inf{Ext,(a):a € S}.

By [Kel, Theorem 4]

Ext.(a)
2dr(z,y) — qup — 2 1.3.1
€ alég Exty(a) ’ ( )

which implies that

T < g2dr(zy) T, . 1.3.2

In particular, the function z — Ext; is continuous on Tj.

Let 7 : z — T be the projection from Ty to the moduli space My = Ty /T'. Denote by
dp the distance on M s induced by the distance dr on Ty, and by T + Extz the projection
to My of the I'-invariant function 2 — Ext;. By the Mumford compactness theorem
[Mu] a subset X of M, has compact closure if and only if the function 7 + Extz
is bounded on X from below. Hence, by continuity the values Exty, T € M, (and
consequently, the values Ext,, ¢ € T,) are uniformly bounded from above.



POISSON BOUNDARY OF TEICHMULLER SPACE 17

The map
z > i(z,)) € RS,

where now i(z, @), a € § is the length with respect to the hyperbolic Riemannian struc-
ture determined by z of the (unique) geodesic from the class «, defines an embedding of
T, into Ri which projects to an embedding of T into PRf_ whose boundary is PMF.
This embedding is equivariant with respect to the action of I, and (see [FLP], [Ke2],
[CB]) the intersection number i(-, ) extends continuously from Ty x § to Ty x MF in
such way that

iz, F) >0 VzeT,, Fe MF.

Comparing the definitions of i(z, o) and Ext,(«) gives the inequality

i(z,a) < a;/zExt,,(Oc)l/2 , (1.3.3)

where a, = 27(2g — 2) is the area of the hyperbolic metric on z. Below we shall also
use the following well known fact: if i(a, ) > 0, and z,, € T, is a sequence such that
Extg, (a) = 0, then Ext,, (8) — oo. For, since Ext,, (a) = 0, by (1.3.3) the hyperbolic
length ¢(z,, ) of & tends to 0. As § crosses ¢, by [Kr, p.570],

i(zn, B) sinh i(Tn,a)

1
2 5 b

sinh
which implies that i(z,,3) — oo, and therefore Ext;_ (8) — oo. In particular, there
exists € > 0 such that

Extz(a) <e = Extz(8) >4 VzeT, o,f€S:i(e,5)>0. (1.3.4)

Let A C S be a disjoint system of homotopy classes of simple closed curves, i.e.,
i(a,f) = 0Va # f € A. Its cardinality does not exceed 3g — 3. Moreover, since there
is only a finite number of homotopy types for the complement of such systems, there
is a finite collection {A;} of disjoint systems A; C & with the property that any other
disjoint system A has the form A = yA; for some A; and v € I'.

For each disjoint system A C S there is a boundary Teichmiller space T4 obtained
by pinching or degenerating along the curves o € A. The space T4 counsists of noded
or punctured Riemann surfaces, for which the curves in A have been assigned zero
hyperbolic length. We can think of T, as corresponding to the empty set A. If A’ C A
we say that T4 is a deformation of T4:; every curve that is assigned 0 length in Ty is
also assigned 0 length in T4. Then T4 is a (trivial) deformation of itself, and each T4 is
a deformation of Ty. Denote by I'* = {y € I" : YA = A} the stabilizer of the set A, and
by T'# the normal subgroup of I'4 that is isotopic to the identity on each component of
the complement of curves from A. Then I'4/T'¢ is the mapping class group of T'4.
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Lemma 1.3.1. Given a constant L > 0 there exists N > 0 such that for any x € T,
there are at most N curves o € S with Ext,(a) < L.

Proof. By the invariance of Ext, under the I'-action it is enough to consider the pro-
jections T € M, of points z € Ty. For any compact X C M, and z € 77'X, we may
find a pants decomposition of the surface = in which the pants curves have hyperbolic
length bounded from below, and the distance between the curves in each pair of pants
is also bounded from below (with constants depending on X only) [FLP]. Then for each
L there is N = N(L, X) such that the number of curves of hyperbolic length at most L
on z does not exceed N. By the formula (1.3.3) this implies the result for the extremal
lengths as well. :

Thus, we need to find bounds in the case when T lies in a neighborhood of infinity
in M,. First we describe a neighborhood basis at infinity.

Let My, = T4, /(T4 /T2) be the moduli space of Ts,. There are various equivalent
ways of defining a topology on

My =M, Ul My,

in a neighborhood of | J; M 4; which compactifies M,;. We indicate one of them. Suppose
T € My,. Let V be a union of disjoint neighborhoods of the punctures of y, and let
p > 0. Denote by NM(y,V, p) the set of all T € M, such that
(i) If T € My,, then Ty, is a deformation of T4, i.e., 4; C 4;.
(i1) There are disjoint open sets U, on z, one for each a € A;, and such that U,
is an annular neighborhood of the geodesic a on = if & € A; \ 4;, and U, is a
neighborhood of the punctures on z corresponding to o if & € A;. There is a
homeomorphism from z \ |J, Ua to y \ V.
(iii) The homeomorphism from (ii) is a (1 4 p)-distortion of hyperbolic metrics.

The neighborhoods N (y, V, p), p < 1 form a basis for a topology at infinity on M,
compatible with the topology on M, in the sense that intersections of these neighbor-
hoods with M, are open in M,. With this topology M, is compact [Ab].

Now fix p < 1. For each puncture of y € Hg \ M, we may take two disjoint curves
homotopic to the puncture such that any arc crossing the annulus bounded by these two
curves has hyperbolic length at least L. Let V be the neighborhood of the punctures of
y whose boundary consists of the “inner” curves. Then any geodesic arc with endpoints
on the boundary, not homotopic to an arc on the boundary, must cross the annuli twice
and thus has length at least 2L. The neighborhoods N (y, V, p) obtained in this way
form a cover of the compact M, \ M,. Take a finite subcover {N(y, Vi, px)}, then
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its complement is compact in M,. For each y; € A; there are at most N = N(y, L)
homotopy classes of curves with hyperbolic length < 2L on y;.

Suppose now z € N (yx, Vi, pr) N My, and 3 is a closed geodesic in = of length at most
L. We claim that if # ¢ A;, then  cannot intersect o € A;, or indeed even enter one
of the annular neighborhoods U, of a described in (ii). For if it did, then there would
be an arc of 4 lying in # \ |J, Ua whose endpoints lie on the boundary of | J, Uy, and
which is not homotopic to an arc on this boundary. Via the homeomorphism of (ii) this
arc maps to an arc in y with endpoints on the boundary of V, not homotopic to an arc
on the boundary of V. This arc in y has length at least 2L. By the distortion property
(iii), the arc of § has length at least 2L/(1+ p) > L, and therefore 3 has length greater
than L, contrary to assumption, proving the claim.

Now by the claim and the distortion property (iii), the closed geodesic 8 maps to a
closed curve on y of length at most L(1 + p) < 2L. There are at most N homotopy
classes of geodesics on y with length at most 2L, and this means that there are at
most N geodesics § ¢ A; on z of length at most L, and therefore a total of at most
N + |Ai| £ N + 3g — 3 geodesics of length at most L on z. Since there are a finite
number of such yx, and the complement of { J, N (yx, Vi, px) is compact in M,, we are
done. O

Recall that a map f from one metric space (X1,d;) to another (X2,dz) is called a
rough isometry [Kan] if there exists a constant C' > 0 such that

édl(w,y) ~C<d(f(@), fy)) < Cdi(wy) +C  Va,ye X

(some authors use in this situation the term “quasi-isometry”, e.g., see [CDP], [GH],
[Gr]). Two spaces (X;,d1) and (X2,d2) are roughly isometric if there exist rough
isometries f; : X; — X7 and f3 : X3 = X;. We shall say that a metric space has ezpo-
nentially bounded growth if it is roughly isometric to a graph with uniformly bounded
vertex degrees.

Theorem 1.3.2. The Teichmiller space T, with Teichmiller metric dr has ezponen-
tially bounded growth.

Proof. We shall construct a graph G with uniformly bounded vertex degrees whose
vertex set X = {z;} is a subset of Ty, and the embedding G — T, is a rough isometry
(then necessarily this embedding is discrete). If in addition

sup dr(z,X) < o0,
z€T,

then the map from T}, to G assigning to any point z € T; the nearest point from X (or,
if it is not unique, the nearest point z; with minimal index 7) is also a rough isometry,
so that Ty and G are roughly isometric.



20 VADIM A. KAIMANOVICH, HOWARD MASUR

Fix an € > 0 satisfying the property (1.3.4), and let

Q= {z € T, : Ext, > 3¢}
Q={7T € My : Extz > e} =n(Q),

so that Q has a compact closure in M, by the Mumford theorem.

For any disjoint system A C § and € > 0 put

Xa(e) ={z € Ty : Bxty(a) < ¢, a € 4; Extg(a) > ¢, a ¢ A},

X a(e) = m(Xa) C M, (1.3.5)

Claim 1. The space T} is covered by 2 and the sets X 4, and this cover has non-zero
Lebesgue number o.

We wish to find a constant ¢ > 0 such that for each z € T, there is a ball of radius
o about z contained in either  or a single set X 4.

If Exty, > 3¢, then z € Q, and by (1.3.1) any point y € T, \ Q (i.e, such that
Ext, < is) has the property that

( 1y) 2 _log

m»—“mw

Suppose then that Ext, < %8. Let
A=Az, 3¢) = {a € S : Ext,(a) < 3¢} .

It follows from (1.3.4) that the system A is disjoint, and quite clearly z € X 4. Suppose
y € Ty \ X 4. Then either Exty(a) > ¢ for some a € A, or Exty(8) < 1 6 for some 8 ¢ A.
On the other hand, by the definition of the set 4 we have Ext;(a) < 6 for € A and
Extz(8) > 3¢ for 8 ¢ A. Hence, in the first case by (1.3.1),

1
dr(z ,y) > — log

N

and in the second case
dr(z,y) > ; log

NIHI#IW

Thus,
1
dT("r) y) > 5 log% )
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so that finally we can take o = %log -‘3%. A

Denote by H? the product of p copies of the hyperbolic 2-space H with the product
topology and sup-metric, and put the sup-metric d on H? x T4, where p is the cardinality
of a disjoint system A C §. By [Mi] there exists a constant C = C(e) and for each
disjoint system A C § a continuous map

FZ(FI,Fz)ZXA—)HP X Ta

such that
|4(F (), Fw) — dr(z,9)|< € Va,yeXa, (13.6)

and
Exth(z) > Ce VeeXy. (1.3.7)

The Mumford compactness theorem and (1.3.7) imply that F3(X 4) has a compact
quotient by T'4/T#, and therefore so does the (C + o)/2-neighborhood Fi(X4) of
F3(X 4). Take covers of H? and of F;;(X 4) by balls of radius o with a positive Lebesgue
number, and with the property that each ball intersects a bounded number of others,
and consider the product cover {V;} of H? x F}(X 4). Then the sets F~!(V;) cover X 4.
By (1.3.6) each of them is contained in a ball of radius C + o.

Take a cover of Q by a finite number of balls B(%, o), and denote by {W;} the cover
of Q by the balls of radius o + C centered at all points from the I™-orbits of the points
z ~ T. Clearly, the cover {W;} has a positive Lebesgue number and the property that
each element of this cover intersects a bounded number of other elements of the cover.
The sets W; together with the sets F~1(V;) (taken for all disjoint systems A C §) form
a cover of Ty which we denote by {U;}. Any set U; is contained in a Teichmiiller ball of
radius R = C’ + 0.

Claim 2. There is a constant K such that each set U; intersects at most K other sets
U;.

As the sets U; have uniformly bounded diameter, any U; intersects a bounded number
of the sets W;. Further, if a set U; intersects a set F~1(V}), then U lies within a bounded
distance from the corresponding set X 4, so that by (1.3.1) Ext,(¢) is uniformly bounded
from above on U; for all a € A. If there were no universal bound to the number of
intersections of U; with the sets F~1(V;), then there would not be a universal bound
for the number of curves whose extremal length is bounded from above with a certain
constant. This contradicts Lemma 1.3.1. A

Claim 8. There is a constant L such that any two points y,z € Ty with d7(y,2z) < o
can be joined by a chain of at most L sets U;.

By the choice of o, the o-ball around y is contained either in { or in a certain set
X4
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In the first case the geodesic joining y and z is also contained in Q. Since the cover
{W;:} of Q has a positive Lebesgue number, the points y, z can be joined by a bounded
number of W; along this geodesic.

In the second case y,z € X4, and d(F(y),F(z)) < C + ¢ by (1.3.6), so that the
geodesic joining F'(y) and F(z) is contained in H? x F;(X 4). Since the cover {V;} hasa
positive Lebesgue number, the same argument as in the first case shows that the points
F(y) and F(z) can be joined by a bounded number of V;. A

Now choose in every set U; a point x; such that U; is contained in the ball of radius
R = C + o centered at z;, and consider the graph G with the vertex set {z;} such that
two vertices z; and z; are joined with an edge iff the sets U; and Uj; intersect. By Claim
2 each vertex has at most K neighbours. Let d be the graph distance in G. Since any
U; is contained in the R-ball centered at z;, the Teichmiiller distance between any two
neighboring points in the graph G does not exceed 2R, and

dT(a:,-,z]-) < 2Rd(.'1},',mj) Vei,z; €G.
Conversely, by Claim 3 above
d(zi,z;) < Lldr(zi,2;) /0 +1] .

