Y VES GUIVARC’H

Compactifications of Symmetric Spaces and Positive
Eigenfunctions of the Laplacian

Publications de I’Institut de recherche mathématiques de Rennes, 1994, fascicule 2
«Fascicule de probabilités », , p. 1-63

<http://www.numdam.org/item?id=PSMIR_1994__ 2 A2 0>

© Département de mathématiques et informatique, université de Rennes,
1994, tous droits réservés.

L’acces aux archives de la série « Publications mathématiques et informa-
tiques de Rennes » implique 1’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=PSMIR_1994___2_A2_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

COMPACTIFICATIONS OF SYMMETRIC SPACES

AND POSITIVE EIGENFUNCTIONS OF THE LAPLACIAN

Yves GUIVARC'H
(Collaboration with J.C. TAYLOR, L. JI)

INTRODUCTION AND DESCRIPTION OF RESULTS.

Consider a connected semi-simple real Lie group G which has a finite center
and no compact factors. One denotes by Ad the adjoint representation of G in
the Lie algebra ¢ of G. Denote by A a maximal connected subgroup of G such
that Ad A is diagonal, by a its Lie algebra, by le'ﬂ2 = Tr(ad x)2 the restriction of
the Killing form to a. Let K be a maximal compact subgroup of G such that the
centralizer Z(A) of A in G can be written as Z(A) = [K N Z(A)] A = MA. Then the
group action allow to construct from x — Jx|2 a G-invariant Riemann metric
on X = G/K and this homogeneous space has the structure of a symmetric space
on which G acts by isometries [Hel. The Laplace-Beltrami operator L is then
defined and one denotes by e < 1 the spectral radius of el in L2(X). The

resolvent (D— AI)y-1 of D = - L defines for A< A¢ a Green kernel (G;(x, y)) which
is a positive and symmetric C* function outside the dlagonal of X x X such that
(D - AI) Gy is the Dirac kernel.

It is a classical fact of potential theory that the form of the A-eigenfunctions of D
(A £ A¢) is strongly related to the behaviour at infinity of G3. The Martin kernel

K:Mx, y) = %&l%% , where 0 is the point of X defined by K, satisfies uniform

Harnack inequalities, hence the set of functions K*(, y) is relatively compact
(y € X). In the topology of uniform convergence on compact sets the cluster
values of KA(,, y) when y tends to infinity form a compact metric G-space of
normalised A-eigenfunctions which will be denoted am4. In terms of K* one
can define a natural topology on mi=X U omisuch that X is
homeomorphically embedded in m4, KA(,, y) extends continously to m# and the
closure of X is mA, The function 6% on G x 9m* defined by

1
0 (g, 1) =lim G .0,y) satisfies the cocycle identity
you  GA0,5)

0r(gh, u) =02(g,h . 1) 02(h, ).
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Here the action (S3) of 2 € G on the function g € 9mA is the projective action :

(h-1.x)
h.uk)=Sy u(x)=ff(—h—:i‘:%.

The space m? is a G-space which is called the Martin compactification of X
and the subset om# is the Martin boundary of X with respect to L [Do]. It is

known that om* always contains the set am); of minimal A-eigenfunctions but

can be larger. In the situation considered here, it turns out that 9m?* consists
solely of minimal eigenfunctions if and only if dima = 1.

The problem considered in this paper is to identify the G-space m4 =X U om4
in geometrical terms and to calculate the cocycle 6% in terms of the geometry of
X and its natural boundaries. One recall that the set of minimal eigenfunctions
was determined in [Kal. For a short proof of this, see [Gu2] and for a general
approach to the calculation of minimal eigenfunctions see [Fu2]. Hence, the
problem can be formally reduced to the description of the integral
representation of limiting functions in terms of minimals, because the set of
positive A-eigenfunctions is a Choquet simplex [Cho]. Because one is concerned
with the space X = G/g and the groups of isometries of X one can suppose G is
the set of real points in a semi-simple algebraic group G, defined over R. The
results can be conveniently expressed in terms of this explicit algebraic
structure and the associated spaces of measures or directions.

The relation of this analytical problem with algebraic notions comes partly
from the Harnack inequality. This inequality implies relative compactness of
the projective G-orbits of eigenfunctions in the relevant functional spaces ; for
special eigenfunctions this compactness reduces to the finite dimensionnality
and projective character of the corresponding orbit closures.

In order to describe the answer, one has to consider the variety # of minimal
parabolic subgroups of G [Bor] as well as the structure on the sphere at infinity
of X defined by the Weyl chambers. If B is the set of real points of a minimal
parabolic subgroup of Gy defined over IR, the space ¥ =G/g is a compact

homogeneous space called the Furstenberg boundary of X (or G). There exist on
Z a unique K-invariant probability measure m and one considers the Poisson

kernel P(g, b) = 4—5,'—,1'—"— () (g € G, b € %). The bounded solutions of the equation L F

= 0 are then given by Poisson integrals

fe .0)=[ P(g,b) Fb) dm(d)
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with 7 e Lo(m) [Ful]. The space X is naturally embedded in the space (%) of
probability measures on Z via the map i: i(g . 0) =g . m. The space #(¥)is a
compact metrisable G-space with respect to the weak topology. The closure i(X)
of i(X) in #(¥) defines a compactification of X [Ful, Gl]. This compactification
turns out [Mool] to be isomorphic to the maximal Satake-Furstenberg

compactification XSF of X (or G) originally defined in terms of quadratic forms
by I Satake [Sal. The boundary behaviour of harmonic functions in this
compactification has already been considered in [Ko] making use of the various
group decompositions which occur in this paper.

Furthermore these decompositions and the families of measures which occur
here play also an important role in the study of Lyapunoff exponents for
product of random matrices [Gu-Ral,2]. Closely related questions were already
considered by E.B. Dynkin in the case of G =S€(n, C) [Dy2]. The well known

Cartan conical compactification XC of X as a Cartan-Hadamard manifold [C]
plays also an important role here. If the rank of G is not one, the

compactification XC is different from XSF. One proves in this paper that the G-
space M*? ig isomorphic to XSF. It is also shown that, if A < A¢, the G-space m*

is the smallest compactification of X which dominates XC and XSF. Moreover
the cocycle 6% on G x m4 is calculated in terms of the Poisson kernel and the

Busemann function [Bal-Gr-Sc].

From the results it will be clear that 9m* has the structure of a topological
manifold of dimension dim X - 1, m* =X U om4 is a topological manifold with
boundary om# and am‘e is a closed subset of full dimension, thereby verifying a

conjecture of E.B. Dynkin [Dy1]. The parametrization of amﬁ gives a natural
embedding of Bmﬁ into XC x ¥ c XC x XSF but the corresponding maps into XC

and XSF are not injective hence the compactifications X C and XSF are
simultaneously needed to describe m4,

In order to describe m# , 64 it is natural to embedd X in the space & of closed
subgroups of G via the map i’ defined by i'(g . 0) =g K g1 and to use the
invariance properties of the limiting functions of KA(, y). In particular the G-
space XSF turns out to be isomorphic to the closure i'(X) of i'X) = ¥ in & with
respect to the natural topology [Bou] (Hausdorff convergence on compact sets).
The space Fo=i(X) can be characterized as the space of maximal distal
subgroups of G in the adjoint action [see I] and every element of #¢ has a
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unique fixed point in XSF, This gives an answer to a question raised by
H. Furstenberg about a possible unified conjugacy theorem valid for maximal
compact subgroups and maximal amenable subgroups. Here the emphasis is
on "distal subgroups" and the answer can be extended to the situation of semi-
simple groups defined over local fields. This is strongly related to [Moo2] but

the approach is different. If D € P¢ is fixed, there exist a unique normalised -

Ao-eigenfunction AP which is invariant under left translations by D. Then, if
the sequence y, =gy . 0 e X is such that g, K g;I converges to D € %, the Martin

kernel K* %., yn) converges toward the function AP, Hence Ol°(g, D) = hp(g-1.0) if

De %¢. It turns out that the subgroup D is contained in a parabolic subgroup
P(D) which is minimum for this property and the set of minimal parabolics
contained in P(D) is a fiber of ¥ over G/p(D). Recall [Ka, Gu2] that the minimal

Ag- eigenfunctions are given by the square root of the Poisson kernel :

hylg) = —g— V2 4.

The function AP can then be uniquely expressed in terms of minimal
eigenfunctions as :

hD(g) = j( =) (b) dm? ().

One denotes by o(g, b) the "Poisson cocycle” —% ).

The probability measure m? is concentrated on the fiber of ¥ corresponding to

P(D) and is uniquely determined by a D-invariance property. Clearly the map
D> m? is a G-equivariant isomorphism of & ¢ into #(#). This gives an

isomorphism between XSF and m*? in terms of integrals representations .
When the parabolic subgroup P(D) is fixed, the set of these measures (or
functions) is a P(D)-space isomorphic to the symmetric space associated with
the semi-simple part of P(D). Hence the space ¥ ¢ is fibered over the set of
parabolic subgroups and these fibers are symmetric spaces.

The conical compactification XC also has already a natural identification with

a functionnal space [Bal-Gro-Sc] : each point z € aXC corresponds to the

normalised Busemann function A(x, 2) = lim d(0, y) — d(x, y) where d is the
y-¥z

Riemann distance function on X. The function (g, 2) = eA®@1.0,2) ig a cocycle on
G xdXC, called here the "Busemann cocycle”". One denotes by B(z) the stabiliser
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of e XCin G ; if z € aXC, this is a parabolic subgroup of G. The space XCSF ig
defined to be the set of pairs (D, x) € XSF x XC such that DcB(x). If j is the
diagonal embedding of X into XSF x XC given by j(x) = [i'(x), x], it turns out that
FX) = X CSF and this G-space is naturally isomorphic to the Martin
compactification m? for A < A¢. The A-eigenfunction hi D defined by (D, 2) €

XCSF ig obtained as follows : it is the product of AD(g) by a power of the
Busemann cocycle B(g, 2) ; this power (in fact — YA9-1) is determined by the
condition that this product is a A-eigenfunction. Hence :

oilg, (0, 2= AP p 7 (g, )
In particular if b € F: 0Mg, (b, 2)] = ocV2(g, b) B_‘j Ao (g, 2) is a minimal A-

eigenfunction.

The set of minimal eigenfunctions is the set of functions of the form

@ =021, 5)p T g1, 2),

where b c B(z). This condition defines a closed G-invariant subset of XCSF
which parametrize the set of minimal A-eigenfunctions and is denoted by }—(ec SF.

In order to obtain XCSF from XC one has to imbed the set of general directions
of XCinto Xec SF and then, "fill the holes" of XE SF with the Satake-Furstenberg

compactifications of symmetric spaces of smaller rank defined by the semi-
simple parts of parabolic subgroups (one for each singular direction). Moreover

the subset of XC consisting of the general directions z such that B(z) is a
minimal parabolic subgroup is isomorphically embedded as an open and dense

subset of Xf SF The complement in XCSF ig a fibered space over the set of

singular directions. The relation of m? with m}'o is the same as in the
classical potential Newtonian theory corresponding to the Euclidean situation
where G=IR? and L the ordinary Laplacian on IR? ; in this case ¢ = 0, m™* ig
the one point and m* is the sphere at infinity of RY. In the case of symmetric
spaces of rank greater that one, the geometry of m™ has a clear bearing in
mA ; this fact is hidden by some peculiarities in the Euclidean case as well as

in the rank one case.
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The space XCSF has the natural factors XC and XSF, The fiber of XCSF over z €
aXC is the Satake-Furstenberg compactification of the semi-simple part of B(z).
In order to describe the fibers over XSF, one observes that XC has a cellular
decomposition of the following type : to each parabolic subgroup P c G associate
the "cell" Py, — 0XC defined by

Poo=1{z €9XC ; B(z) = P}.

These cells are homeomorphic to the facets at infinity of the Cartan subalgebra
q, defined by the root system of G. The fiber of XCSF gver D € XSF ig the closed
cell of XC defined by P(D). From an algebraic point of view the space XCSF gplits
over the set of parabolic subgroups of G : given a parabolic subgroup P, or a
facet at infinity of XC the set of pairs (D, z) which appears above P is the product
of the Satake-Furstenberg compactification of the symmetric space associated
to P and of the Weyl chamber at infinity defined by P. The result for m* (A < A¢)
can be summarised in the following way : convergence of a sequence y,
towards zeaXC is not sufficient to insure the convergence of the Martin kernel
KA(., yn) ; the stabilizer of y, must also converge in the space of closed
subgroups of G ; it turns out that this condition is sufficient. This is the reason
for the splitting of m as well as for the decomposition of the limiting function
into a product of two functions defined by a pair of points in 3 XSF and aXC.
From the point of view of topological dynamics the orbit structures of G in XC
and XSF are easily understood. The first space is a union of compact
homogeneous spaces of the form G/p where P is a parabolic subgroup and this
union is indexed by the points of the closed Weyl chamber at infinity, In the
second space, the orbits of G are locally closed and are "attracted” towards the
unique compact one, which is isomorphic to #. In particular G is proximal on
XSF [Gl, Zi] and conditionally proximal on XC. The unique G-minimal set in
XSF ig isomorphic to #. Generally speaking, here one has an example where
some functionnal G-spaces which, a priori, are infinite dimensional spaces
turn out to be close to G-spaces defined by rational actions of G on projective
manifolds in spite of the fact that XC and XSF have not such a structure.

Finally, from the probabilistic point of view one can draw weak corollaries : in
each of these compactifications almost every trajectory of the Brownian motion
defined by L converges towards a random point of a special G-orbit in the
boundary ; this orbit is isomorphic to Z. It follows from [Do], that if Brownian
motion is conditionned with respect to the function h:' p convergence a.e in
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XCSF takes place towards (z, D) € XCSF, On the other hand, conditioning with
respect to a spherical function leads to convergence a.e, in XC, towards a
random point of a G-orbit in aXC associated with this spherical function . This
G-orbit is a factor of the Furstenberg boundary. The situation is almost the
gsame in XCSF but the G-orbit in 0XCSF is always isomorphic to & : it gives a
more precise information. In terms of Liapunoff exponents and limits

theorems quantitative statements can be formulated along the lines of [Gu-
Rall.

For some classes of semi-simple groups the precise behaviour at infinity of the
Green kernel had already been studied by several authors [Dy, Ol, No, Gi-Wo).
In the case of complex Lie groups it can be obtained in terms of special
functions [Dy, No]. In the general case, asymptotics of the Green kernel G;
(A #Ag) were stated in [Ol] for "generic directions". Among the pairs (z, D)
€ XCSF, guch that D = M N € XSF contains a maximal unipotent subgroup N,
the "generic directions” are those such that z is defined by a non singular
geodesic, hence B(z) = B is a minimal parabolic subgroup and z belongs to the
open cell at infinity Py, a case also coonsidered in [Boug] ; the non "generic
directions" correspond to z in the boundary of P, and D = M N. Hence, the
structure of the full Martin compactification was unknown in general.
Moreover the situation of trees and product of trees was considered in [Pi-Wo] ;
in this paper this situation is also considered [see below]. Here the study of the
case A=A¢ involves essentially symmetry and ground state considerations as in
[Ta-Gul. In general, G, is comparable with a simple explicit kernel [An-Ji], for
which the corresponding compactification can be calculated and shown to be
the same as for G;.

