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COMPACTIFICATIONS OF SYMMETRIC SPACES 

AND POSITIVE EIGENFUNCTIONS OF THE LAPLACIAN 

Yves GUIVARC'H 
(Collaboration with J.C. T A Y L O R , L. Jl) 

I N T R O D U C T I O N A N D D E S C R I P T I O N O P R E S U L T S . 

Consider a connected semi-simple real Lie group G which has a finite center 
and no compact factors. One denotes by Ad the adjoint representation of G in 
the Lie algebra £ of G. Denote by A a maximal connected subgroup of G such 
that Ad A is diagonal, by a its Lie algebra, by ||r||2 = Triad x)2 the restriction of 
the Killing form to a. Let i f be a maximal compact subgroup of G such that the 
centralizer Z(A) of A in G can be written as Z(A) = [K n Z(A)] A = MA. Then the 
group action allow to construct from x - » J * ! 2 a G-invariant Riemann metric 
onX = G/K and this homogeneous space has the structure of a symmetric space 
on which G acts by isometries [He]. The Laplace-Beltrami operator L is then 
defined and one denotes by < 1 the spectral radius of e£ in L 2 (X) . The 
resolvent (D- Xflr1 of D = - L defines for X< Xo a Green kernel (Gx(x, y)) which 
is a positive and symmetric C 0 0 function outside the diagonal ofXxX such that 
(D - XI) Gx is the Dirac kernel. 

It is a classical fact of potential theory that the form of the A,-eigenfunctions of D 
(X £ XQ) is strongly related to the behaviour at infinity of G^. The Martin kernel 

jfi^(x, y) = ̂ ^o^) 9 w ^ e r e 0 is the point of X defined by K, satisfies uniform 

Harnack inequalities, hence the set of functions y) is relatively compact 
(y € X). In the topology of uniform convergence on compact sets the cluster 
values of y) when y tends to infinity form a compact metric G-space of 
normalised >L-eigenfunctions which will be denoted 3m A . In terms of one 
can define a natural topology on mx = X u dmx such that X is 
homeomorphically embedded in m A , y) extends continously to and the 
closure of X i s mx. The function Bx on G x dmx defined by 

0x(g, ji) = lim ^Xfy(0y)^ satisfies the cocycle identity 

Ot-igh, y) = 6x(g,h. /i) 6\(h, /z). 
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Here the action (Sh) of h e G on the function /1 e 3m* is the projective action : 

h.nOc) = Shn(x)=1^fy 

The space m* is a G-space which is called the Martin compactification of X 

and the subset 3 m A is the Martin boundary of X with respect to L [Do]. It is 

known that dmx always contains the set dm* of minimal A-eigenfunctions but 

can be larger. In the situation considered here, it turns out that dm* consists 
solely of minimal eigenfunctions if and only if dim a = 1. 

The problem considered in this paper is to identify the G-space = I u dm* 
in geometrical terms and to calculate the cocycle 0* in terms of the geometry of 
X and its natural boundaries. One recall that the set of minimal eigenfunctions 
was determined in [Ka]. For a short proof of this, see [Gu2] and for a general 
approach to the calculation of minimal eigenfunctions see [Fu2]. Hence, the 
problem can be formally reduced to the description of the integral 
representation of limiting functions in terms of minimals, because the set of 
positive A-eigenfunctions is a Choquet simplex [Cho]. Because one is concerned 
with the space X = G/g and the groups of isometries of X one can suppose G is 
the set of real points in a semi-simple algebraic group Ga defined over R . The 
results can be conveniently expressed in terms of this explicit algebraic 
structure and the associated spaces of measures or directions. 

The relation of this analytical problem with algebraic notions comes partly 
from the Harnack inequality. This inequality implies relative compactness of 
the projective G-orbits of eigenfunctions in the relevant functional spaces ; for 
special eigenfunctions this compactness reduces to the finite dimensionnality 
and projective character of the corresponding orbit closures. 

In order to describe the answer, one has to consider the variety $ of minimal 

parabolic subgroups of G [Bor] as well as the structure on the sphere at infinity 

of X defined by the Weyl chambers. If B is the set of real points of a minimal 

parabolic subgroup of Ga defined over R , the space 9 = G/B is a compact 

homogeneous space called the Furstenberg boundary of X ( o r G). There exist on 

9 a unique liT-invariant probability measure m and one considers the Poisson 

kernel Pig, b) = (6) igeG.be 9\ The bounded solutions of the equation L f 

= 0 are then given by Poisson integrals 

fig.O) = \Pig,b)f(b)dm(b) 

http://igeG.be
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with ?e L°°(in) [Ful] . The space X is naturally embedded in the space of 
probability measures on 9 via the map i: i(g . 0) = g . m. The space is a 
compact metrisable G-space with respect to the weak topology. The closure fiX) 
of * ( X ) i n £ W defines a compactification of X [Ful, Gl]. This compactification 
turns out [ M o o l ] to be isomorphic to the maximal Satake-Furstenberg 
compactification-X 5^ of X (or G) originally defined in terms of quadratic forms 
by I Satake [Sa]. The boundary behaviour of harmonic functions in this 
compactification has already been considered in [Ko] making use of the various 
group decompositions which occur in this paper. 

Furthermore these decompositions and the families of measures which occur 

here play also an important role in the study of Lyapunoff exponents for 

product of random matrices [Gu-Ral,2]. Closely related questions were already 

considered by E.B. Dynkin in the case of G = S£(n9 C) [Dy2], The well known 

Cartan conical compactification Xc of X as a Cartan-Hadamard manifold [C] 

plays also an important role here. If the rank of G is not one, the 

compactification Xc is different from XSF. One proves in this paper that the G-

space m*° is isomorphic to XSF. It is also shown that, if X < Xo, the G-space mx 

is the smallest compactification of X which dominates Xc and X 5 ^ . Moreover 
the cocycle 6X on G x m* is calculated in terms of the Poisson kernel and the 
Busemann function [Bal-Gr-Sc]. 

From the results it will be clear that dmx has the structure of a topological 

manifold of dimension dimX- 1, m A = X u dmx is a topological manifold with 

boundary dmx and dme is a closed subset of full dimension, thereby verifying a 

conjecture of E.B. Dynkin [Dyl ] . The parametrization of dme gives a natural 

embedding of dm^ into-X^ x 9 czXP x X 5 ^ but the corresponding maps into Xc 

and XSF are not injective hence the compactifications X c and XSF are 
simultaneously needed to describe m A . 

In order to describe mx , 0X it is natural to embedd X in the space 9 of closed 

subgroups of G via the map V defined by i'(g . 0) = g Kg-1 and to use the 

invariance properties of the limiting functions of JK*(., y) . In particular the G-

space X&F turns out to be isomorphic to the closure VQQ of i'(X) = 5̂ 0 i n ? with 

respect to the natural topology [Bou] (Hausdorff convergence on compact sets). 

The space ?Q = i'(X) can be characterized as the space of maximal distal 

subgroups of G in the adjoint action [see I] and every element of has a 
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unique fixed point in XSF. This gives an answer to a question raised by 

H. Furstenberg about a possible unified conjugacy theorem valid for maximal 

compact subgroups and maximal amenable subgroups. Here the emphasis is 

on "distal subgroups*' and the answer can be extended to the situation of semi-

simple groups defined over local fields. This is strongly related to [Moo2] but 

the approach is different. If D e ?o is fixed, there exist a unique normalised 

Ao-eigenfunction hP which is invariant under left translations by D. Then, if 

the s e q u e n c e ^ =gn . 0 eXis such t h a t ^ Kg"1 converges to D € $?of the Martin 

kernel yn) converges toward the function hD. Hence 0A°(g, D) = A D C S T 1 ^ ) if 

De ^ o - It turns out that the subgroup D is contained in a parabolic subgroup 

P(D) which is minimum for this property and the set of minimal parabolics 

contained in P(D) is a fiber of ? over G/p(D)- Recall [Ka, Gu2] that the minimal 

Ao- eigenfunctions are given by the square root of the Poisson kernel: 

)"*№>. 

The function hP can then be uniquely expressed in terms of minimal 
eigenfunctions as : 

>"<»*»?<»• 

One denotes by o(g, b) the "Poisson cocycle" (&)• 

The probability measure m% is concentrated on the fiber of SF corresponding to 

P(D) and is imiquely determined by a D-invariance property. Clearly the map 

D-> ml is a G-equivariant isomorphism of 9 o into ^ ( ^ ) . This gives an 

isomorphism between X8F and m*° in terms of integrals representations . 

When the parabolic subgroup P(D) is fixed, the set of these measures (or 

functions) is a P(D)-space isomorphic to the symmetric space associated with 

the semi-simple part of P(D). Hence the space 9 o is fibered over the set of 

parabolic subgroups and these fibers are symmetric spaces. 

The conical compactification Xc also has already a natural identification with 

a functionnal space [Bal-Gro-Sc] : each point z e dX? corresponds to the 
normalised Busemann function A(x, z) = l im d(0, y) - d(pcf y) where d is the 

Riemann distance function on X. The function p(g, z) = eAfê i.O,*) i s a cocycle on 

GxdX?, called here the "Busemann cocycle". One denotes by B(z) the stabiliser 
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ofz eXC in G ; if z e dXc, this is a parabolic subgroup of G. The space XCSF is 

denned to be the set of pairs (Z>, x) e XSpxXC such that DczB(x). If j is the 

diagonal embedding ofX into XSF x XC given byj(x) = [i'(x), * ] , it turns out that 

j(X) = X~CSF and this G-space is naturally isomorphic to the Martin 

compactification mx for A < Ao. The A-eigenfunction defined by (D, z) € 

](CSF is obtained as follows : it is the product of hD(g) by a power of the 
Busemann cocycle pig, z); this power (in fact - V A G - A ) is determined by the 
condition that this product is a A-eigenfunction. Hence : 

0 % , CD, *)] = A ^ l ) p~^**(g, z) 

In particular if 6 0 % , (6 , 2 ) ] = ft) /} 0 z) is a minimal A,-
eigenfunction. 

The set of minimal eigenfunctions is the set of functions of the form 

where b c B(z). This condition defines a closed G-invariant subset of XCSF 

which parametrize the set of minimal A-eigenfunctions and is denoted by X£ 

In order to obtain XCSF f r o m %C o n e has to imbed the set of general directions 

of XCmti>X%SF and then, Till the holes" of X%SF with the Satake-Furstenberg 

compactifications of symmetric spaces of smaller rank defined by the semi-

simple parts of parabolic subgroups (one for each singular direction). Moreover 

the subset of Xc consisting of the general directions z such that Biz) is a 

minimal parabolic subgroup is isomorphically embedded as an open and dense 

subset of X%8F- The complement inXCSF is a fibered space over the set of 

singular directions. The relation of with mX° is the same as in the 

classical potential Newtonian theory corresponding to the Euclidean situation 

where G = R d and L the ordinary Laplacian on R d ; in this case XQ = 0, m*° is 

the one point and m* is the sphere at infinity of 1R .̂ In the case of symmetric 

spaces of rank greater that one, the geometry of m A ° has a clear bearing in 

mx ; this fact is hidden by some peculiarities in the Euclidean case as well as 

in the rank one case. 
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The space XCSF has the natural factors Xc andXSF. The fiber ofXCSF over z e 

ciX*? is the Satake-Furstenberg compactification of the semi-simple part of B(z). 

In order to describe the fibers over XSF, one observes that Xc has a cellular 

decomposition of the following type : to each parabolic subgroup P c G associate 

the "cell1' P* c dXC defined by 

Poo^izedlP ;B(z)=P}. 

These cells are homeomorphic to the facets at infinity of the Cartan subalgebra 

a, defined by the root system of G. The fiber of XCSF over D e XSF is the closed 

cell of Xfi defined by P(D). From an algebraic point of view the space XCSF splits 
over the set of parabolic subgroups of G : given a parabolic subgroup P, or a 
facet at infinity ofX0 the set of pairs (D, z) which appears above P is the product 
of the Satake-Furstenberg compactification of the symmetric space associated 
to P and of the Weyl chamber at infinity defined by P. The result for m* (A, < Xo) 
can be summarised in the following way : convergence of a sequence yn 

towards z e d X c is not sufficient to insure the convergence of the Martin kernel 
yn) J the stabilizer of yn must also converge in the space of closed 

subgroups of G ; it turns out that this condition is sufficient. This is the reason 
for the splitting of as well as for the decomposition of the limiting function 

into a product of two functions defined by a pair of points in dXSF and dXc. 

From the point of view of topological dynamics the orbit structures of G in Xc 

and XSF are easily understood. The first space is a union of compact 

homogeneous spaces of the form G/p w h e r e P is a parabolic subgroup and this 

union is indexed by the points of the closed Weyl chamber at infinity. In the 

second space, the orbits of G are locally closed and are "attracted" towards the 

unique compact one, which is isomorphic to ^ . In particular G is proximal on 

X&F [Gl, Zi] and conditionally proximal on XV. The unique G-minimal set in 

X&F is isomorphic to Generally speaking, here one has an example where 

some functionnal G-spaces which, a priori, are infinite dimensional spaces 

turn out to be close to G-spaces defined by rational actions of G on projective 

manifolds in spite of the fact t h a t Z c and JX8^ have not such a structure. 

Finally, from the probabilistic point of view one can draw weak corollaries : in 

each of these compactifications almost every trajectory of the Brownian motion 

defined by L converges towards a random point of a special G-orbit in the 

boundary ; this orbit is isomorphic to It follows from [Do], that i f Brownian 

motion is conditionned with respect to the function h^p convergence a.e in 



- 7 -

XCSF takes place towards (2, D) e XCSF. On the other hand, conditioning with 

respect to a spherical function leads to convergence a.e, in Xc, towards a 

random point of a G-orbit in associated with this spherical function . This 

G-orbit is a factor of the Furstenberg boundary. The situation is almost the 

same in XCSF but the G-orbit in dXCSF is always isomorphic to 9 : it gives a 

more precise information. In terms of Liapunoff exponents and limits 

theorems quantitative statements can be formulated along the lines of [Gu-

R a l ] . 