Thus, the identity map f1 : G — T, and the map f : T, — G assigning to any point
z € Ty the nearest among the points z; are rough isometries, so that T, and G are
roughly isometric. d

Remarks. 1. The fact that any (not necessarily covering) Riemannian manifold with

bounded geometry (bounded curvature and injectivity radius) has exponentially bounded
growth is rather straightforward [Kan]. Milnor [Mil] proved that for a regular cover of a

compact Riemannian manifold the natural embedding of the Cayley graph of the deck

group into the cover obtained by identifying the group with its orbit is a rough isometry

(Claim 3 from the proof of Theorem 1.3.2 basically uses the same argument). In general,

this is not true for covers of non-compact manifolds, the simplest counterexample being .
the action of the group SL(2,Z) on the hyperbolic plane. However, by a recent result

of Lubotzki, Mozes and Raghunathan [LMR] this embedding is a rough isometry for
the action of lattices in higher rank semi-simple groups on the corresponding symmetric
spaces. Apparently, one should be able to prove that this embedding is not a rough
isometry for free orbits of the mapping class group I' in Teichmiiller space Ty.

2. It is not immediately clear whether the graph G in Theorem 1.3.2 can be made
I-invariant (which depends on I'-invariance of the cover {F~1(V;)}).



POISSON BOUNDARY OF TEICHMULLER SPACE 23

Corollary 1. There ezist constants D, R > 0 such that any r-ball in T, can be covered
by not more than DeP” balls of radius R. :

Proof. By Theorem 1.3.2 there is a countable set X = {z;} C T, and a constant R such
that

Then for any z € T,
B(z,r) C U B(z;,R) .
zidr (z,2;)<r+R

Further, X can be given a graph structure in such way that any point has at most K
neighbours, and the graph distance d on X satisfies the inequality

d(zi,z;) < Cdp(zi,z;) + C |
for an absolute constant C. Hence, if o € X is such that dr(z,z¢) < R, then
card {z; € X :dp(z,z;) <r+ R}
< card {z; € X : dr(zo,z;) <r + 2R}
< card{z; € X : d(z0,2:) < C(r + 2R) + C} < (K + 1)C(r+2R+C

Corollary 2. For any point y € Ty there is a constant Dy such that

card {g € I : dr(z, gy) S’r}SDyeDl’r VeeT,, r>0.

Proof. Since the orbit of y in Ty is discrete, and the stabilizer Staby C T is finite, the

number
Ny = card{g € T : dr(y, g9y) < 2R}

is finite (here R is the constant from Corollary 1). Hence,
card {g € T' : dr(z,9y) < R} < Ny Vz eT,,

and the statement follows from Corollary 1. O

Remark. The numbers N, (hence, D,) are not uniformly bounded for y € T;. Indeed,
take y € Ty and a € § with Exty(a) very small. Then the Dehn twist about « is like
a parabolic element — it moves ¢ very little, so that one can iterate it many times and
still stay within a bounded distance.
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1.4. Teichmiiller geodesic lines and quadratic differentials.

The Teichmiiller maps and the Teichmiiller geodesic lines are described in terms
of quadratic differentials. A holomorphic quadratic differential ¢(z)d2? on z € T,
associates to each uniformizing parameter z, a holomorphic function ¢,(2,) in such

way that
dz,\?
eu(2v) = ¢u(zy)
(dz,,) pATH

if the coordinate charts of z, and z, overlap. Any non-zero quadratic differential ¢ has
a finite number of zeroes on M. Other points are called regular points of .

In a neighbourhood of any regular point p € M of ¢ there exists a natural uniformizing
parameter w such that

dw? = p(2)d2? .

If w; and w, are two overlapping natural coordinates, then w; = +w; + ¢, so that
each quadratic differential ¢ determines by the formula |dw| = |¢(2)}/2dz| a flat metric
on the complement of the finite set of zeroes of ¢, where this metric has cone type
singularities. The set of quadratic differentials Q° on z is a Banach space of complex
dimension 3g — 3, the norm ||¢|| = [ |¢dz?| being the area of M with respect to the flat
metric |p(2)dz?|. Denote by S% the unit sphere in Q.

For a geodesic 8 of the metric |¢(2)dz?| denote by

181, = /ﬂ I (2)"/2dz] = /ﬂ dw,
ho(B) = /ﬂ 1R (2)"/2ds] = /ﬁ R,

v(8) = /ﬂ 19p(2)/2dz| = ]ﬁ S|

its length, horizontal length and vertical length, respectively. Clearly,

he(8):v4(8) < 1Ble (1.4.1)

and

Bl < Exto(0)'?  VepeS®, BeS, (1.4.2)

where |3|, is the length of the geodesic from the class 8 € S with respect to the flat
metric determined by ¢. ’

The horizontal (resp., vertical) trajectories of a quadratic differential ¢ are curves 2(¢)
such that ¢(2(t))2'(t)> > 0 (resp., < 0), i.e., Sw(t) = Const (resp., Rw(t) = Const)
for any natural parameter w. The horizontal (resp., vertical) trajectories of ¢ given
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the transverse measure |Sy(z)!/2dz| = |Sdw| (resp., |Rp(2)!/?dz| = |Rdw|) define the
horizontal H, (resp., vertical V,,) measured foliation of ¢. The foliations H, and V,, -
are transverse, which is equivalent to saying that i(H,,V,,) > 0 and for any o € §
either i(H,,a) > 0 or i(V,,a) > 0 (the foliations H, and V,, fill). Conversely, any
two transverse measured foliations Fi, F € MF (in particular, any two topologically
non-equivalent minimal foliations) uniquely determine a point # € Ty and a quadratic
differential ¢ € Q% such that F; = H, and F; = V,,.. The intersection numbers of the
vertical foliation of a quadratic differential ¢ and the horizontal length with respect to °
¢ are connected by the formula

ho(a) =i(V,, ), ‘ (1.4.3)

where in the left-hand side h,(a) is the horizontal length of the geodesic from a class
a € S with respect to the flat metric determined by ¢. This formula follows from the
fact that this geodesic is quasi-transverse to V,,, so that it realizes the minimum in the

definition of i(V,,, ) [HM]. Another proof of (1.4.3) using Jenkins—Strebel differentials
is given in [Ma4, Lemma 2.2).

Given z,y € T, the extremal quasiconformal or Teichmiiller map, from z to y is
defined by an initial quadratic differential ¢ € S® and a number K > 1. There is
a terminal quadratic differential ¢ € S¥. The Teichmiller map sends zeroes of ¢ to
zeroes of v of the same order. Away from the zeroes, in terms of the natural parameters
w = u + 1 for z and { = £ + in for y, the Teichmiiller map is given by the formulas

¢=K"u,
n= K%

with dr(z,y) = 1/2log K. Equivalently, the Teichmiiller map sends horizontal (resp.,
vertical) trajectories of ¢ to horizontal (resp., vertical) trajectories of ¢ stretching by a
factor of K/2 (resp., K~1/?), so that

hy(B) = K'?hy(B)
’U,/,(,B) = K“l/sz(ﬁ) 5

and
Hy, =K '*H,,

1.4.4
Vy = KMV, . (144)

The Teichmiiller geodesic line determined by ¢ consists of the set of image points y
of Teichmiiller maps as K varies, 0 < K < oco. Thus, any Teichmiiller geodesic line !
determines a pair of transverse projective measured foliations: the projective classes of
the horizontal and vertical foliations of quadratic differentials along [. Conversely, any
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two transverse foliations F_,Fy € PMUF uniquely determine a Teichmiiller geodesic
line [F_, Fy] = l. Clearly, exchanging F_ and F4 corresponds to changing the direction
of I. As we shall see now, the vertical foliation F (resp., horizontal F_) can be in some
situations considered as the endpoint of the geodesic [F, F] at +o00 (resp., —oo) with
respect to the compactification T, — PMF.

Lemma 1.4.1. Let [F_, Fy] be the Teichmiiller geodesic line determined by transverse
projective measured foliations F_, Fy. If Fy is minimal, then for any M > 0 and any
To € [F-, Fy] all limst pomts of the M-neighbourhood of the geodesic ray [zo, FYy] belong

to the equivalence class Fy € MIN.

Proof. The choice of zo determines a parameterization [(¢), ¢ € R on [F_, F] with
[(0) = zo. Let y, be a sequence from the M-neighbourhood of the ray {I(t), ¢t > 0}

such that y, PMEH € PMF. As Yn — 00, there is o € § with i(y,,a) = oo, i.e,

Tnln M% H for a certain sequence r, — 0 [FLP]. There exists a sequence t, — oo
such that dr(zn,yn) < M for z, = I(t,). Since the values Ext;, z € T, are uniformly
bounded from above, there exist C' > 0 and a sequence 3, € § such that

Ethn(ﬂn) <C Vn>1.
Then by formulas (1.4.1) and (1.4.2)
hon(Bn) < |Bule, < Ext, (Ba)'/? < M2

On the other hand, denote by ¢ € 5% and ¢, € 5% the initial and terminal
quadratic differentials of the Teichmiiller map from zo to z, (rescaling F; we may
assume that V,, = F..). Then by the formulas (1.4.3) and (1.4.4)

hon(Bn) = 1(Ve,,B8) = e' "i(F4,Pn)

so that
i(Fir ) 2,0
Since the foliation F. is minimal, 8, are all distinct for sufficiently large n. Choose

a subsequence again labeled g3, which is convergent in PMF to a foliation H', i.e.,
snﬁn ML H' for a sequence s, — 0 (Lemma 1.1.1). Then

i(Fy,H') = limspi(Fy,0,) =0

Since dr(Zn,yn) < M and Ext;, (Bn) < C, Kerckhoff’s formula (1.3.1) says that
Ext,,(8.) is bounded. Hence by (1.3.3) the sequence i(yn, ) is also bounded, but
then

i(H,H") =limi(rpyn, $nfn) = imrp,s,i(yn,Bn) =0,

thereby ¢(F,H) = 0. O
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Lemma 1.4.2. Suppose that z, € Ty is a sequence such that z, — F € UE. If
dr(zo,zn) — dr(Tn,yn) = 00

for a sequence y, € Ty, then y, — F.

Proof. By [Ma2] convergence of the sequence z, to F is equivalent to convergence

PMF

Vgpn—_)F,

where ¢, € S7° is the initial quadratic differential of the Teichmiiller map from zo to
Zn. Denote by 6, € S* and ¢, € SY* the initial and terminal quadratic differentials
of the Teichmiiller map from zg to y,. We have to show that

PMF
— F.

n

Ve

As in the last Lemma we choose a sequence 3, such that Ext, (83,) is bounded, which
implies that
i{(Vy,,Bn) = 0.

Since F' € UE, we have

Bn PMI R,

Now by (1.3.1), |
Ext,, (B) = 0(e2dr(zmyn))__,

which by (1.4.1) and (1.4.2) in turn gives

by, (Br) = O(edr(xmyn)) ,
and since d7(zo,Yn) — d7(Zn,Yn) = 00, (1.4.3) and (1.4.4) give

i(Von,ﬂn) = hgn (ﬁn) — 0.
Again, since (3, PME F, we have Vy_ PME R, O
Remark. Lemma 1.4.2 is an immediate analogue of the corresponding property of Gro-
mov hyperbolic spaces (in particular, Cartan-Hadamard manifolds with pinched cur-
vature; see [CDP], [GH], [Gr]). If X is a Gromov hyperbolic space with the hyperbolic
boundary 8X, and z, € X is a sequence convergent to a point w € 98X, then any

sequence Yy, such that d(zn,zo) — d(zn,Yyn) — 00 converges to the same limit w € 0X.
The reason is straightforward: the Gromov product

(zaltn)eo = 5 [A(@n, 20) + d(yn,70) = (o, )]

tends to infinity.
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Lemma 1.4.3. For any reference point o € Ty the function

f:(F,G)— dT(o, [F,G])

assigning to a pair of transverse foliations (F, G) the distance from o to the Teichmailler
geodesic line [F,G] is continuous on the subset of PMF x PMF where it is defined.

Proof. Suppose (Fn,Gn)Pﬁ)f(Fo,Go). Let 29 be the point on the geodesic [Fp, Go)
realizing f(Fo,Gp). On z there is a quadratic differential g with horizontal and
vertical foliations projectively equivalent to Fy and Gy, respectively. By rescaling, we
may assume that H,, = Fp and V,,, = Gp. Find representatives again denoted Fy,, G,

in the corresponding projective classes such that F;, M% Fy and G, M% Go. Then the

quadratic differentials ¢, with F;, and G,, as horizontal and vertical foliations converge
to o, and the corresponding points z, converge to zg, so that

lim sup f(Fn,Grn) < limdr(o, 2n) = dr(o,20) = f(Fo,Go) .

For the opposite inequality take a subsequence (F,, , Gn, ) such that lim f(F,,,Gp,) =
liminf f(F,,Gnr), and denote by wi € [Fy,, Gy,] the point realizing f(Fy,,,Gyr,). Since
wy remains in a bounded subset of T}, passing again to a subsequence we may assume
that wy, converges to a point wg. The points wi carry normalized quadratic differentials
¥ with horizontal and vertical foliations from the projective classes of F,,, and G,,,
respectively. Passing to a subsequence we may assume that ¥ — 19, a quadratic dif-
ferential on wg. The horizontal and vertical foliations of ¢y converge to the horizontal
and vertical foliations of 1. Since (Fy,,Gn,) 7)ﬂ)}-(ﬁ’o, Go), the horizontal and vertical
foliations of 1 are represented by the projective classes of Fy and Gy, respectively, so
that wg € [Fo, Go] Then

liminf f(Fn,Grn) = lim f(Fy, , Gy, ) = limdr(o,wi) = dr(o,we) 2> f(Fo,Go) .