The description given above suggests an extension to the situation where the
Laplacian is replaced by a non degenerate K-bi-invariant probability measure p
on G. From the probabilistic point of view, this amount replacing Brownian
motion on X associated with L by random walk on G/ generated by p. In this
context a larger class of locally compact groups can be considered. In
particular one can consider the group G = G of F-rationnal points of an
algebraic semi-simple group G, defined and isotropic over a local field F ; this
include to some extent the situation of trees (which corresponds to rank one)
[Gel. In this more general context, the various objects considered above make
sense and one describes briefly the relations between them. Here the group G of
F-rational points in G, is a locally compact and totally disconnected non
amenable topological group. One fixes once for all a standard minimal F-
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parabolic subgroup B; c G; and denotes B = B; N G. One denotes by K a
maximal compact subgroup of G which is supposed to be transitive on G/B [Br-
Ti]. The well-behaved (see II) probability measure p is fixed and supposed to be
K-bi-invariant. The homogeneous space G/g plays in this situation the role of
Furstenberg boundary and gives the bounded p-harmonic eigenfunctions. In
this situation the number ¢ has to be replaced by the spectral radius rg of the
convolution operator on IL.2(X) defined by p. The Green kernel G; has to be

(o]
replaced by the potential kernel V. =)' r=7 p» (r 2 ro).
0

The set of positive eigenfunctions of p have the same form as above but the
correspondance between eigenvalues and such eigenfunctions has to be
naturally modified if r > ro.

Once a certain conjugacy class of maximal compact subgroups is fixed, the G-
spaces XSF and X CSF have analogous definitions in terms of measures on
#=G/g and geodesics in the Bruhat-Tits building of G : they are natural
candidates for the Martin boundaries ; the cocycle 6" has to be modified for
r > rg in a natural way. In this context, the answer to the basic questions of this
paper are shown to be the same as for the real field in the special case r = rg, G,

simply connected and split over F. The space XSF is the closure, in the space of

closed subgroups of G, of the G-orbit ¢ of K. For D € 2, the function AP is well
defined by D-invariance and gives the corresponding cocycle. Hence the
corresponding Martin compactification is XSF. The situation in the local field
case is briefly described in part III. The proofs of the corresponding facts are
parallel to the proofs given in the real field context. Closely related questions
were asked in [Cal]. For informations on the properties of semi-simple
algebraic groups defined over a field F one may refer to [Bor]. If F is a local
field, the relevant properties of the locally compact group of F-rational points of
G, can be found in [Mar, chap. I].

The extension of the real field situation to the more general situation of local
fields is formulated as conjectures in parts III and IV

In order to illustrate the above discussion, one consider the special case
G=80(d,R) of unimodular matrices of dimension d. In this case, one can take
A to be the set of diagonal matrices with positive coefficients a = diag(11, Ag, ...,
Ag) with 2; > 0, A1 42 ... Ag = 1. A closed Weyl chamber a + is defined by the
conditions py 222 ... 2 ug, 1+ 42+ ... + 44 =0, one has A+ = exp(a+) and the
simple roots are given by «; =Log ;41 - Loga;.
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The unipotent group N is the set of strictly upper }triangular matrices. The
maximal compact subgroup K is K = SO(d), the rotation group with respect to
the euclidean norm on R4,

In this case ¥ is the space of complete flags in R4, A subset I c {a1, a2 ,..., &g}
defines a partition of [1, 2 ,..., d] again denoted by I = (I3, I2,..., It). Then A(l)is
the set of diagonal matrices a = diag(11, A2, ... ,Aq) such that 4; = 4; when the
pair (i, j) is contained in an interval of the partition. The parabolic subgroup
P(I) is the set of upper triangular matrices with square blocks of the above type
along the diagonal. The corresponding factor G/P(I) is the space of incomplete
flags of type I = (I1, Iz, ..., Ir) ; a typical flag of type I is given by the sequence of
subspaces

VicVac..cVip=Rd

withVi= @ Re;,Ij=hiulav.. .Ul
iel’j

The fiber above a typical incomplete flag d (of type I) is the set of complete flags
b which refine d, and the natural measure mg on such a fiber is the probability
measure which is invariant under the rotations which preserve d. More
generally the image of such a pair (d, mq) under a projective transformation
will be called a measured flag. Then the G-space XSF can be identified with the
G-space of measured flags [Gu, Rall. The closed subgroup D! associated with
the typical measured flag (dy, mj) is the subgroup of P(I) with orthogonal blocks
along the diagonal and the stabiliser of (d, my)is the subgroup RI c P(I) defined
by the weaker constraint of similitude instead of orthogonality.

A sequence y, € X converges to (d7, mp) if one can w_rite Yn =&p apn . 0 with
1 .2 d - A;
lim e, =Id, ap = diag(d,, 4,,, ..., A,) € A() N A%, lim l—i 77 =+ o0if @, i+1) is not
n n
n

contained in an interval of the I-partition.

The space 9XC can be described as the set of directions in X. Such a typical
direction v e aXC is given by a vector v = diag (u1, ug,... , ug) e O+ with w1 2 ug 2 ...

d
2 ug, ul2=3, u,-2 = 1. The sequence y, € X converges t0 oo € O,  aXC if one

=1

can write y, =kp an . 0 with :
Loga,

ap € At, hnm [Logan] =v h;lmkn=k and Ad k@) =v.
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A general direction is obtained from v, by the action of K. These directions
form the sphere at infinity aXC of X = G/k.
Such a direction z is defined by a pair (k, Vo) With k € K, Voo € O, and z = k.Veo .

The complete flag b associated to % is given by a sequence of multivectors (b1, b2

sy Od-1) With bje1 = bj A x5, |bj] = 1 ; the decomposable multivector b; defines a j-

dimensional subspace V;andonehas Vic Vec..cVg1cVg= R<. With these
d

Ui—li+l

-1
notations, the Busemann cocycle (g, 2) is given by B(g, 2) = Hl lg bl
=

d
wherez =k . Voo, U =(u1,ug, .., ugd)ea* o)=Y |u;2=2d.

i=1

The Poisson kernel is given by
d-1
P, b)=1I1 g byl
: i=1

Hence, if one denotes o;(g, b) = g b;], the minimal A-eigenfunctions are given

by

~1

d - aps
Hop@= I1 o)1, b)

d
withu;—u;4120(1<i<d-1and ¥ uf = 2d(A¢- ),
i=1

d
v=diag(ﬁll-,...,l—lzdl-), Y uj=0andz=*k.ve.

i=1

If y, € X converges in XC to z and in XSF to b € &, then the Martin kernel
K2(.,yp) converges to h:,b- If, instead of converging to b, y, converges to a typical

measured flag (d, mq), then the Martin kernel converges to the non minimal
eigenfunction [ &} ,(g) dmg(b).

The structure of this paper is as follows. To begin with, one gives some
preliminary informations of a group-theoretical character. Then in a first part
one describe the space XSF in terms of the space of closed subgroups of G ; this
characterisation is useful later on. In a second part one calculates m* in the
context of a random walk using the "ground state" characterisation of the
functions AD. In a third part one uses the above results to describe briefly the

situation in the case of semi-simple groups defined over local fields. In the last
part one calculates m4 ; in the spirit of part II one tries to characterize the
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Martin limits by their extremal and group-invariance properties, rather than
just giving a calculation.

In view of the results and techniques of this paper it is natural to conjecture
that, if K-bi-invariance of the probability measure p is not assumed, the Martin
compactifications of G, with respect to p will remain the same and the new
family of cocycles 64 will be obtained from the canonical family described in
this paper by cohomology. The stability of the Martin compactification is well
known in the case of G = R9 [Bab2].

The main results of this paper are part of a joint work with Lizhen Ji and
J.C. Taylor (to appear) ; a preliminary version has appeared in Comptes
Rendus [Gu-Ji- Tal. The emphasis here is on the intrinsic approach and the
random walk point of view in such a way that the situation of semi-simple
groups defined over a local field could be simultaneously considered. The
details will appear in another paper.

Thanks are due to M. Babillot and J.P. Anker for essential informations about
the Green kernel. The first author is also grateful to G.A. Margulis who
brought the question to his attention.

SOME GROUP-THEORETICAL PRELIMINARIES,
One describe here some known preliminary group-theoretical results.

1) Parabolic subgroups and Furstenberg boundary.

Consider a maximal subgroup A of the semi-simple group G such that Ad A is
diagonal and A is isomorphic to the multiplicative group (R*)". Consider its Lie
algebra a c ¥, the set of roots X of a in ¥ and the root spaces $; < % (a € X)

defined by
Ya={xec%;la,xl=ala)x Vaeal.

Once a Weyl chamber a* has been choosed in @, the set * of positive roots is
fixed and a system of simple roots A = (a1, a2,..., o) c Xt is defined. One can
define the nilpotent subalgebra
N= @ ¢,
aext

and consider the corresponding unipotent connected subgroup N < G. The
centraliser Z(A) of A is the product of its maximal compact subgroup M
by A. Hence N is normalised by Z(A) and the subgroup B = Z(A) N is the semi-
direct product of N and Z(A). '
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In analogy with the theory of semi-simple algebraic groups [Borl, B will be
called a standard minimal parabolic subgroup. More precisely, if G; is an
algebraic group and its Lie algebra ¥, is isomorphic to the complexification of
¢ one can choose a R-structure on G such that, up to finite covering, G is the
connected component of the subgroup of real points of such a group Gy ; then
there exist in G; a unique standard minimal parabolic subgroup B, such that
B = G N B,. Moreover B, is the Zariski closure of B in Gj.

Definition 1. A subgroup of G will be said to be parabolic if it contains a conjugate
of B. The homogeneous space of minimal parabolic subgroups will be called the
Furstenberg boundary of G. It will be denoted ¥ = G/B.

The algebraic theory of parabolic subgroups have a complete analytic
counterpart in the context of connected real semi-simple groups [Bor]. In
particular there is only a finite number of such subgroups, up to conjugacy,
and they correspond to the finite list of G-equivariant factors of = G/MAN- The
homogeneous space ¥ appears in [Fu 1] in the context of bounded harmonic
functions ; it is the set of real points of a projective variety, defined over R, on
which G acts by projective transformations.

2) Standard parabolic subgroups.

In order to describe more explicitely the parabolic subgroups, one consider
"standard parabolic subgroups" associated to a subset I ¢ {aj, a2 ,..., o}, one
denotes by [I] the set of positive roots which are linear combinations of elements
of E and write [I]’ =Xt - [I]. One consider the subalgebras

all)={xea;alx)=0 Vael}

N¥D= & ¢,
aelll’

N =0 ¢,
aell]

One has ¥ = ¥ o ¥(I), [¥(I), 1] c ¥({I). One denotes by ¢! the sum of the
subspaces ¥, + [$,, -o] where £ a varies over [I].

One consider the corresponding connected subgroups A(I), N({), NI. The
subspace %! is a semi-simple subalgebra and the corresponding connected
subgroup will be denoted GI.

The centralizer Z(I) of A(J) in G is reductive and the standard parabolic
subgroup P(l) is defined as P(I) = Z(I) N. It is clear that N(I), AI) N(I) are
normal subgroups of P(I) and the relation Z(I) N N(I) = {0} implies that P() is
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the semi-direct product of Z(I) and the normal subgroup N(I). Because each ¢,
is invariant under the adjoint action of MA, one hasforge Gl,he M :h g h-1
e GI ; it follows that M(I) = GI M is a closed subgroup of G. This implies that
Z({I) = M({I) A, N(I) is normal in P(I) and P(I) = M(I) A(I) N(I). More precisely
P(I) is the semi-direct product of its unipotent radical N(I) by the Levi subgroup
M) A(2). This decomposition is called the Langlands decomposition of PQ).
It is known that Al = GI N A is a maximal diagonal subgroup of G! isomorphic
“to (IR*)8 where s is the number of elements in I [Bor]. Moreover the restrictions
of the roots in I to Al define a set of simple roots of G, It follows that if af
denotes the Lie algebra of Al, then the corresponding Weyl chamber (o) is the
orthogonal projection of at+in al with respect to the Killing form of a.
Consider now the projection of ¥ = G/B onto the homogeneous space G/P(I) and
the orbit $(I) c ¥ of the origin e € ¥ (e = {P}) under P{). This is a compact set
which may be identified with the homogeneous space PU)/g. The fibers of the
projection are exactly the translates of #(I) under G. As a GI-space, #(I) is
isomorphic to the Furstenberg boundary of G! as it is now shown as follows.
The centraliser of Al in GI is contained in MA because it centralise Al, A(J) and
A = Al A(D). This centraliser is equal to M A N G! and the relation GI M n A = Al
implies

MANGI=MnGHANGH=MIAI
where MI =M n GL.

On the other hand the subgroup A(I) N(J) is normal in the stabiliser B of ¢ : it
acts trivially on #(I). From the relation P(J) = GI M A(I) N(I) it follows that GI is
transitive on #(I). From the relations explained above it follows that GINM A N
=(GI "M A)(GI " N)=MI Al UI, So that one has the

Lemma 2. The fiber of the origin of G/P(I) in GIpis isomorphic, as a GI-space, to
the Furstenberg boundary of GI. The subgroup A(I) N(I) acts trivially on P(I)/B, so
that the action of P(I) on this fiber reduces to the action of GI M = M(I).

3) Maximal compact subgroups and Iwasawa decompositions.
Consider now a maximal compact subgroup K containing M and the Iwasawa
decomposition G = K A N. Because G permutes the fibers of ¥ above G/P([),K is

transitive on ¥ and the stabiliser of #(I) is P(I), the subgroup K n P(I) has to be
transitive on ¥(I). Denote K =Kn Gl KI = K n M(I) and observes that the

action of K n P{) on #(I) reduces to the action of K7 : KI is transitive on F().
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From the formulae K7 = K} M and #(I) = KL. € one gets #(I) = Ky . € and GI = K
AT UL P(I)=K, M A N. The formula () = K}, . € implies that K{, or K leaves

invariant a unique probability measure mjy on £(I). In particular if I = ¢, then
m = my is the K-invariant measure on ¥. The formula GI = K o AT NT implies

thatK{, , KI are the stabilisers of myin GI, GI M and are maximal compact

subgroups of GI, GI M respectively.
To summarise the above discussion one state the lemma :

Lemma 3.IfK(I) =KnGLAI=ANnGIL Nl =N~ G, the group GI admits the

Iwasawa decomposition GI = K(I) Al NI, Furthermore the stabiliser of myin Gl is Kf)

and Kf) is a maximal compact subgroup of GI.