For some classes of semi-simple groups the precise behaviour at infinity of the 
Green kernel had already been studied by several authors [Dy, 01, No, Gi-Wo]. 
In the case of complex Lie groups it can be obtained in terms of special 
functions [Dy, N0] . In the general case, asymptotics of the Green kernel G\ 
(X * Ao) were stated in [01] for "generic directions". Among the pairs (2, D) 
eX^SF

9 such tha tD = Af NeXSF contains a maximal unipotent subgroup N9 

the "generic directions" are those such that z is defined by a non singular 
geodesic, hence B(z) = B is a minimal parabolic subgroup and z belongs to the 
open cell at infinity Poo, a case also coonsidered in [Boug] ; the non "generic 
directions" correspond to z in the boundary of Poo, and D = Af N. Hence, the 
structure of the full Martin compactification was unknown in general. 
Moreover the situation of trees and product of trees was considered in [Pi-Wo]; 
in this paper this situation is also considered [see below]. Here the study of the 
case A=Ao involves essentially symmetry and ground state considerations as in 
[Ta-Gu]. In general, Gx is comparable with a simple explicit kernel [An-Ji], for 
which the corresponding compactification can be calculated and shown to be 
the same as for Gx. 

The description given above suggests an extension to the situation where the 
Laplacian is replaced by a non degenerate if-bi-invariant probability measure p 
on G. From the probabilistic point of view, this amount replacing Brownian 
motion on X associated with L by random walk on G/jf generated by p. In this 
context a larger class of locally compact groups can be considered. In 
particular one can consider the group G = GF of F-rationnal points of an 
algebraic semi-simple group Ga defined and isotropic over a local field F; this 
include to some extent the situation of trees (which corresponds to rank one) 
[Ge]. In this more general context, the various objects considered above make 
sense and one describes briefly the relations between them. Here the group G of 
F-rational points in Ga is a locally compact and totally disconnected non 
amenable topological group. One fixes once for all a standard minimal F-
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parabolic subgroup Ba c Ga and denotes B = Ba n G. One denotes by JRT a 

maximal compact subgroup of G which is supposed to be transitive on @ I B [Br-

Ti]. The well-behaved (see II) probability measure p is fixed and supposed to be 

iST-bi-invariant. The homogeneous space ®lB plays in this situation the role of 

Furstenberg boundary and gives the bounded p-harmonic eigenfunctions. In 

this situation the number e~*° has to be replaced by the spectral radius ro of the 

convolution operator on L 2 ( X ) defined by p . The Green kernel Gx has to be 
00 

replaced by the potential kernel Vr = ]T r~n pn (r £ ro). 

o 

The set of positive eigenfunctions of p have the same form as above but the 

correspondance between eigenvalues and such eigenfunctions has to be 

naturally modified if r > r o . 

Once a certain conjugacy class of maximal compact subgroups is fixed, the G-

spaces 2tSF and X C S F have analogous definitions in terms of measures on 

?=G/B and geodesies in the Bruhat-Tits building of G : they are natural 

candidates for the Martin boundaries ; the cocycle 0r has to be modified for 

r > ro in a natural way. In this context, the answer to the basic questions of this 

paper are shown to be the same as for the real field in the special case r = ro, Ga 

simply connected and split over F. The space XSF is the closure, in the space of 

closed subgroups of G, of the G-orbit 5̂ o of K . For D € 9>Q, the function hP is well 

defined by D-invariance and gives the corresponding cocycle. Hence the 

corresponding Martin compactification is XSF. The situation in the local field 

case is briefly described in part III. The proofs of the corresponding facts are 

parallel to the proofs given in the real field context. Closely related questions 

were asked in [Ca], For informations on the properties of semi-simple 

algebraic groups defined over a field F one may refer to [Bor]. If F is a local 

field, the relevant properties of the locally compact group of F-rational points of 

Ga can be found in [Mar, chap. 1]. 

The extension of the real field situation to the more general situation of local 

fields is formulated as conjectures in parts III and IV 

In order to illustrate the above discussion, one consider the special case 

G=S£(d,lR) of unimodular matrices of dimension d. In this case, one can take 

A to be the set of diagonal matrices with positive coefficients a = diagUi, — , 

Xd) with Xt > 0, X\ A-2 — Xd = 1. A closed Weyl chamber cT+ is defined by the 

conditions pi £ /i2 £ ... £ Vd> M + V>2 + + M = 0, one has A + = e x p ( a + ) and the 

simple roots are given by at = Log ¿¿+1 - Log Xt. 
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The unipotent group N is the set of strictly upper triangular matrices. The 

maximal compact subgroup K is K = SO(d), the rotation group with respect to 

the euclidean norm on R D . 

In this case 9 is the space of complete flags in R D . A subset I c {ai , a2 ocS 

defines a partition of [ 1 , 2 d] again denoted by I = ( i i , /2 ,.••> Then A(J) is 

the set of diagonal matrices a = diagUi, A2, ... ,A^) such that A/ = Ay when the 

pair (i, jf) is contained in an interval of the partition. The parabolic subgroup 

PCD is the set of upper triangular matrices with square blocks of the above type 

along the diagonal. The corresponding factor typ(I) is the space of incomplete 

flags of type J = (JTi, /2 , . . . , 7&); a typical flag of type I is given by the sequence of 

subspaces 

V I C V 2 C . . . . C V A = R<* 

withV/ = © Rei9rj = Iiul2V...u//. 
iel'j 

The fiber above a typical incomplete flag d (of type I) is the set of complete flags 

b which refine d, and the natural measure rrtd on such a fiber is the probability 

measure which is invariant under the rotations which preserve d. More 

generally the image of such a pair (d, rrtd) under a projective transformation 

will be called a measured flag. Then the G-space XSF can be identified with the 

G-space of measured flags [Gu, Ra l ] . The closed subgroup D1 associated with 

the typical measured flag (df/, mi) is the subgroup of P(7) with orthogonal blocks 

along the diagonal and the stabiliser of («4/, mi) is the subgroup R1 c P(T) defined 

by the weaker constraint of similitude instead of orthogonality. 

A sequence yn^X converges to (dj, mi) if one can write yn = en an . 0 with 

1 2 d - Kn 
l im en = Id, an = diag(A n , A n , . . . , Xn) e A(I) n A+, lim -j^ = + 00 if (i, ¿+1) is not 

J* n A 

contained in an interval of the /-partition. 

The space BXC can be described as the set of directions in X. Such a typical 

direction v € dXc is given by a vector 1; = diag (ui, 112, ud) e a+ with u\ > 112 ^ ... 
d 

^ u>dt \u\2 = X = 1 # ^ e s e c l u e n c e e Z converges to U o o e a ^ c 3 X C if one 
¿=1 

can write y^ = kn an . 0 wi th: 

an € At, Km i ^ j f f i . = v lim ^ = k and A d ¿(1;) = v. 
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A general direction is obtained from Voo by the action of K. These directions 

form the sphere at infinity 3 X C of X = G/K-

Such a direction z is defined by a pair (k, Voo) with k e K, Voo € and z = k.Voo . 

The complete flag b associated to k is given by a sequence of multivectors (61, 62 

with 6/+1 = bj A XJ9 \bj\ = 1 ; the decomposable multivector bj defines aj-

dimensional subspace V/ and one has Vi c V2 c ... c V^- i c Vd = R d . With these 

notations, the Busemann cocycle p(g, z) is given by z) = Tl \g bi\Ul 

¿=1 

where z = & . i;<>o, u = G*i> # 2 , U d ) e a + | u | 2 = ]T |u j | 2 = 2d. 

The Poisson kernel is given by 

1=1 

Hence, if one denotes afe, b) = \g bi\, the minimal A-eigenfunctions are given 

by 

^ 6(^)=ri 1a: 1- (" i-" i + 1V 1,6) 
' ¿=1 

d 2 

w i t h i ^ - ¿¿¿+1 £ 0 ( 1 <i<d-l) and ^ = 2d(Xo- A), 
¿=1 

u = ( U a g ( ^ , . . . , j ^ ) , ] ^ w/ = 0and^ = ^.i;oo-

If y n € X converges in Xc to z and in X 5 * * to b e 9y then the Martin kernel 
x 

K^tfyn) converges to hz^ If, instead of converging to 6, yn converges to a typical 

measured flag (d, md), then the Martin kernel converges to the non minimal 

eigenfunction J h*b(g) drridib). 

The structure of this paper is as follows. To begin with, one gives some 

preliminary informations of a group-theoretical character. Then in a first part 

one describe the space XSF in terms of the space of closed subgroups of G ; this 

characterisation is useful later on. In a second part one calculates m*° in the 

context of a random walk using the "ground state" characterisation of the 

functions hD. In a third part one uses the above results to describe briefly the 

situation in the case of semi-simple groups defined over local fields. In the last 

part one calculates m* ; in the spirit of part II one tries to characterize the 
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Martin limits by their extremal and group-invariance properties, rather than 
just giving a calculation. 

In view of the results and techniques of this paper it is natural to conjecture 
that, if if-bi-invariance of the probability measure p is not assumed, the Martin 
compactifications of G, with respect to p will remain the same and the new 
family of cocycles 6X will be obtained from the canonical family described in 
this paper by cohomology. The stability of the Martin compactification is well 
known in the case of G = R d [Bab2]. 

The main results of this paper are part of a joint work with Lizhen Ji and 
J.C. Taylor (to appear) ; a preliminary version has appeared in Comptes 
Rendus [Gu-Ji- Ta]. The emphasis here is on the intrinsic approach and the 
random walk point of view in such a way that the situation of semi-simple 
groups defined over a local field could be simultaneously considered. The 
details will appear in another paper. 

Thanks are due to M. Babillot and J.P. Anker for essential informations about 
the Green kernel. The first author is also grateful to G.A. Margulis who 
brought the question to his attention. 

S O M E G R O U P - T H E O R E T I C A L P R E L I M I N A R I E S . 

One describe here some known preliminary group-theoretical results. 

1) Parabolic subgroups and Purstenberg boundary. 

Consider a maximal subgroup A of the semi-simple group G such that Ad A is 
diagonal and A is isomorphic to the multiplicative group (JR+X. Consider its l i e 
algebra Q c $ , the set of roots I of a in £ and the root spaces 3 « c £ (a e I ) 
defined by 

%a = ix e <§ ; [a, x] = a(a) x Va € a}. 

Once a Weyl chamber a+ has been choosed in a, the set 2+ of positive roots is 
fixed and a system of simple roots A = (ai , a<iar) c 1+ is defined. One can 
define the nilpotent subalgebra 

and consider the corresponding unipotent connected subgroup N c G. The 

centraliser Z(A) of A is the product of its maximal compact subgroup M 
by A. Hence N is normalised by Z(A) and the subgroup B = Z(A) JV is the semi-

direct product of N and Z(A). 



- 1 2 -

In analogy with the theory of semi-simple algebraic groups [Bor], B will be 
called a standard minimal parabolic subgroup. More precisely, i f Ga is an 
algebraic group and its Lie algebra £ a is isomorphic to the complexification of 
3 one can choose a IR-structure on G such that, up to finite covering, G is the 
connected component of the subgroup of real points of such a group Ga ; then 
there exist in Ga a unique standard minimal parabolic subgroup Ba such that 
B = G n B a . Moreover Ba is the Zariski closure o f B i n G a . 

Definition 1. A subgroup ofG will be said to be parabolic if it contains a conjugate 
of B. The homogeneous space of minimal parabolic subgroups will be called the 
Furstenberg boundary of G. It will be denoted 9 = ^ / g . 

The algebraic theory of parabolic subgroups have a complete analytic 
counterpart in the context of connected real semi-simple groups [Bor]. In 
particular there is only a finite number of such subgroups, up to conjugacy, 
and they correspond to the finite list of G-equivariant factors of 9 = G/MAN- The 
homogeneous space 9 appears in [Fu 1] in the context of bounded harmonic 
functions ; it is the set of real points of a projective variety, defined over E, on 
which G acts by projective transformations. 

2) Standard parabolic subgroups. 
In order to describe more explicitely the parabolic subgroups, one consider 
"standard parabolic subgroups" associated to a subset / c {a i , a% a r } , one 
denotes by [/] the set of positive roots which are linear combinations of elements 
of E and write [Z]' = - [ /] . One consider the subalgebras 

a(7) = {x e a ; a(x) = 0 Va el] 

W)= e <&a 

«€[/] 

One has Jf=Jf*Q Jf(I), №I)9 tfl] c Jf(J). One denotes by & the sum of the 

subspaces 3 a + [ 3 a , 3 - d where ± a varies over [1]. 

One consider the corresponding connected subgroups A(Z), NifyN1. The 
subspace & is a semi-simple subalgebra and the corresponding connected 
subgroup will be denoted G1. 

The centralizer Z(J) of A(7) in G is reductive and the standard parabolic 
subgroup P(J) is defined as P(J) = Z(7) N. It is clear that N(I)9 A(J) N(I) are 
normal subgroups of P(J) and the relation Z(JT) n Nil) = {0} implies that P(J) is 
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the semi-direct product of Z(J) and the normal subgroup N(I). Because each £ a 

is invariant under the ad[joint action of MA, one has for g e G1, h € M: h g hr1 

€ G1; it follows that M(I) = G1 M is a closed subgroup of G. This implies that 
Z( / ) = M(I) A(I), N(I) is normal in P(/) and P(/) = M(J) A(J) N(I). More precisely 
P(Z) is the semi-direct product of its unipotent radical N(I) by the Levi subgroup 
M(I)A(J). This decomposition is called the Langlands decomposition of P(7). 
It is known that A1 = G1 n A is a maximal diagonal subgroup of G1 isomorphic 
to (R+)* where s is the number of elements in J [Bor]. Moreover the restrictions 
of the roots in I to A1 define a set of simple roots of G1. It follows that if a1 

denotes the Lie algebra of A* then the corresponding Weyl chamber ( a 0 + is the 
orthogonal projection of a+ in a1 with respect to the Killing form of a. 
Consider now the projection of 9 = &/B onto the homogeneous space ®lp(I) and 
the orbit Ptf) c ^ of the origin ? e ? (e = {P}) under P(Z). This is a compact set 
which may be identified with the homogeneous space ^ V g . The fibers of the 
projection are exactly the translates of under G. As a G^-space, SF(J) is 
isomorphic to the Furstenberg boundary of G1 as it is now shown as follows. 
The centraliser of A1 in G1 is contained in MA because it centralise A1, A(7) and 
A = A1 A(J). This centraliser is equal to MAnG1 and the relation G1 M n A = A J 

implies 

MAnGI=(MnGI)(AnGl)=MlAl 
where M1 = M nG1. 