Denote by
Graph(~) = {(F,G) € MIN x MIN : F ~ G}

the set of all pairs of equivalent minimal foliations.
Lemma 1.4.4. For any reference point o € T, the function

(P(Fo,Go) == (i(ﬁo,éo) = Sup{dT(o, [F, GD P~ Fo, G ~ Go}
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on MIN x MIN \ Graph(~) is upper semicontinuous.

Proof. We have to show that for any sequence (F,,Gr) = (Fo,Go) there is a subse-
quence (Fp,, Gy, ) such that lim &(F,, , Gn,) < ®(Fo, Go).

Since the equivalence classes FF € MIN are closed in PMF , by Lemma 1.4.3 the
sup in the definition of the function @ is attained, and for any (Fp,Go) € MIN x
MIN \ Graph(~) there exist F' ~ Fp, G ~ Gy such that

@(Fo, Go) = dT(O, [F, G]) .

Now take a sequence (Fy,, Gpn) = (Fb, Go). Since Fp and G, are two disjoint closed
sets, Fy, # G, for all sufficiently large n. Let [F}.,GL], F. ~ Fn, Gl ~ G, be the ge-
odesic realizing ®(F,,Gn). Take a subsequence (Fj, , G}, ) of the sequence (F,,GY,)
convergent to (Fj,G;). Since #(Fyn,F,) = 0, the continuity of i(-,-) implies that
i(Fy, F§) = 0, and similarly i(Go,Gp) = 0.

Thus,

B(Fo, Go) > dr (o, [FY, Gy]) = limdr (o, [FYy , Gl ]) = lim &(FY, , G,

proving the claim. g

1.5. Action of the mapping class group on PMF.

We shall say that a sequence g, € I' is universally convergent if it tends to infinity
in T, and for any a € S there exists a limit
limg o =F, € PMF,
i.e., for any a € S there exists a sequence s& such that
- MF
8297l 5 F,.
As it follows from Lemma 1.1.1, any sequence s is bounded, and it tends to zero iff
gnla M% . Clearly, any unbounded sequence in I' contains a universally convergent
subsequence, and any subsequence of a universally convergent sequence is also univer-
sally convergent with the same limits F,.

By Lemma 1.1.1, if g, is a universally convergent sequence, then for any a € § either
g la M2 0o, or there is 8 = B(a) € S with the property that g;'a = 3 for infinitely
many values of n. In the former case put N2 = @ and N° = {1,2,...}. In the latter
case such f is clearly unique, and we put

Ng={n:g;"a=p}
Ng ={n:g. a#p}.
Again by Lemma 1.1.1, if the set N° is infinite, then g, 'a M% o when n goes to

infinity along the set N°. Note that the set N3° may well be empty (see Remark 2
after Lemma 1.2.2).
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Lemma 1.5.1. For any universally convergent sequence ¢, there exists a € S with
infinite set NS°.

Proof. Take a disjoint system A = {ai,...,a35-3} C S of curves which determines
a pants decomposition of the surface. Suppose that the sets N7 are all finite, then
the sequences g, lo; all stabilize. Denote by 3; € S the corresponding limits, so that
g a; = B; for all sufficiently large n. Then clearly the curves 3; are all distinct and
pairwise disjoint, hence they also form a pants decomposition. Since any map that
preserves the curves of a pants decomposition is a product of the commuting Dehn
twists about these curves [FLP], any g;;! with sufficiently large n must have the form
gt =1 e, pi=pi(n),

where g € T' is some fixed map such that go; = f;, 1t =1,...,39 — 3, and v; = 3, are
the Dehn twists around the curves ;. As g, goes to infinity in T,

3 Ipi(m)] > o0,

so that there is a curve §; and a subsequence g, such that |p;(ng)| = oo, which means
that g;;!(w) wraps more and more around this §; for any curve w that crosses a;, and
hence goes to infinity. a

We shall say that a sequence g, € T is strongly universally convergent if it is univer-

sally convergent, and in addition there is o € S such that g;;lc ML . By Lemma 1.5.1
any unbounded sequence in I' contains a strongly universally convergent subsequence.

Remark. In fact, one can show that any universally convergent sequence is strongly
universally convergent. However, the weaker (and easier to prove) statement of Lemma
1.5.1 is sufficient for our purposes.

Lemma 1.5.2. Let g, be a universally convergent sequence. If for a certain o € S the
set N2° is infinite, then i(Fo,Fg) =0 for allB € S.

Proof. Pass to the subsequence of g, (again denoted g,) with indices n € N$°. Then

g la M5 o0, so that s¢ — 0. Since for any 8 € S the sequence s? is bounded, by
continuity and I'-invariance of the intersection number we have

i(Fa, Fp) = limi(s297" o, 8897 B) = lim s%si(cr, ) = 0.
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For a given universally convergent’ sequence g, let
X=|JF.cPMF, (1.5.1)
aES
Note that as it follows from Lemma 1.5.2, the intersection of the set X with MIN
consists of at most one equivalence class F, F € MIN.

Lemma 1.5.3. If g, 1s a strongly universally convergent sequence, then g, F M2

forany FeT,UPMF\ X.

Proof. Take o € S such that g la Mz 00, i.e., s5 — 0. Since
s%i(gnF, ) = sCi(F, g7 a) = i(F,s3g7"a) — i(F, Fa) £0,
we have that (g, F, a) — 0. O

Lemma 1.5.4. Let g, be a strongly universally convergent sequence, and foliations

F,F' € T,UPMF\ X be such that goF 25 H € PMF and g F' 25 H' ¢ PMF.

Then
(i) i(H,H')=0;
(ii) i(H,a) =0 < i(H',a)=0 Vaes§ .

Proof. (i). By Lemma 1.5.3 there exist sequences ty,t;, — 0 such that t,g,F M H

and t/ g, F' MZ H'. Then
i(H, H') = limtnt)i(gn F, guF') = lim tathi(F, ') = 0.

(ii). For any o € S we have

i(f,0) _ lmbnilgnfio) _ o tn (1.5.2)
i(F,Fo) lims2i(F,gn'a) Sn
and in the same way (B o) ,
(H' o t
A im 2R 1.5,
(P F) im e (1.5.3)

Now take w € § with i(H,w),i(H',w) > 0. Such w exists, for, otherwise, for any a € S
either i(H,a) =0, or i(H', ) = 0, hence, since § is dense in PMF, for any F € PMF
either «(H,F) = 0, or i(H', F) = 0, which is impossible, because i(H, F),i(H',F) > 0
for any F ¢ UE\ {H,H'}.

Then by (1.5.2) and (1.5.3) the limits lim¢,/s% and limt; /s% are both non-zero,
so that there exists a non-zero limit lim#,/t,. Comparing again formulas (1.5.2) and
(1.5.3) yields the desired statement. O



32 VADIM A. KAIMANOVICH, HOWARD MASUR

Corollary. If g, is a strongly universally convergent sequence, then there exists H €
PMF such that all limit points of the sequences gnF, F € T,UPMF\ X are contained
in the set determined by the conditions (i) and (ii).

Now we shall study the limit points of translations of measures in PMF. We begin
with the following elementary statement.

Lemma 1.5.5. Let v be a Borel probability measure on PMF, and g, - a sequence in
T such that g,v converges weakly to a measure \ on PMF. If there is a set E C PMF
with vE = 0 and a Gs-set Q@ C PMUF such that §) contains cll limit points of sequences
gnF, F € PMF\ E, then the measure A is supported on Q.

Proof. Let U be an arbitrary open neighbourhood of Q. Then for any F' ¢ E there is
a finite number n(U, F) such that ¢g,F € U for all n > n(U, F'). Since vE = 0, for any
€ > 0 there is N > 0 such that v{F : n(U,F) < N} > 1—¢. Hence, g,v(U) > 1—¢
for all n > N, and AU > 1 —¢. Since ¢ is arbitrary, AU = 1. Being Gs, the set Q is a
countable intersection of its open neighbourhoods, hence A2 = 1. O

Lemma 1.5.6. Let v be a Borel probability measure on PMF such that u(l~7’) =0 for
any F € PMF, and g, - an unbounded sequence in I" such that g,v converges weakly
to a measure A on PMF. Then

(i) Either the measure X is concentrated on the set

H={F:i(F,H) =0} c MIN (1.5.4)

for a certain H € MIN, or it is concentrated on the set
Zy ={F:i(F,a) =0 <= i(H,a) =0Va €8} C PMF\ MIN (1.5.5)

for a certain H € PMF \ MIN.

(i1) In the first case all limit points of the sequences gpz, € Ty are contained in
the set H, and in the second case - in the set Zy.

Proof. (i). By passing to a subsequence we may assume that the sequence g, is
strongly universally convergent. Let X C PMUF be the corresponding set (1.5.1).
Take a foliation FF € PMF \ X. Passing again to a subsequence we may assume

that gan—/—w—)fH € PMF. Now we have two possibilities: either H € MIN, or
H € PMF\ MIN. In the first case denote by Q@ = Q(H) the corresponding set H
(1.5.4), and in the second case — the corresponding set Zy (1.5.5).
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Any set H is the countable intersection of open sets
{F € PMF :i(F,H) < Li(F,e)}, a€Sn>0,

so that it is G5. Any set Zy is also Gy, as it is the countable intersection

ZH=[ N {F;z’(F,a)=0}}n[ (| {F:i(Fa)>0}

o:i( H,o)=0 o:i(H,a)>0

of the Gs-sets {F € PMF : i(F,a) = 0} and open sets {F € PMF : i(F,a) > 0}.
Thus, the set €2 is Gs. Now by Lemma 1.5.4 all limit points of sequences g, F', F' €
PMF\ X belong to Q. Since vX = 0, by Lemma 1.5.5 the measure ) is supported on
Q.
(ii). This immediately follows from Lemma 1.5.4. O

Remark. As it follows from the proof of Lemma 1.5.6, the set §2(H) is completely
determined by the sequence g,, so that if v/ is another probability measure on PMF
such that v/ (ﬁ) =0VF &€ PMF, and g,v' — X, then X is concentrated on the same
set Q(H) as the measure .

2. RANDOM WALKS ON THE MAPPING CLASS GROUP

2.1. The Poisson boundary of random walks on groups.

Let G be a countable group, and g — a probability measure on G. We shall denote by
sgr(u) (resp., gr(p)) the semigroup (resp., the group) generated by the support of the
measure y. The random walk on G determined by the measure i is the Markov chain
on G with the transition probabilities

p(g,h) = p(g™'h)

invariant with respect to the left action of the group G on itself. Thus, the position g,
of the random walk at time n is obtained from its position go at time 0 by multiplying
by independent p-distributed increments «;:

n = goM172° " Yn »

and the set of all points in G attained by the random walk from the identity e is the

semigroup sgr (1).
Denote by P the probability measure in the space GZ+ of the sample paths g =
{gn}, n > 0 which corresponds to the initial distribution concentrated at the identity
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(i.e., go = €). The one-dimensional distribution of P at time n (i.e., the distribution
of gn) is the n-fold convolution u, of the measure y. The Markov operator P, of
the random walk (G, ) (i.e., the operator of averaging with respect to the transition
probabilities of the random walk) is

P.f(g) = Zp(g,h)f h) = Z#(’r)f(gv)

A function f is called y-harmonic if P,f = f. By H*(G,p) we denote the Banach
space of bounded p-harmonic functions on sgr(u) with the sup-norm.

Suppose for a moment that the group G is embedded into a topological G-space B,
and P-a.e. sample path g = {gn} converges to a limit goo = m(g) € B. Then the
harmonic measure A = w(P) is u-stationary in the sense that

pA=Y " pn(glgh =X,

and the Poisson formula

f(9) = (f.9N) (2.1.1)

determines an isometric embedding f > f of the space L*°(B, A) into H® (G, ). When
is this embedding a bijection? That is, when can every bounded harmonic function be
represented as a Poisson integral (2.1.1) over the space (B, \)?

Topology on the space B is, in fact, irrelevant, and the only thing one needs from a
measure preserving map 7 : (GZ+,P) — (B, )) in order to have the embedding (2.1.1)
is its measurability with respect to the equivalence relation

g~g 3k,k'20:gk+n=g;€,+n‘v’n_>_0.

In other words,
g~g < kK >0:Trg=TFqg', (2.1.2)

where (Tg), = gn+1 is the time shift in the path space G%+, i.e., the equivalence relation
~ is the trajectory equivalence relation of the shift T. Note that the shift T does not
preserve the measure P, nor its type. However, the measure Py corresponding to an
initial distribution 8 with supp 8 = G is quasi-invariant with respect to T'.

The quotient measure space (OP,,v) of the path space (G, P) with respect to the
measurable envelope of the equivalence relation ~ (i.e., the space of ergodic components
of the shift T') is called the Poisson boundary of the pair (G, ). The Poisson boundary
is endowed with an action of the group G, and the harmonic measure v is y-stationary
with respect to this action. The Poisson formula (2.1.1) is an isometric isomorphism of
the spaces H*(G, 1) and L>*°(T',v) [Ka5].
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Triviality of the Poisson boundary is equivalent to absence of non-constant bounded
p-harmonic functions on the semigroup sgr(u), or, equivalently, on the group gr(u),
(the Liouville property), which is the case for all measures on abelian and nilpotent
groups. If the group G is amenable, then there always exists a measure pu with trivial
Poisson boundary (but there may also be measures with a non-trivial boundary). On
the other hand, the Poisson boundary is non-trivial for all measures on a non-amenable

group G [KV].