4) Satake-Furstenberg compactification.

Consider the space #(%) of probability measures on #, endowed with the weak
topology. This a metrisable compact G-space. The closure G.m of the orbit G.m
of m under G in #(¥) is compact and one consider the map g — g . m of G into
P (%) ; one denotes by 0 = {K} the origin in the symmetric space X = G/k.

Definition 4. The space G.m with the embedding of G/K into G.m given by g . 0 -
g . m will be called the maximal Satake-Furstenberg compactification of G/K and

onedenotes G.m =X5F,

Because the stabiliser of m is K, this map is well defined and is a

homeomorphism of G/k onto G . m. This compactification of X = G/g is shown
in [Moo1] to be isomorphic to one of the compactifications originally, defined by
Satake in terms of quadratic forms (see below). The definition in term of
measures was given in [Fu 1] and extends naturally to the general case of a
semi-simple group defined over a local field (see below).

If a* is the Weyl chamber in a defined by A and A* = exp (a*) one has [He] the
polar decomposition of G : G = K A* K. The K-parts of the decomposition g = kak’
are not unique in general but ¢ is uniquely defined. In this way sequences in G

going to infinity can be reduced to sequences in A+ and the following notion is
very useful.
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Definition 5. The sequence a,, € A will be said to be I-canonical if a,, € A+, e*(ay) =1
when a € [I], im e*(a,) =+ 00 when a e [I]".
n

Lemma 6. Suppose that the sequence a, € A is I-canonical. Then the sequence of
measuresay . m converges to my.

Proof. Consider the unipotent subgroup ﬁ(D opposite to N(I) : its Lie algebra is

given by X D= ® %_4. Clearly, forx €%, a €A one has
aell)’

(Ada)(x) = e~Loga) 5,

. ‘ . . L ’
Because aj, is I-canonical one has lim e_a[ oganl _ 0 for a € [I]' and one
. n

conclude :
Vx e X¥(]) : lim (Ada, )x)=0
m

VneN{) : lim anna;1=e.

Consider now the space G/p() which is a factor of #. From the Bruhat
- decomposition, it follows that ﬁ(D B(I) is an open dense set of G, so that the
orbit of the origin in G/p() under N is open and dense. If this orbit is
identified with 1\7(1) c G/p(]), the actionofaeAonne Xl(I) isgivenby:a.n=an
aleN (D). It follows that, for every n € N D c G/P(I), the sequence ay . 71
conVerges to the origin. If m is the projection of m onto G/p([), one obtain from
dominated convergence, that the sequence of measures a, . m converges
toward the Dirac measure at the origin. It follows that every cluster value of
the sequence a, . m has a support contained in PU)/p c . Because ay is I-

canonical, KI commute with a, it follows that such a cluster value is KI-
invariant. There is only one probability measure on PU)/p with is Kl-invariant :
this is the measure mj. Finally

lima, m=my.
n

Proposition 7.G.m is the disjoint union of the orbits of the measures my.

Proof. If g, € G is such that the sequence g, . m converges one can suppose that
gn =kn an k'p with a, I-canonical lim &'y = &', lim &k, = k. It follows from lemma
n n

6:limg,.m=k.mJ. Hence
n

G.m '=LiJG.mI.
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Suppose G . mr NG . my # ¢ ; then for some g : g . my = my, and the supports of
these measures are equal : g P(I) = P(I'). Because the fibers g P(I) of ¥ above
G/P(I) are either disjoint or equal one has g P(I) = P(I) = PU"),I=I' my=myp,
G.mi=G.myp.

In order to explain the relation between the above compactification and the
original construction of I. Satake [Sal] consider a complex faithfull irreducible
representation 7 of G such that, if 0 denotes the Cartan involution of G one
has :

tla(@)] =tle(@]1.

Consider also the embedding of G/k into the space # of positive hermitian
matrices given by 1(@K) = 1(g) ¢1(g). If P(¥) is the real projective space of ¥ one
has an imbedding

7:X— P(X).

The closure ©(X) is the Satake compactification of X associated with the
representation 7, denoted by 7(‘3 .

The compactification }_(f is uniquely determined by the restricted dominant

weight of the representation 7. If the stabiliser of the dominant weight vector of
Tt is a minimal standard parabolic subgroup, then the compactification

)_(f = Xiax is maximal. This is the only one which is used here. It is proved in

[Moo 1,2] that the stabiliser of ¢ € X‘iax is a conjugate of a group of the form

RI=KI A(D NQ)
for some 1.

Such a group stabilises a unique measure on ¢ : this is the measure mj. The

S

and XSF replaces g ¢ X, .,

correspondance between X‘;ax

by the unique

probability measure on ¥ which is invariant under the action of the stabiliser
of ¢. Instead of these results one uses here only the above definition in terms of
measures. This language extends to semi-simple groups over local fields.

A continuous function on a locally compact group H will be called an
exponential if it is a homomorphism of H into the multiplicative group of
positive real numbers.
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The normaliser of DI = KI N(I)is RI and D! is the subgroup of RI where the
exponentials of RI are trivial. It will be clear below that the compactification

)_(iax is isomorphic to the space of subgroups of G conjugate to some DI

endowed with the natural topology.

I - LIMITS OF MAXIMAL COMPACT SUBGROUPS AND THE MAXIMAL SATAKE-
FURSTENBERG COMPACTIFICATION,

One gives here a new characterisation of the maximal Satake-Furstenberg
compactification. Hence the proofs are independent of the end of paragraph 4
above.

One consider the space ¥ of closed subgroups of G endowed with the topology of
Hausdorff convergence on compact subsets of G. For G locally compact this a
metrizable compact space on which G acts continuously by conjugation [Boul.
In the simplest non trivial example G = R one consider the family of subgroups
H;=a Z (a € R). In this case lim Hy; = Hpif b# 0, lim H, = {0}, lim H; =R.
a—-b laj—00 a—0

In order to give another example, in the spirit of this paper, one take G equal to
the additive group of a finite dimensional vector space V over a locally compact
field. Then the projective space P(V) of V, is clearly a compact subset of the set of
closed subgroups of V.

Here one consider the maximal compact subgroup K and its orbit Yo={g Kg1;
ge G}. In this case the elements of the closure Z¢in ¢ can be interpreted as
generalised horocycles. In the case G = S0(2, R), X = G/g is the Poincaré disk of
center 0 = {K} and one can associate to a closed subgroup H c G, the orbit
H.0cX. Let N denote the maximal unipotent subgroup of upper-triangular

matrices and M the set of diagonal matrice of the form diag(e, £') with g, £’ =% 1.
Then it can be seen that the limits of compact subgroups are compacts
subgroups or conjugates of the subgroup MN. Under the map of G into X
considered above the set g K g-1 projects on X as a circle g K g-1.0 of center g-1.0
containing 0. A sequence of circles either converge to such a circle, or converge
towards an horicycle containing 0 and corresponding to a conjugate of MN. In
order to calculate in general the closure Zg , one introduce some notations and
lemmas. The corresponding analysis has an elementary character and can be
carried over to other situations. Closely related questions have been considered
in [Moo2].
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Definition 1. If Vis a finite dimensional vector space and H a closed subgroup of
GE(V) then H is said to act distally on V if for every h € H, the eigenvalues of h are
numbers of modulus one. In particular H c G is said to be distal if Ad H acts
distally on the Lie algebra of G.

It is known [Co-Gu], but not used for the main results that H acts distally on V
if and only if for every veV, v # 0 the orbit closure of H . v does not contain 0.
This is the reason for the word distal borrowed from topological dynamics.
Clearly a compact subgroup and a unipotent subgroup are both distal. In order
to prove proposition 8 below one needs some lemmas.

Lemma 2. Ev ery limit of distal subgroups is distal.

Proof. If lim H,, = H, then for every g € H there exist a sequence g, € H, with
n
g=1lim g, , Ad g =1lim Ad g,. Since the spectrum of Ad g is the limit of the
n n
spectrum of Ad g, and the unit circle is closed, the lemma follows.

Lemma 3. Suppose J, c Gis sequence of closed subgroups, ji,, is a sequence of
probability measures on ¥ such that
a) iy, is Jp—invariant.

b) limpu,=p exist.
n

¢) limJ, =J exist.
n
Then p isJ—invariant.

Proof. As above consider g € J and g, € J,; with lim g, = g. If ¢ is a continuous
n

function on %, then the sequence of functions ¢(g,.x) converges uniformly to
¢(gx). Hence, g, . un(p) converges to g . u(p). This shows the weak convergence
of gn . un to g . p and implies the F-invariance of p.

Lemma 4. Suppose that the sequence a, € A is I-canonical. Then the sequence of
measures an . m converges tomj.

Proof. See the above paragraph.

Lemma 5. Suppose that the sequence a, is I-canonical and the sequence of closed
subgroupsan K a;I convergetoDe¥. Then D > KIN().

Proof. Clearly, because A(I) centralises KI, one has a, K a:ll o KI. Denote by y

an element of N(I) and observe that, because a, is I-canonical lim a:ll ya, =e.
n
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Using Iwasawa decomposition one can write a:,l yan= Rpop, ¥y, withk, e K,
an€lA,y'n e N and observe that limk, =lima, =lim y, =e since lima, y', a;1
n n n n

=e. It follows that :
lim a, b, a,_l1 =lim a, (Bn any'n) a,:l =y,
n n

This proves that lim a, K'a_;1 o N{).
n

Lemma 6. The stabiliser of myin M(I) is compact.

Proof. One uses a typical contraction argument [Fu 1]. One knows that the
homogeneous space P ()/B is the Furstenberg boundary of M(I) or GI, hence a
projective variety. Consider &n irreductible representation p of GI into a finite
dimensional vector space such that P (/B is represented as a projective variety
on which GI acts by projective transformations. If one considers a norm |.| on
V, it suffice to show that if the action of p(g) (g € GI) onto this projective variety

stabilise my, then ]p(g)] is bounded by a constant independent of g. If it not the
case, then there exist a sequence g, € G such that lim [p(g,)] = + oo, hence lim
n n

)

pEn) _ ; _.pgn) .. -
det o)l = 0. The sequence of linear maps u.,, = To@l ?atlsﬁes lupl =1,
hence one can suppose by compactness of the unit ball, that lim u, = u, Ju] =1,
n

det u = 0. Hence one obtains that the measure v=1lim u, . my=u . myis
n

concentrated on the union of two projective subspaces which corresponds to Im
u and Ker u [see Fu 1]. But then the measure my=1im p(g,;) . m would be
n _

concentrated on the union of two projective subspaces. Hence a subgroup of G{
of index at most two would leaves each of these subspaces invariant. Because
(! is transitive on PU)/g and p irreducible, this is impossible.

Remark. Only the facts that v = my is not concentrated on the subspace
corresponding to Ker u and the stabiliser of the support of v = my is irreducible
have been used in this proof.

Lemma 7. The stabiliser of the measure myin Gis Rl = KI A0) N{). The
normaliserof DI = KI N(I) is RI.

Proof. The support of my is P (D/B. If r stabilises my, r also stabilises its support,
so that r.PUYg =PI, hence re P().

This proves that the stabiliser L of mj is contained in P(I). Observe that the
relation b AJ) NU) b~1 = A() N(I) c B for every b € P(I) implies that A(I) N(I)
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acts trivially on P()/g. Hence the subgroup RI = KI A(I) N(I) stabilise my and so :
RI c L < P(I). On the other hand, from lemma 6, one knows that L " M(I)is a
compact subgroup. Because KI is maximal, as a compact subgroup of M(I), and
L n M) > KI, one has L n M(I) = KI. From the relation RI c L ¢ P(I) = M(I) A(I)
N() one obtains L =RI,

Denote again by L the normaliser of DI, The subgroup L normalises also the
unipotent radical N(I) of DI. But the normaliser of N(I) is P(I) and this implies
Lc P{). Moreover D! leaves invariant a unique measure on P (D/g so that

LcP() leaves also invariant this measure my : L c RI. Because RI normalises
DI one has L = RI.

Proposition 8. Suppose that ap € A is I-canonical. Then the sequence of compact
subgroupsa, K a;l converges to DI = KIN(I).

Proof. Consider a convergent subsequence D, =a, K a:ll withlim D;, = D. The
n

lemmas 3, 4, 5 above implies that D o KI N(I) and D preserves mJ. Because the

stabiliser of myis RI = KI A(I) N(I) one has R 5 D > KI N(I).

The first lemma implies that D is distal and because, for a € A a # e the action
of Ad a® on N(I) is not distal, one has D N A(I) = e. The relation RI = KI A(I) N()
implies finally D = KI N(I). So that, in fact the whole sequence a, K a—;

converges to DI.
Corollary 9. 7¢ < ¢ is the disjoint union of the G-orbits of the subgroups DI e %,

Proof. Consider a sequence g, € G such that g; K g',;l converges to D € . One

can extract a subsequence and suppose that g, = k ¢, an k'p with kg, &'y € K,
lim ¢, =¢, lim k, =k and a, is I-canonical. Then from the above proposition
n n

1lim a, Ka;1 = DI and limg, K g,_,1 = keDlclk1le G.DI Suppose that
n n

g DI g1 = DJ for some g, I, J. The unipotent radical of D! is NUI) and the
normaliser of N(I) is P(I). It follows that g P(I) g~1 = P(J), so that I=J, g € P(I),
DI=DJ,

Definition 10. For D e %, D =g D! g1, one defines the measure mP by mP =g . my.
This definition is valid because g is defined up to an element of the normaliser
of DI which is the subgroup R! and the stabiliser of my is equal to R,
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Definition 11.Ifi is the map of X into the space () of probability measures on ¥

defined by i(g . 0)=g . m, then the closure iX) = G.m c #(%) is called the maximal
Satake—-Furstenberg compactification of X.

It is shown in [Moo1] that this definition coincide with that originally given by
Satake [Sa] in the context of quadratic forms. The definition given by
Furstenberg [Fu 1, Moo1] is in terms of measures on G/AfAN and fits well to the

situation considered in part II.

The meaning of g . m is the present context is that of exit measure for brownian
motion in X starting from g . 0.

Lemma 12. G.m is the disjoint union of the orbits of the measures mj.

Proof. The proof is the same as that of the corollary 8 except for slight details ; if
G .mrN G .myg# ¢. The stabilisers of g . mrand my are g RI g-1 and RY so that
g Rl g1 = RJ and, the same argument as, in corollary 8 with D! replaced by R!
leadsto I=J, geRl, g.mr=my.

Theorem 13. The map D-tsmD isan isomorphism of 7o onto G.m .