On the other hand the subgroup A(J) N(I) is normal in the stabiliser Bofe: it 
acts trivially on ^(J). Prom the relation P(J) = G1 MA(I) N(J) it follows that G1 is 
transitive on From the relations explained above it follows that G1 nMA N 
= (G*n MA) (G*nN) = MlAl U1. So that one has the 

Lemma 2. The fiber of the origin ofG/p(j) in fyp is isomorphic, as a GI-spacer to 
the Furstenberg boundary of &. The subgroup A(I) N(I) acts trivially on P(/)/B, so 
that the action ofP(D on this fiber reduces to the action of&M=M(I). 

3) Maximal compact subgroups and Iwasawa decompositions. 
Consider now a maximal compact subgroup K containing M and the Iwasawa 
decomposition G = KA N. Because G permutes the fibers of ̂  above G/p(D,Kis 
transitive on $ and the stabiliser of &(J) is P(7), the subgroup K n Ptf) has to be 
transitive on Denote K?Q = K n G1, K1 = K r\ M(I) and observes that the 

action of K n P(7) on reduces to the action of K1: K1 is transitive on 
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From the formulae K1 = M and ?(D = Kl e one gets = ^ . e and G1 = i i ^ 

A J C/J, P(J) = i f j M A N. The formula £XZ) = . e implies that or leaves 

invariant a unique probability measure mi on In particular if / = then 

m = is the l£-invariant measure on The formula G* = 1£Q A 7 iV* implies 

that , 2i? are the stabilisers of mj in G*, G1 M and are maximal compact 

subgroups of GI

9GIM respectively. 
To summarise the above discussion one state the lemma : 

Lemma 3. I/Jcj = Kr\GI,AI = Ar\GI,NI = NriGI, the group G1 admits the 

Iwasawa decomposition G*=JK^ A* N1. Furthermore the stabiliser of mi in G1 is 

and 2£Q is a maximal compact subgroup of G1. 

4) Satake-Furstenberg compactification. 

Consider the space of probability measures on 99 endowed with the weak 

topology. This a metrisable compact G-space. The closure G.m of the orbit G.m 
of m imder G in ^ (50 is compact and one consider the map g -> g . m of G into 

; one denotes by 0 = {K) the origin in the symmetric space X = G/2£ 

Definition 4. The space G. m with the embedding ofG/Kinto G. m given by g. 0 - » 

g . m will be called the maximal Satake-Furstenberg compactification of^lK^nd 

one denotes G.m =X$F. 

Because the stabiliser of m is K , this map is well defined and is a 
homeomorphism of ty/fonto G . m. This compactification of X = G/g is shown 
in [Mool] to be isomorphic to one of the compactifications originally, defined by 
Satake in terms of quadratic forms (see below). The definition in term of 
measures was given in [Fu 1] and extends naturally to the general case of a 
semi-simple group defined over a local field (see below). 

If a + is the Weyl chamber in a defined by A and A + = exp (a+) one has [He] the 

polar decomposition of G : G = JTA+ K. The IT-parts of the decomposition g = kak' 

are not unique in general but a is uniquely defined. In this way sequences in G 

going to infinity can be reduced to sequences in A+ and the following notion is 

very useful. 
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Definitíon 5. The sequence an e A will be said to bel-canonical ifan € A+, ea(an) = 1 

when a e [Z], lim ea(an) = + oo when a e [/]'. 
n 

Lemma 6. Suppose that the sequence aneAis I-canonical. Then the sequence of 

measuresan. m converges to mi. 

Proof . Consider the unipotent subgroup N(D opposite to N(J): its Lie algebra is 

given by = © & - a . Clearly, for x e <§a, a € A one has 
a€[J]' 

(Ada)(x)^e^Losa)x. 

Because an is /-canonical one has lim e " " a ^ L o g a ^ = 0 for a € [ / ] ' and one 

n 
conclude : 

V* e Í ( Z ) : lim (Adan )(x) = 0 
m 

^ —1 
V7jeN(I): l i m a n r \ a n = e . 

771 

Consider now the space G/p(I) which is a factor of 9. From the Bruhat 

decomposition, it follows that N(D B(J) is an open dense set of G, so that the 

orbit of the origin in ®lp<J) under N (I) is open and dense. If this orbit is 

identified with JV(J) c typ(i), the action of a e A on 77 € is given b y : a . r\ = a rj 

a" 1 € JV (J). It follows that, for every 77 eN(I) c ^ /p ( / ) , the sequence a n . TJ 

converges to the origin. If m is the projection of m onto G/p(I), one obtain from 

dominated convergence, that the sequence of measures an . m converges 

toward the Dirac measure at the origin. It follows that every cluster value of 

the sequence an . m has a support contained in W ) / p c 9. Because an is / -

canonical, K1 commute with an it follows that such a cluster value is K1-

invariant. There is only one probability measure on W t y p with is ^- invariant : 

this is the measure mj. Finally 

l im an .m = mi. 
n 

Proposition I.G.m ¿ 5 iAe disjoint union of the orbits of the measures mi. 

Proof . If gn € G is such that the sequence gn . m converges one can suppose that 
gn = kn an k'n with an /-canonical lim k'n = k\ lim kn = k. It follows from lemma 

n n 

6 : limg/i .m^k .mi. Hence 

G.m -uG.mi. 
1 
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Suppose G .mi nG. mr * <t>; then for some g :g .mi = mr, and the supports of 
these measures are equal : g P(I) = P(D. Because the fibers g P(J) of 9 above 
G/p(j) are either disjoint or equal one has g P(D = P(J) = PCO, / = mi = mr, 
G.mi = G. mr. 

In order to explain the relation between the above compactification and the 

original construction of I. Satake [Sal] consider a complex faithfull irreducible 

representation T of G such that, if 0 denotes the Cartan involution of G one 

has : 

i[0(g)] = ^[0(g)]-l . 

Consider also the embedding of &/K into the space X of positive hermitian 
matrices given by x(gK) = x(g) fr(g). If P(X) is the real projective space of X one 
has an imbedding 

T:X >P(X). 

The closure r(X) is the Satake compactification of X associated with the 

representation T , denoted byX^. 

The compactification is uniquely determined by the restricted dominant 

weight of the representation r. If the stabiliser of the dominant weight vector of 

T is a minimal standard parabolic subgroup, then the compactification 

X^ = 5^ax * s maximal. This is the only one which is used here. It is proved in 

[Moo 1,2] that the stabiliser of q e 5 ^ a x is a conjugate of a group of the form 

R* = KlA(I)N(I) 
for some JT. 

Such a group stabilises a unique measure on 9 : this is the measure mi. The 

correspondance between - X ^ a x and XSF replaces q e - 3 T ^ a x by the unique 

probability measure on $ which is invariant under the action of the stabiliser 

of q. Instead of these results one uses here only the above definition in terms of 

measures. This language extends to semi-simple groups over local fields. 

A continuous function on a locally compact group H will be called an 
exponential if it is a homomorphism of H into the multiplicative group of 
positive real numbers. 
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The normaliser of D1 = K1 N(I) isR1 and D1 is the subgroup of R1 where the 

exponentials of R1 are trivial. It will be clear below that the compactification 

< X ^ a x is isomorphic to the space of subgroups of G conjugate to some D1 

endowed with the natural topology. 

I - L I M I T S O F M A X I M A L C O M P A C T S U B G R O U P S A N D T H E M A X I M A L S A T A K E -

F U R S T E N B E R G C O M P A C T I F I C A T I O N . 

One gives here a new characterisation of the maximal Satake-Furstenberg 

compactification. Hence the proofs are independent of the end of paragraph 4 

above. 

One consider the space St of closed subgroups of G endowed with the topology of 

Hausdorff convergence on compact subsets of G. For G locally compact this a 

metrizable compact space on which G acts continuously by conjugation [Bou]. 

In the simplest non trivial example G = R one consider the family of subgroups 
# a = a Z ( a e R ) . In this case lim i f a = # 6 if b*Q, l im Ha = {0}, lim Ha = R . 

a-ib |a|-K>o a-*0 

In order to give another example, in the spirit of this paper, one take G equal to 

the additive group of a finite dimensional vector space V over a locally compact 

field. Then the projective space P(V) of V, is clearly a compact subset of the set of 

closed subgroups of V. 

Here one consider the maximal compact subgroup K and its orbit St$ = {g Kg~l ; 

ge G}. In this case the elements of the closure 9*o in St can be interpreted as 

generalised horocycles. In the case G = S€(2, R), X= ty^is the Poincaré disk of 

center 0 = {K\ and one can associate to a closed subgroup H c G, the orbit 

H.QcX. LetN denote the maximal unipotent subgroup of upper-triangular 

matrices and M the set of diagonal matrice of the form diagCe, e) with E, e' = ± 1. 

Then it can be seen that the limits of compact subgroups are compacts 

subgroups or conjugates of the subgroup MN. Under the map of G into X 

considered above the s e t ^ i T ^ - 1 projects on X as a circle gKg-i.O of center g-^-.Q 

containing 0. A sequence of circles either converge to such a circle, or converge 

towards an horicycle containing 0 and corresponding to a conjugate of MN. In 

order to calculate in general the closure ¥ Q , one introduce some notations and 

lemmas. The corresponding analysis has an elementary character and can be 

carried over to other situations. Closely related questions have been considered 

in [Moo2]. 
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Defínition 1. If Vis a finite dimensional vector space and H a closed subgroup of 

GS(V) then H is said to act distally on V if for every heH9 the eigenvalues of h are 

numbers of modulus one. In particular H c G is said to be distal if Ad H acts 

distally on the Lie algebra ofG. 

It is known [Co-Gu], but not used for the main results that H acts distally on V 

if and only if for every veV, v # 0 the orbit closure of H. v does not contain 0. 

This is the reason for the word distal borrowed from topological dynamics. 

Clearly a compact subgroup and a unipotent subgroup are both distal. In order 

to prove proposition 8 below one needs some lemmas. 

Lemma 2. Ev ery limit of distal subgroups is distal. 

Proof. If lim Hn = H, then for every g € H there exist a sequence gn e Hn with 
n 

g = l im gn , Ad g = l im Ad gn. Since the spectrum of Ad g is the limit of the 
n n 

spectrum of Ad gn and the unit circle is closed, the lemma follows. 

Lemma 3. Suppose Jn c G is sequence of closed subgroups, ¡inis a sequence of 

probability measures on 9 such that 

a) iLn is Jnrinvariant. 

b) l im/ i n =/x exist. 
n 

c) lim Jn- J exist. 
n 

Then\i is J-invariant. 

Proof. As above consider gsj and gneJn with lim gn = g. If q> is a continuous 
n 

function on ? f then the sequence of functions <p(gn-x) converges uniformly to 

<p(gJC). Hence, gn . iin(<p) converges to g . ii(<p). This shows the weak convergence 

of gn . Hn t o g . it and implies the F-invariance of 

Lemma 4. Suppose that the sequence aneAis I-canonical. Then the sequence of 

measures an • m converges to mi. 

Proof. See the above paragraph. 

Lemma 5. Suppose that the sequence an is I-canonical and the sequence of closed 

subgroupsanKa"1 convergetoDe?.Then Dz>K¡N(I). 

Proof. Clearly, because A(7) centralises K1, one has an K a~* D K1. Denote by y 

an element o£N(I) and observe that, because an is /-canonical lim a" 1 y a n - e . 
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Using Iwasawa decomposition one can write y Q>n= hnan y'n with kn G K, 

an eA,y'n eNand observe that lim^* = lim an =lim y'n = e since l i m a n y'n an 

n n n n 

= e. It follows that: 

l im an kn a" 1 = lim an (kn any'n) al1 =y . 
n n 

This proves that lim an Ka"13 N(I). 
it 

Lemma 6. The stabiliser of mj in M(I) is compact. 

Proof. One uses a typical contraction argument [Fu 1]. One knows that the 
homogeneous space PWfe is the Furstenberg boundary of M(J) or G1, hence a 

projective variety. Consider an irreductible representation p of G1 into a finite 
dimensional vector space such that Wtyjj is represented as a projective variety 

on which G1 acts by projective transformations. If one considers a norm ||J| on 
V, it suffice to show that if the action of pig) (g e G1) onto this projective variety 
stabilise m/, then lp(g)\ is bounded by a constant independent of g. If it not the 
case, then there exist a sequence gn^G1 such that lim \p(gn)l = + 00, hence lim 

n n 

dot = 0* The sequence of linear maps un = | p ^ ) g satisfies lun\ = 1, 
hence one can suppose by compactness of the unit ball, that \imun = u, \u\ = 1, 

n 
det u = 0. Hence one obtains that the measure v = l im un . mi = u . mi is 

n 
concentrated on the union of two projective subspaces which corresponds to Im 
u and Ker u [see Fu 1]. But then the measure mi = l im p(gn) . m would be 

n 
concentrated on the union of two projective subspaces. Hence a subgroup of G1 

of index at most two would leaves each of these subspaces invariant. Because 
G1 is transitive on W)/J3 and p irreducible, this is impossible. 

Remark. Only the facts that v = mi is not concentrated on the subspace 
corresponding to Ker u and the stabiliser of the support of v = mi is irreducible 
have been used in this proof. 