Any G-space which is a ~-measurable image of the path space is the quotient of
the Poisson boundary with respect to a certain G-invariant measurable partition. Such
quotients are called u-boundaries [Fu3], [Kal0]. By definition, the Poisson boundary is
the maximal u-boundary. Thus, the problem of describing the Poisson boundary of a
random walk (G, i) consists of two parts:

(1) To find (in geometric or combinatorial terms) a p-boundary (B, A);
(2) To show that this p-boundary is maximal.

In other words, first one has to exhibit a certain system of invariants of stochastically
significant behavior of sample paths at infinity, and then to show completeness of this
system.

Note that in the same way as for random walks on groups one can define the no-
tions of harmonic functions and the Poisson boundary (and ask the question about its
identification) for an arbitrary Markov operator [Kab].

2.2. Convergence in the Thurston compactification.

Lemma 2.2.1. Let u be a probability measure on a countable group G, and X - a
compact G-space. Then there exists a p-stationary probability measure on X.

Proof. Let v be a Borel probability measure on X. Compactness of X means that the
space M(X) of Borel probability measures on X is compact in the weak topology. The
Cesaro averages

1
Up = n~+1(V+M*V+H2*V+~--+Mn*V)

have the property that

1
b # v = vall = = lllnsr xv = v <

-— 0

n+4+1n-00

(here ||\|| is the total variation of a measure \). Hence any weak limit point of the
sequence v, is a pu-stationary measure. d
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Lemma 2.2.2 (cf. [Ba], [Wol]). Let p be a probability measure on a countable group
G, and v - a p-stationary probability measure on a G-space X. Suppose E C X is a
measurable subset such that for all g € gr(u) either gE = E or gENE = @, and there
is an infinite number of pairwise disjoint translations gE, g € gr(p). Then v(E) =0.

Proof. Without loss of generality we may assume G = gr (u); if not, just consider instead
of G the subgroup gr (1). If v(E) > 0, then there is a go € G which maximizes v(gE),
le.,

v(gE) <v(goE) VgeG.

Put E' = goE. Since the measure v is p-stationary,

v(E) = u(g)gv(E) =Y ulg)v(gT E) <> ul(g) (E') = v(E").

Therefore v(g1E') = v(E') for all g € supp . Applying the same argument to convo-
lutions of the measure u, we see that

v(¢g7'E") = v(E") Vg €sgry),

which is only possible if the set of pairwise disjoint translations g~ E’, g € sgr(p) (i.e.,
the sgr (1) ~!-orbit of the set E' in the space of subsets of X) is finite. The latter by a
standard argument implies that for the group G generated by the semigroup sgr (u)™*
the orbit of E’ (= the orbit of E) is also finite, which gives a contradiction. a

Lemma 2.2.3. Let y be a probability measure on a countable group G, and v - a u-
stationary probability measure on a compact separable space X. Then for P-a.e. sample
path g = {gn} of the random walk (G, u) the translations g,v converge weakly to a
(random} limit A = A(g), and

v= /)\(g) dP(g) . (2.2.1)

Proof. The measure v being p-stationary, for any continuous function f: X — R the
Poisson integral

f(9) = (Frgv) = /X Fle) duv(g2)

is a bounded p-harmonic function, so that by the Martingale Convergence Theorem
the sequence f(gn) = (f,gnv) converges for a.e. sample path {g,}. The space X is
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separable, hence taking  from a dense countable subset of C(X) we obtain that P-
a.e. sequence of measures g,vp converges weakly (see [Fu3, Corollary 3.1]). Moreover,
passing to the limit on n in the identity

V=fy*V = /gnudP(g)

gives the decomposition (2.2.1). O

We shall say that a subgroup I of the mapping class group I" satisfies condition (NE)
if it does not fiz any finite union of the sets

H={FePMF:i{F,H) =0}, HeMIN,
or
Zg={F € PMF:i(F,a)=0 < i(H,a) =0Ya €S}, HePMF\MIN.

Equivalently, IV C I satisfies condition (NE) if it is not a finite extension of the stabilizer
of a set H or Zy. This notion is a direct analogue of that of non-elementary groups
of isometries of hyperbolic spaces [Gr]. Note, however, that unlike in the hyperbolic
case, a subgroup of I' may not satisfy (NE) and still be non-amenable. For example, the
subgroup generated by Dehn twists about two intersecting curves that are each disjoint
from a third curve a is non-amenable, but fixes the set Z,. As it follows from minimality
of the I'-action on PMF and Lemma 1.2.3, the group I itself satisfies condition (NE).

Theorem 2.2.4. Let p be a probability measure on the mapping class group T' such
that the group gr(u) satisfies condition (NE). Then
(i) There ezists a unique p-stationary probability measure v on the space PMF,
which 1s purely non-atomic and concentrated on UE, and the measure space:
(UE,v) ts a u-boundary;
(i) For P-a.e. sample path g = {gn} of the random walk (I',u) and any z € Ty the
sequence gnx converges in PMF to a limit F = F(g) € UE, and the distribution
of the limits F(g) is given by the measure v.

Proof. (i). Let v be a p-stationary probability measure on PMF which exists by Lemma
2.2.1. Since PMF is a Polish topological space (complete, metrizable, separable), and
v is a Borel measure, the measure space (PMF,v) is a Lebesgue space, so that we can
use the standard language of measurable partitions [CFS].

By condition (NE) the gr(u)-orbit of any set Zp, F C PMF \ MIN is infinite,
hence by Lemma 2.2.2 the measure v is concentrated on MIN. By Lemma 1.1.2 the
partition of the measure space (MZIN,v) into equivalence classes of the relation ~ is
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measurable, so that there exists a quotient Lebesgue measure space (MZIN V) whose
elements are equivalence classes F, F € MIN. By Lemma 2.2.2 and condition (NE)
the measure v is purely non-atomic.

By Lemma 2.2.3 for P-a.e. sample path g of the random walk (T, ) there exists
the weak limit \(g) = limg,v. Since the measure v is supported on MZN, the de-
composition (2.2.1) implies that a.e. limit measure \(g) is also supported on MZN.
Hence, by Lemma 1.5.6 a.e. measure A(g) is concentrated on a single equivalence class
of the relation ~ in MZN, which means that we have a measurable map from the path

space to m . Clearly, this map is measurable with respect to the trajectory equiv-
alence relation (2.1.2) in the path space and I'-equivariant. As it follows from formula
(2.2.1), the image of the measure P in the path space under this map is ¥, so that
the quotient measure space (m ,V) is a non-trivial y-boundary. It implies that the
Poisson boundary of the pair (T, 1) is non-trivial. In particular, the random walk (T', u)
is transient, i.e., g, — oo for P-a.e. sample path g = {g,} [KV].

" Now we shall show that in fact the measure v is concentrated on €, so that the

measure spaces (m ,v) and (PMF,v) coincide, and (PMF,v) is a p-boundary.

Consider the measure space (I'Z, P) of bilateral paths § = {gn, n € Z} corresponding
to bilateral sequences of independent u-distributed increments 4 = {v,} by the formula

In = Gn—17n, go = €. (2.2.2)

Clearly, the formula (2.2.2) states a one-two-one correspondence between bilateral paths
g = {g»} in T passing through e at time 0 and their increments v, = g;,gn. For
negative indices n the formula (2.2.2) can be rewritten as

-1
g—n = J-n+1Y_p41 n=>0,

so that

gn=9-n=7% 71"V apr, n20
is a sample path of the random walk on I' governed by the reflected measure fi(y) =
p(y™1). The unilateral paths g = {gn}, n > 0 and § = {gn} = {g-n}, n > 0 are
independent, or, in other words, the map g — (g, §) is an isomorphism of the measure
spaces (I'%,P) and (I'Z+,P) x (T'%+,P), where P is the measure in the space of unilateral
sample paths of the random walk (T, ).

Denote by U the measure preserving transformation of the space of bilateral paths
(T'Z,P) induced by the Bernoulli shift (also denoted by U) in the space of increments
7= {7n}, n 2 0) i'e'7

(UY)n = Ynt1 VneZ.



POISSON BOUNDARY OF TEICHMULLER SPACE 39

Hence, if § = {gn} is the bilateral path corresponding to the sequence of increments =,
then

(Ug)‘ﬂ-f'l = (Ug)n(U'Y)n-’rl = (Ug)n7n+2 VneZ s

so that
(UG)n = 17 ' gnt1 = 97 "gn+1 VneZ,

or, more generally, for any k € Z
(U*G)n = g7 'gner VREZ, (2.2.3)

i.e., the path U*g is obtained from the path g by translating it both in time (by k) and
in space (by multiplying by g; ' on the left in order to satisfy the condition (U*g), = ).
In terms of the unilateral paths g and g it means that (for & > 0) one cancels first &
factors gk = 7172 - - - 7k from the products gn = y172+ Yk -**Yn, » > 0 and adds (on
the left) k factors g,:l = 7,:1 X -72"1'71—1 to the products §, = g—n = 70‘17:11 .- -'y:,ll_,_l:

e

Y1705 Y15 0 s Yh—15TYEky Vk+1, "t
~ ~ N e’

By the argument above applied to the measure ji there exists a purely non-atomic

ji-stationary measure 7 on MZIN such that the space (MZIN,7_) is a ji-boundary.
For symmetry we shall use the notation v for the measure v for the rest of the proof.

Denote the boundaries (MZN,7,) and (MZIN,V_) by B4 and B_, respectively, and
let bnd4(g) = bnd(g) € B4 and bnd_(g) = bnd(g) € B~ be the corresponding
boundary points of the unilateral paths g and g.

Independence of g and § implies that the image of the measure P under the map

r:g (bnd-(7),bnd. (@)
(i.e., the joint distribution of bnd_(g) and bnd,(g)) is V- ® V4. By the formula (2.2.3)

bnd(U*g) = g; 'bnd+(g) ,

2.2.4
bnd_(U*g) = g 'bnd_(g) . (224

Take a reference point o € Ty, and let

¥(g) = sup{dr(o,[F-, F4]) : F- € bnd_(g), Fy € bnd(g))
= &(bnd_(g),bnd. (7))
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be the pullback of the function & defined in Lemma 1.4.4 from WK/ X ./\//(\IJ/\/' to the
space of bilateral paths I'?. Since the measure v, is purely non-atomic, the function ¥
is a.e. defined, and by Lemma 1.4.4 it is measurable.
Then by the formula (2.2.4) for any k € Z
sup{dr(gro,[F-,Fy]) : F~ € bnd_(g), Fy € bnd;(g))
= sup{dz (0,67 [F-, F4]) : F- € bnd_(), Fs € bud(g))
=sup{dr(o,[F_,Fy]) : F- € g;*bnd_(g), Fy. € g5 bnd, (7))
=sup{dr (o, [F-, F}]) : F_ € bnd_(U*g), F} € bnd(U*g))
=U(U*g) .

As the function ¥ is a.e. finite and measurable, we can choose a number M such

that
P[¥(g) <M] =p>1/2,

then by the Ergodic Theorem applied to the transformatlon U for a.e. bilateral path g
the density of times k& > 0 such that

sup{dr(gro,[F-,Fy]) : F- € bnd_(g), Fy € bnd;(g)} <M

equals p.
Since the unilateral parts g and g of the bilateral path g are independent, it means

that for P-a.e. unilateral path g and v_-a.e. class H_ € MIN the density of times
k > 0 such that

sup{dr(gko, [F-,Fy]) : F_ € H_,F, ¢ bnd(g)} < M

equals p. The measure v_ being non-atomic, there exist distinct H 1 H2 € MIN with
this property. As p > 1/2, it means that for P-a.e. unilateral path g there exist an
infinite sequence of times ny and H* £ H2 € MZIN such that

sup{dr(gn,0,[H ,Fy]) : Fy € bnd(g)} < M, VE>0,:1=1,2.
Suppose bnd(g) € MIN \UE, and take F, € bnd(g), then
dr(gneo, [H L, F4)) <M, Vk>0,i=1,2. (2.2.5)

Choose parametrizations I;(¢), t € R on the Teichmiiller geodesic lines [H* , F..]. Since

Fy € MIN \UE, by [Ma3, Theorem 1]

dT(li(t), PO) t;?oo o0 .
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On the other hand, by Lemma 1.4.1, the intersection of the M-neighbourhoods of the
negative rays {l;(¢), ¢ < 0} is compact. Thus, there must exist only a finite number
of distinct g, satisfying the condition (2.2.5), which is impossible because g, (hence,
gn,) tends to infinity by transience of the random walk (T, u).

Thus, we have shown that the measure v = v is concentrated on UE, and by the
decomposition (2.2.1) from Lemma 2.2.3 almost all limit measures A\(g) = limg,v are
d-measures corresponding to points from UE. If v’ is another u-stationary probability
measure on PMF, then by the Remark after Lemma, 1.5.6 it has the same limit measures
lim gn,v = limg,v/, so that in view of the decomposition (2.2.1) v’ = v, which means
that v is the unique y-stationary measure on PMF. Since v is concentrated on UE,
the factorization map (MIN,v) —» (MIN,7) is an isomorphism of measure spaces.
As we have already shown that (m ,V) is a u-boundary, we have that the measure

space (MIN,v) (m ,V) is a y-boundary.