Proof. In order to show the continuity of the map i, it suffices to show that if the
sequence gp K g;1 converges to D, then the sequence g, . m converges to mD. If

i € G.m is the limit of a subsequence &nj-m, One can suppose gn; = kn Cn:Qn: k' ,,J

with lim kn_, =k, llm Cnj =C and an; I-canomcal Then one has D-k c DI’ c- 1’
J

pu=kc.mg because of lemmas 3, 4, 5 and proposition 7.
These formulae imply p =mP so that g, . m converges to mD.

The density of ¥ into ¢ and of G . m into G.m implies that u is surjective. In
order to show that pu is injective suppose mD = mD’, so that the relations
D=gDIgl D' =g DJ g-1implies g . m! =g’. mJ. From lemma 12, it follows
I=J,geg’ R, hence D=D".

The following results give complementary informations on the distal
subgroups D! and amenable subgroups R![Zi]. The proofs remain valid for
semi-simple groups over local fields and allow extensions of the results of

[Moo 2].

Furthermore it gives an answer to a question of H. Furstenberg about a
possible unified conjugacy theorem for maximal compact subgroups and
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maximal amenable subgroups. Here the relevant concept is that of distal
subgroups. This can be compared to [Moo 2].

Theorem 14. If DI € %y is contained in an amenable group R, then R c RI. The
subgroup DI is a maximal distal subgroup and RI is a maximal amenable
subgroup. Every distal subgroup is contained in a maximal distal subgroup. Every
amenable subgroup is contained is a maximal amenable subgroup. Every element
of Z¢ has a unique fixed point in XSF,

The proof uses some lemmas of independent interest and the following
proposition. A proof with the topological tools of this paper is given at the end of
paragraph II. Only the first part is used here ; this follows also from
proposition 4.4 and the corollaries of theorem 4.15 in [Bor-Til].

Proposition 15. Suppose Q is a parabolic subgroup of G. Then @ > N() if and only
if Q contains a minimal parabolic contained in P(I). If DI c Q, then P(I) c Q.

Lemma 18. Every distal subgroup is contained in a maximal one. Every amenable
subgroup is contained in a maximal one.

Proof. In the two cases one used Zorn's lemma. If D; (j € ) is a totally ordered
family then \:} Dj is distal by definition. In the second case one uses the fixed
J .

point characterisation of amenability. If :‘JI R; acts on a compact convex set C
J

by affine transformations, the same is true for every R;. If C; c C is the set of
fixed point of Rj, then the family Cj has the finite intersection property, QJ Cjis
Jj

non trivial and equal to the set of fixed point of gf R;.
J

Lemma 17. Suppose that a group H c G€(V) acts distally on the finite dimensional
vector space V and denote by W the subspace of vectors v eV such that the orbit H.v is

relatively compact. If v is an H-invariant measure on the projective space P(V).
Then v is supported by the projective subspace P(W).

Proof. One uses induction on dim V, the result being trivial if dim V = 1. The
result is also trivial if W= V. If W # V, the group H is unbounded and the same
contraction argument from [Ful] used in the proof of lemma 6 leads to the fact
that v is supported by the union of two (strict) projective subspaces ; the distality
of H is used through the relation |det | =1 for 2 e H.

Consider now the set A of finite unions of projective subspaces which support v.
This set has a minimum element ¢ because an intersection of a sequence of
elements of A is a finite intersection.
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The H-invariance of v implies the H-invariance of o, hence the invariance of
every subspace in ¢ under a subgroup Hg c H of finite index. For every
subspace o’ c o the restriction v’ of v to the projective space P(c") < P(V) is Hy-
invariant.

From the induction hypothesis and the condition IH/H0| < oo one gets that v’ is

supported by P(W) n P(c”"). Hence v is supported by P(W).

Lemma 18. Consider the boundary G/P(I) and the action of N(I) on G/P(I). The
originof G/P(I) is the unique point of Gy P(I) which is N(I)-invariant.

Proof. If x e G/P(I) is N(I)-invariant then the stabiliser gP() g1 of x is
normalised by N(I) : if u € N(I), ugP(I)g~1u~1 = gP(I)g-1. Hence g-lug normalises
P(I). Because the normaliser of P(I) is P(I) itself one has g~1 N(I) gc P(I), NU) c
gP() g-1. From the proposition 15 one gets the existence of a minimal parabolic
subgroup hPh-1 contained in gP(I) g-1 [h € P(I)]. Hence h-1gP(I) g-1h contains
P and is a standard parabolic subgroup : A-1gP(I) g-1h = P(), g 1h e P(), g e
PQ), gP) g1 = P(), x = {P()).

Lemma 19. If p is a rationnal representation of N(I) in a vector space V such that
the orbit of v e Vunder pIN()1lis bounded, then v is invariant under p[N(I)].

Proof. The group N(I) is generated by root subgroups of A in G and such a root
subgroup L is rationnally isomorphic to the additive group R. Hence the
coordinates of p(u) v (u € L) in V define polynomial functions on IR which are
bounded : they are constant and p(u) v = v when u € L. Because such subgroups
L generate N(I) one has p(u) v =v when u e N{).

Lemma 20. The measure myis the unique D! invariant probability measureon .

Proof. Consider a probability measure v on & which is Dl-invariant. Because
B= P(¢) is algebraic, there exist a rationnal representation p of G in a vector
space V and a vector v €V such that p(B) is the stabiliser of the line v € P(V)
defined by v [Bor]. This gives an isomorphism of G/B onto the p(G)-orbit of v €
P(V). If v denotes the image of v on p(G) . v < P(V)}, then v is p[N(I)]-invariant
and one obtains from lemmas 17-19 that v is supported by the set of fixed points
of p[N(D} in p(G) . 7. From lemma 18 one knows that this set of fixed points is
contained in the fiber in Z of the origin of G/p(J). Hence ¥ or v are supported by
this fiber. From the fact that my is the unique Dl-invariant probability measure
on this fiber one conclude v = mj.
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Proof of the theorem. The action of R on ¥ leaves invariant a probability
measure v because R is amenable. From lemma 20 and hypothesis R > D! one
obtains v = my. But RI is the stabiliser of mj(lemma 7), hence Rc RI. If R > D!
is distal, then R N A is also distal, hence R N A = {e}. The relation DIl c RcRI =
A(I) D! implies R = DI, This prove that D! is a maximal distal subgroup.

The first assertion of the theorem proves the maximality of RI. The last
assertions of the theorem follows from lemmas 16 and 20.

The following corollary uses in an essential way the properties of the real field.
The results above can be extended to the local field situation.

Corollary 21. % is the space of all maximal distal subgroups .

The proof uses two lemmas.

Lemma 22. Suppose that L is a closed subgroup of H c Ge(V), H1, is compact and
Lactsdistallyon V. Then H acts distallyon V.

Proof. One can find a compact set C c H such that H=C L =L C because the

homogeneous space H/f, is compact. Suppose H is not distal on V and denote by
hn €eH a sequence such that, for some vector v € V, one has lim 4, . v = 0. One
n

can write A, =c, €, with ¢, € C, €, € L. Since {%l,,ﬂv% is bounded by 81513) lc1] < oo,
[+
lim |, v] = 0. This contradicts the distality of L.
n

The following appears essentially in [Ab].

Lemma 23. Every maximal distal subgroup D of G is a semi—direct product of a
compact group C and a unipotent subgroup U which is normalin D.

Proof. It is shown in [Co-Gu] that the distality of D on the Lie algebra ¥ is
equivalent to the existence of a D-invariant flag $1 c 92 c ... © %, =% such that
D acts isometrically on every quotient gk“‘llgk. Because the property of

preserving a subspace and a quadratic form are algebraic conditions, the same
property are true of the Zariski-closure Z(D) of D in G. Because D is distal

maximal and Z(D) acts distally on ¢ one has Z(D) = D. Consequently, D splits as
a semi-direct product of its unipotent radical N and a Levi factor C which is
reductive. Because of the complete reducibility of representations of C and the

isometry condition one obtains that AdC and C itself are compact. Finally
D=ZD)=C.N.



-95-

Proof of the corollary. The first assertion is a direct consequence of lemma 20.
In order to prove the second assertion one shows that a maximal distal
subgroup is conjugate to some DI, It is already known from theorem 14 that DI
is maximal as a distal subgroup.

From a theorem of [Bor-Ti2] it is known that every unipotent subgroup N of G is
contained in the unipotent radical of a parabolic subgroup L such that the
normaliser of N is also contained in L. If D is distal maximal the lemma above
gives D=C.N with C compact and N unipotent. The result of [Bor-Ti2] gives a
parabolic subgroup L with unipotent radical V such that Nc Vand CN c L
because C normalise N. Because of lemma 22, the group C . V is distal. By
maximality of C . N one obtains C. N =C .V, N =V. By conjugacy one can
suppose L = B(I), N = N(I), D = C. N(I). Because C is compact and K/ is a
maximal compact subgroup of P(I) there exists £ € P(I) such that £ C ¢-1 c KI,
and hence € C N(I) ¢-1 c KI N(I) = DL

In order to give a more elementary description of ¢, denote by & c ¢ the Lie

algebra of D € %9 and consider the action of G on the Grassmann manifold of ¢,
and in particular on the set of Lie subalgebras of the form .

Lemma 24, The map D — 9 isinjective.

Proof. One can suppose D = D’ are of the form D' = DJ, D =g D! g-1 and has to
prove D = D’ if their Lie algebras &, &’ are the equal. The unipotent radicals of
DJ, g DI g1 are N(J) and g N(I) g1, hence N(JJ) = g N(I) g1. Passing
to normalisers one has P(J) =g P(I) g1, hence I =J, g € P(I). In the same way,
the stabilisers of 9, @’ in G are the same : RI=g RI g-1 g € RI. But then DY = DI
iy

Proposition 25. The map D — 9 is a G-equivariant isomorphism of %¢ with the
closure of the G-orbit of the Lie algebra of K into the Grassmann manifold of §.

Proof. In order to show that the map D — & is continuous, consider a sequence
D,, such that lim D, =D and lim ¥, = 9’ ; one has to show that &’ is the Lie
. n n

algebra of D. The continuity of the exponential implies : exp 9’ < D. The
logarithm is defined in a small neighbourhood V of e and the same argument

leads to the fact that the Lie algebra generated by Log(V n D) contains &',
It follows that lim 9, =9. The map D — & is injective from lemma 24.
n
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Remark. From this proposition the dynamical aspects of the action of G on XSF
are clear ; in particular, because the action of G on the Grassmann manifold is
rational, the orbits are locally closed and the boundaries of the orbits are
manifolds of smaller dimension than the orbits themselves [see Zi].

The proximality of the action of G on XSF follows from the properties of
projective spaces. This property is closely related to the strong proximality of G
on ¥ considered in [G€] and [Moo2].Clearly there is a unique G-minimal orbit,
the orbit of MN, that is to say the G-space .

II - Ag-eigenfunctions and Satake-Furstenberg boundary.

1 - Some Ag-eigenfunctions and their stabilisers.

Denote by m the K-invariant probability measure on the Furstenberg boundary
# and recall [Ful] that the Poisson kernel of Xis given by P(g, b)=P(g.o, b)

= ig—rh—n}- (b)=0 (g1, b) (g € G, beP). Hence every bounded harmonic function f

on X is given by a boundary function f on IL°%(¥) via the Poisson formula

£ .0)=[ P, b) f(b) dm(®).

Consider the Iwasawa decomposition G = K A N and write a(g) for the A-part of
& € G. Denote by 2p the sum of positive roots of the Lie algebra a of A ; hence the
determinant of the restriction of Ada (a € A) to the Lie algebra of N is e2°(a).
Then the modular function of AN is given by the exponential § = e2¢ and the
Poisson kernel can be expressed [He] as : P(g, b) = e2f[a(g~1 k)] with b e &
corresponding to k € K.

The function o satisfies the cocycle equation : o(g &, b) = o(g, h . b) o(h, b). Recall
also [Ka, Gu 2] that the A¢-eigenfunctions of the Laplacian which are minimal
are the functions PL2(g, b) (b € %) so that every positive A¢-eigenfunction can be
written uniquely in the form

u(g . o) =J PV2 (g, b) dv(b)

with v a positive measure on . If u(0) = 1, v is a probability measure (which is

the exit law in XSF for the Doob u-process). Denote by Ay the Ag-eigenfunction
associated to mj by the formula

hig .0) = [ PL2(g, b) dm(b).
In particular ®g(g) = Oolg. 0) = I PY2 (g, b) dm(b) will be called the ground state
of G or G/,
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Consider now the set of A¢g-eigenfunctions A normalised by the condition A(0)= 1
and the action of g €G on this set given by
. Ly
Sg h(x) - h(g._]_ 0)
Consider also the twisted action of g on the set of probability measures on ¥

given by
| o12(g,5)85.5dv(b)

| o2, b)dv(d)

0
ng

It is clear that if & is of the form A(x) = I PY2(x, b) dv(b), then

Sg hix)= | PV2(x, b)d S v(b),

and the map v — & is a G-equivariant isomorphism. In this way, the two
actions of g can be identified because of uniqueness of integral representation.
In probabilistic language, v is the exit measure of the Doob A-process and Sg v

is the exit measure for the Doob Sgh-process in XSF,

If X(I) is the symmetric space M (D/KI then the ground state @7 of GI, or M(I),
X(1) is given by &rg) = 0rg . 0) = | ( 2L )2 (b) dmy(b). The functions @, h1
are related by the

Proposition 1. If x € X is written in I-horispherical coordinates : x=ua s .0
[ueN({),a e AD), s e M(I)] one has hj(x) =eP(a) Oi(s).

The set bf group elements g € G such that hi(g-1 . x) is proportional to hi(x) is the
subgroup RI= KI A() N{) and the coefficient of proportionality is the exponentzal
on RI defined by the restriction of e to A(l).

Before giving the proof one proves the following result
1
Lemma 2. The two cocycles a(g, b)= —E——* b), o1(g, b) = %;’EL (b) [gePU),
be ()} satisfy the equation :
a(g, b) = o1(g, b) e~2r(a)

wherea zs the diagonal part of g in the Langlands decomposition of P(I).
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1 -
Proof. Consider also the cocycle G(g, b) = dg:(_i_.:rg_ (b) where m denote the
m

projection of m onto Gr/p([). The three cocycles g, 67, & on P(I) x ¥(I) are KI
invariant by definition. Because the measure m can be identified with myxm,
one has for g € P(), b € F(I)

o(g, b)=o1g, b) (g, b)

by the Kl-invariance and equivalence (cohomology) of cocycles.

However o(g, b) is defined on G x G/P(I) and reduces to an exponential when
be P)/p = F(I) and g € P(J). This exponential is trivial on the group M(I) = GI M
and needs only to be calculated on R! because P(I) = M(I) RL. One uses again the
relation between the three cocycles o, 07, 6. Forg=sa u [seM({),a € Al),ue
N and b =k B (k € KI) one has

gk =skalkluk) with k-1 u k € N(I) because KI normalises N(I) and
centralises A(7).