Lemma 1. The stabiliser of the measure mi in Gis R1 = K1 A(I) N(I). The 
normaliserofD1 = & N(I) is R1. 

Proof. The support of mi is ^ V f i . If r stabilises mj, r also stabilises its support, 

so that r . TO/B = pW/B> hence r € P(7). 

This proves that the stabiliser L of mi is contained in P(7). Observe that the 

relation b A(I) N(I) b"1 = ACT) N(I) c B for every b e P(I) implies that A(I)N(D 
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acts trivially on TW/fi. Hence the subgroup R1 = K1A(7) Ntf) stabilise mj and so : 

R1 c i c P ( I ) . On the other hand, from lemma 6, one knows that L n Af(7) is a 

compact subgroup. Because K1 is maximal, as a compact subgroup of Af(i), and 

LnM(I)z>K¡f one hasL nM(I) = From the r e l a t i o n e c L c P ( í ) = M(í )Aa) 

jIVCZ) one obtains L = fí7. 

Denote again by L the normaliser of D1. The subgroup L normalises also the 

unipotent radical Nil) of D1. But the normaliser of N(T) is P(7) and this implies 

L c PCD. Moreover D1 leaves invariant a unique measure on ^ V F I so that 

LcP(D leaves also invariant this measure mi iLcR1. Because R1 normalises 

one has L = Rl. 

Proposition 8. Suppose that aneA is I-canonical. Then the sequence of compact 

subgroups an K a~* converges toIfi-K1 N(I). 

Proof. Consider a convergent subsequence Dn = anKa^} with l im Dn = D. The 
n 

lemmas 3, 4, 5 above implies that D D K1 N(I) and D preserves mj. Because the 

stabiliser of m/ is R1 = K1 A(J) N(I) one has R1 DDDK1 N(I). 

The first lemma implies that D is distal and because, for a € A a*e the action 

of A d a* on N(I) is not distal, one has D n A(J) = e. The relation R1 = 1CJ A(7) N(J) 

implies finally D = K1 N(J). So that, in fact the whole sequence an K aT^ 

converges to D1. 

Corollary 9. c 9 is the disjoint union of the G-orbits of the subgroups D1 e?o. 

Proof. Consider a sequence gn^G such that gn Kg~^ converges to D e 9. One 

can extract a subsequence and suppose that gn = kn cn an k'n with kn, k'neK, 
l im cn = c, lim kn = k and an is /-canonical. Then from the above proposition 

n n 

l im an Ka~n = D1 and lim gn K gZ1 = k c D1 c 1 k"1 € G .D1. Suppose that 
n n 

g D1 g"1 = DJ for some g} I, J. The unipotent radical of D1 is N(I) and the 

normaliser o f i T O is P(i). It follows that g P(J) grl = P(e7), so that I = J,ge P(7), 

Definition 10. For D e^o , D=g D1 g* 1 , one defines the measure mPbymP-g. mj. 

This definition is valid because g is defined up to an element of the normaliser 

of D1 which is the subgroup R1 and the stabiliser of mj is equal to R1. 
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Definition 11. Ifi is the map ofX into the space of probability measures on 9 

defined by i(g. 0 ) - g . m, then the closure iOO = G.m c is called the maximal 

Satake-Furstenberg compactification ofX. 

It is shown in [Mool] that this definition coincide with that originally given by 

Satake [Sa] in the context of quadratic forms. The definition given by 

Furstenberg [Fu 1, Mool ] is in terms of measures on &/MAN and fits well to the 

situation considered in part II. 

The meaning of g . m is the present context is that of exit measure for brownian 

motion in X starting from g . 0. 

Lemma 12. G.m is the disjoint union of the orbits of the measures mj. 

Proof. The proof is the same as that of the corollary 8 except for slight details ; if 

G .mir\G . raj* <j>. The stabilisers of g . mi and mj are gR1g*1 andRJ so that 

g R1gr^ = RJ and, the same argument as, in corollary 8 with D1 replaced by R1 

leads to J = c7, geRJ,g. mi = mi. 

Theorem 13. The map D - ^ m D is an isomorphism of 9^ onto G.m. 

Proof. In order to show the continuity of the map i, it suffices to show that if the 

s e q u e n c e g n K g ^ converges to D, then the sequence gn . m converges to mP. If 

\i e G.m is the limit of a subsequence gn^m9 one can suppose gnj = knfnj <*>nj k'nj 

with lim kni =*, lim cni =c and ani/-canonical. Then one has D=k c D^c^k"\ 
j J j J J 

\i-hc .mi because of lemmas 3, 4, 5 and proposition 7. 

These formulae imply ¡1 = mP so that gn . m converges to mD. 

The density of Ŝ o into $?o and of G . m into G.m implies that /x is surjective. In 

order to show that ¡1 is injective suppose mP = mD\ so that the relations 

D=g Ifigr^* D' = g' g ' - 1 implies g . m1 =g'. mJ. From lemma 12, it follows 

/ = J , g € g* # / , hence D=D'. 

The following results give complementary informations on the distal 

subgroups D1 and amenable subgroups R1 [Zi], The proofs remain valid for 

semi-simple groups over local fields and allow extensions of the results of 

[Moo 2] . 

Furthermore it gives an answer to a question of H. Furstenberg about a 

possible unified conjugacy theorem for maximal compact subgroups and 

file:///i-hc
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maximal amenable subgroups. Here the relevant concept is that of distal 
subgroups. This can be compared to [Moo 2]. 

Theorem 14. I / D * e $"b is contained in an amenable group R, then R c R1. The 
subgroup Tfi is a maximal distal subgroup and R1 is a maximal amenable 
subgroup. Every distal subgroup is contained in a maximal distal subgroup. Every 
amenable subgroup is contained is a maximal amenable subgroup. Every element 
of?o has a unique fixed point in X?F. 

The proof uses some lemmas of independent interest and the following 
proposition. A proof with the topological tools of this paper is given at the end of 
paragraph II. Only the first part is used here ; this follows also from 
proposition 4.4 and the corollaries of theorem 4.15 in [Bor-Til]. 

Proposition 15. Suppose Qisa parabolic subgroup ofG. Then Qz>N(D if and only 
ifQ contains a minimal parabolic contained in PQ). IfD1 c Q, then P(I) c Q. 

Lemma 16. Every distal subgroup is contained in a maximal one. Every amenable 
subgroup is contained in a maximal one. 

Proof. In the two cases one used Zorn's lemma. If Dj (j e SF) is a totally ordered 
family then U Dj is distal by definition. In the second case one uses the fixed 

point characterisation of amenability. If U Rj acts on a compact convex set C 
JGJ 

by affine transformations, the same is true for every Rj. If Cj c C is the set of 
fixed point of Rj, then the family Cj has the finite intersection property, p Cj is 

non trivial and equal to the set of fixed point of U Rj. 

Lemma 17. Suppose that a group H c G€(V) acts distally on the finite dimensional 
vector space Vand denote by Wthe subspace of vectors v e Vsuch that the orbit H.v is 
relatively compact. If v is an H-invariant measure on the projective space P(V). 
Then v is supported by the projective subspace P( W). 

Proof. One uses induction on dim V, the result being trivial i f dim 7 = 1 . The 
result is also trivial if W = V. If W * V, the group H is unbounded and the same 
contraction argument from [Ful] used in the proof of lemma 6 leads to the fact 
that v is supported by the union of two (strict) projective subspaces ; the distality 
of H is used through the relation |det h\ = 1 for h e H. 
Consider now the set A of finite unions of projective subspaces which support v. 
This set has a minimum element a because an intersection of a sequence of 
elements of A is a finite intersection. 
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The ff-invariance of v implies the -ff-invariance of cr, hence the invariance of 
every subspace in a under a subgroup Ho cz H of finite index. For every 
subspace a ' c a the restriction v' of v to the projective space P(<r') c P(V) is ifo-
invariant. 

From the induction hypothesis and the condition \H/HQ\ < <» one gets that v' is 

supported by P(W) n P(cr'). Hence v is supported by P(W). 

Lemma 18. Consider the boundary typ(I) and the action ofN(I) on ^ /p ( / ) . The 
origin of typ(I) is the unique point of typtf) which is N(Thinvariant. 

Proof. If x € typ(I) is iVUMnvariant then the stabiliser gP(T) gr1 of x is 
normalised by N(I) :ifue N(I), ugPiDg^1^1 = gPifig-1. Hence g~^ug normalises 
P(J). Because the normaliser of P(I) is P(J) itself one has g-1 N(I) ga P(J), N(I) c 
gP(I) g~\ From the proposition 15 one gets the existence of a minimal parabolic 
subgroup hPh"1 contained in gP(J) g"1 [h e P(I)]. Hence h^gPil) gr^h contains 
P and is a standard parabolic subgroup : hr^gPiJ) g~Mi = PCD, g~Vi e P(I), g e 
P(J), gP(I) gr^ = P(/), x = {P(/)}. 

Lemma 19. If pis a rationnal representation ofN(D in a vector space V such that 
the orbit ofv € Vunder p[N(I)] is bounded, then v is invariant under p[N(I)]. 

Proof. The group N(J) is generated by root subgroups of A in G and such a root 
subgroup L is rationnally isomorphic to the additive group R . Hence the 
coordinates of p(u) v (u e L) in V define polynomial functions on R which are 
bounded : they are constant and p(u) v = v when u € L. Because such subgroups 
L generateN(J) one has p(u) v=v when u eN(J). 

Lemma 20. The measure mi is the unique D1 invariant probability measure on 9. 

Proof. Consider a probability measure v on & which is D^-invariant. Because 
2J= P(0) is algebraic, there exist a rationnal representation p of G in a vector 
space V and a vector v eV such that p(J5) is the stabiliser of the line u" € P(V) 
defined by i; [Bor]. This gives an isomorphism of G/B onto the p(G)-orbit of \T e 
P(V). If v denotes the image of v on p(G) . v c P(V), then v is p[i\T(J)]-invariant 
and one obtains from lemmas 17-19 that v is supported by the set of fixed points 
of p[N(I)] in p ( G ) . v. From lemma 18 one knows that this set of fixed points is 
contained in the fiber in 9 of the origin of ̂ /p(J). Hence v or v are supported by 
this fiber. From the fact that mi is the unique Z^-invariant probability measure 
on this fiber one conclude v = mj. 
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Proof of the theorem. The action of R on 9 leaves invariant a probability 
measure v because R is amenable. From lemma 20 and hypothesis Rz^Tfi one 
obtains v = mj . But R1 is the stabiliser of mi (lemma 7), hence R c R1. UR D D1 

is distal, then R n A is also distal, hence R n A = {e}. The relation D1 c RaR1-
A(J) D1 implies R^D1. This prove that D1 is a maximal distal subgroup. 
The first assertion of the theorem proves the maximality of R1. The last 
assertions of the theorem follows from lemmas 16 and 20. 
The following corollary uses in an essential way the properties of the real field. 
The results above can be extended to the local field situation. 

Corollary 21. l?o is the space of all maximal distal subgroups. 

The proof uses two lemmas. 

Lemma 22. Suppose that L is a closed subgroup ofH c G£(V), Hfc is compact and 

L acts distally on V. Then H acts distally on V. 

Proof. One can find a compact set C c H such that H = C L = L C because the 
homogeneous space H/L is compact. Suppose H is not distal on V and denote by 
hn eH a sequence such that, for some vector i; € V, one has lim hn . v = 0. One 

n 

can write hn = cn £n with cn eC,€ne L. Since is bounded by sup [cr11 < oo, 

l im \£nv{= 0. This contradicts the distality of L. 
n 

The following appears essentially in [Ab]. 

Lemma 23. Every maximal distal subgroup DofGisa semi-direct product of a 
compact group C and a unipotent subgroup U which is normal in D. 

Proof. It is shown in [Co-Gu] that the distality of D on the Lie algebra $ is 
equivalent to the existence of a D-invariant flag c ^2 c ••• c ^ r = ̂  such that 
D acts isometrically on every quotient Because the property of 

preserving a subspace and a quadratic form are algebraic conditions, the same 
property are true of the Zariski-closure Z(D) of D in G. Because D is distal 
maximal and Z(D) acts distally on % one has Z(D) = D. Consequently, D splits as 
a semi-direct product of its unipotent radical N and a Levi factor C which is 
reductive. Because of the complete reducibility of representations of C and the 
isometry condition one obtains that AdC and C itself are compact. Finally 
D=Z(D)=C.N. 
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Proof of the corollary. The first assertion is a direct consequence of lemma 20. 
In order to prove the second assertion one shows that a maximal distal 
subgroup is conjugate to some D1. It is already known from theorem 14 that D1 

is maximal as a distal subgroup. 

From a theorem of [Bor-Ti2] it is known that every unipotent subgroup AT of G is 
contained in the unipotent radical of a parabolic subgroup L such that the 
normaliser of N is also contained i n £ . If D is distal maximal the lemma above 
gives D=CJSf with C compact and N unipotent The result of [Bor-Ti2] gives a 
parabolic subgroup L with unipotent radical V such that N c V and C JV c L 
because C normalise N. Because of lemma 22, the group C . V is distal. By 
maximality of C . N one obtains C . N = C . V, N = V. By conjugacy one can 
suppose L = B(J), N = N(I), D = C. N(J). Because C is compact and Kl is a 
maximal compact subgroup of PCD there exists £ e P(I) such that £ C tr^ c K1, 
andhence iCN(I)e~latfN(I)=Dl. 

In order to give a more elementary description of 5*0» denote b y ^ c S the Lie 

algebra of D e 9Q and consider the action of G on the Grassmann manifold of 

and in particular on the set of Lie subalgebras of the form SI. 

Lemma 24. The map D->3>is injective. 

Proof. One can suppose D = D' are of the form D' = I*7, D = g D1 g*1 and has to 
prove D = D ' if their Lie algebras 3ff SI' are the equal. The unipotent radicals of 
D1, g D1 gT1 are N(J) and g N(I) g- 1 , hence N(J) - g N(I) gr1. Passing 
to normalisers one has P(J) = g P(J) g~\ hence I = Jfge P(I). In the same way, 
the stabilisers of 3ff 0'in G are the same iRt^gRtg-^geR1. But t h e n D ^ ^ D 1 

=gD*g-1. 