(ii). We have shown that for P-a.e. sample path g there exists a point F' = F(g) € UE
such that g,v — dr weakly. By Lemma 1.5.6 it implies that g, -+ F Vo € T,;. In
particular, the distribution of the limits lim g,z is the same as the distribution of F(g)
which has been shown to coincide with v. O

Corollary 1. For any z € T, the sequence of measures pn * 6y on T, converges weakly
to the unique p-stationary measure v on PMF.

Proof. By definition,
fin * 6z = /gnéx dP(g) .

Since a.e. g,z — bnd(g) € UE, and the distribution of the limit points bnd(g) is v,
passing to the limit (in the same way as in Lemma. 2.2.3) yields the result. O

Corollary 2. Any subgroup I' of T satisfying the condition (NE) is non-amenable.

Proof. By Theorem 2.2.4 for any probability measure y on I' with gr(u) = I the
Poisson boundary is non-trivial. By [KV] (see also [Ro]) this implies that I' is non-

amenable. . O
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2.3. Identification of the Poisson boundary.

Theorem 2.3.1. Let u be a probability measure on the mapping class group I' such
that the group gr (1) C T satisfies condition (NE). If
(i) The measure u has a finite logarithmic moment with respect to the Teichmaller
distance

) u(7)logy dr(0,70) < 00
i

(i1) The measure u has a finite entropy
H(p) =Y —p(y)logp(y) < oo ;

~

then the measure space (PMF,v), where v is the unique pu-stationary probability mea-
sure on PMUF, is the Poisson boundary of the pair (T, p).

Proof. We shall use the “strip criterion” from [Kal0] (see also [KaT]). It requires consid-
ering a u-boundary (B4, v4) simultaneously with a fi-boundary (B_,v_). If there exists
an equivariant measurable map assigning to a.e. pair of points (F_,F.) € B_ x B} a
“strip” S(F-, Fy) C T’ 2 T'o which is sufficiently “thin” in the sense that intersections
of a.e. strip with balls in T, grow polynomially, then (B4 ,vy) (resp., (B-,v.)) is the
Poisson boundary of the measure p (resp., ).

By Theorem 2.2.4 there exist unique y- and fi-stationary measures vy and v_ con-
centrated on UE such that the spaces (UE,v_) and (UE,v,) are a fi-boundary and a
p-boundary, respectively. Since the measures vy are purely non-atomic, for v_ @ vi-a.e.
pair (F_, F;) there exists a unique Teichmiiller geodesic line [F_, F]. Fix a reference
point o, then the function [F_, Fy] ~ dr(o,[F-, Fy]) is a.e. defined and measurable
(see Lemma 1.4.3), and there exists M > 0 satisfying the condition

V- Q@ V+{(F_.,F+) : dT(O, [F_,F_}_D < M} >0.
Let
S(F-,Fy) = {7 €T :dr(yo,[F-, Fy]) < M}

be the “strip” in I' associated with the pair of points F__, F'y. By the definition of M
the set of pairs (F_, F}) with non-empty set S(F_, F,) has positive v ® v, measure,
so that the ergodicity of the action of gr (1) on the product of the boundaries (UE, v_)
and (UE, vy) [Ka6] (which follows from ergodicity of the Bernoulli shift U in the space
of increments — cf. the proof of Theorem 2.2.4} implies that the sets S(F_, F.) are a.e.
non-empty.

Let

B, = {7 €T : dr(o,7v0) < n} .
Since the group I' acts on the space T, properly discontinuously, for any F_ # Fy €
UE the intersections S(F_, F}) N B, grow at most linearly with respect to n, so that
conditions of the strip criterion are satisfied. |
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Theorem 2.3.2. Let i be a probability measure on the mapping class group T such that
the group gr (i) C T satisfies condition (NE). If the measure u has a finite first moment
with respect to the Teichmiller distance

> u(y)dr(o,v0) < 00,

5y

then the measure space (PMF,v), where v is the unique p-stationary probability mea-
sure on PMUF, is the Poisson boundary of the pair (T, ).

Proof. Theorem 2.3.2 follows from Theorem 2.3.1. Clearly, finiteness of the first moment
implies finiteness of the first logarithmic moment, so that condition (i) of Theorem 2.3.1
is satisfied. We have to check that finiteness of the first moment implies finiteness of the
entropy of the measure u (condition (ii) of Theorem 2.3.1) as well. This follows at once
from the fact that for any reference point o € T, the number of elements 4 € T' such that
dr(0,70) < R grows exponentially as a function of R (Corollary 2 of Theorem 1.3.2).
For the sake of completeness, we shall give here the corresponding standard argument
(e.g., cf. [De2]).
Let
Dy={y€eT:k—-1<dp(o,v0) < k}, k=1,2,...,

so that I' is the disjoint union of the sets Dy, and let mx = p(Dy). Denote by oy the
normalized restrictions of the measure p onto the sets Dg, so that 4 = ) mpag. Then

H(p) = H(r)+ Y _meH(ax)
k

where

H(p) = - pilogp

is the entropy of a discrete probability distribution p = (p;). The sets Dy grow at most
exponentially, i.e., there is a constant C' > 0 such that logcard Dy < Ck. Then by
standard properties of the entropy

qukH(ak) < Z’ﬂ'k log card Dy, < CZkﬂ’k < C’Z[dT(o,fyo) + l]u('y) < 00.
k k k Y

On the other hand, monotonicity of the function ¢ — —tlogt on the interval [0,e™?]
implies that

H(m) = Z(— log mp)mi < Zmax{k, —log i i < Zkﬂ'k + Z ke ® < 0.
k k k k
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Corollary. Let u be a probability measure on the mapping class group T’ such that the
group gr(p) C T' satisfies condition (NE). If the measure p has a finite first moment
with respect to a word length in T', then the measure space (PMUF,v) is the Poisson
boundary of the pair (I', ).

2.4. The mapping class group and lattices in semi-simple Lie groups.

Furstenberg in [Fu2] (see also [Fu3]) proved the following remarkable result on lattices
in semi-simple groups of rank > 2. If GG is such a lattice, then there exist a probability
measure g on G with supp 4 = G and a number € > 0 such that for any two py-harmonic
functions f; and f; on G conditions

(ii) fi(e) 2 5 ~¢,i=1,2
imply that min{fi1(g), f2(g)} does not tend to zero as g — oo [Furstenberg considered
the group of real unimodular matrices only, but his argument verbatim carries over to
general real semi-simple Lie groups|. Using this result of Furstenberg we shall now prove
the following theorem. Note that the question about non-arithmeticity of the mapping
class group I' (answered positively by Ivanov [Ivl]) was first asked by Harvey [Ha).

Theorem 2.4.1. Any subgroup I of the mapping class group satisfying condition (NE)
is not isomorphic to a lattice in a semi-simple Lie group of rank > 2. The mapping
class group itself s also not isomorphic to a lattice in a rank 1 semi-simple group.

The fact that I is not isomorphic to a lattice in a semi-simple Lie group was proved
in [Ivl]. Our theorem includes a new proof of that result. Note that a subgroup of T'
satisfying (NE) may however be a lattice in a rank 1 group. For an example take the
subgroup generated by the Dehn twists about two curves that fill the surface. This
means that every component of the complement of the two curves is simply connected.
Such a subgroup is a finite index subgroup of SL(2,Z). On the other hand, since
it contains pseudo-Anosov elements [FLP] which have attracting and repelling fixed
points, it is easily seen to satisfy (NE).

Proof. First recall that I" can not be isomorphic to a lattice in a rank 1 semi-simple group
for the following reason (this argument was suggested by Ivanov): it contains an element
whose centralizer is non-amenable (two Dehn twists commute iff the corresponding
curves do not intersect; otherwise they generate a non-amenable group), whereas the
fundamental group of a finite volume negatively curved pinched Riemannian manifold
can not have this property [BGS].

Thus, we only have to prove that a subgroup I'' C T satisfying (NE) is not isomorphic
to a lattice in a semi-simple Lie group of rank > 2.
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Let p be an arbitrary probability measure on IV with suppy = IV, and v — the
unique p-stationary probability measure on PMF (Theorem 2.2.4). We claim that for
any € >0 '

(i) There are two sets Q1, Q2 C PMUF such that vQ; > 7 — ¢/2 and for any point
F € MIN there is a neighborhood U of F which does not intersect Q; and Q,
simultaneously;

(ii). There is a neighborhood V of PMF \ MIN such that vV < ¢/2.

As we have shown in Lemma 1.1.2, every minimal foliation F' € MIN determines
an infinite expansion [rp] > [r1] > ... by train tracks, and any two minimal foliations
are equivalent if and only if they have the same sequence of [19],[r1],.... Denote by &,
the partition of MZN into the sets X = X([ro],[m1],...,[m]) obtained by fixing the
first n + 1 terms in the train tracks expansion. Any set X is the open interior of a
polyhedron in PMF. As it follows from Lemma 1.1.2 and the fact that the measure
v is concentrated on UE (Theorem 2.2.4), the measurable intersection of the increasing
sequence of partitions &, is the point partition of the measure space (UE,v). Hence,

maxvX] — 0.
1

n—roo

Thus, for a sufficiently large n there are two disjoint sets @7 and @5 which are finite
unions of the sets X, and vQ},vQ} > % —¢/4. Let N be the maximal number of the
sets X! in these unions. For any X! one can take a closed subset ¥; C X such that
vXP — vY; <e/4N, so that replacing the sets Qf, @5 with the corresponding unions of
the sets Y; we obtain two disjoint closed sets Q1, Q2 with vQy,vQ2 > 3 —¢/2. Moreover,
since each equivalence class F is closed, there is an open neighborhood of F which does
not intersect @1 and @), simultaneously.

As for (ii), the complement PMF \ MZN is a countable union of the sets
Ey={F ¢ PMF:i(F,a) =0}, a€eS.

Take an ordering aj,as,... in S. By Theorem 2.2.4 y(PMF \ MIN) = 0, so that
vE4; = 0Vi. Since the sets E, are G (see the proof of Lemma 1.5.6), for any ¢ there is
an open neighbourhood V; of E,, with vV; < ¢/2'71, Then the set V = |J,; V; satisfies
the condition (ii).

Now take the sets Q; = Q; \ V, and consider the p-harmonic functions

fi(g):gy(ai), 1=1,2.

Then clearly
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and _
file) = vQ; ZVQz'—VV>%—6.
We claim that
min{ f;(g), f2(9)} 520,

which by Furstenberg’s theorem would imply that IV cannot be isomorphic to a lattice
in a semi-simple Lie group of rank > 2.

Since any sequence in I which tends to infinity contains a strongly universally con-
vergent subsequence, we may assume that we are given a strongly universally convergent
sequence g,. Moreover, by compactness we may also assume that the sequence of trans-
lations g,v weakly converges to a measure A. Under these assumptions we have to
show that min{fi1(gn), f2(gn)} — 0. By Lemma 1.5.6 X is concentrated either on a set
H, H € MIN, or on PMF \ MZIN. In the first case eventually an arbitrarily large
part of the measures g, is concentrated on a small neighborhood of H, and we are
done by (i). Suppose X is concentrated on PMF \ MIN. Then g,v(V) — 1, and so

9:v(Q;) = fi(gn) = 0. 0

3. THE POISSON BOUNDARY OF INVARIANT MARKOV OPERATORS
ON TEICHMULLER SPACE

3.1. Invariant Markov operators on Teichmiiller space.

Suppose that one has assigned in a measurable way a probability measure 7, to any
point ¢ € T,;. Then the family of measures 7;, z € T; determines a Markov chain on T}
with 7, being the distribution of points where one can get from z in one step. Denote
by P, the probability measure in the space TgZ+ of sample paths ® = {zg,21,...}
of this chain corresponding to the initial distribution é;, = € T, (i.e., the measure
P, is concentrated on sample paths which start from the point 2o = z at time 0).
For an arbitrary o-finite initial distribution € (not necessarily a probability one!) put
Py = [P, db(z).

Fix a smooth reference I'-invariant Radon measure m on T, (i.e., m(K) < oo for all
compact sets K C T,), and suppose that all transition probabilities 7, are absolutely
continuous with respect to m with densities p(z,:). We shall always assume that the
transition probabilities w; are I'-invariant (more precisely, I'-equivariant), i.e.,

Tyg = YTz Vyel,z €Ty, (3.1.1)

which by I'-invariance of the measure m is equivalent to I'-invariance of the transition
densities p(-,-). Then the transition Markov operator

P(z) = (f,ms) = / F(v) play) dm(y) (3.1.2)
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in the space L*°(Ty,m) is I'-invariant (i.e., commutes with the action of T'). Since I acts
on T, properly discontinuously, and the measure m of points from T, with non-trivial
stabilizers is zero, P is a covering Markov operator in the sense of [Ka9] with the deck
transformations group T, i.e., there exists a measurable “fundamental domain” X C T},
such that all its I'-translations are pairwise disjoint, and the complement of | J LYX In T,
has zero measure m (in the case g = 2 instead of I one has to take its quotient I with
respect to the two-element normal subgroup generated by the hyperelliptic involution).

Denote by @ the adjoint operator of P acting in the space of measures on T,;. In
probabilistic terms,

QH(E) =Pylz1 € E], ECT,,

i.e., @ assigns to an initial distribution 6 the distribution of the position of the Markov
chain at time 1. Since P has absolutely continuous transition probabilities, the operator
Q preserves the type of the measure m (moreover, Q8 < m for any measure 6 on Tj)
and acts in the space of densities ¢ = df/dm by the formula

W) = W = [pede) = [epeninG . (319

m

A measure 8 is called P-stationary (or, P-invariant), if Q8 = 6.