It follows that g.b=s.b
and if g=r=seR!
then a(rk)=a(r)=a and r. my=mj.

Ifg e AI) NU), theng . b=b.
Hence a(r, b) = e~2[a(rk)] = e~2r(a).

On the other hand % =180 that ©(r, b) = e27(a). More generally (g, b)

= e~2p(a) for g € P(I) because the two sides are exponential on P(I), trivial on
M(I), and coincide on RI. Using again the relation between o, &, o7, one obtains

o(g, b) = o1(g, b) e2r(a).

Proof of the proposition. Writex=uas.0and:
hite)= [ Vs~ a1 u-L, b) dmy(b) = e#(a) [ of* (s~1 a~1u-L, b) dmy(b). Because

ofr,b)=1if reRl,anda1u-1.b=>0for b € F(I) one has 6V2(s-1 g-1 u-1 p) =
01/2(s-1 p) and h1(x) = eP(a) ®i(s . 0).

Observe that, in the Langlands decomposition of g € P(I), the A()-component
and the M(I)-component define homomorphisms of P(I) onto A(J) and M(D). If
x=g.o=uas.0,and r € R, the A() component of 1 g is a(r~1) and the M)
component is multiplied by an element k of K, so that ®y(k-1s . 0) = ®i(s . 0).
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Finally hi(r-1. x) = e-Pla(r)] hi(x) where r € RI. Conversely denote by L the
subgroup of elements g € G such that hj(g-1 . x) is proportionnal to Az(x), that is
to say

hi(g~1x) =c(g) hix)

with some exponential ¢(g) on L. By definition of A7 and the above calculation
one has L > R, For g € L one has Sg hr =Ry, so that Sg my = my. It follows that

the supports of these two measures are equal that is to say g PI)B = PU)B
(geP). So that R c L < P(I). The equation §°, m; = my can be written for

g € M(I) in the form
a;m(g—l,-_.) g.mr=cl@mr= alm(g'l, Jmy.

Hence if g € M(I) N L, one has 011/2(g_1 ,)=c@), g. mr=mj,c@=1.

The second condition and lemma 6 of the paragraph I gives : g € KI. Hence
L=(MI) N L) R! =R and c(r) = e~P[a(r)].

Definition 3. For DI = KI N(I) and D =g DI g-1 ¢ & ¢ one denotes by hD the Ag-
eigen functiondefined by

Remark. This definition is valid because the formula D =g DI g-1 defines the
element g up to an element of the normaliser R! of D! and from the above
proposition Sy k7 = hy for r € RI. The function AP has the following integral
representation : hD(x) =j P12(x, b) d Sg, my. The measure ml: = Sg my is

~ equivalent to the measure g . my and its support is equal to the fiberg . #(D)in &
of the point g . P(I) € G/p([). From the above definitions and the proposition one

has the following :
Corollary 4. The stabiliser of the measure m*D in the twisted action Sg ge@)isthe

normaliser R(D) of D. The set of elements g € G such that hP(g-1.x)is proportionnal
to hD(x) is the subgroup R(D) and the coefficient of proportionnality is the square
root of the modular function of R(D).

2) Ground state properties.
The following will be fundamental in what follows
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Theorem 5. For D € 9, the function hD is the unique positive normalised Ao
eigen function which isinvariant underlefttranslationsby D.

It is clear, by definition of A2, that it suffices to prove the theorem when D=DI,
The proof will follow from some propositions of a more general character
which involve positive measures on a locally compact group H.

These results will be used in the cases H = G or H = M(I), H = P(]).

Definition 8. If p is a positive and bounded measure on the locally compact group
H, one says that p is well behaved if p has a continuous density with compact

support Sand H="0 5" .
n>0

Remark. If p is well behaved, then H is compactly generated by S.
If p is well behaved and K-bi-invariant on the semi-simple group G, a direct
analogue of 4 is given by

ro=[ ®olg) dp(e)

because the properties of spherical functions [He] and K-biinvariance of p
implies : ro ®g=Pg * p.

The theorem 5 will be a consequence of the

Theorem &'. Suppose p is well behaved and K-bi-invariant. For D e 9y, the
function hD is the unique normalised ro—eigen function of the right convolution by p
which isinvariant under left translation by D.

The plan of the proof is to use the decompositions G = P(I) K, P(I) = N(I) A()
M(I), the properties of the group Z = A(I) M(I), and to reduce the equations to
equations on Z, M(I), GI where uniqueness properties of the ground state are
available. One has to study properties of Z and of the decomposition G=P(I) Kin
a more general context of locally compact groups.

One considers first a semi-simple group G, a maximal compact subgroup K
and the Iwasawa decomposition G = K A N. For every exponential £ € A*, the
spherical function ® is defined by ®¥(g) = j 2la(g~1 k)] dm(k) where m is the

Haar measure on K. If p is a well-behaved K-bi-invariant probability measure
on G one has @ x p = p(¢) &€ for some positive number p(¢) [He]. The function
P(€) on A* is called the Laplace transform of p. In particular, if € = e?, then p(¢)
=rg and ®f= @(. With these notations one has the
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Proposition 7. Suppose G is semi-simple and p is well behaved and K-bi-

invariant. Then the spectral radius of the convolution operator on IL2(G) defined by
pisequalto rg =}3§ pe).

Proof. The formula is clear from the above discussion because

&g < Pl Ve e A* .
Consider the regular representation y of G into L2(G/B) :

Y@ [0) ) = (B2 () o(g-11)
where ¢ € L2(G/B), x € G/B.

172

The functions hx(g) défined by A,(g) = ( d‘ﬁ%) (x) are eigenfunctions of the

right convolutien by the K-bi-invariant measure p :

-1
[N ) dphy = 0 (212 ()

with a constant C independent of x.
By integration with respect to m :

Do@) = [ (222 () )

Dogxp=CD
ro=C.

Also, taking g =e, y(p) 1(x) = C 1(x).

On the other hand y(p) is a positive and compact operator on IL2(G/B) : its
dominant eigenvalue is ro and is equal to its spectral radius. Hence rp is the
spectral radius of y(p) in L2(G/B).

It is well known that the spectral radius of a positive convolution operator
increases when the regular representation in L2(GQ) is replaced by the regular
representation in L2(G/gp), for any closed subgroup H. Here H=B=M A N is

amenable [Zi], hence the identity representation of B is weakly contained in the
regular representation in IL2(B). By the continuity of the inducing process from
B to G, one obtains that the regular representation of G in L2(G/B) is weakly
contained in the regular representation in IL2(G). Hence the spectral radius of
y(p) is dominated by the spectral radius of the convolution in L2(G). Finally rgis
equal to this last spectral radius.
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Definition 8. Suppose H is locally compact, p is a well behaved positive and
bounded measure on H and A is a closed subgroup. One denotes by r(A, p) the
infimum of numbers C > 0 such that there exist some left A—invariant Radon
measure i such that

uxp=Cpu.
If A=e,onedenote r(A, p) =r(p).

Remarks,

a) The set of measures u considered above is non trivial : it contains the left-
invariant Haar measure if C Is equal to the total mass of p.
It is easy to show from compactness arguments that the infimum r(A, p) is
attained.

b) The number r(p) has an important probabilistic significance for the

random walk generated by p. It is shown in [Gul] that, if p is well behaved, one
has r(p) = lim p" (e)Vr ; hence r—1(p) is the radius of convergence (in the weak
n

[+ <]
topology) of the resolvent (T —zpy1= z» pn.
0

Definition 9. The pair (A, p) is said to satisfy the ground state property i f the system
of convolution equations

rA,p)p=p*p

VheA:bpxp=p
has a unique normalised solution.

Remarks.

a) Because p is well behaved the measure y has a continuous density f with
respect to right invariant Haar measure and satisfies f* p =r(A, p) f.
The normalisation is f(e) = 1, the corresponding measure is denoted @A, and
identified below with its density.

b) It is easy to show that if H = R<, and p well behaved every pair (A, p) has
the ground state property. If p(€) (¢ e H*) denotes the Laplace transform of p,
then pp p is the unique exponential € such that p(€) = r(A, p). Uniqueness of ¢
follows from the strict convexity of Log p().

One can now give a complement to proposition 7.
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Proposition 7'. Suppose G is semi—simple, K is a maximal compact subgroup and p
is K-bi-invariant. Then the pair (K, p) has the ground state property. Moreover

rip)=rK,p)=ro= linmp"(e)l’" » PKp=Po.

Proof. It is proved in [Gul] that r(p) = lim p™(e)Vr, The relation r(p) = 1K, p)

follows from the definitions because K is compact. The definition of rq gives
r(K,p) < ro, It is shown in [Fu2], that the relation gy * p = ¢ yp implies the
existence of a spherical function ® such that ®¢ x p = ¢ ®¢, hence c = p'(©),
r(K,p) 2 I?f p(@). From proposition 7 one gets r¢ < r(K, p), hence rg = 1K, p).

One considers now the behaviour of the ground state property with respect to
the processes of restriction to subgroups and factor groups.

Proposition 10. Suppose H is a semi—direct product of the normal subgroup V by
the subgroup Z and A > V. Denote by b the projection of p on Z, by n the left Haar

measure on Vand write A = A N Z. Then r(A, p) = r(A, p). If (A, D) has the ground
state property, the same is valid for (A, p) and A p =1 * P75 -

Proof. Suppose u is a Radon measure on G which is V-invariant. Then it can be
uniquely written

n=nxp
with I a Radon measure on Z. Furthermore A-invariance of u is equivalent
to A-invariance of jI because A =V . A. An easy calculation gives NI *p = N+ *p.

From these relations it follows that the system :

pxp=cp
Shxpu=p (el

is equivalent to the system

Hence (A, p) = r(A, p) by definition of r.
If ¢ = (A, p), [T is unique from the ground state property and the solution g of
Sp*p=4

(hel)
prp=cp
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is uniquely defined by

p=nxp.

One considers now a compact subgroup K of H and a closed subgroup B of H
such that the product BK is equal to H. One denotes K’ = B n K, m, m’ the Haar
measures on K and K'.

One defines a kernel # from H to B by the formula

1@, X)=6pxm'X)=m'(b-1X)
if g=bk(beB,keK) andXcB.

The definition of # takes care of the fact that the decomposition g = bk is not
unique. It follows from the lemma below that n is a homomorphism of the
algebra of K-bi-invariant measure in H into the algebra of K'-bi-invariant
measure in B. In particular, commutativity is preserved by #n. Moreover if
beB, k € K, one has by definition #(dp * v) = 6p * n(v), n(v * &) = n(v).
Furthermore if v=v % m, then v = n(v) * m.

Lemma 11. Suppose u, v are measures on H and v satisfiesm x v =v. Then n(y *v)

=n(p) * n(v).
Proof. Because x is linear it suffices to check the case y = &g, v=m * 6p, (g, heH).
Then if g = bk (b € B, k €K) one has
n(u * v) = n(8p * 6 * m * 6p)
= n(6p * m x 8p)=38p * n(m x &) = 5p * n(v)
= Sp*m’ *n(v)=n)*a(v)

because m’ * n(v) = n(m’ * v) = n(v).
As a simple corollary one has the

Lemma 12. With the notations of the above lemma, suppose that p is a K-bi-
invariant probability measure on H, u satisfies u » p = u. Then n(n) * n(p) = n(u).
Moreover n(u) is K'-bi~invariant. If u is left-invariant under a subgroup of B, the
sameis trueof n(u).

With these notations one has the
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Proposition 13. Suppose H is of the form H = BK with K a compact subgroup and
B a closed subgroup. Suppose p is a K-invariant probability measure and D is a
closed subgroup of B.

Then one has (D, p) =r{D, z(p)].

Furthermore the ground state property for (D, p) and [D, n(p)] are equivalent.
Moreover

#l9D,pl = 9D,x(p) = PDp = PD,2(p) * M.

Proof. One observes that if u * m =y, then u = n(u) * m. Suppose u satisfies

Hxp=cp
dd*u=p (deD).

Then the condition m * p = p and the above lemma imply

a(u) * z(p) =c n(u)
8d * n(u) = m(u).

Conversely if on B one has :

vxa(p)=cv

Sgxv=y (deD)
it follows :

ver(p)sm=cv+m

Sgx(vxm)=vxm.

The first equation can be written

Vep=cvsm
because p =p * m = n(p) * m.

From p =m * p, if follows
vxp=(v*m)*p=cly *m).

Hence r(D, p) = r{D, n(p)]. The last statement follows from these calculations.

Definition 14. Suppose K is a compact subgroup of the locally compact group S.
Then K is said to satisfy the strong ground state property if for every K-bi-
invariant well behaved probability measure p, the pair (K,p) has the ground state
property and furthermore the measure gk p is independent of p. In this case one
denotes 9k = K p and call px the K-ground state of S.
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Remark. If G is a semi-simple real Lie group it follows from proposition 7' that
any maximal compact subgroup has the strong ground state property. The
same is true for groups of Euclidean motions.

Proposition 18. Suppose S, A are closed subgroups of the locally compact group H
such that H = S A, A is central, compactly generated in H and S N A is compact.
Suppose K c S has the strong ground state property relative to S. Then, if p denotes
a well behaved K-bi-invariant probability measure on H, the pair (K, p) has the
ground state property. Furthermore there exist an exponential € on A such that pg p=
PK* é.

Proof
a) One considers a minimal solution y of the equation u * p = ¢ u. Because A
is central in G one has ¢ 8g * pt = * &g * p.

Because p is well behaved, there exist constants A(a) > 0, k(a) € N such that
Sa*p< Ala) p*@), Hence o * 8 * p < Ala) p * pk@) = A(a) ck@) .
Hence &, * u < Ala) ckl@)r1y,

The minimality of u and the fact that §; * u is also a solution imply that, for
some constant &(a)

6q *u=8(a) 1.
Clearly #(a) is an exponential on A. Because S N A is compact one has
2(SNA)={1}, hence one can extend € to G from the formula

Us a)=40(a) (se8S, acA).

It follows that there exist a positive function ¥ on S such that the density of u is
the product ¥ . £. One can now reduce the equation u * p =c u to S. If pf denotes
the projection of p . -1 on Sone has ¥ »pé =c V.

b) If ¢ = r(xp), it follows from the above observation that
(g pt) S TKp) -

Conversely if ¢ is K-invariant and satisfies ¢ * p?=r pey @ one obtains f x p =
(g pt)f with f = ¢ . £. Because f is K-invariant one has r(X, p) < r(X, p®), hence
r(K, p) = r(K,pf) for every exponential £ defined as above.