Proposition 25. The map D"->Sf is a G-equivariant isomorphismof9o with the 
closure of the G-orbit of the Lie algebra of K into the Grassmann manifold of^: 

Proof. In order to show that the map D - » 31 is continuous, consider a sequence 
Dn such that lim Dn = D and lim Sfn = 0 ' ; one has to show that Sf' is the Lie 

n n 

algebra of D. The continuity of the exponential implies : exp 31' c D. The 
logarithm is defined in a small neighbourhood V of e and the same argument 

leads to the fact that the Lie algebra generated by LogiVnD) contains Sf\ 
It follows that lim 0 n = 31. The map D -4 3 is injective from lemma 24. 

n 
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Remark. From this proposition the dynamical aspects of the action o£GonXSF 

are clear ; in particular, because the action of G on the Grassmann manifold is 
rational, the orbits are locally closed and the boundaries of the orbits are 
manifolds of smaller dimension than the orbits themselves [see Zi]. 

The proximality of the action of G on XSF follows from the properties of 
projective spaces. This property is closely related to the strong proximality of G 
on 9 considered in [G£] and [Moo2].Clearly there is a unique G-minimal orbit, 
the orbit of MN9 that is to say the G-space 9. 

II - Ao-eigenfunctions and Satake-Furstenberg boundary. 
1 - Some Ao-eigenfuxictions and their stabilisers. 

Denote by m the JST-invariant probability measure on the Furstenberg boundary 
^ a n d recall [Ful] that the Poisson kernel of X i s given by P(g9b) = P(g.o9b) 

= ^d^1 (b) = a Qr1, b) (g € G, be 9). Hence every bounded harmonic function / 

o n X i s given by a boundary function / on TL°°(9) via the Poisson formula 

f(g.o) = jP(g9b)ftb)dm(b). 

Consider the Iwasawa decomposition G = K A N and write aig) for the A-part of 
g e G. Denote by 2p the sum of positive roots of the Lie algebra a of A ; hence the 
determinant of the restriction of Ada (a e A) to the Lie algebra of Nis e 2^(a). 
Then the modular function of AN is given by the exponential 8 = e2P and the 
Poisson kernel can be expressed [He] as : P(g9 b) = e"2P[a(g'1 k)] with 6 € 9 
corresponding to k e K. 

The function a satisfies the cocycle equation : o(g h9 b) = c(g9 h . b) a(h9 b). Recall 
also [Ka, Gu 2] that the Ao-eigenfunctions of the Laplacian which are minimal 
are the functions Py2(g9 b) (6 e 9) so that every positive Ao-eigenfunction can be 
written uniquely in the form 

u(g.o) = \ P№(g, b)dv{b) 

with v a positive measure on 9. If uiff) = 1 , v is a probability measure (which is 

the exit law in XSF for the Doob u-process). Denote by hi the Ao-eigenfunction 

associated to mi by the formula 

hi(g.o) = j P№(g,b)dm№. 

In particular &o(g) = ®o(g . 0) = J Py2 (g9 b) dm(b) will be called the ground state 

o fGor ty t f . 
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Consider now the set of Ao-eigenfunctions h normalised by the condition h(0)= 1 
and the action of g e G on this set given by 

seh{x)=h(g~K0) • 
Consider also the twisted action of g on the set of probability measures on 9 
given by 

g 0 j oy2(g,b)8g.bdv(b) 

S y t z j aVZ(gfb)dv(b) 

It is clear that if h is of the form h(x) = J P^2(xy b) dv(b), then 

Sgh(x) = j pV*(x,b)dS%v(b\ 

and the map v - » h is a G-equivariant isomorphism. In this way, the two 

actions of g can be identified because of uniqueness of integral representation. 

In probabilistic language, v is the exit measure of the Doob ^-process and Sg v 

is the exit measure for the Doob Sg/i-process in XSF. 

If X(I) is the symmetric space then the ground state Oj of G 7 , or M(7), 

X(J) is given by O/te) = O/te • 0) = J ( ) 1 / 2 (6) dmiib). The functions <Dj, A/ 

are related by the 

Proposition l.IfxeXis written in I-horispherical coordinates : x = u a s . 0 
[u eN(I), a € A(7), s € M(J)] one has = eP(a) Ojte)-

The set of group elements geG such that AjQr1 . x) is proportional to hjix) is the 
subgroup R1 = K?A(I) N(I) and the coefficient of proportionality is the exponential 
on R1 defined by the restriction ofe~? to A(I). 

Before giving the proof one proves the following result 

Lemma 2. The two cocycles o(g, b) = (6), ofe, b) = (6) feePtf), 

be&Q)] satisfy the equation: 

o(g,b) = oi(g,b)e-2P(a) 

where a is the diagonal part ofg in the Langlands decomposition ofP(I). 
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Proof. Consider also the cocycle oig, 6) = & — — (6) where m denote the 
dm 

projection of m onto ^/p(J). The three cocycles a, aj, <T on P(J) x ^(7) are K1 

invariant by definition. Because the measure m can be identified with mi x m, 

one has for g e P(J), b e ?iD 

o(g, b) = oi(g, b)cig, b) 
by the ii?-invariance and equivalence (cohomology) of cocycles. 

However oig, b) is defined on G x ^ / p ( 7 ) and reduces to an exponential when 
b e W ) / p = ^ ( i ) and g e P(i). This exponential is trivial on the group Mil) = &M 
and needs only to be calculated on R1 because P(J) = Mil) R1. One uses again the 
relation between the three cocycles a, aj, a. For g = s a u [seM(I\ a e A(J), ue 
W ) ] a n d 6 = ^ B (JUli?)onehas 

g k = s k aik"1 u k) with kr1 u k e NO) because K1 normalises Nil) and 
centralises A(I). 

It follows that g ,b = s .b 
and if g = r = s eR1 

then air k) = air) = a and r . mi = mi. 

IfgeAtf)NiI)ftheng . 6 = 6. 
Hence a(r, 6) = e-2P[a(r*)] = £T2P(a). 

On the other hand = 1 so that a(r, 6) = e~2P(a). More generally trfe, 6) 

= e-2P(a) for # e P(J) because the two sides are exponential on P(J), trivial on 
Af(7), and coincide on R1. Using again the relation between or, cr, a/, one obtains 
oig, 6) = 6) e~2P(a). 

Proof of the proposition Write* = u a $. 0 and: 

hfc) = J <xl/2($-l a - l u-if b ) d m ^ b ) = e P ( a ) J a l / 2

 a - i M - 4 b ) dmiijb). Because 

aKr, 6) = 1 if r € R1, and a " 1 H " 1 . 6 = 6 for 6 € ^(J) one has or^fcrl or1 u~\ 6) = 

c r ^ O r 1 , 6 ) and hiix) = eP(a) <&/(.$ . 0). 

Observe that, in the Langlands decomposition of g e P(7), the Ail)-component 
and the Af(i>component define homomorphisms of P(J) onto AO) and Mil). If 
x = g . o = u a s . O , and r € J?7, the A(7) component of r* 1 g is air-1) and the M(7) 
component is multiplied by an element k ofK1, so that Qiik-1 s . 0) = <»/($ . 0). 
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Finally hjtj*-1 . x) = e~P[a(r)] hi(x) where r € R1. Conversely denote by L the 
subgroup of elements g e G such that hiQr1. x) is proportionnai to hiix\ that is 
to say 

hj(g-1x) = c(g)hi(x) 

with some exponential c(g) on L. By definition of hi and the above calculation 

one has L z> R1. For g e L one has Sg hi = hi, so that sJJ mj = mi. It follows that 

the supports of these two measures are equal that is to say g P(I)/B = P(I)/B 

(geP(D). So that R1 c L c P(7). The equation S g mi = mj can be written for 

g € M(Z) in the form 

e^ig-Klg. mi = c(g)mi = o^lg-1,.)mi. 

1/2 
Hence if g € M(7) n L, one has Cj (g"1, .) = c(g\ g .mi = mi,c(g)=l. 
The second condition and lemma 6 of the paragraph I gives : g e K1. Hence 
L=(M(J) nDR1 = and c(r) = e~P[a(r)l 

Definition 3. For D1 = K1 N(t) and D =g D1 g-1 e¥ Oone denotes by hP the Xq-

eigenfunction defined by 

hDto) = Sghjfr). 

Remark. This definition is valid because the formula D =g D1 g"1 defines the 

element g up to an element of the normaliser R1 ofD1 and from the above 

proposition Sr hi = hi for r e R1. The function hP has the following integral 

representation : hD(x) = J Plf2(x, b) d S°g mi. The measure rn^ = mi is 

equivalent to the measure g. mi and its support is equal to the fiber g . 9(1) in 9 
of the point £ . P(J) € ^ / p ( / ) . From the above definitions and the proposition one 
has the following : 

Corollary 4. The stabiliser of the measure m? in the twisted action Sg(geG)isthe 

normaliser R(D) ofD. The set of elements g e G such thathPigr1* x) is proportionnai 
to hD(x) is the subgroup R(D) and the coefficient of proportionality is the square 
root of the modular function ofR(D). 

2) Ground state properties. 
The following will be fundamental in what follows 



- 3 0 -

Theorem 5. For D e Sfo, the function hP is the unique positive normalised XQ-
eigenfunction which is invariant under left translations byD. 

It is dear, by definition of hD, that it suffices to prove the theorem when D-D1. 
The proof will follow from some propositions of a more general character 
which involve positive measures on a locally compact group H. 
These results will be used in the cases H = GorH = MQ), H = Ptf). 

Definition B. If pis a positive and bounded measure on the locally compact group 

Hy one says that p is well behaved if p has a continuous density with compact 

support S and H = "u 5" . 
n>0 

Remark. If p is well behaved, then H is compactly generated by S. 
If p is well behaved and if-bi-invariant on the semi-simple group G, a direct 
analogue of Xo is given by 

ro = j<&o(g)dp(g) 

because the properties of spherical functions [He] and if-biinvariance of p 

implies : ro $ o = $ 0 * P-

The theorem 5 will be a consequence of the 

Theorem 5 f . Suppose p is well behaved and K-bi-invariant. For D e ?o, the 
function hD is the unique normalised ro-eigenfunction of the right convolution by p 
which is invariant under left translation by D. 

The plan of the proof is to use the decompositions G = P(7) K% P(I) = N(I) A(I) 
Af(Z), the properties of the group Z = A(I) M(I), and to reduce the equations to 
equations on Z , M(J), G1 where uniqueness properties of the ground state are 
available. One has to study properties of Z and of the decomposition G=P(i) IT in 
a more general context of locally compact groups. 

One considers first a semi-simple group G, a maximal compact subgroup K 
and the Iwasawa decomposition G = KAN. For every exponential 2 e A*, the 
spherical function is defined by &(g) = J (tiaig-1 k)] dm(k) where m is the 

Haar measure on K. If p is a well-behaved X-bi-invariant probability measure 
on G one has & * p = p(£) & for some positive number p{2) [He]. The function 
p(£) on A* is called the Laplace transform of p. In particular, if ft = eP, then pX£) 
= ro and & a <&o. With these notations one has the 
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Proposition 7. Suppose G is semi-simple and p is well behaved and K-bi-
invariant. Then the spectral radius of the convolution operator on L 2 (G) defined by 
p i s equal to ro = Inf j ptf). 

Proof. The formula is clear from the above discussion because 

Consider the regular representation y of G into L 2 (^/J5): 

Jig) [>3 (X) = ( f 2 to 9 ( ^ 1 x) 

where <p € L 2 (G/g ) , X € ^/5. 

The functions /ijcfe) defined by /&*(£) = ( ) ^ 2 to) are eigenfunctions of the 

right convolution by the liT-bi-invariant measure p : 

with a constant C independent of x. 
By integration with respect to m : 

*o(g) = \(^)V2(x)dm(x) 

$ 0 * P = C $ 0 
r 0 = C. 

Also, taking # = e, y(p) 10c) = C 10c). 

On the other hand yip) is a positive and compact operator on L 2 ( t y g ) : its 
dominant eigenvalue is ro and is equal to its spectral radius. Hence ro is the 
spectral radius of yip) in L 2 (G/g) . 

It is well known that the spectral radius of a positive convolution operator 
increases when the regular representation in L 2 (G) is replaced by the regular 
representation in L 2 ( ^ / f f ) , for any closed subgroup H. Here H = B = M AN is 
amenable [Zi], hence the identity representation of B is weakly contained in the 
regular representation in L2(B). By the continuity of the inducing process from 
B to G, one obtains that the regular representation of G in L 2 (G/g ) is weakly 
contained in the regular representation in L 2 (G) . Hence the spectral radius of 
yip) is dominated by the spectral radius of the convolution in L 2 (G) . Finally ro is 
equal to this last spectral radius. 
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Definition 8. Suppose H is locally compact, p is a well behaved positive and 
bounded measure on H and A is a closed subgroup. One denotes by KA, p) the 
infimum of numbers C > 0 such that there exist some left A-invariant Radon 
measure \i such that 

/ i * p = C/i. 
If A = e , one denote KA,p) = rip). 

Remarks. 
a) The set of measures \i considered above is non trivial: it contains the left-

invariant Haar measure if C Is equal to the total mass of p . 
It is easy to show from compactness arguments that the infimum KA, p ) is 
attained. 

b) The number rip) has an important probabilistic significance for the 
random walk generated by p . It is shown in [Gul] that, if p is well behaved, one 
has rip) = l im p * (e)^n ; hence r-^ip) is the radius of convergence (in the weak 

n 
00 

topology) of the resolvent (J - zpY1 = ]T znpn. 
0 

Definition 9. The pair (A,p) is said to satisfy the ground state property if the system 
of convolution equations 

K A , p ) p = /i *p 

€ A : 8h * l* = \i 
has a unique normalised solution. 