In the same way as for random walks on groups, one can define P-harmonic functions
and the Poisson boundary of the operator P (see Section 2.1). A function f on T is
called P-harmonic if Pf = f. Denote by OP the Poisson boundary of the operator P,
i.e., the space of ergodic components of the shift in the unilateral path space (ng * Pum),
and by bnd the corresponding projection T%+ — OP. By [v] denote the harmonic
measure class on OP, i.e., the class of measures vg = bnd(Py), where 6 is a probability
measure equivalent to m. The Poisson boundary is endowed with a natural I'-action
induced by the action of I" on the path space by coordinate-wise translations, and the
harmonic measure type [v] is invariant with respect to this action. For any point z € T,
the harmonic measure v, = bnd(P;) is absolutely continuous with respect to the type
[v], and the Poisson formula

f(2) = (f,va)
is an isometric isomorphism between the space of H*(P) = {f € L>*(T,,m) : Pf = f}

of bounded measurable P-harmonic functions and the space L*(8P, [v]) [Ka5], [Ka9).
3.2. Balayage and the Harnack inequality.

For a measurable set V with m(V),m(CV) # 0 (here 0V = T, \ V is the complement
of V) denote by A = Ay the balayage operator of the set V which assigns to an initial
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distribution 6 the distribution of the first exit point of the Markov chain determined by
the operator P from V, i.e.,

AB(E) = Pylz, € E],

where
7(2) = 1gy(2) = min{n > 0: z, € [V}

is the time of the first exit from V. The measure Af is called the balayage of the measure
6. Note that we define balayage for all measures on Ty, not only for those supported
on V; if (V) = 0, then by definition A = 8. In general, the total mass ||Af)|| of the
measure Af can be less than the total mass of 8 (if the measure Py of those sample
paths which never leave V is non-zero). However, if the set [V is recurrent in the sense
that P,,-a.e. sample path eventually hits [V, then ||A8]| = ||8]| for any measure 8 on T.

Denote by Py the sub-Markov operator with the state space V obtained by restricting
P to V, so that it has the transition densities

plz,y), ifz,yeV;
pv(z,y) =

0, otherwise .

Then P — Py is also a sub-Markov operator. In terms of the adjoint operators ¢} and
Qv the result of applying the balayage operator A to a measure § supported on V can
be expressed as

Z(Q Qv)QVo = (Q - QV)ZQV

n=0 n=0

(each term (@ — Qv )@V 8 in this sum corresponds to staying in V for the first n steps
and exiting to UV at the time n + 1). Hence, we have

Lemma 3.2.1. If there 1s a constant H such that
o0 o0
> Que <HY Q16
n=0 n=0

for two measures 01,0, on V, then

A6, < HAG, .

If ||AB)| = 1 for a probability measure § on Ty, i.e., Pg-a.e. sample path eventually
leaves the set V, then the harmonic measures vy and vpg on the Poisson boundary
coincide (this is so because A is the distribution of the first exit point z(7gy, ) determined
by the Markov stopping time Tg, — see [Ka5)]). In particular, if the set 0V is recurrent,
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then the values on V of any bounded P-harmonic function can be recovered from its
values on [V by the formula

F(@) = (Fve) = (F,vns,) = (f, Abs) . (3.2.1)
Let

m1(®) = min{n >0:z, € [V},
Te+1(®) = min{n > 7t : z, € [V}

be the times when a sample path & = {z,} hits the set 0V, then {z,, } are sample
paths of the induced chain on LV corresponding to the operator PtV with transition
probabilities Ary, ¢ € 0V. The Poisson boundaries of the operators P and PV are
isomorphic; for any bounded P-harmonic function its restriction to 0V is PcV—ha.rmonic,
and, conversely, any bounded P% _harmonic function uniquely extends to a P-harmonic
function on T by the formula (3.2.1) [Ka5].

Below we shall impose on the measure m and the transition densities p(-,-) the
following additional conditions.

(P1) There exist €, > 0 such that mB(z,e) > § Vz € Ty.
(P2) There exists a constant C such that p(z,y) < CVa,y € T,.
(P3) There exists R > 0 such that p(z,y) = 0 whenever dr(z,y) > R.

(P4) There exist ¢ > 0 and rq,r; with 0 < ry < rg < R, rg —r; 2> 4¢ such that
p(z,y) = ¢ whenever r; < dp(z,y) < ra.

Here (P;) and (P2) can be considered as “bounded geometry” conditions, (P3) is a
bounded range condition, and (P4) is an srreducibility condition. Note that condition
(P4) implies that mB(z,e) < 1/cVz € T,;. An analysis of the arguments below shows
that condition (P4) could be significantly relaxed. Moreover, Theorem 3.2.2 uses con-
ditions (P1) — (P4) only locally, so that for proving Theorem 3.3.2 it is just sufficient to
have conditions (P;) — (P4) satisfied on a big compact subset (and its translations) in T}
only. However the bounded range condition (P3) has to be satisfied for all points z € T
for proving the moment estimates in Theorem 3.4.2. The constants ¢,6,¢,C,r1,m2, R
from conditions (P1) — (P4) will be used through the rest of this Section without further

notice.
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Theorem 3.2.2 (Harnack inequality). Let P be a I'-invariant Markov operator on T,
satisfying the conditions (P1) — (P4). For a point o € Ty and a number M > 0 denote
by A the balayage operator of the ball V = B(o, M + R) of radius M + R centered at o.
Then there exists a constant H > 0 depending on M and the constants from conditions
(P1) - (P4) such that

Ady < HAG, Vz,y € B(o,M) .

For convenience we shall first prove the following auxiliary statements.

Lemma 3.2.3. There is a number N = N(M + R) such that for any two points z,z €
B(o, M + R) there exists a chain of points z = z9,21,...,2N = Z in T, with the property
that

dr(zi, zix1) = (r1 +r2)/2 =7 Vi=0,1,...,N—1

and
dp(zi,0) <M +R—¢ Vi=12,....N—1. (3.2.2)

Proof. 1t takes at most [(M + R)/r] steps of length r to attain a point 2’ € B(o,r) by
moving from z to o along the Teichmiiller geodesic segment [z, 0] (here [-] is the integer
part). Then by continuity of the function z — dr(z’,2) on the sphere S(o,r) it takes
at most 2 steps to attain o from z'. Concatenating the chains joining z and 7 with o
we obtain that one can get from z to Z in not more than 2[(M + R)/r] + 4 steps. As
we want all chains to have the same length, we can further add to any such chain 2
segments [o, z], [z, o] or 3 segments [o, z], [z, 2], [z', z] with z,z’ € S(o,r), dr(z,z') =T
several times until we get a chain of length N = 2[(M + R)/r| + 6. The chain obtained
in this way satisfies condition (3.2.2), because ¢ < r < R — ¢ by (P4). O

Lemma 3.2.4. If d(zo,y0) = r, and 8 is a measure on Ty such that d8/dm > 1 on
B(zo,¢), then dQ8/dm > ¢§ on B(yo,¢).

Proof. Since
|dp(z,y) — 7| < 2¢ Va € B(zo,e€), y € B(yo,¢) ,

by formula (3.1.3) and by conditions (P1), (P4) for any y € B(yo,¢)
Q8 de |
: — —— > .
o (v) fp(ac,y) - (z)dm(z) > cmB(zg,€) > b
O

Proof of Theorem 8.2.2. First notice that by condition (P3) the measure Q§, is sup-
ported on V for any ¢ € B(o,M), so that Ad; = AQS,. Now, by Lemma 3.2.1 it is
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sufficient to prove that for any z € B(o, M) the density of the measure (3 Q%)Q4,
with respect to the restriction my of the measure m to V is uniformly bounded from
below and from above.

By condition (P4) there exists an e-ball in V such that the density of the measure
Q9 is at least ¢ on this ball. Take the number N from Lemma 3.2.3, then Lemma 3.2.4
applied to the operator Qv implies that c(c§)" is a lower bound of the density of the
measure Q{\,’ Q6. with respect to the measure my.

For obtaining an upper bound note that the operator Qv acts in the space L®(my),
and

Qv |leo < esssuppy(z,y)m(V) < Cm(V) . (3.2.3)

The transition densities p{, of the operators ()7, satisfy the relation

@) = [ udme)  Ynk21,

so that

ess supp"i—"'k( ,y) < esssup pyr(z,y) VYn,k>1. (3.2.4)

Moreover, there exists a constant kg and a number a > 0 such that

/p’f}’(w,z)dm(z) <l-a Ve eV
(cf. the proofs of Lemmas 3.2.3 and 3.2.4). Hence,

ess supp?,"'k"(:c y) < (1 — a)esssup pyr(z,y) Vn>1. (3.2.5)

Formulas (3.2.4) and (3.2.5) imply that esssup p},(z, y) decays exponentially on n. Thus,
by (3.2.3) ||Q% |lc also decays exponentially, hence

| ARG | 5 gp .|| L

_<CY @l < oo

Note that the convergence ||@%|lc — 0 implies that the set 0V is recurrent. O

Remark. In fact, Theorem 3.2.2 holds for an arbitrary metric space satisfying the prop-
erty formulated in Lemma 3.2.3. In particular, it applies to geodesic random walks on
Riemannian manifolds with bounded geometry.
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3.3. Discretization of corecurrent Markov operators.

By m denote the measure on the moduli space My, = Ty/I' which is the image of
the restriction of the measure m to any fundamental domain in 7; under the projection
z — T from T, to M. Since the transition densities of the operator P are I'-invariant,
the projection {Zo,Z1,...} of the Markov chain {zo,%1,...} from T, to M, is also a
Markov chain with transition densities with respect to the measure m

ﬁ(-f) -y_) = ZP(:L', '7y) >

~eT

where z,y € T, are inverse images of the points T, € M. The corresponding guotient
Markov operator P on L°°(M,, ) can be identified with the restriction of the operator
P to the subspace of I-invariant functions in L°(T,,m) [Ka9]. By Pz denote the
probability measure in the path space of the quotient Markov chain {Zo,%;,... } with
the initial distribution concentrated at a point Z.

By Lemmas 3.2.3 and 3.2.4 the operator P is irreducible, i.e., there are no non-trivial
sets E C M, such that the characteristic function 1z € L°°(M,,m) is P-harmonic.
This, éither for any measurable set E € M, with 0 < m({E) < co and any T € M, the
probability Pz of visiting the set E is strictly less than 1, or any measurable set E C M, p
with m(E) > 0 is recurrent (Hopf’s dichotomy). In the latter case the operator P and
the corresponding Markov chain are called Harris recurrent [Fo], [Kre], [Rev] (recall
that P is always assumed to have absolutely continuous with respect to 7 transition
probabilities). In this situation we shall say that the covering operator P (and the
corresponding Markov chain) is corecurrent. If P is Harris recurrent, then there exists
a unique (up to a constant) P-stationary measure A on M, absolutely continuous with
respect to 7. If the measure )X is finite, then the operator P is called positively Harris
recurrent. Denote by ) the (P-stationary) lift of the measure X to Tj.

Lemma 3.3.1. Under conditions (Py) ~ (P4), if the quotient operator P is Harris
recurrent, then the P-stationary measure A on M, is a Radon measure.

Proof. As it follows from Lemma 3.2.3 and conditions (P1), (P4) (see the proof of Lemma
3.2.4), for any R > 0 there exists a number a = a(R) such that

dA
%(m) > alB(y,e) VoeT,, z,y€ B(o,R) .

In particular, the derivative d\/dm is positive m-a.e. Since dA\/dm is a.e. finite, the
above inequality also implies that AB(y,e) < oo for any y € Ty, so that A is a Radon
measure (because all balls in Ty are compact). a
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Theorem 3.3.2 (cf. [Fu3], [LS], [Kad4]) . Let P be a I'-invariant Markov operator on
T, satisfying conditions (P1) - (P4). If the quotient operator P is Harris recurrent, then
for any point o € T, with trivial stabilizer in T’ there ezists a probability measure u on
T’ such that the Poisson boundary OP of the operator P with the harmonic measure v,
is isomorphic as a measure I'-space to the Poisson boundary OP, of the random walk
(T, p). For any bounded P-harmonic function on T, its restriction to the orbit To =T
s a bounded p-harmonic function, and, conversely, any bounded p-harmonic function
can be uniquely extended from the orbit T'o to a bounded P-harmonic function on Ty.

Proof. The proof will consist of several steps. First we describe a construction of the
measure g, and then show coincidence of the Poisson boundaries 8P and 9P,,.

1. Construction of the measure p.

We begin by choosing a constant M and a measurable set E C B(o, M) such that
m(E) > 0, and all translations vE, v € I' are pairwise disjoint. Let z + y(z) be the
map from I'E to I' uniquely determined by the condition = € v(z)E. Now for every
point z € T, we shall construct a probability measure u® on the group I' in such a way
that the harmonic measure v, on JP satisfies the relation

Vg = Zﬂx(?’)”‘/o = Z#x('V)’YVo : (3.3.1)

~er ~€r

We do it by an iterative construction described below. Namely, we construct a sequence
fr = 0% of measures on Ty and a sequence » = s} of measures on I'o = I such that

(i) Vg, = Vx5
(ii) ve, = Voyiy + Vigey YE 203
(i) ||6k]l = O .

Thus, we begin with the harmonic measure v; = vg,, and at each step we single out
a part of it which can be replaced with the harmonic measure of a distribution (denoted
sp+1) concentrated on I'o = I'. Condition (iii) says that finally the whole measure v,
will be exhausted. The resulting measure

ut =

E>1
then clearly has the property (3.3.1).
Denote by A the balayage operator of the set V = B(o, M + R), and let w = Ad,.