¢) One shows now that ¢ is unique.
Suppose f, f* are minimal solutions of the equation

R*D=TKp)H .
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It is convenient here to consider f, f’ as positive functions on G with fle) =1 =
fl) f=¥.€ f'=¥. .0 whereV¥, ¥ are K-invariant functions on S. From
-b) one has

Yxpl=rup ¥ =r&pd¥

- Vapl =rgpn¥ =rKpt)¥ .
The strong ground state property implies ¥ =¥’ = ¢g.

Consider positive numbers a, ¢’ with a + o’ =1 and the function
g=f*f* =pglal'® =ggA.

From Hoélder inequality one gets
gxpsriKp)g

with equality if and only if f = f because p is well behaved. On the other hand,
the strong ground state property implies

oK * p* =r(K,p*) ok
g+p=riKph)g.

Hence r(g 1y 2 K p).

The relation g * p < (K,p) g gives
r(K.p*) < r(K,p), hence
rKp*)=rKp), g+p=rKp)g.

The fact that one has equality in the Hoélder inequality gives f=f £=2¢".
Hence € is unique. If f is a normalised minimal solution of the system f*p=
KKp)f 6k f=f, oneconclude

f=0K.L.

The measure p corresponding to f can also be written as p =g % £if € is
considered as a measure on A.

Proposition 16. Suppose L, S and M are closed subgroupsof HLH=8S .M,LcS,
and moreover L . M is a compact subgroup of H. If L has the strong ground state
propertyin S, the sameistrueof L .Min H.
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Proof. This is a simple application of proposition 13. Il p is well behaved and
L .M bi-invariant, the measure n(p) defined on S will be L . M N S bi-invariant,
hence L-bi-invariant. If one denotes by p the Haar-measure on M and ¢r, the L-
ground state on S, the L . M ground stateof S.M=HisgpL*p .

3) A correspondance between some A¢-eigenfunctions and distal subgroups.
In order to prove theorems 5, 5' which give this correspondance one return to
the notations of paragraph 1 and prepare the

Proposition 17. Suppose Kis a maximal compact subgroup of G which contains M.
Then the subgroup KI = K n M(I) of M(I) has the strong ground state property.ILf p
is a K-bi-invariant and well behaved probability measure on G, the pair (DI, p) has
theground stateproperty.

Proof. One has to collect the informations given in paragraph 2. It has been
shown in the recollections that K{) = Gl A K is a maximal compact subgroup of

the semi-simple group GI. Clearly M(I) = GI M andK‘I, M=K =KnM(Q)is a
group. The strong ground state property is true for Klo c (4, because of

proposition 7', hence the same is true for KI c M(I) because of proposition 16.
Because P(I) D Band G=B. K one has G=P(l) . K ; one denotes n the natural
kernel from G to P(I) considered in proposition 13. One has the Langlands
decomposition P(I) = M(I) A(I) N(I) and the relation DI = KI N(I) c P().
Because of proposition 13, if suffice to show that [DI, n(p)] has the ground state
property. Because of proposition 10 and of relation D! > N(I), the problem
reduces to M(I) A(I) with p and KI = DI n M(I) A() instead of x(p) and DI,
Because of proposition 15 and the facts that A() ¢ M(I) A(J) is central and M(I)
has the strong ground state property, one obtains the validity of the ground
state property for (K, p).

Proof of theorem 5'. It suffice to show that r¢ = (DI, p) because of proposition 17.
From proposition 7', ro < r(DI, p). From paragraph 1,the fonction Ayis DI-
invariant and satisfies iy * p = rohy, hence ro 2 r(DI, p), ro=r(DI, p).

The following result allows one to reduce the Laplace equation to an integral
equation.

Lemma 18. Suppose A < Ag. There exists a continuous and positive function p* with
compact support such that pA(0) > 0, pMk . x) = pMx) for every x e X and k € K with
the following property : every function f which satisfies Lf + A f =0 satisfies also
VgeG:fg.0) =] flg.x) dpi(x).
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Proof. Consider a (positive) spherical function ® such that L ® + 1 ® =0 and
the differential operator on X defined by

1
Dop=g LpD)+A¢.
Then D1=0 and the heat kernel associated with D is given by e-¢ &g-(l-x-)- Ptx,y)D(y)
where pf(x, y) is the heat kernel associated with L. Denote by q};. the hitting

measure of the sphere of radius r centered at 0 for the brownian motion
associated with D and starting from 0. Then Lf + A f = 0 implies D ‘qt) =0 and '(%

=] £ @ dg'w

dq,%(x)
£O =] fu) O(x)

Now one modifies qf as follows.

The measure g defined by integration in r on an interval (1 < r < 2) of the
A
dq,

individual measures 'y has an L*° density ¢*(x) with support in the shell

1<r < 2 and is K-invariant by definition.

Furthermore, f(0) = [ flx) g*x) dx.

Because f(g . x) is also a A-eigenfunction one has

fe.0=] flg.x)q"x) dx.

The functions ¢* and f on X can also be considered as functions on G and then
the equation above reads

f=f»g*
where g* is K-bi-invariant and fis right K-invariant. The convolution p* = g* *
g* defines a K-bi-invariant continuous function p* with compact support and
p*e) > 0. It defines on X a K-invariant function as in the lemma.

Proof of the theorem 5. Observe that ®o(g) = | PY2(g . 0, b) dm(b) satisifes L &g+

20 ®o=0.One has also L AP + Ao AP =0 L h + A9 h =0, one knows that 4 and hD
are left-D-invariant and has to show that A is proportionnal to AP. From
lemma 18 one obtains a K-bi-invariant measure p}"’ = p on G which is well

behaved and satisfies
Ooxp=Pg , hPxp=hD , hxp=h.
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The first equation and the definition of ro implies ¢ = 1. The theorem 5' implies
that A is proportionnal to AD.

Corollary 19. In the topology of %o :

Golx,y)
: =A0v 7. _ D
B Gag0y =R

uniformly on compact subsets of X.

Proof. Any limit function 4 along a subsequence y, is a uniform limit of

normalised functions invariant under the subgroups y, K ynl. Hence h is D

invariant by the definition of the topology of %0. From the theorem one gets
h = hD and the corollary is proved.

Theorem 20. The Satake-Furstenberg compactification XSF = & ¢ is isomorphic to
the Martin compactification of X at Ag. At the boundary the isomorphism is given
by D - hD.,

Proof. Because of corollary 19 it suffices to check that the equality AP = D’
implies D = D’. Since the equality of stabilisers, corollary 4 implies R(D) = R(D’),
From the formula R! = KT A(I) N(I), one sees that the exponentials of R(D) are
trivial exactly on the normal subgroup D so that D = D",

One returns now to the random walk situation and consider the potential

kernel
o0

Vr=z r'np”.
0

The series converges in the weak topology of measures for
r2lim pn(e)/n = p,.
n

The convergence at rg follows from the non amenability of G [Gu1l].

The equation

Vrekp=pxVp=r(Vy-6)
and the fact that p is well behaved shows that V, has a continuous density
outside e, again denoted by V,. The corresponding left-invariant convolution
kernel is also denote by V; :

Vix, ) =Viy1x) (x=y)

This kernel can be considered as a kernel on G/ if p is K-bi-invariant. For each
fixedy Vp(x,y) defines an r-eigenfunction on the domain X/y.
The equation above implies easily the following because p is well behaved.
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Lemma 21. Suppose C is a compact neighbourhood of the identity in G and
R 2 rg is a given number.Then the family of functions

_Vile,y)
K, )= (e,

is uniformly equicontinuous on C when yeC2 and ro<r<R.

This lemma implies that the Martin compactification at r 2 rg, relative to p can
be defined as above ; the points of the Martin boundary define normalised r-
eigenfunctions. Here one has the analogue of corollary 19 by the same proof.

Theorem 22. In the topology of %o one has

i Vro(x,y )
lim ¢, Gy =7°®

uniformly on compacts sets.
The Martin compactification at rois the G-space XSF.,

The following appears as a purely geometric corollary of the methods
developped above.

Corollary 28. Suppose Q is a parabolic subgroup of G. Then € > N() if and only
if Q contains a minimal parabolic contained in P(I). If D! c Q, then P(I) c Q.

Proof. For the sufficiency condition, let gBg~1 be a minimal parabolic such that
- gBgl1cP(),gBg1cQ.Onehas NI) c B c g1 P()g, hence g-1 P(I)g = P(I), g
P(), @ >gBg1>5g N(U) g1 = N().

For the necessity, one consider the twisted action Sg on . If N(I) c Q, then N(I)

leaves invariant the closed subset @ c § of minimal parabolic subgroups
contained in @. The fixed-point property of Schauder-Tychonoff for N(I) [Fu2]
implies the existence of a positive measure v on Q, such that, for some
exponential ¢(u) on N(I) one has

Sg v=c(u)v [u e N)].

The formula A(x) = IPm(x,b) dv(b) gives now an eigenfunction A such that

h(u-1x)=c(u) h(x) [u e NUI), x €X].
If one can show that ¢(u) = 1, then the new eigenfunction

h'G) = hikx) dmik)
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will be Kl-invariant and will remain N(I)-invariant because (kuk-1 ¢ N(I) if
keKI, u € N(I). Hence &’ will be DI-invariant. Because of the uniqueness of
such a function, as stated in the theorem, one will have A’ = h;. But the
representing measure of A’ on ¥ is f Sp*v dmy(k) = v. Hence my =I Spxv dmy(k)

which implies that the support of v is contained in P()/g. On the other hand
this support is contained in @ ; hence @ N PU)/B # @. It follows that @ > gBg-1
for some g € P(). If DI c @, the set Q is also Kl-invariant, hence Q - P (I)/B
which implies @ > P(I).

In order to show c(u) = 1, one consider the cone € of positive A¢g-eigenfunctions
and the set & of exponentials ¢’ on N(I) such that there exist an eigenfunction A’
with A'(w-1x)=c'w) h'(x) [ueNU), xeX].

The group P() acts by conjugacy on the normal subgroup N(I) and also on the
set & because P(I) acts on € by left-translations. The compactness of the base of
the cone € implies the compactness of & and the relative-compactness of the
P(I)-orbits of elements of . There is a unique relatively compact P(Z)-orbit on
the vector space of exponentials on N(I), that is to say the orbit of 1. This shows
é = {1} and in particular c(u) = 1.

IT1 - THE CASE OF LOCAL FIELDS.

In the results described above the field R can be replaced by a local field F of
any characteristic, that is to say a commutative locally compact and non
discrete field. One describe very briefly here the corresponding situation.

Denote by G, a semi-simple algebraic group which is simply connected and
defined over the field F by G the group of its F-rationnal points. It is supposed
that G, has no F-anisotropic part, hence in particular G is locally compact,
unimodular, non amenable, compactly generated and Zariski-dense in G, [see
Mar]. In order to simplify the notations, one will refer to G instead of G; as a
semi-simple group.

In general an algebraic subgroup of G, will be denoted H,, and the set of its F-
rational points by Hp. Denote by B; some minimal F-parabolic subgroup and
B= B; N G. Then Ga/Ba is a projective variety on which G, acts by projective
transformations [Bor] ; furthermore, the set of its F-rational points can be
identified with the homogeneous space G/g =% , that is to say the set of
minimal F-parabolic subgroups. This compact homogenous ¥ space will be
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called the Furstenberg boundary of G. It follows from [Mar ; lemma II, 3.1]
that ¥ is a boundary in the sense of [Full. Furthermore it plays the same role
as plays the usual Furstenberg boundary (real field case) in the context of
bounded p-harmonic functions. More precisely, one considers a maximal
compact subgroup K of G which is transitive on G/g and the unique K-

invariant probability measure m on G/B. If G, is simply connected such a K
exists [Br-Ti]. It follows from [Br-Ti] that the convolution algebra of K-bi-
invariant functions is commutative. If p is a given K-bi-invariant probability
measure on G, then it follows from the proofs given in [Gu2] that every bounded
solution f of the equation f * p = f can be uniquely written in the Poisson form

f@)=g . m(p = f®) Pg, b) dm(b)
with f € L*(G/B) and

P(g, b) -—g—— ®).

Denote by & the space of closed subgroups of G with the usual topology [Bou], by
%0 the G-orbit of Kin . This gives an embedding i of X=G/gin ¥ :

ig.0)=gKgl
hence a compactification ¢ of X.

The map i is well defined because K is equal to its normaliser. On the other
hand the map g — g . m gives also an embedding i of X into the space #(G/B) of
probability measures on G/B because the stabiliser of m is compact and equal to

K by maximality of K. One denotes by XSF the closure of i(X) in #(G/B) with

respect to the weak topology. The first problem is to compare the two
compactifications of X obtained in this way and to describe their elements.

Denote, as in part II

o) = [ (E2)2(p) dm(d)

If p is a K-bi-invariant and well behaved probability measure on G one has
again

ro =lim pMe)Vn | &g+ p =ro ®y.
n

It follows from [Gu2, Mac] that the minimal solutions of the equation f * p=r¢
f are uniquely given by the formula
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flg)=| P12(g, b) dv(b)
where v is a positive measure on G/B. The second problem is the following :

given De 90 does there exist a unique positive ro-eigenfunction A2 such that

hD «p =ro hD
VdeD: 64 % hP =hD,

Finally, from [Gu1] one considers as in the end of part II, the potential kernel
ofp:

00
Vy ;2 r-npn (r 2 ro).
0

The third question is the identification of the cluster values of the Martin
V(.,y)

kernel Viie,y) when y escapes to infinity and the description of the

corresponding compactification of X when r = rg or r > ro. This is the problem of
Martin compactification of X. The answers to the three questions (the third
when r = rg) are parallel to the real field case at least if G, is simply connected
and split over F. Up to natural modifications, the answers are contained in the
statements of theorems 13, 14 of part I, theorems 5, 5' and 19, 20 of part II. The
definitions and proofs are close to the real field case but, due to rationality
questions, the extension is non trivial.

The situation for r > r¢ is also considered at the end of part IV and it is
conjectured that the descriptions of the Martin compactifications in the real
and in the ultrametric situation should be similar.

If G, is split over F, explicit calculations are possible whereas in the general
case on has to use the informations of [Br-Ti]. The key fact is the commutativity
of the algebra of K-bi-invariant functions. Finally the Martin compactification
of X at ro is the space X SF which can be called the Satake-Furstenberg
compactification of X.

In the case G, simply connected and F-split the notions introduced in parts I,
IT have a simple corresponding meaning and analogous properties are valid.
For example the subgroup A is the set of F-rational points of a maximal F-split
torus A, of Gy, B is the set of F-rational points of a Borel subgroup B; o A,, Nis
the set of F-rational points of the unipotent radical of B, and B = A N. Denote by
Z the set of roots of Ay in F, Z* the set of positive roots, A c Z+ the set of simple
roots, X* the set of characters of A; positive with respect to Z*, by W the Weyl
group. If denotes a fixed uniformizer of the local ﬁeld F, one can define the
subgroups A9 and AY of A by the formulae
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A0={aeA;x@)en? ; VyeX}
A={acA ; y(@)enV , VyeX*).