Remarks. 

a) Because p is well behaved the measure \i has a continuous density / with 
respect to right invariant Haar measure and satisfies / * p = KA, p ) / . 
The normalisation is fie) = 1, the corresponding measure is denoted <p\j) and 
identified below with its density. 

b) It is easy to show that if H = and p well behaved every pair (A, p ) has 
the ground state property. Ifp(£) i£ e H*) denotes the Laplace transform of p , 
then <pAjp is the unique exponential £ such that p(£) = r(A, p). Uniqueness of £ 
follows from the strict convexity of Log p(£). 

One can now give a complement to proposition 7. 
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Proposition T. Suppose G is semi-simple, Kis a maximal compact subgroup andp 

isK-bi-4nvariant. Then the pair iK,p) has the ground state property. Moreover 

rip) = r(K9 p) = ro = ]xmpn{e)yn , (pKj) = $ 0 . 
n 

Proof. It is proved in [Gul] that rip) = lim p*(e)Vn. The relation rip) = r(K, p) 

n 

follows from the definitions because K is compact. The definition of ro gives 

riK,p) < ro. It is shown in [Fu2], that the relation \i * p = c \i implies the 
existence of a spherical function such that * p = c O^, hence c = pid), 
HK,p) ^ Inf piß). From proposition 7 one gets ro £ r(K, p ) , hence ro = riK, p). 

One considers now the behaviour of the ground state property with respect to 

the processes of restriction to subgroups and factor groups. 

Proposition 10. Suppose His a semi-direct product of the normal subgroup Vby 

the subgroup Zand A D V. Denote byp the projection of p on Z, by r\ the left Hoar 

measure on Vand write A = A n Z , Then r(A, p) = r(Ä, p). If (Ä, p) has the ground 

state property, the same is valid for (A, p ) and <p/\j) = V * . 

Proof. Suppose \i is a Radon measure on G which is V-invariant. Then it can be 

uniquely written 

/x = tj */Z 

with /Z a Radon measure on Z. Furthermore A-invariance of \i is equivalent 

to A-invariance of /T because A = V . Ä. An easy calculation gives rj*/T*p = 7)*/I*p. 

From these relations it follows that the system : 

j i * p = c/i 

8h*H=ß iheA) 

is equivalent to the system 

Jl *p = c/Z 

8h * ß = M ( A e A ) . 

Hence K A , p ) = r(A, p) by definition of r. 

If c = r (A ,p) , ß is unique from the ground state property and the solution \i of 

< iheA) 

<ß*p=cp 
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is uniquely defined by 

¡1 = r\ * JJ. 

One considers now a compact subgroup KofH and a closed subgroup BofH 

such that the product BKis equal to H. One denotes K* = B nK,m,m' the Haar 

measures on K and K'. 

One defines a kernel n from H to £ by the formula 

n(g,X) = 8b*m'(X) = m'Cfe-1 X) 

if £ = 6*(&€B,Jfe€J50andXcB. 

The definition of n takes care of the fact that the decomposition g = bk is not 

unique. It follows from the lemma below that n is a homomorphism of the 

algebra of JKT-bi-invariant measure in H into the algebra of IT-bi-invariant 

measure in JB. In particular, commutativity is preserved by tc. Moreover if 

beB, k e K, one has by definition n(8b * v) = 8b * TT(V) , n(y * 8k) = 7i(y). 

Furthermore if v = v * TO, then v = n(y) * m. 

Lemma 11. Suppose \i, v are measures on H and v satisfies m * v = v. Then 71(41 * v) 

= 71(41) * n(y). 

Proof. Because n is linear it suffices to check the case ii-8gj v = TO * 5ft (g, heH). 

Then if £ = 6£ (6 € £ , ^ e Z ) one has 

^(/i * v) = /K$6 * 5ft * m * 5^) 

= n(8b * TO * 5ft) = 8b * #(TO * S n ) = 5ft * ff(v) 

= 5ft * m' * ;r(v) = nip) * ^(v) 

because TO' * n(v) = n(m' * v) = /r(v). 

As a simple corollary one has the 

Lemma 12. With the notations of the above lemma, suppose that p is a K-bi-

invariant probability measure on H, \i satisfies ¡1 * p = / Z . Then TT(JU) * nip) = TRFYI). 

Moreover 71(41) is K'-bi-invariant. If\i is left-invariant under a subgroup ofB, the 

same is true ofn(ji). 

With these notations one has the 
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Proposition 13. Suppose H is of the form H = BKwith Ka compact subgroup and 
B a closed subgroup. Suppose p is a K-invariant probability measure and D is a 
closed subgroup ofB. 

Then one has r(D,p)=r[D, nip)]. 

Furthermore the ground state property for (D, p) and [D, nip)] are equivalent. 
Moreover 

7t\<PD,p\ = <PD,n(p) = <PDj) = <PD,n(p) * m. 

Proof. One observes that if \i * m = \i> then \i = niy) * m. Suppose \i satisfies 

/x*p = c/i 

Sd*/ i=/ t (deD). 

Then the condition m * p = p and the above lemma imply 

11(41) * nip) = c n(jx) 
Sd * 7l(ß) = Tt(ß). 

Conversely if on B one has : 

v*;r(p) = c v 
fid * v = v (d eD) 

it follows : 
v * nip) * m = c v * m 
8d * (v * m) = v * m. 

The first equation can be written 

v * p = c v * m 
becausep = p * m = ^(p) * m. 

From p = m * p , if follows 
v * p = (v * TO) * p = c(v * TO). 

Hence r(D9p) = r[D, ^(p)]. The last statement follows from these calculations. 

Definition 14. Suppose Kis a compact subgroup of the locally compact group S. 
Then K is said to satisfy the strong ground state property if for every K-bi-
invariant well behaved probability measure p9 the pair (Kj)) has the ground state 
property and furthermore the measure <pKj> is independent of p. In this case one 
denotes <PK=<PKj) and call <picthe K-ground state ofS. 
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Remark . If G is a semi-simple real Lie group it follows from proposition T that 
any maximal compact subgroup has the strong ground state property. The 
same is true for groups of Euclidean motions. 

Proposition 15. Suppose S, A are closed subgroups of the locally compact group H 
such that H = SA,Ais central, compactly generated in H and S nAis compact. 
Suppose K c S has the strong ground state property relative to S. Then, ifp denotes 
a well behaved K-bi-invariant probability measure on H, the pair (K, p) has the 
ground state property. Furthermore there exist an exponential ion A such that <PKJ>= 

<pK*2. 

Proot 
a) One considers a minimal solution \i of the equation /1 * p = c /J. Because A 

is central in G one has c8a*H=li*8a*p. 

Because p is well behaved, there exist constants A(a) > 0, k(a) e N such that 
8a * p £ A(a) pk^a\ Hence /i * 8a * p £ A(a) \i * p*fo) - A(a) c*fo) 11. 
Hence 8a * \i £ A(a) c^^"1 /i. 

The minimality of/ i and the fact that S a * /1 is also a solution imply that, for 
some constant 1(a) 

8a */x = 2(a) p. 
Clear ly 2(a) is an exponential on A. Because S n A is compact one has 
£ ( S n A ) = { l } , hence one can extend 2 to G from the formula 

2(sa) = 2(a) ( s e S , a e A ) . 

It follows that there exist a positive function ^ on S such that the density of/x is 
the product *F . 2. One can now reduce the equation / i * p = c / i t o S . Ifp* denotes 
the projection ofp . 2~l on S one has ¥ * pe = c *P. 

b) If c = r(Kj>), it follows from the above observation that 

Conversely if <p is lf-invariant and satisfies <p * pe = 9 one obtains / * p = 

/ with f=<p .2. Because / is If-invariant one has rGK, p ) £ K# , p*), hence 

r(K, p) as riKjpt) for every exponential £ defined as above. 

c) One shows now that 2 is unique. 
Suppose / , f are minimal solutions of the equation 

li*p = r(Kj>)ii. 
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It is convenient here to consider / , / ' as positive functions on G with f(e) = 1 = 

/ ' ( e ) / = ¥ . e /' = *¥'. £' where are IT-invariant functions on S. From 

b) one has 

The strong ground state property implies *P = = ÇK-

Consider positive numbers a, a' with a + a' = 1 and the function 

g = fcc fa' = (pKecc £'<*' = (pK L 

From Holder inequality one gets 

with equality if and only if f = f because p is well behaved. On the other hand, 

the strong ground state property implies 

ç K * = r(K,px) cpK 

g*p = HK1p
x)g. 

Hence rfajX) * trj>)-

The re la t iong*p£ HKp)g gives 

HKp*) <, r(Kp\ hence 

r(Kpl) = iiK,p), g*p = r(K,p)g. 

The fact that one has equality in the Holder inequality gives f = f £ = £'. 

Hence € is unique. If / is a normalised minimal solution of the system f*p-

riKj)) f 8k * f=/, one conclude 

The measure u corresponding to / can also be written as fi = ÇK * £ if £ is 

considered as a measure on A. 

Proposition 16. Suppose L, S and M are closed subgroups o/H, H=S .M,L cS, 

and moreover L .Misa compact subgroup ofH. IfL has the strong ground state 

property in Sf the same is true o/L .MinH. 
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Proof. This is a simple application of proposition 13. II p is well behaved and 
L.M bi-invariant, the measure nip) defined on S will b e L . Mn S bi-invariant, 
hence L-bi-invariant. If one denotes by p the Haar-measure on M and <PL the L-
ground state on S, the L . Mground state of S .M-His <PL*P • 

3) A correspondence between some Ao-eigenfimctions and distal subgroups. 
In order to prove theorems 5, 5 f which give this correspondance one return to 
the notations of paragraph 1 and prepare the 

Proposition 17. Suppose Kis a maximal compact subgroup o/G which contains M. 
Then the subgroup K1-Kr\M(J) of Mil) has the strong ground state property. Ifp 
is a K-bi-invariant and well behaved probability measure on G, the pair (D1, p) has 
the ground state property. 

Proof. One has to collect the informations given in paragraph 2. It has been 

shown in the recollections that K?Q = G1 n K is a maximal compact subgroup of 

the semi-simple group G1. Clearly M(I) = G1 M and M = K1 = K n Mil) is a 

group. The strong ground state property is true for JK^ c G*, because of 

proposition 7 f, hence the same is true for K1 c Af(i) because of proposition 16. 
Because P(J) z> B and G = B .K one has G = P(7) . K; one denotes n the natural 
kernel from G to P(J) considered in proposition 13. One has the Langlands 
decomposition P(7) = M(J) A(I) N(I) and the relation & = & Nil) c P(7). 
Because of proposition 13, if suffice to show that [D1, nip)] has the ground state 
property. Because of proposition 10 and of relation D1 z> NO), the problem 
reduces to MiJ) A(7) with p and K1 = D1 n M(I) A(7) instead of nip) and D1. 
Because of proposition 15 and the facts that A(I) c MiJ) A(T) is central and M(T) 
has the strong ground state property, one obtains the validity of the ground 
state property for (JS?, j5). 

Proof of theorem 5 f . It suffice to show that ro = K ^ p ) because of proposition 17. 
From proposition 7', ro < r(D J , p). From paragraph l,the fonction hi is D*-
invariant and satisfies hi * p = ro/ij, hence ro ^ KD1, p\ ro = r(D^, p). 

The following result allows one to reduce the Laplace equation to an integral 
equation. 

Lemma 18. Suppose X £ Ao- There exists a continuous and positive function px with 
compact support such that px(0) > 0, pKk . x) = pxix) for every xeX and keK with 
the following property: every function f which satisfies Lf+X / = 0 satisfies also 
VgeG:fig.0) = j fig.x)dpKx). 
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Proof. Consider a (positive) spherical function O such that L O + X O = 0 and 
the differential operator on X defined by 

D<p = -jj-L(<p &) + X<p. 

Then Z?1=0 and the heat kernel associated with D is given by erkt ^^pKx^Y^iy) 

where p*(x, y) is the heat kernel associated with L. Denote by qr the hitting 

measure of the sphere of radius r centered at 0 for the brownian motion 

associated with D and starting from 0. Then L / + X / = 0 implies D ^ = 0 and ^ 

/ ( 0 ) = J / ( * ) - ^ . 

Now one modifies qr as follows. 

The measure q defined by integration in r on an interval (1 £ r < 2) of the 

individual measures has an L°° density qx(x) with support in the shell 

1 £ r ^ 2 and is JRT-invariant by definition. 

Furthermore, / ( 0 ) = jfix) qx(x)dx. 

Because fig . x) is also a A-eigenfunction one has 

fig.0) = j fig.x)qxix)dx. 

The functions qx and f onX can also be considered as functions on G and then 
the equation above reads 

/ = / * < / * 
where is X-bi-invariant and / is right jfiT-invariant. The convolution px = qx * 
qx defines a IC-bi-invariant continuous function px with compact support and 
pxie) > 0. It defines on X a jfiT-invariant function as in the lemma. 

Proof of the theorem 5. Observe that ®oig) = J P^2ig . 0, b) dmib) satisifes L $o + 

Xo <J>o = 0. One has also LhD + XohD = 0 L h + Xo h = 0, one knows that h and hP 
are left-ZMnvariant and has to show that h is proportionnal to hP. From 

lemma 18 one obtains a X-bi-invariant measure = p on G which is well 

behaved and satisfies 
0 o * p = 0 o 9 hD*p = hD , h*p = h. 
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The first equation and the definition of ro implies ro = 1. The theorem 5' implies 
that h is proportionnal to hP. 

Corollary 19. In the topology oflfo: 

uni formly on compact subsets ofX. 

Proof. Any limit function h along a subsequence yn is a uniform limit of 

normalised functions invariant under the subgroups ynKy^. Hence h i s D 
invariant by the definition of the topology of From the theorem one gets 
h-hP and the corollary is proved. 

Theorem 20. The Satake-Furstenberg compactification XSF = ¥ $is isomorphic to 
the Martin compactification ofX at XQ. At the boundary the isomorphism is given 
byD->h*>. 