Put
0z, =z ¢To;
6y =
YW, T =70.
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In other words, if ¢ = o belongs to the orbit I'o, then 6y is the balayage of the measure
8z = 78, to LyV; otherwise, 8y = &,. Clearly, this choice of 6y satisfies condition (i)
above. The reason why if z = yo we take 8y = yw rather than 6y = §, should become
clear in the course of the proof.

Now we define the iterative procedure. Since m(E) > 0 and the quotient operator
P is Harris recurrent, the set T'E is recurrent for the operator P. Hence, we can
balayage the measure 6 to I'E. Denote the resulting measure on I'E by £x4+1, and
denote by ¢ 41> 7 € I' the restrictions of {x41 to the translations vE, v € T, so that

$kt1 = E‘Y £Z+17 and

Vo = Ve = 3 Ve, -
~vel

Let (J,, = vAy~1£], | be the balayage of the measure £/, to the set LyV/, then
VCZ-H. = V€Z+1 V’)’ € T 5

Vor = Z VCZ+1 :

~€T

As it follows from Theorem 3.2.2, for any vy € T’

(it 1
2 o ¥,
Gl ~ H
thus if we put
(r 3
o) = 168l _ Waal

then all measures
OZ_H = CIZ-H - J‘f’€+1('7’)'7"‘)

are non-negative. Let

0k+1 = Z OZ+1 ’
~vel

then, since v, = v, by definition of the measure w (so that v, = v,, = v, for any
~v € I'), we have

Vi1 = Z VCZ+1 - Z %k+1(’7)7’/w
vy Y

= Z Vel — Z k41 (7)V0
Y v

=V T Vsepya s
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and condition (ii) is satisfied. Finally, by the construction
10k4all = (1= 1/H)|i6k| ,

so that the total masses ||k || decay exponentially, and condition (iii) is also satisfied.
Clearly, all measures u® are supported on the whole group I'. Note also that the
construction is I'-equivariant, so that

p¥=qu®  Vyel,zeT,.

2. Coincidence of the Poisson boundaries.

The fact that the restriction of any bounded P-harmonic function from T to the
orbit 'o 2 T is a p-harmonic function for the measure p = p° follows from formula
(3.3.1). Indeed, if f is a bounded P-harmonic function, then by the Poisson formula

there exists a bounded measurable function fon the Poisson boundary P such that

F@) = (F,ve) VeeT,.
By (3.3.1) the measure v = v, is y-stationary, i.e., v = 3 u(v)yv. Thus, forany v € T

flvo) = (Fw) = Y u(YWFov'v) =Y uv") f(vv'o) .

Note that this statement is in fact equivalent to saying that the harmonic measure
v, of the point o on the Poisson boundary of the operator P is u-stationary, so that
for any other point o’ # o the restriction of any bounded P-harmonic function to the
orbit T'o’ is u-harmonic (under the identification v <> v0') iff the harmonic measure vy
is pu-stationary for the same measure p. Except for some special situations [Ka9], there
is no reason for this to be true (although, of course, the measure v, is p'-stationary for
the corresponding measure u’ obtained by taking o’ as the reference point in the above
construction). Even if o' belongs to the I'-orbit of o, the measure v, does not have to
be p-stationary. Indeed, if o’ = go, g € T, then p-stationarity of v, means that

Vot = QUp = gZp(fy)’yv = Zu(g)gq/g"lyo/ ,
¥ ~

i.e., that v, is stationary with respect to the measure ' = gug™' obtained from p con-
jugating it by g (in fact, y' is exactly the measure obtained from the above discretization
construction for the reference point o’ instead of o).

Now we want to show that, conversely, for any bounded p-harmonic function f on
the orbit T'o 2 T its extension to Ty by the formula

=Y u(7)f(0)
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is P-harmonic.

We shall prove this statement by constructing a sequence of Markov operators con-
necting the operator P with the operator P, of the random walk (T, 1), and such that
the Poisson boundaries of any two consecutive operators in this sequence coincide (this
argument will also give another proof of the fact that the restriction of any bounded
P-harmonic function to I'o is y-harmonic).

First we have to reformulate the iterative process from the first part of the proof
in terms of Markov stopping times. This process includes balayages, for which such
reformulation is straightforward, and subtracting from the measures (}] 4, the measures
(I¢441 I/ H)yw. The latter operation can be realized by introducing a new random
variable o uniformly distributed on [0, 1] and independent of all the rest, and stopping
the process when o does not exceed the Radon-Nikodym derivative of the measure
(II¢al/ H)yw with respect to the measure (], ;. ‘

For a sample path & = {z,} let

So() {0, g¢Ts:
r) =
° min{n >0:z, € (yV}, =170,

and we define inductively

Ri+1(2) = min{n > Sg(x) : z, € TE},
Ye+1 (w) = '7(ka+1) el,
Sk+1(2) = min{n > Ri41(x) : 2 € Cye41V} .

For a pair of points y € E, z € 0V let

dw

A=) = g (2

be the Radon—Nikodym derivative of the measure w = Ad, with respect to the measure
Ady evaluated at the point 2, and let

dyw

. — -1 -1,y _
A(7’y7z) = A(’Y Y,y z) = d")’A’)/_ltsy (z) ’

vyel,yevE,z € C’yV

be the Radon—-Nikodym derivative at the point z of the measure yw with respect to the
balayage of the measure §, to {yV.

Take a sequence of i.i.d. random variables & = {an}n>0 which are independent of
the chain {z,} and have Lebesgue measure p on the interval [0,1] as their common
distribution. Formally, it means that from now on we pass from the original path space
(TgZ +,P;) to its product with the measure space ([0, 1]%+, p%+ ), where p%+ is the infinite
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product of measures p indexed by the set Z4. Denote the product measure P, ® p%+
on (T, x [0,1])%+ by P,. The measure P, corresponds to the initial distribution §, ® p
in the space of the sample paths (2, a) of the Markov operator

Bf(z,0) = / £(4,B) dra(y) dp(B)

whose transition probabilities 7, ® p do not depend on the [0, 1]-component.
Define
To(z,a) =0,

and for m > 0 by induction

. 1
Trt1(z, ) = m;n{k > Tt as, < EA(7k7mRk’xSk)}
(as A(vk,ZR,,s,) = 1/H by Theorem 3.2.2, the times T, are a.e. finite).

Claim 1. The measures p® constructed in the first part of the proof can be presented
as
po(7) =P fyr, =] . (3.3.2)

Indeed, by definition of the stopping time Sy the distribution of zg, coincides with
the measure 6y. Now we shall prove by induction that 6 is the distribution of zg,
restricted to the set [T} > k] (by “restricted” we mean here that ) is the image under
the map (&, ) — zg, of the restriction of the measure P, to the set [T1 > k]), and s
is the distribution of v restricted to the set [T} = k]. As u® = _ sy, the latter will
imply (3.3.2).

Suppose we have already proved this assertion for §; and ;. Then the stopping
time Ry corresponds to the balayage of the measure 6; to the set I'E, so that the
distribution of zg,,, restricted to the set [T > k] is the measure i1 = 32 &1,,.
After that the stopping time Sk4+; corresponds to the balayage of each of the measures
& 41 from the corresponding set vE to the set vV, so that the distribution of zg, +
restricted to the set [Ty > k] is 3 ({, ;. Now the definition of the stopping times Tr,
means that given zg,,, and zs,,,, we have Ty = k + 1 with the conditional proba-
bility A(Ye+1, € Ryy1» TSyyy )/ H which is the Radon-Nikodym derivative of the measure
~r+1w/H with respect to the measure yi41 A7, -:15$Rk+1 evaluated at zs, ;.

In order to find the unconditional probability of the event [T} = k + 1] we have
to integrate these conditional probabilities with respect to the conditions. Here we
condition by zg,,, and zg,,,, so that we have to integrate first with respect to the
conditional distribution of zs,,, conditioned by zg,,,, and then with respect to the
unconditional distribution of zg,,,. As the measure yx41A7; _iléz Rt is precisely the
conditional distribution of zs, ., provided zg,, is fixed, the result of the first integration
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is the measure vxyjw/H for any zg,,, (i.e., it depend only on yx+1 = ¥(zR,,,)). Thus,
the second integration with respect to zg,,, just reduces to multiplying the measures
yw/H by the probability that v¢1 takes a given value 7, the latter being exactly ||£], |-
So, we obtain that the distribution of vz 41 (resp., £s,,,) restricted to the set [T} = k+1]
is sk41 (resp., D sk+1(7)yw), and that the remaining measure 6i4, is the distribution
of Sk41 restricted to the set [T7 > &k + 1]. ' A

In defining the measures u* we had to use two stopping times R and Sk, both of
which are Markov. However, the definition of Sj includes the position z g, of the Markov
chain {z,} at the time Ri. If we want to use the formula (3.2.1) for proving coincidence
of the Poisson boundaries, we have to extend the original Markov chain {z,} by adding
a component x| which keeps track of the positions zg, until the moment Sj is attained.
The second component z, of the extended chain {(z},z,)} on T, x T, coincides with
the original chain on Ty, whereas the first component 27, once in I'E remains unchanged
until the second component leaves the set v(z},)V; otherwise z], = z,. In other words,
paths {z,} of the original chain determine paths {(z},z,)} of the extended chain by

the formula
w,_{ka, Rk <n < Sk ;

n

(3.3.3)

Tn otherwise .

The transition probabilities of the extended chain are

bp @y, iz eTE,z€~y(z)V;
8. @m,, ifz' €TE,ze€ly(z')VNTE;

diagm, , otherwise.

Claim 2. All sequences of random variables in the succession

{zn} = {(2h,20)} — {(z0, 2n, 2n)} (3.3.4)

3 4 5
— {(wRvawSvaaSTm )} — {xSTm} — {'7Tm} .

are Markov chains, and all these Markov chains have the same (in a natural sense to be
specified in each case) bounded harmonic functions, hence, the same Poisson boundary.

We shall consider transformations in (3.3.4) step by step.

1. As we have just seen, the chain {(z],2,)} is Markov. As the set V is relatively
compact, 0TV is a recurrent set for the chain {z,}, and diagCT'V is a recurrent set
for the chain {(z},z,)}. By definition of {(z},,z)} the corresponding induced chains
on [I'V and diagCT'V are isomorphic, so that by formula (3.2.1) the chains {z,} and
{(z],,zn)} also have the same Poisson boundary. In particular, all harmonic functions
of the chain {(z/,,z,)} depend on the second component only.
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Another explanation of why {z,} and {(z/,,z,)} have the same Poisson boundary
can be obtained by using directly the definition of the Poisson boundary as the space
of ergodic components of the time shift in the path space. Indeed, formula (3.3.3)
states an isomorphism of the measure spaces of sample paths of the chains {z,} and
{(2},,zn)}. Asthe chain {z,} is a quotient of the chain {(z/,,z,)}, its Poisson boundary
must be a quotient of the Poisson boundary of {(z/,,z,)}. On the other hand, if two
paths {z,} and {y,} are trajectory equivalent for the shift in the path space, i.e., if
there exist integers nj,ns such that Tp,+n = Ynp4n V1 > 0, then the corresponding
paths {(z},,2,)} and {(y,,yn)} are also equivalent (for, with probability 1, there exists
an arbitrarily large N such that zy € CT'V, and for any such N all stopping times
Ry, Sk > N are determined by the positions z,, n > N only).

2. This transformation consists in adding a sequence of 1.i.d. random variables {a,}
independent of {z,} (hence, of {(z},z,)}). As the transition probabilities of the chain
{(z},,Zn,an)} do not depend on the a-component, the chain {(z),,2zn,,)} has the
same harmonic functions and the same Poisson boundary as the chain {(z],z,)}.

3. This step consists in passing to the induced chain on the recurrent subset

A={(z',z,a):2' €TE, z € L4(2")V, a < %A(q(w'),m',w)} (3.3.5)

which again does not change the Poisson boundary by (3.2.1).
4. The transition probabilities w;,’x,a of the chain obtained on step 3 depend only
on the component z of the triple (2, z, a); denote their projections to the z-component
by . Then clearly {zs, } is a Markov chain with transition probabilities 77, and
all (7} , o)-harmonic functions F have the form F(z',z,a) = f(z), where f is a (7;)-
harmonic function on Tj,.

5. As we have shown in the proof of Claim 1, the transition probabilities #/ are
convex combinations of translations of the measure w:

=Y p(y)w (3.3.6)

On the other hand,
po=p’ = /u” dw(z)

because we construct p by the balayage beginning with w while u® is constructed from
8 for all z € T, \ T'o, and the balayage of w is the integral with respect to w of the
balayée measures of §, (clearly, w(I'o) = 0). [The latter formula is the reason why in the
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definition of the measures u® we had to treat the points from the orbit I'o differently.]
Then
[ mdate) = 3 oy
v

i.e., the result of applying the transition probabilities 7, to the measure w is a sum
of translations yw with weights p(). This fact alone is sufficient to show that there
is a natural isomorphism between the spaces of bounded (7’ )-harmonic functions and
bounded p-harmonic functions on I'. However, for our further purposes we shall also
exhibit explicitly the corresponding random walk (namely, the sequence {vr,,}).

A one-to-one correspondence between bounded (7 )-harmonic functions f on T, and

bounded p-harmonic functions f on T is given by the formula

FOy) = {frw) .