Given a Chevalley basis of the Lie algebra of G, the valuation of F allows to
define a compact subgroups U of NA such that K= U W U is a maximal
compact subgroup transitive on ¥ = G/NA [Mac). Then one has the Iwasawa
and Cartan decompositions G =KAON, G=K A K. If I c A one defines A(J) to be
the set of F-rational points of the subtorus of A; defined by the equations aj(a)=1
(o; € I). One defines Z(I) to be the centraliser of A() in G, GI to be the

commutator subgroup of Z(I), P(I) = Z(I) N. Then the Zariski closure Gz of Gl is

semi-simple and simply connected ; furthermore Z(I) = GI A and P(D) is the
semi-direct product of Z(I) and its unipotent radical N(I). The orbit of B in ¥
can be identified with the Furstenberg boundary %7 of G!. Furthermore, the
explicit form of K shows that KI=G! n K is a maximal compact subgroup of GI
which is transitive on #1. Hence the Kl-invariant measure myon %7 is well
defined and D! = KI N(I) is a maximal distal subgroup of G. In these notations
the theorems 13, 14 of part I, theorems 5, 5' and 19, 20 of part II are valid.

In general one can expect the following results to be valid.

Theorem 1. For every D € ¥, there exist a unique measure mP on & = G/g which is
D~invariant. The subgroup D is distal maximal and its normalizer RD is a
maximal amenable subgroup. The map D — mP is a G-equivariant isomorphism

between 7 ¢ and XSF,

Theorem 2. For every D € % there exist a unique normalised ro—eigenfunction hD
of p which is D-left—invariant. Furthermore, in the topology of %o :
Gro(x,y )

i = kD
B G = P

Hence the Martin compactification at rg, relative to p is G-isomorphic to XSF.,

IV - THE MARTIN COMPACTIFICATION OF X (A < A¢).
The situation of the Laplacian will be only considered at the end.

1) The compactification XCSF,

Consider the set A* of exponential functions on A. If a is the Lie algebra of A,
the Killing form <.,.> on a identifies the exponential £ € A* with a vector v(€)eaq.
The corresponding norm on a or A* will be denoted by the same notation :
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[v(@)] = }€]. One denotes by A: the subset of A* obtained in this way from the
closed Weyl chambera* by this identification. In the same way, if I c A, A:(I)
will denote the subset of A’ corresponding to the closed facet a+() c a +.
Consider v € a* (Juj=1) and v = tl_i+m+;° eV, 0 € aX C ; the subset of aXC .,
corrresponding to directions in Q* (resp. a*) will be denoted @, (resp. a%).
More generally one consider the facet at infinity a:o associated to a(I) and the
closed facet at infinity 7 which corresponds to the directions of a+(I) [see Bal-
Gr-Scl.

If a(g) denotes the A-component of g in the Iwasawa decomposition G =K A N,
the (normalised) Busemann function A(x, veo) (% € X, Uoo € O,) can be expressed

as Ag. 0, ve0) =—<v, Log a(g1)>.
In other words, if £, € G, is the point at infinity in aXC associated with £ € A},

the functions
A(g.0,00) and Log#la(g1)]

are proportionnal. The same property remains true of the functions A(g . 0, 2)
and Log op(g~L, k)if 2=k . €s € dXC (k € K). One denotes by € the projective
space of the functions Log af, of the argument g, with cg(g-l) =cpg1k),LeA],

k € K. These functions are normalised by the condition a:(e) =1 so that G acts

naturally on € by left translation and normalisation and € is a G-space.

Because 0XC is G-equivariantly isomorphic to the set of (normalised)
Busemann functions one has the

Proposition 1. The map (¢, k) > k .8 (k € K, € € A} defines a G-equivariant

homeomorphism between the projective space € and the conical boundary oXC.
One denotes by B(z) the stabiliser in G of z € 9XC ; in particular if z e o’ (I), the

subgroup B(z) is equal to the standard parabolic subgroup P(I).
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Definition 2. The G-space of pairs (D, z) € ¢ x XC such that D is contained in the
stabiliser of z will be denoted XCSF,

Clearly the diagonal embedding j of X into ¢ x XCis a G-equivariant
homeomorphism of X with the subset j(X) of ¢ x XC.

Proposition 3. Consider the diagonal embedding jof Xinto %o x XC. The closure j(X)
is equal to XCSF,

The proof is based on the

Lemma 4. Suppose D € 0%, z € 0XC and B(z) is the stabiliser of z. Then the
condition D c B(2) is equivalent to the condition that z belongs to the closed facet at
infinity associated with the parabolic subgroup P(D).

Proof. It follows from part II and the fact that B(z) is a parabolic subgroup that
the condition D < B(2) implies P(D) c B(z). If D = DI, this gives B(2) = P(J) for
some J O I, hence z a:o(J) c a;(z ). The direct implication follows from G-
equivariance. The converse is clear from G-equivariance.

Proof of the proposition. The stabiliser of i'(x) e #¢ and x € XC are equal to g K g1
ifx =g .0. The definition of the convergence
limg, Kg, =D e%
n
and the fact that XC is a G-space imply D c B(z) if z=lim g, . 0 e XC.
n
Hence j(X) c XCSF,

In order to show the converse one can suppose by G-equivariance and the above
lemma : D = DI, Bz) c B(J), z € a.(J) with I c J. If v is a unit vector of a* with

- . N - -
direction zea':o(J) c a (), one consider some I-canonical sequence a, € A*(J)

Log a,

such that the sequence v, of unit vectors in a*(I) given by v, = ILogan]

converges towards v € a+.
: 1
Then : lima, Ka, =D
, |

lima,.0=1lim e . 0=2
n t-»+00

hence (D, 2) eJX).
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Corollary 5. Considerthepoint (DI, z) e 970 x 0XC with z in the facet a:o(J) Icd).
Then the fiber of XCSF over z is naturally isomorphic to the Satake—Furstenberg
compactification of X(J). The fiber of XCSF over D! is the closed facet O (D).

Proof. The second assertion is contained in the above lemma. In order to obtain
the first assertion, one notice that the condition z € a:o(J) implies B(z) = P(J),

hence the Langlands decomposition P(J) = M{(J) A(J) N(J) implies D =[D n
M()] N(J). 1t follows from the end of part I that the map D — D n M(J) is a G

equivariant homeomorphism of the fiber over z onto the Satake-Furstenberg
compactification of X(J) = M(J) 'gJ [see also Bor-Til].

Corollary 6. Consider (D, 2)eXCSF (2 € o, (I). The stabiliser of (D!, z) is RI
and XCSF is the disjoint union of the orbits of points of the form (DI, 2) (z € a:o(I ),
IcA). The closure of the orbit of (DI, z)in XCSF s the union of the orbits of the
points of the form (DY, z) with J cI.

Proof. If g . (DI, 2) = (D!, 2), then g DI g~1 = DI g .z =z. The first relation gives
g € RI. But RI ¢ P(I) c B(2), hence RI stabilises z, proving the first claim.
Observe that the closure of the orbit of DI in Z¢ is equal to the union of the
orbits of the points DJ e %o with J < I. This is a compact G-invariant subset
Zol) of Z¢. For z e, (I) fixed one, construct a G-equivariant map ¢, from
Z o(I) to XCSF gg follows : if D e Zo), D = gDJ g1, J I one set (D)= (D g.2)
=g . (DY, 2). Because z € 0_(I) Q. (), one has (DY, 2) e XCSF, (D) e XCSF. The
map ¢, is well defined because the stabiliser of (DY, 2) is equal to the stabiliser of
DY, In order to check the continuity of @,, consider a sequence (D,,g,) such that
lim D, =D, D, =gnDJg;1, D=h D h-1; one has to show lim g, .z=h . 2. One
c;n suppose A = e and, from the compactness of the orbit of : :

lim g, . z = 2’. Because D, stabilises g5 . z, D stabilises lim g, . z =2’, hence
DcBG. "

From the end of part II one has P(D) = P(I) c B(z"), hence 2’ e 0_,(I) c a_. But
the orbit of z € '&; is compact and intersect a; in only one point, hence 2’ = 2.
Notice that ¢, is injective because the stabiliser of ¢,(D) is R(D) and this
subgroup determines D. It follows that ¢, is a G-equivariant homeomorphism

of # o(I) onto its range which is equal to the orbit-closure of (DI, z). The
structure of this orbit closure follows.
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2) A class of functions on X and its relation to XCSF,

Consider for D € 9%, £ € A* b e %,k € K the following measures and functions
(see II) :
Pe(g, b) = op(g1, b) = Ya(g 1 k)]

mi):ngI if D=gDIg1
D
he,p(@) = | Pelg, b) dm, (b)
he@)= | Pele, b) dmi(®).
The modular function of AN is denoted §. In standard notations from [He],
s(a)=e2r(a) if a € A.

Definition 7. The exponential € e A* is said to be I-adapted if one has € = § 172 p+
with €+ € A} and 8+(Al) = 1. One denotes by T the subset of pairs (¢, D) e A* x ¥ such

that € is I-adapted if D is conjugate to DI. One denotes by X the set of functions
hep with (¢,D)eT.

Proposition 8.Suppose (¢,D)el’. Then
he,0(@) = hDE) opgL,b)

where b is any point in ¥ corresponding to a minimal parabolic subgroup contained
in P(D).In particular:

Sg hep =h‘,’ng_1

and the stabiliser of he pis R(D).

Proof. A calculation with the Langlands decomposition of P(I) gives that
op+(&,b) depends only of g and of the projection of b on G/p(I) because £+(Al) = 1.

But o¢ =0y 0p and mD* is concentrated on a fiber of G/B above G/p(p).

It follows : .
he,p®) = 0pue~1, ) [ 0,151, B) dmy (&)

= O'e+(g—1, b) hD(g)

with b in the support of me ; this support corresponds to the set of minimal

parabolics contained in P(D).
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The above formula shows that
Sghep=hggpg1
because Sg hp = thg._l and the cocycle property of o,.(g, b).
In order to prove that the stabiliser of ¢, p is R(D) one can restrict to D =D/,

The support of the measure g . my is the support of the representing measure of
Sg he 1. If Sg hey=hes the fact that Pe(g, b) are minimal eigenfunctions of the
Laplacian when &+ e A’:, [Ka, Gu2] gives that the supports of g . my and mj an

e(iual : £ € P(I). From the formula
he 1(&) = h1(g) 044(g1, b)

and the cocycle property of o, one gets that Sy Ay = hy and from part II, g € RI,

Theorem 9. I is a closed subset of A: x 0 ¢ and the map (¢, D) — hy DIis a

homeomorphism between I"and X.

Proof. Suppose lim £, =€ e A* lim D, =D € Z( with every D, conjugate to DI,
Then from partnI Dis a conjugate of DJ with J < I, AJ ¢ AL, The condition
2;(AD=1 gives e;(AI ) = 1 =0+(AJ). Hence I' is closed in A* x Z¢. The continuity of
the map (¢, D) — h(, D) is clear from the formula of the proposition above and
the continuity of the map D — Ap. In order to show the injectivity of the map
(¢, D) — he,p, one observe that if h¢ p is given, then its stabiliser R(D) is known ;
D is also known because it is the maximum normal subgroup of R(D) where
the exponentials of R(D) are trivial. Then the formula k¢, n(g) = hp(g) op4(g71, b)
implies that ae+(g‘1, b) is known for b corresponding to a parabolic subgroup
contained in P(D).

Hence the map (¢, D) — he p is bijective and continuous. Because I" is the union
of the interiors of compact subsets, this map is bi-continuous.

Definition 10. For (¢,D)eT,D = g D! g-1 onedefines z(¢, D) e aXC and A¢, D) e
XCSF by 2(¢,D)=g . €., ,A@,D)=g.(D,€. )= [D,2(¢,D)].

Remark. The element g is defined modulo RI but 2(¢, D) is well defined because
one has P(¢, ) > P(I) o RI if +(Al) = 1 hence v(¢+) e a*(l), €., € Q. (E).
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Corollary 11. For any ¢ >0, denote

- Te={@,D)eT; e | =c}
*o=1hep; 16, D] €T, [€ ] =c}.

The restriction of the map A to I’ is @ homeomorphism between I'; and aXCSF, If
I'c is identified with X, c X, A is a G-equivariant homeomorphism between ¥, and

XCSF,
Remark. Denote by A;() the set of exponentials in A} which are identified with

elements of a+(I) in the duality with respect to the Killing form. In the above
statements the property of the map € — v(€) which is essential is the fact that its
restrictions to any A:(I) is a homeomorphism onto a*+(I). In particular if p is a

K-bi-invariant and well behaved probability measure on G, its Laplace
transform p(@) [¢ € A*] has the following properties :

Log p'is C1.
Log p is strictly convex.
P62 ¢ o w)=p(512 ¢)

for any € € A*, w € W [see Gul].

Furthermore the minimal eigenfunctions are parametrised by A: x ¥ as in the
case of Laplacian [Fu2, Gul, Gu2].

It follows that the Legendre duality with respect to the function of the
argument £ given by Log p(61/2 ¢) (¢ eA:) can play the role of the map € — v(¢)
from A: to a+. It is easily be shown that the above results extend to this

situation. In order to stress the main facts and to prepare the way for a general

approach one consider below this more general situation and one recall the
00

definition V=Y r p® (rzro).
0

3) The Martin boundary of X,
The condition £ adapted [£ = 62 £+, £+(Al)] = 1, &+ e A ] plays a role throught the

following minimum property with constraints.
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Proposition 12. Suppose p is a K-bi—-invariant and well behaved probability
measure and € = 12 ¢+ js I-adapted. Then, if f € A* is such that the restrictions of
fand €to A() are equal, one has p(f) 2 p€) with equality if and only if f=2.

Proof. Write £, F, for the restrictions of f to Af, A(I) and by abuse of notations :
f=f 7.

One has, if g € P(), b e PU)/g
P£(g,b)=P;G, b) fla)

where g € P(I) is written in Langlands's form $=gan [g € M), a € AQ),
n e N().

The function h} = Py(g, b) satisfies
h} * p = p(f) h}
h; *q=pf) h}
where in the second equation, which is valid on P(I), one has q = n(p) [see II].
If @) = f P(g, b) dm(b)
it follows
PO =[ &@ F@) dg@, ).

Denote by @7 the function ¢ 7 in the case f = 811/2 where 87 is the modular

function of AT NI,

Because @ 7 20r= <I)811/2 the formula for p(f) gives

~ 12 -

pH2p; " hH.
If the restrictions of f and ¢ to A(I) are equal one has = f ; furthermore
2=52 7 € because £ is I-adapted, hence

PN 256 P=p 62 D=5 ©.