Proof. Because of corollary 19 it suffices to check that the equality hP = hD' 
implies D = D'. Since the equality of stabilisers, corollary 4 implies R(D) = R(D'\ 
From the formula R1 = K1 Atf) JV(J), one sees that the exponentials of R(D) are 
trivial exactly on the normal subgroup D so that D = D'. 
One returns now to the random walk situation and consider the potential 
kernel 

o 
The series converges in the weak topology of measures for 

r £ limp n(e)V n = ro-
n 

The convergence at ro follows from the non amenability of G [Gul ] . 

The equation 

V r * p = p * V r = r ( V r - S e ) 
and the fact that p is well behaved shows that Vr has a continuous density 
outside e, again denoted by Vr. The corresponding left-invariant convolution 
kernel is also denote by Vr: 

V r(jc,y) = V r 0 r 1 ^ ) 

This kernel can be considered as a kernel on ̂ IR^P is J£bi-invariant. For each 

fixed y Vr(x, y) defines an r-eigenfunction on the domain Xly. 

The equation above implies easily the following because p is well behaved. 
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Lemma 21. Suppose C is a compact neighbourhood of the identity in G and 
RZrois a given number. Then the family of functions 

is uniformly equicontinuous on C when ytC2 and ro^r^R. 

This lemma implies that the Martin compactification at r £ ro, relative to p can 
be defined as above ; the points of the Martin boundary define normalised r-
eigenfunctions. Here one has the analogue of corollary 19 by the same proof. 

Theorem 22. In the topology of 9Q one has 

Vrp(x}y) 
lim v f v =hu(x) 

uniformly on compacts sets. 

The Martin compactification at ro is the G-space X^F. 

The following appears as a purely geometric corollary of the methods 
developped above. 

Corollary 23. Suppose Q is a parabolic subgroup ofG. Then Q z> N(I) if and only 
ifQ contains a minimal parabolic contained in P(J). IfD1 c Q, then PCD c Q. 

Proof. For the sufficiency condition, let gBg-1 be a minimal parabolic such that 
gBg-1 c P(7), gBg-1 c Q. One has N(DczB<z g-1 P(I)g, hence g-1 P(I)g = P(7), g e 
P(Z), Q D gBg^1 z> g N(I) g-1 = N(I). 

For the necessity, one consider the twisted action Sg on 9. lfN(I) c Q, then N(I) 

leaves invariant the closed subset Q c 9 of minimal parabolic subgroups 
contained in Q. The fixed-point property of Schauder-TychonofF for N(I) [Fu2] 
implies the existence of a positive measure v on Q, such that, for some 
exponential c(u) on N(I) one has 

slv = c(u)v[ueN(I)l 

The formula h(x) = J P^Kxfi) dv(b) gives now an eigenfunction h such that 

A ( i r 1 x) = c(u) h(x) [u € N(I), xeX]. 

If one can show that c{u) = 1, then the new eigenfunction 

№ ) = J h(kx)dm№ 
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will be ^- invariant and will remain iV(J)-invariant because (kuhr1 e N(J) i f 
keK1, u € N(I). Hence h' will be ^- invar iant . Because of the uniqueness of 
such a function, as stated in the theorem, one will have h' = hi. But the 
representing measure of h' on 9 is J 8k* v dmi(k) = v. Hence mi = J 8k* v dmi(k) 

which implies that the support of v is contained in -PO/b . On the other hand 
this support is contained in Q ; hence Q n P ^ V b * 0 . It follows that Q z> gBg-1 

for some g € P ( 7 ) . If c Q, the set Q is also ^-invariant, hence Q z> P ^ V b 
which implies Q D P ( J ) . 

In order to show C ( H ) = 1, one consider the cone f? of positive Ao-eigenfunctions 
and the set 6 of exponentials c' on N(J) such that there exist an eigenfunction K 
vnihhXu-l*)=cXu)h'(x) [ueN(I), xeX]. 

The group P(D acts by conjugacy on the normal subgroup Nil) and also on the 
set & because PCD acts on <f by left-translations. The compactness of the base of 
the cone % implies the compactness of S and the relative-compactness of the 
P(2>orbits of elements of S. There is a unique relatively compact P(7)-orbit on 
the vector space of exponentials on N(I\ that is to say the orbit of 1. This shows 
S = { 1 } and in particular c(u) = 1. 

H I - T H E C A S E O F L O C A L F I E L D S . 

In the results described above the field 1R can be replaced by a local field F of 
any characteristic, that is to say a commutative locally compact and non 
discrete field. One describe very briefly here the corresponding situation. 

Denote by Ga a semi-simple algebraic group which is simply connected and 
defined over the field F by G the group of its F-rationnal points. It is supposed 
that Ga has no ^-anisotropic part, hence in particular G is locally compact, 
unimodular, non amenable, compactly generated and Zariski-dense in Ga [see 
Mar]. In order to simplify the notations, one will refer to G instead of Ga as a 
semi-simple group. 

In general an algebraic subgroup of Ga will be denoted Ha, and the set of its ir­
rational points by ify. Denote by Ba some minimal F-parabolic subgroup and 
B = Ba n G. Then ^alBa is a projective variety on which Ga acts by projective 
transformations [Bor] ; furthermore, the set of its F-rational points can be 
identified with the homogeneous space &/B = that is to say the set of 
minimal F-parabolic subgroups. This compact homogenous 9 space will be 
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called the Furstenberg boundary of G. It follows from [Mar ; lemma II, 3.1] 
that f is a boundary in the sense of [Ful] . Furthermore it plays the same role 
as plays the usual Furstenberg boundary (real field case) in the context of 
bounded p-harmonic functions. More precisely, one considers a maximal 
compact subgroup K of G which is transitive on G/£ and the unique K-
invariant probability measure m on G/g. If Ga is simply connected such a K 
exists [Br-Ti]. It follows from [Br-Ti] that the convolution algebra of K-hi-
invariant functions is commutative. If p is a given If-bi-invariant probability 
measure on G, then it follows from the proofs given in [Gu2] that every bounded 
solution / of the equation f*p=f can be uniquely written in the Poisson form 

f(g)=g.m(f) = jf(b) P(g, b) dm(b) 

with feh°°(G/B) and 

Denote by 9 the space of closed subgroups of G with the usual topology [Bou], by 
9Q the G-orbit of IT in St. This gives an embedding i of X = G/j£in <f : 

i(g.0)=gKg~l 

hence a compactification 5̂ o of X. 

The map i is well defined because K is equal to its normalises On the other 
hand the m a p g - ± g .m gives also an embedding i ofX into the space &(P/B) of 
probability measures on ^ / g because the stabiliser of m is compact and equal to 

K by maximality of K. One denotes by XSF the closure of i(X) in ^ ( t y g ) with 

respect to the weak topology. The first problem is to compare the two 

compactifications of X obtained in this way and to describe their elements. 

Denote, as in part II 

If p is a X-bi-invariant and well behaved probability measure on G one has 

again 

ro = lim pn(e)yn , $ o * p = ro $o-
re 

It follows from [Gu2, Mac] that the minimal solutions of the equation f*p = ro 
f are uniquely given by the formula 
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f(g) = \Pm(g,b)dvi]b) 

where v is a positive measure on tyg. The second problem is the following : 

given D € 9Q does there exist a unique positive ro-eigenfunction hD such that 

hP*p = rohD 

VdeD:8d*hD = hD. 

Finally, from [Gul] one considers as in the end of part II, the potential kernel 

of p: 
00 

0 

The third question is the identification of the cluster values of the Martin 
VJ y) 

kernel v^ie y) w ^ e n V e s c a P e s t o infinity and the description of the 

corresponding compactification of X when r = ro or r > ro. This is the problem of 

Martin compactification of X. The answers to the three questions (the third 

when r = ro) are parallel to the real field case at least if Ga is simply connected 

and split over F. Up to natural modifications, the answers are contained in the 

statements of theorems 13,14 of part I, theorems 5, 5' and 19, 20 of part II. The 

definitions and proofs are close to the real field case but, due to rationality 

questions, the extension is non trivial. 
The situation for r > ro is also considered at the end of part IV and it is 
conjectured that the descriptions of the Martin compactifications in the real 
and in the ultrametric situation should be similar. 

If Ga is split over F, explicit calculations are possible whereas in the general 
case on has to use the informations of [Br-Ti]. The key fact is the commutativity 
of the algebra of IT-bi-invariant functions. Finally the Martin compactification 

of X at ro is the space X S F which can be called the Satake-Furstenberg 
compactification of X. 

In the case Ga simply connected and F-split the notions introduced in parts I, 
II have a simple corresponding meaning and analogous properties are valid. 
For example the subgroup A is the set of F-rational points of a maximal F-split 
torus Aa of Gay B is the set of F-rational points of a Borel subgroup Ba 3 Aa, N is 
the set of F-rational points of the unipotent radical of Ba and B = A N. Denote by 
2 the set of roots of Aa in 2+ the set of positive roots, A c £+ the set of simple 
roots, X + the set of characters of Aa positive with respect to E+, by W the Weyl 
group. If n denotes a fixed uniformizer of the local field Fy one can define the 
subgroups A 0 and of A by the formulae 
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A° = {aeA;x(a)e7cz ; V^e-X} 

A= {a € A ; *(a) € n** , V* 

Given a Chevalley basis of the Lie algebra of G, the valuation of F allows to 
define a compact subgroups UofNA such that K - U W U is a maximal 
compact subgroup transitive on 9 = tyjVA [Mac]. Then one has the Iwasawa 
and Cartan decompositions G = KAQ N, G=K A K. If I c A one defines A(7) to be 
the set of F-rational points of the subtorus of Aa defined by the equations a^(a)=1 
(a* € I) . One defines Z(I) to be the centraliser of A(i) in G, G1 to be the 
commutator subgroup of Z(7), PCD = Z(J) N. Then the Zariski closure (ja of G1 is 

semi-simple and simply connected ; furthermore Z(i) = G1 A and P(7) is the 
semi-direct product of Z(D and its unipotent radical NO). The orbit of B in 9 
can be identified with the Furstenberg boundary of G1. Furthermore, the 
explicit form of K shows that JB?=G* n K is a maximal compact subgroup of G* 
which is transitive on Hence the J^-invariant measure mi on № is well 
defined and D1 = KJ N(I) is a maximal distal subgroup of G. In these notations 
the theorems 13,14 of part I, theorems 5, 5' and 19,20 of part II are valid. 
In general one can expect the following results to be valid. 

Theorem 1. For every D e!?o9 there exist a unique measure mD on& = &/B which is 

D-invariant. The subgroup D is distal maximal and its normalizer RD is a 

maximal amenable subgroup. The map D mP is a G-equivariant isomorphism 

between 9 o and X?F. 

Theorem 2. For every De9q there exist a unique normalised ro-eigenfunction hD 

ofp which is D-left-invariant. Furthermore, in the topology o/9o : 

Hence the Martin compactification at ro, relative to p is G-isomorphic toXSF. 

IV - THE M A R T I N C O M P A C T I F I C A T I O N OFX (X < Xo). 

The situation of the Laplacian will be only considered at the end. 

1) The compactification lXPSF. 
Consider the set A* of exponential functions on A. If a is the Lie algebra of A, 
the Killing form <.,.> on a identifies the exponential 2 e A* with a vector v(£)ea. 
The corresponding norm on a or A* will be denoted by the same notation : 
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|u(£)|= One denotes by A* the subset of A* obtained in this way from the 

closed Weyl chamber a+ by this identification. In the same way, if / c A, A*(J) 

will denote the subset of A* corresponding to the closed facet a+(7) c a +. 

Consider v € a + ( | v | » l ) and Voo = l im etv. 0 e dXc ; the subset of dXc 

corresponding to directions in a+ (resp. a+) will be denoted (resp. a ^ . 

More generally one consider the facet at infinity associated to a+il) and the 

closed facet at infinity a^, which corresponds to the directions of a +(Z) [see Bal-

Gr-Sc]. 

If a(g) denotes the A-component o f g in the Iwasawa decomposition G = KAN, 

the (normalised) Busemann function A(x, Voo) (x eX,Voo€ a ^ ) can be expressed 

as A(g. 0, Voo) = - <v, Log a(g^ x )>. 

In other words, if €oo e a^, is ^ e point at infinity in dXc associated with £ e A*, 

the functions 
A(^.0 ,^oo)and L o g ^ a ^ 1 ) ] 

are proportionnal. The same property remains true of the functions A(g . 0, z) 

and Log Ge(g~\ k)if z = k . £oo^ 3XC (k eK). One denotes by # the projective 

space of the functions Log or*, of the argument g, with Ggig-1) = a^Qr1,*), £ € A * , 

k 
k € K. These functions are normalised by the condition Cg(e) = 1 so that G acts 

naturally on ff by left translation and normalisation and <f is a G-space. 

Because dXc is G-equivariantly isomorphic to the set of (normalised) 

Busemann functions one has the 

Proposition 1. The map (£, k) -» k . £oo (k e K, £ € A* defines a G-equivariant 

homeomorphism between the projective space % and the conical boundary dX^. 

One denotes by B(z) the stabiliser in G of z € SXC; in particular if z € 0^(7) , the 

subgroup B(z) is equal to the standard parabolic subgroup P(I). 
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Definition 2. The G-space of pairs (D, z) € 5̂ o x Xc such that D is contained in the 

stabiliser of z will be denoted XCSF. 

Clearly the diagonal embedding j of X into !?ox Xcis a G-equivariant 

homeomorphism of X with the subset j(X) of 5̂ o x-XP. 

Proposition 3. Consider the diagonal embedding j ofXinto?Q xXP. The closureJOO 

is equal to XPSF. 

The proof is based on the 

Lemma 4. Suppose D e d9*o> * € 3XC and B(z) is the stabiliser of z. Then the 
condition D cBfe) is equivalent to the condition that z belongs to the closed facet at 
infinity associated with the parabolic subgroup P(D). 