Indeed, let f be (r.)-harmonic. Then for any =z

f(@) = (fime) =D () = Y " (NF(),

Y

whence integrating by ¢ with respect to the measure w we get that f is p-harmonic at
the identity e. By I'-invariance of the Markov operators involved it implies that f is
p-harmonic. Conversely, let ¢ be a g-harmonic function on I', and define

Fl@) =Y @ely) -

Then we have
7o) = Zwv/ (1) d(a) = 3 o) = p(e).

so that once again by I-invariance

f =(fiw)=e(r) VyerT.

Returning to the definition of f yields
=Y w(Me(r) =Y NF() =Y u*(){f,w)
¥ v v

which means that f is harmonic with respect to the transition probabilities n! =

2 B (V).
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In terms of the stopping times Rr,, and ST,, we have that provided zg,.  is fixed, the
conditional distribution of s, _ is v1,,w and depends on vr,, = ¥(zRr,, ) only (see the
proof of Claim 1), hence, the distribution of zs; conditioned by v, is y7,,w. Thus,
again by Claim 1, for a given v7,, the conditional distribution of yr,,,, = v(z RTm+1) is

/ VT 1" dw(z) = Y1, 14 -

It implies that {y7,_} is the random walk on I' governed by the measure u, i.e., the
increments ~yr, Yy, +1 are independent and u-distributed. Since vy, has distribution p®,
the distribution of YT,y ™ > 11s p®ptm—1, where pipm_y is the (m — 1)-fold convolution
of the measure y. In particular, if we start from the point z = o, then e,y7,,v1,,... is
the random walk governed by the measure ¢ and starting from the identity of T

As the conditional distribution of zgs,  conditioned by ~r,, is vr1,,w, we also have
that the chain {(z/,,zn,as)} is up to a group translation renewed at times STm, ie.,
its further behavior depends on 77, only. As the transition probabilities 77, , , are
I-invariant, it implies, in particular, that the differences between stopping times .S’T2 -
St,,ST, — ST3,. .. are i.i.d. random variables (in the case zo € T'o we can also add to
this sequence the difference ST, — So). A

Going backwards along the sequence (3.3.4) we see that a bounded function f on T,
is P-harmonic if and only if it is (7} )-harmonic. Finally, since w is the balayage of the
measure §, to 0V, we have

flyo) = (f,ow) =F(v) Vy€erl.

4

Remarks. 1. As we have already mentioned, in the case g = 2 the hyperelliptic involu-
tion vo € I fixes every point in T3, and P is a covering Markov operator with the deck
group IV = I'/{e,v}. Thus, in this situation Theorem 3.3.2 will provide a measure y’
on I such that the Poisson boundary of the pair (T, u') is isomorphic to the Poisson
boundary of the operator P. If u is any lift of the measure y’ to I, then the pair (T, )
has the same Poisson boundary as (I, u’), because I'' is the quotient of ' with respect
to a finite normal subgroup [Ka9].

2. In fact, Theorem 3.3.2 (with the same proof) holds for an arbitrary covering
Markov operator satisfying a Harnack inequality. In particular, it is also applicable to
diffusion processes on the Teichmiiller space and to geodesic random walks on covering
Riemannian manifolds (see Remark after Theorem 3.2.2).
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3.4. Convergence and the Poisson boundary for corecurrent Markov opera-
tors on T.

Now we shall apply Theorem 3.3.2 to proving convergence and identificating the
Poisson boundary for corecurrent Markov operators on Tj.

Theorem 3.4.1. Let P be a I'-invariant Markov operator on Ty satisfying conditions
(P1) - (P4). If the quotient operator P is Harris recurrent, then there ezists a unique
family of probability measures Ay, € Ty on PMF such that

Ayz = YAz VyeTl,z €T,

and

A = /)\y dre(y) VzeT,. (3.4.1)

The measures Ay are pairwise equivalent and concentrated on UE.

Proof. First note that such a system of measures {\;}, = € T is uniquely determined
just by the measure A, (and its translations Ay, = vX,). Indeed, the stationarity

property (3.4.1) implies that for any continuous function fon PMUF the integrals

f(z) = (J?, Az)

give a P-harmonic function f on T,;. By Theorem 3.3.2 it is uniquely determined by its
values on the orbit I'o. In other words, it means that for any given point ¢ € T, the
integral ( 1, Az} is uniquely determined by the integrals ( 7, YAo), 1.€., the measure A, is
uniquely determined by the measure A,.

Let now p®, = € T, be probability measures on I' constructed in Theorem 3.3.2,
¢ = p°, and v be the unique p-stationary measure on PMF. Put

Ap = Eu”('y)'yu : (3.4.2)
~ver

Then for any function f € C (PMF) the Poisson integral

flyo) = (F,yv)

is a p-harmonic function on I'o 2 T", which by Theorem 3.3.2 extends to a P-harmonic
function by the formula

f(z) =Y w*(7)f(vo) .
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Thus, for any function f € C (PMUF) we have

(Fe) = @) = [ ) dmaty) = [ ainat).,

so that the system of measures (3.4.2) has the stationarity property (3.4.1).
Conversely, condition (3.4.1) implies that for any function f € C(PMUF) the Poisson
integral
f(=) = (f,As)

is a P-harmonic function. Again by Theorem 3.3.2 the restriction of f to the orbit
I'o, 0 € Ty is a p-harmonic function, so that for any f

(Fodo) =D u((Fr 1)

which implies that Ao = 3__ pu(7)7Xo, i.e., Ao must coincide with the unique y-stationary
measure ¥ on PMF by Theorem 2.2.4. O

By Theorems 2.2.4 and 3.3.2 the space PMF endowed with the system of measures
Az from Theorem 3.4.1 is a quotient of the Poisson boundary of the operator P (the
latter being isomorphic to the Poisson boundary of the pair (T', 4)) with respect to a
certain I'-invariant partition. Note that, however, this alone does not necessarily mean
that the sample paths of the chain on Ty converge a.e. in the Thurston compactification.
An explicit description of the map assigning to a sample path {z,} the corresponding
point in U€ so far has to be based on the constructions from Theorem 3.3.2.

Theorem 3.4.2. Let P be a I'-invariant Markov operator on T, satisfying conditions
(P1) - (P4). If the quotient operator P is positively Harris recurrent, then
(i) The measure p constructed in Theorem 8.5.2 has a finite first moment 3. dr(o,v0)
in Ty.
(ii) For any point x € T, P,-a.e. sample path of the Markov chain determined by
the operator P converges to UE in the topology of the Thurston compactification
of T,;, and the corresponding limit distribution coincides with the measure A,
from Theorem 3.4.1.
(i) The space PMF with the system of probability measures A, is isomorphic to
the Poisson boundary of the operator P.

Proof. We shall use notations from Theorem 3.3.2. All Markov operators in the sequence
(3.3.4) are covering Markov operators with the deck group I'. Since the quotient operator
P of the operator P is positively Harris recurrent, all other quotient operators are
also positively recurrent and have uniquely determined (up to a constant) stationary
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measures. Denote by A’ the stationary measure of the chain {z/,, 2., @, }, and by Y the
stationary measure of the corresponding quotient chain. Let X;l be the restriction of
the measure \ to the projection A of the [-invariant set A (3.3.5) to T, x T, x [0, 1]/T.
By multiplying the measure \' by a constant, we may assume that ||X,A|| = 1. Then,
by (3.3.6), the projection of —X/A onto the second component in Ty, x Ty x [0,1]/T" is the
projection @ of the measure w to My, = T, /I'. Since the transition probabilities of the
induced chain on A (and of its quotient on A) depend only on the second component,
we obtain that EO(ST1 —Sp) = lﬁia),,(STer1 — ST,,) coincides with the average of the first
return times to A with respect to the measure X:4. By the Kac formula [CFS] the latter

quantity coincides with HXIH and is finite. Thus, we have shown that if P is positively
Harris recurrent, then the i.i.d. random variables S, — So, ST, — S1,, 513 — ST35 - - -

have a finite first moment with respect to the measure P,.

(1). The measure y is the P,-distribution of vy, = Y¥(z gy, ). Thus, we have to check
that _
Ec,dT(o,'y(:cRT1 )o) < 00.

By the triangle inequality
dr(0,¥(zry, )0) < dr(0,z5,) + dr(2s,, %5y, ) + dr(Tsy, s ¥ (2R, JO) -

The first and the third terms in the right-hand side are uniformly bounded, whereas

finiteness of the middle term follows from finiteness of 1'5,,(5711 — So) and the bounded
range condition (P3).

(ii). Since the measure p has a finite first moment, by the Kingman subadditive
ergodic theorem (e.g., see [Del]) there exists a finite number ! (the linear rate of escape)
such that for P-a.e. sample path g = {g,} of the random walk (T', 1) there exists the
limit 4

lim T(07 gno) =1.
n-—»o0 n
The number ! is strictly positive, for, otherwise, the random walk (T, 1) would have had
the zero entropy
Hpn
W(Gp) = lim )

n—>00 n

[Kal0], hence, trivial Poisson boundary [KV] in contradiction with Theorem 2.2.4.

By Claim 2 from the proof of Theorem 3.3.2, vy7,, performs the random walk (T, ),
so that by Theorem 2.2.4 vr_o converges to UE in the Thurston compactification of
T,. Since S, — So, ST, — STy, - .. is & sequence of i.i.d. random variables (see the proof
of Theorem 3.3.2) with a finite first moment, there exists a.e. a finite limit (the mean
stopping time)

. ST ~
t= lim —= =E,(S, — So) -

m—00 MM
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Hence, we have that a.e.
n— STm(n) = o(n),

where
m(n) = max{m : S1,, <n}.

Since the operator P has bounded range, it implies that a.e.
dT(anmSTm(n)) = O(n) ¢

As dT(msTm(") y VT m(n©) i8 uniformly bounded, we have that a.e.

dT(mn,'mi(n)o) =o(n) .

On the other hand, the sequence v7,,,,,,0 converges to UE, and the distance from vr,, (m)©
to o grows linearly on n. Thus by Lemma 1.4.2 the sequence z, also converges to the
same limit point from UE.

The corresponding limit distributions v, on Y€ coincide with the measures \, from
Theorem 3.4.1, because the measures v, obviously satisfy the stationarity relations

(3.4.1).

(iii). By Theorem 3.3.2 the Poisson boundary of the operator P is isomorphic to
the Poisson boundary of the random walk (I', ). As the measure u has a finite first
moment in T, by Theorem 2.3.2 the latter is the space PMF with the measure A,
and we are done. O

Remark. Note that in fact Theorems 3.4.1 and 3.4.2 also hold for invariant Markov
operators corresponding to diffusion processes on T;. For Theorem 3.4.1 one needs
bounded geometry of the generating operator (which would guarantee the Harnack
inequality), and for Theorem 3.4.2 it is sufficient to demand uniform boundedness of
the first moments [ dr(z,y)dr.(y) (which would imply existence of a finite rate of
escape limdr(zo,z,)/n [Ka2]) — cf. [Kad]. For diffusion processes one can also prove
Theorem 3.4.2 in a more direct way (without using the discretization procedure) by
using the methods from [Ka2].

Masur in [Mad] considered a geodesic random walk on T,. Its transition probabilities
7, are defined in the following way. Fix a positive number L. Then from a point
z € Ty we move along the Teichmiiller geodesic line with a random direction (whose
distribution is the normalized Lebesgue measure on the sphere of the tangent space at
z) to a new point z’ such that the random distance dr(z,z’) is uniformly distributed
between L and L + 1. By analyzing the train tracks decomposition along the sample
paths he proved the following result.



66 VADIM A. KAIMANOVICH, HOWARD MASUR

Theorem 3.4.3 [Mad]. For sufficiently large L almost all sample paths of the geodesic
random walk converge in the Thurston compactification of Teichmiiller space T;, and
the corresponding limit distributions A, are concentrated on UE C PMF. Moreover,
there exists a compact set Q@ C Ty, such that for all points z € T'Q the ewpected first
return times to I'Q are uniformly bounded.

Choose a smooth I'-invariant Radon measure m on T} satisfying condition (P1). The
geodesic random walk clearly satisfies condition (P3), however, conditions (P;) and (Py4)
(directly connected with the differentiability of the Teichmiiller “exponential” map) are
not known to be true. Masur [Mad] showed that for any a > 0 one can define the
modified transition probabilities 7°¢ in such way that

1) |Ime —md| SaVa € Ty ;

2) The probabilities 7°? are I'-invariant and satisfy conditions (P;) — (P4);

3) Theorem 3.4.3 still holds for the modified geodesic random walk determined by
the transition probabilities 7™°¢,

Then Lemma 3.3.1 (which guarantees that m(€2) < 00) in combination with uniform
boundedness of first return times to I'Q2 implies that the I-quotient of the modified
geodesic random walk is positively Harris recurrent. Thus, by Theorem 3.4.2 we get

Theorem 3.4.4. The Thurston boundary PMF with the family of measures A is the
Poisson boundary of the modified geodesic random walk.

Remarks. 1. Theorem 3.4.2 gives a different proof than in [Ma4] for the convergence of
the sample paths in the Thurston compactification.

2. We had to modify the transition probabilities of the geodesic random walk in order
to be able to construct a probability measure on I' with the same Poisson boundary
and to use our description of the Poisson boundary of random walks on I'. However, it
seems feasible to apply the entropy technique directly to the geodesic random walk for
proving coincidence of the Poisson boundary with PMF in the spirit of [Ka2] (see also
[Kab]). We shall return to this problem elsewhere.
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