The minimum of the function p(f) under the constraint f = 7 is attained at a
unique point because of the strict convexity of p. Hence the equality

BN =P (61 T implies f =6}
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Theorem 13. Suppose p is well behaved and K-bi-invariant and € € A* is I-
adapted. Supposethat the positive eigenfunction h has the following properties :

a)hxp=p@h
b) h is DI-invariant
c¢)the ratio E’g)&% is bounded for g € G, a e A(I).

Then his proportionnal to he J.
Proof. As in the proof of the proposition one restricts the equation

hxp=p)h
to the subgroup P(I) :
hxq=pe)h.
If p denotes the projection of ¢ on M(I) A(I) one has

h+5=pe)h.

Hence, on M(I) A(I), h is a barycenter of minimals of the form
hﬁ(g) = P4, b) fla) = PAg, b) with b « PD)/B and f e A* satisfies p(f) = 5(O)

[see II].

If one takes g =g in the boundedness hypothesis of the theorem, one gets that a
certain barycenter of exponentials on A(7) of the form £ is bounded by C? (C>0);
This implies that this barycenter is proportionnal to ¢ and every term 7 in it is
equal to 2. The conditon that £ is I-adapted and p(f) = p(¢) gives now f=2¢,
Pg=Pyr |
h(g) = Pu(g, b)dv(b)

with a certain positive measure v on P (D)/B. Finally the Dl-invariance of & gives
the invariance of v under the action of K7 : |

v=my , h=hes

Corollary 14. Suppose € € A* is I-adapted and €) = r. Suppose that ymeXisa

. I . & 1. Vc(a -xz,y n) .
sequence which converges towards D' € ¢ and such that h:n Vixyn)l@) =

bounded when ac A(I),xeX .

Thenthesequence %,’f(%c% converges towards hg 1.
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. . Vilx,yng) .
Proof. Consider a subsequence yp; such that A(x) = hkm V—r(-é:;nlb exists. One has

h(0)=1
hxp=rh=ph.
x) .

Moreover ;‘-’(%-)%7(;3 is bounded in a@ € A(), x € X and & is DJ-invariant because

lim y, =D in ?¢. The theorem gives k = h¢ 7. Hence the limit of ‘T’}r%’-% exists
n ]

and is equal to Ag .
In order to express the functions above in geometrical terms recall that the
Busemann function A(x, 2) (x € X, z €9 XC) is defined as
Alx, 2) =lim d(0, y) - d(x, y)
y—z

where d is the Riemann distance. The Busemann cocycle (g, 2) on G x aXC is
defined has
B(g, z) = eAE1.02),

Ifveat Juj=1and z=ve eﬁto a €A, one has A(a, voo) =<v, Log a> B(a, veo)
= - <v, Log a>.

Consider an exponential £ on A which is I-adapted : € = §/2 ¢+ with ¢+ ¢ A” o
#+(AD= 1. Suppose z € 2XC belongs to the orbit of £, € 0. (I) which is isomorphic
to G/P(I). If b € ¥ corresponds to a minimal parabolic subgroup of B(z), then,
from G-equivariance, one sees that

008, b) =181z, 2).
It follows that .
oeg, b) = 05,5(g, b) B1E(g, 2) = PLV2(g-1, b) p-1E*l(g, 2)

when z e aXC is associated with ¢+ and b as above.
Also ke p(@) = hp(g) p1¢l(g 1, 2).

From [Hel one knows that, for € and b fixed, the functions oe(g, b) are
eigenfunctions of A with eigenvalue [£+]2 - |p||2.

One shall denote, for A <1g fixed, by h;"D the A-eigenfunction h¢ p(g) = Ap(g)
1€l (gL, 2) with je+)2 =29 - A.

One can summarise the above discussion in the
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Lemma 15. The minimal A—eigenfunctions of the Laplacian are the functions of
the form

Va

1@ =PY2g, 0) 7 (g1, 2)

where b € ¥, z € 3XC are related by the condition b c B(z). Here P is the Poisson
kernel and B the Busemann cocycle of G.
One hasthe formula

v

1 @ = [ B y@) dmP®) =ho@ B @, 2)

with D c B(z).

One has then the statement analogous to corollary 14 for the Green kernel G; ;
the proof is the same.

Corollary 18. Suppose yp, € Xy is a sequence of X convergingto D e %y such that

— 1
lim Galr Ji,yn ) is bounded when r e R(D) x € X. Then the sequenceg-z'(%"x”%
n Gz(x,yn)th(rl) S AU, ¥n

convergestowards h:' p(x).

4) Calculation of the Martin compactification (case of Laplacian).

Now in order, to verify the hypothesié of the last corollary one has to estimate
the Green kernel G, ; this is done in the lemmas below. The basic estimate is
obtained in [An-Ji]. |

Lemma 17, There exist two constants A1, Az and a function g, on 0 + such that

A2 gi(H) < G0, eH) < Aq ga(H)

and the ratio (Hy-L) has a limit when e is I-canonical, lim Hn_ = v,
&iHp) n Hn]

Lead).
L+VAg-A <v,L —VAg-A
This limit is equal to ep( HVio-i <, L> =hiel) B 0 (e, voo).

Proof. From [An-Ji] the first result is valid with

g\(H)=H|* 1;;[1 + o)) ¢ POV

where EB is the set of indivisible roots and
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e=TEL 45 -1 (. < Ag).

For n large, if L e a(l), one has H, — L € a+ because ¢ ig I-canonical, Clearly
. JHn=L} _
i S = b

For the ratio J—%%Iﬁ)ll—) two cases occur. If «a € [E], then a(L) =0 and this

ratio is one ; if a ¢ [E], lim a(H,) =+ o0 and lim 1+a(Hy L) = 1 because e/ is I-
n n 1+a(Hp)

canonical.

Finally one has, from euclidean geometry
lim |JH, - L} - |Hp| =-<v, L>
n

H.
. . n__
if ll:n |Hn| =V.

All these remarks give :

I AMHp-L) p(LMAg—A <v,L>
l'fn 8i(Hp) =e ’

The formulas for A7 and B(eL, voo) give the final equality.

Lemma 18. Supposey,, € X converges to DI € %y. Then yp, can be written y, = €, 5.0
where lim g, = e and a, is I-canonical.
n

Proof. One can write in the polar decomposition y, =k, an . 0 with a, € A+.
Extracting subsequences, one can suppose a, =ap ap with a, J-canonical,
iine:‘ih’, lim an =&'EZ"‘J, lim kn =kek.

n n

Then : ima, K&@,' =D/ and k& DJ &1 k-1 = DI, hence J = I, k &  R(). Because
n

@ € P(J) = P() one has k € P(I). But P(I) n K > KI and K! is a maximal compact
subgroup of P(I) ; it follows P() n K = KI, k € KI. Because % @ e R() one has
@ € RI) N Al = {e}. It follows that for some ¢, with lim ¢, = ¢ one has

n

yn=£nkan . 0=£nank.0=£nan . 0,
hence the result.
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Lemma 19. Suppose yn € X is a sequence of the form y, = ¢ an . 0 with a, I-

canonical and lim e, = e. Suppose x € X is written [using the Langlands
n

decomposition of P]: x=kna.0(keKl, neNU),aeA). Then one has

. Gile,yn)
im &= 0.a,0) =1

Proof. One has Gy(x, y,) = Ga(k(k1 s:ll kE)na.0,a,.0)=Gienna.0,a,.0)
becausekap=ap kif ke Kl (¢’ = k1 e,:l k).
From Harnack inequality one gets

. G}.(x,yn) —
ln,],m Gi(na .0,a,;.0)

1.
On the other hand :

Gi(na.0,a,.0)=Ga.0, an(a,_‘1 nay) . 0).

Then the relation lim a;ln a, = e is valid because a, is I-canonical and Harnack
n
inequality imply again

. Gina.0,a,.0)
lu,? G1(a.0,a,.0)

=1

hence the result.

Proposition 20. Suppose that the sequence yn € X converges to (D, z) € XCSF gnd
reR(D),x eX. Then with A1, Az as in lemma 17 one has

- Gar-lx,yy) Ay . Nrpery
y,.l—%l;) Gitt,yn) =~ A2 hp(r—2) B (r,2)

A1 2
=45 Hpt.

Proof. From G-equivariance one can suppose D = DI, 2 = vy € a *(I). From
lemma 18 one can write y, in the form y, = ¢, a, . 0 where lim ¢, =e, and a, is I-
n

canonical. If x is written in the formx =k na . 0 (k € KI, n € NU), o € A) with

a=@a@ aeA(),d1eA, one has from lemma 18

. _Galx,yn)
h,fn Gua,an.0) ~ 1
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Denote by b the A(I)-part of r € R(I) in the Langlands decomposition. Then, one

e G lxyg)
has also : hnm Gib-1a.a,.0) = 1.

It follows :

— Grlx,yp)  —— Gib~la,a,.0)
h)?l G/l(x;yn) - ll,fn Gl(a,an.O)

But, if one write ap=¢"", a=e, b=el with H, eaXD,Leal), H=H+H
H e a(), - H e a+(I) one has from lemma 17 : Gi(a, a,, . 0) 2 Ag g2(H, - H - H),
Gibla,a,.0)<A18, H,-H+L-H).

Because @ is I-canonical, and - A e a* one has for n large
Hn "ﬁ"l"L —I-:-IE(_T".

From the lemma 17 above

lim SHp -H+L-H) _ e—p(L)—\]lo—l <v,L>
n g\Hp -H-H)

H, -
3 3 —n_. -
if h;n 1Hzl veat
The form of Ap(eL) and of o(eL, voo) gives :

— Grlay) A rey
im TGy, <A kDR )

Theorem 21. For A < Ag,one has

. Gxyn) 2
h:n G10.yn) = h, p(x).

The Martin compactification of X with respect to the Laplacian is equal to XCSF
—‘]l A

and the cocycle 0*(g, (D2)l is equal to hplg V) B (g, 2).

The points (D,z) e XCSF which give minimal eigen functions are the pairs such that D

is conjugate to a subgroup MN and D c B(z2).

Proof. In order to obtain the first equality, one consider a sequence y, € X such
that limy, = (D, z) e XCSF,
n

Because of proposition 19, the hypothesis of corollary 15 are satisfied hence

. Gaxyn) A
R G0,y = Pe®
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As in the corollary 11 to theorem 9 one sees that the map from XCSF into %,
given by (D,2) - hi D W Ao—A = c¢] is a homeomorphism onto its range, in

particular it is injective. This gives the second assertion.

In the situation where G is a semi-simple algebraic group defined a local field
(see part III), the random walk framework considered above remains valid.
The "conical" compactification of G/g is well defined [Bor-Se] as well as the
Busemann function if one uses the natural metric on the Bruhat-Tits building.
The validity of the content of theorem 21 in this situation depends only of the
validity of an analogue of lemma 17.

In this case simple explicit formulae are available for the spherical functions
and the Harish-Chandra c-function [Mac]. Hence the expression of the Green
kernel restricted to A . o c G/K reduces to an explicit Fourier intégral on an r-
dimensional torus. Using the methods described in [Bab2] it is easy to show
that lemma 17 is valid with natural changes. Hence the same description of the
Martin compactification should remain valid in the ultrametric situation.

Suppose now that G is the connected component of the set of real points of a
fixed R-algebraic group, again denoted by G.

‘One can then express the minimal A-eigenfunctions in terms of the
fondamental representations of G [Bor]. Consider the inverse root system of

and the canonical basis defined in terms of the Killing form which allow
identification of a and a*:

d'.=ﬁx.i_
T2

Then if w; denotes the dual basis of d;, the Killing form has the expression :
r
w,a>=) &) ola)
i=1

where v,aeq.

The linear form w; defines a fondamental representation p; of G in a finite
dimensionnal real vector space V; [Bor]. This representation is strongly
rationnal, irreducible [Bor-Til] and its highest weight is a rationnal multiple of
w;. If this weight is denoted r_il w;, the rationnal r-il is supposed to be the

smallest positive rationnal having such a property. If G is split over R and
simply connected, then r; = 1. There exist a unique line in V; which is invariant
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under B and its stabilizer is a maximal parabolic subgroup P; > B. One denotes
by fi a unit vector in this line and by |.] the unique (up to a scalar) K-invariant
scalar product in V; :

pi@) fi=e

_1.
L o

@) fi
ifgeP;.
In the projective space P(V;), the orbit of f; is isomorphic to G/Pi and every point

in this orbit corresponds to a point in #. Then, if x is a unit vector in V;
corresponding to b € #, the fondamental cocycle oi(g, b) is defined by the
formula :

oig, b) = |pi(g) x|.

The restriction of the Busemann function to A when z e G’ corresponds to a

unit vector v in a+ is given by
Aa . 0, voo) =<v, Log a>.

Hence the above formula giving the Killing form leads to the following formula
for the Busemann cocycle
r . A
Bg,z)=11 ol %) , b).
i=1 1
Here Ju] = 1,z =% . vo where k € K corresponding to b € #. The Poisson kernel
corresponds to v = - 2p with standard notations [He]. But from [He] :
r
p=) o;, hence

i=1

ro_.
PU2g 1, b) =1 0,1, b)
1=
with r; the rationnal defined above.

This leads to the following formula for the minimal eigenfunctions :

I rrVioh &)
hp@=11a " Tt b,

i
where v ea+, Ju] =1.

One consider now the special case G = S¢(d, R). Then if v = diag(vy, v2, ,vq)ea
d
the Killing form is given by [v]2 = 2d 2 viz . The fondamental roots are given by

=1
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. 1
a;(v) =v; - viy1 (1 <i<d-1), hence Jo;)2 = d The fondamental representations

are the representation of G in the wedge product V;=Ai R€ (1<i<d)andr;=1.
A sequence of unit multivectors : b1 =x1,b2=%x1A%2, ... bg-1 =%1 A ... Axd-1
defines a flag b and the fondamental cocycles o; are given by oi(g, b) = lg b;l.
From the above formulae, one gets the Poisson cocycle

d-1
o@, b)=I1 |g b;]-2.
i=1
A vector v € O+ defines a point ve, € 0,,  XC and if b e # corresponds to k e K,
one denotes by z the point of 0XC defined by :
z=Fk . Uoo.
Because Ja;i]2 = '(12 , one has dj(v) = 2d(v;-vi+1) and the Busemann cocycle B(g, 2)

is now given by

d-1 .
Blg,z) = IT Jg b;|" i+

i=1

d
with the condition Z viz = 2d.
=1

Hence the minimal A-eigenfunctions are given by the formula :
ad-1 —1-\Ag-AW;-v;
hep®) = Mietol i)

with the conditions

d d
2
v12v22..2vd , 3, vi=0 Y, v;=2d.
i=1 i=1l

d-1
The formula Ag = [p|2leads to Ao =d ), (d-2k-1)2.
k=0
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