Proof. It follows from part II and the fact that B(z) is a parabolic subgroup that 
the condition D c J3(z) implies P(D) c B&). IfD = D1, this gives B(z) = P(J) for 
some J z> I, hence z e a ^ C J ) c Q ^ ) . The direct implication follows from G-
equivariance. The converse is clear from G-equivariance. 

Proof of the proposition. The stabiliser of i\x) e and x G X? are equal to g Kg*1 

if x =g .0. The definition of the convergence 

limgnKg-^Dero 
n 

and the fact that X? is a G-space imply D c B(z) if z = l i m ^ . 0 eXP. 
n 

Hence j(X) c K S f . 

In order to show the converse one can suppose by G-equivariance and the above 

lemma : D = D1, Biz) c B(J), z e a^JJ) with I c J. If i; is a unit vector of a+ with 

direction zea^iJ) c 0^ (7 ) , one consider some /-canonical sequence a^ € A + (7) 

such that the sequence vn of unit vectors in a+(Z) given by = 

converges towards i; € a + . 

Then : l im a n K a" 1 = D 7 

n 

l i m a * . 0 = l im etv .0=z 

hence (P9z)ejVO. 
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Corollary 5. Considerthepoint (D*, z) e d&o x 3XC with z in the facet o^JLJ) (I c J). 
Then the fiber ofXVSF over z is naturally isomorphic to the Satake-Furstenberg 
compactification ofX(J). The fiber ofX?SF over D1is the closed facet'o^Jil). 

Proof. The second assertion is contained in the above lemma. In order to obtain 

the first assertion, one notice that the condition z e a^CcT) implies 2?(z) = P(J), 

hence the Langlands decomposition P(J) = M(J) A(J) N(J) implies D = [D n 
M(J)] M E / ) - It follows from the end of part I that the map D ->D n M(J) i s a G 7 

equivariant homeomorphism of the fiber over z onto the Satake-Furstenberg 
compactification of X(J) = MW/Kj [see also Bor-Tll]. 

Corollary 6. Consider (D1, z) eX^SF (Z € a^j). The stabiliser of (D1, z) is R1 

andX?SF is the disjoint union of the orbits of points of the form (D1, z) (z € a^/J), 

J c A ) . The closure of the orbit of (D1, z)in XCSF is the union of the orbits of the 

points of the form (Z>^, z) with J c L 

Proof. If g . (D*, z) = (D1, z) , then g D1 g-1 = D1 g . z = z. The first relation gives 

g e R1. But R1 c P(J) c B(z\ hence R1 stabilises z, proving the first claim. 

Observe that the closure of the orbit of D 1 in ? Q is equal to the union of the 

orbits of the points e 5?o with J c I. This is a compact G-invariant subset 

S^oCO of &o. For z € fixed one, construct a G-equivariant map <pz from 

PoiDtoXCSFasfollows: if De^od), D = gD*g~\ J c / o n e s e t = ( D ^ ) 

=g. (2>/, z). Because z e a ^ J ) c a ^ ( J ) , one has (Z^ , z) exCSF. T h e 

map q>2 is well defined because the stabiliser of (Z>J, z) is equal to the stabiliser of 

D 1 . In order to check the continuity of <pz, consider a sequence (Dn>gn) such that 

l im Dn = Z), Dn-gn DJgZ1, D = h D h~l ; one has to show lim gn . z = h . z. One 
n n 

can suppose h-e and, from the compactness of the orbit of z : 
\imgn . z = z \ Because Dn stabilises gn .zfD stabilises lim gn . z = z ' , hence 

2?cB(z ' ) . 

From the end of part II one has P(D) = P(i) c B(z'), hence z ' € c£(7) c a^ . But 

the orbit of z e Q ^ is compact and intersect in only one point, hence z ' = z. 

Notice that q>z is injective because the stabiliser of <pz(D) is R(D) and this 

subgroup determines D. It follows that (p2 is a G-equivariant homeomorphism 

of P od) onto its range which is equal to the orbit-closure of (D 7 , z) . The 

structure of this orbit closure follows. 
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2) A class of functions onX and its relation toXP6*; 
Consider for D e dlfo, £ G A* b eF,k eK the following measures and functions 
(see II) : 

Pe(g, b) = oeig-1, 6) = ^ l [ a ( g - l k)l 

m^SgrmifD^gDlg-l 

hej)(g) = \ Pe(g,b)dm?(b) 

hejg) = j Pe(g, b)dmjibl 

The modular function of AN is denoted 5. In standard notations from [He], 
5(a)=e2p(a)if a e A . 

Definition 7. The exponential £ € A* is said to be I-adapted if one has £ = S^2 £+ 

with£+ € A* and £+(A7) = 1. One denotes by T the subset of pairs (£, D) e A* x 5?o such 

that £ is I-adapted ifD is conjugate to D1. One denotes by X the set of functions 
he9Dwith(£9D)eT. 

Proposition ^.Suppose (£9D)eT. Then 

htj)(g) = h»(g)oe4g-\b) 

where b is any point in 9 corresponding to a minimal parabolic subgroup contained 
in P(D). In particular: 

Sghej) = h e £ D s r l 

and the stabiliser of hep is R(D). 

Proof. A calculation with the Langlands decomposition of P(J) gives that 
a^(g9b) depends only of g and of the projection of b on G/p(J) because £+(A0 = 1. 

But Oft = a s l / 2 Op. and nP^ is concentrated on a fiber of &/B above typ(J). 

It follows : 

hej)(g) = Ofjg-1, b) j <*gy4g-\ b) dm? (b) 

= OgJgT1, b) ho(g) 

with 6 in the support of m? ; this support corresponds to the set of minimal 

parabolics contained in P(D). 
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The above formula shows that 

because Sg ho = hgDg~i and the cocycle property ofce+(g, b). 

In order to prove that the stabiliser of hej) is R(D) one can restrict to D = D1. 

The support of the measure g . mj is the support of the representing measure of 

Sg hej. If Sg hej = hej the fact that Pe(g, b) are minimal eigenfunctions of the 

Laplacian when € A*, [Ka, Gu2] gives that the supports of g . mj and mj an 

equal: g € P(Z). From the formula 

he jig) = hjig) Oe+ig-1, b) 

and the cocycle property of ce+ one gets that Sg hi = hi and from part II, g e R1. 

Theorem 9. T is a closed subset 0 / A + x 3^ o and the map (£, D) hej) is a 

homeomorphism between Tand X. 

Proof. Suppose Km €n=€eA* lim Dn = D € y o with every J9n coiyugate to D1. 
n n 

Then from part I D is a conjugate of ZV with J c Z, A*7 c A1. The condition 

*J(A0= 1 gives £*(A J) = 1 = e+(AJ). Hence T is closed in A* x The continuity of 

the map (£, D) -> D) is clear from the formula of the proposition above and 

the continuity of the map D -> hjy. In order to show the injectivity of the map 

(£, D) - » hejD, one observe that if hej) is given, then its stabiliser R(D) is known ; 

D is also known because it is the maximum normal subgroup of R(D) where 

the exponentials of R(D) are trivial. Then the formula hej)(g) = ho(g) c^+Qr1, b) 

implies that Oe+(g~\ b) is known for b corresponding to a parabolic subgroup 

contained in P(J5). 

Hence the map (£9 D)-*hej) is bijective and continuous. Because T is the union 

of the interiors of compact subsets, this map is bi-continuous. 

Definition 10. For {2, D)eT,D = g Z ) V 1 , one defines z(i, D)eJ8f and A(£, D) e 

2C&by*i9D)=g.£ , A ( * , Z ) ) = £ . ( Z ) , 0 = U>Mi,D)l 

Remark. The element g is defined modulo R1 but ¿(1, D) is well defined because 

one has Ptfoo) 3 P(Z) z> R1 if £+(A') = 1 hence e a+(Z), £ e a^(E) . 
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CoroUary 11. For any c> 0, denote 

r c = {tf,Z>)er; | |0=c} 
*c={htj);\e,D\er, | < £ j = c > . 

The restriction of the map A to T c is a homeomorphism between Tc and aliPSF. If 
r c is identified with XcaX,Kisa G-equivariant homeomorphism between Xc and 
XCSF. 

Remark. Denote by A+(I) the set of exponentials in A + which are identified with 

elements of a+(I) in the duality with respect to the Killing form. In the above 

statements the property of the map 2 -» v(2) which is essential is the fact that its 

restrictions to any A*(J) is a homeomorphism onto a+(J). In particular if p is a 

lf-bi-invariant and well behaved probability measure on G, its Laplace 
transform p{2) [£ e A*] has the following properties : 

L o g p i s C 1 . 
Log p is strictly convex. 
p(s1/2eow)^p(8^2e) 

for any € € A*, w e W [see Gul ] . 

Furthermore the minimal eigenfunctions are parametrised by A* x 9 as in the 

case of Laplacian [Fu2, Gul , Gu2]. 

It follows that the Legendre duality with respect to the function of the 

argument 2 given by Log/^S 1 ^ 2 2) {2 e A*) can play the role of the map 2 -> v{2) 

from A* to a +. It is easily be shown that the above results extend to this 

situation. In order to stress the main facts and to prepare the way for a general 
approach one consider below this more general situation and one recall the 

00 

definition Vr = r~npn(r^ro). 
0 

3) The Martin boundary of X. 

The condition 2 adapted [2 = 5^ 2+, 2+iA1)] = 1 ,£+€A*] plays a role throught the 

following minimum property with constraints. 
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Proposition 12. Suppose p is a K-bi-invariant and well behaved probability 
measure and £ = S^2 £+ is I-adapted. Then, iff € A* is such thai the restrictions of 
f and £ to A(I) are equal, one has p(f) £ p{£) with equality if and only iff=£. 

Proot Write / , / , for the restrictions of / to A1, Ail) and by abuse of notations : 

One has, if g e PO), 6 e p(D/B 

Pf(g,b) = Pf(g,b)Aa) 

where g e P(Z) is written in Langlands's form <S=g ar\ \g e M(J), a e A(J), 
i?eMJ)]. 

The function hf = P/g, b) satisfies 

hf*p=p(f)hf 

where in the second equation, which is valid on P(J), one has q = nip) [see II]. 

I f<iyg) = J Pjfg,b)dm№ 

it follows 

№ = \®j<rl)f(a)dq(g,a\ 
~* 1/2 

Denote by Oj the function in the case / = S j where Si is the modular 

function of A1 N1. 

Because $ 7 = $ 1/2 the formula for p(f) gives 
Mtpisf' 7 ) . 

If the restrictions of / and I to A(7) are equal one has 1= / ; furthermore 

i^sf2 1 because 2 is /-adapted, hence 

The minimum of the function p\f) under the constraint J -1 is attained at a 

unique point because of the strict convexity of p". Hence the equality 

p(f) =p(8¥21) implies / = 8^21. 
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Theorem 13. Suppose p is well behaved and K-bi-invariant and £ eA* is I-

adapted. Suppose that the positive eigenfunction h has the following properties : 

a)h*p=p(£)h 

b)his Itf-invariant 

c) the ratio j ^ ^ ^ is bounded for g € G, a € A(I). 

Then h is proportionnai to hej. 

Proof. As in the proof of the proposition one restricts the equation 

h*p=p(£)h 

to the subgroup P(J) : 

h*q=p(£)h. 

If p denotes the projection of q on M(I) A(J) one has 

h * p = p(£) h. 

Hence, on M(J) A(JT), h is a barycenter of minimals of the form 

hj(g) = Pfë, b) / ( a ) = P/g, b) with b e pW/B and / e A* satisfies p*\f) = p{£) 

[see II] . 

If one takes g -g in the boundedness hypothesis of the theorem, one gets that a 

certain barycenter of exponentials on A(7) of the form / is bounded by C£ (C> 0) ; 

This implies that this barycenter is proportionnai to £ and every term 7 in it is 

equal to £. The conditon that £ is /-adapted and p(f) = p{£) gives now / = £y 

Pe = Pf 

h(g)=\ Pe(g,b)dv(b) 

with a certain positive measure v on -Wtyg. Finally the Z^-invariance of h gives 

the invariance of v under the action of K1 : 

v = mi , h = he j . 

Corollary 14. Suppose £ e A* is I-adapted andpi£) = r. Suppose that yneXis a 

sequence which converges towards D1 e 5̂ o and such that l im y ^ ^ ) ^ ) 

bounded when a e A(J), x eX. 

VAX yn) 
Thenthesequence yr(Q yn) converges towards hej. 
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V (x y ) 

Proof. Consider a subsequence ynk such that h(x) = lim ŷ o'y**) ^ s t s . One has 

A(0)=1 
h*p = rh= p{2) h. 

Moreover ftfe)£(g) * s bounded in a € A(I), x e X and h is ©/-invariant because 

l im y n = 2)/ in y o . The theorem gives h = Hence the limit of y^Q yn) exists 

and is equal to hej. 

In order to express the functions above in geometrical terms recall that the 

BusemannfunctionA(x,z)(xeX, z edXP)is defined as 

A(x, z) = lim d(0, y) - d(x, y) 
y~-*z 

where d is the Riemann distance. The Busemann cocycle p(g, z) on G x 3 X C is 
defined has 

If i; € a+, [v[ = 1 and z = v<>q € a € A, one has A(a, tfoo) = <v, Log a> Voo) 

= - <y, Log a>. 

Consider an exponential £ on A which is /-adapted : 2 = 5 1 / 2 2+ with e A* + , 

^ + ( A / ) = 1. Suppose z € belongs to the orbit of 2^ e a^GT) which is isomorphic 

to ^/P(Z). If 6 € ^ corresponds to a minimal parabolic subgroup of B(z), then, 

from G-equivariance, one sees that 

It follows that 

°*g, 6) = a8yt(g9 b) p-l»l<g, z) = pV*(g-\ b) / H * l f c , z) 

when z e dXc is associated with 2+ and 6 as above. 

Al8ohej)(g) = hD(g) jH^ICr 1.*). 

From [He] one knows that, for £ and b fixed, the functions oe(g, b) are 
eigenfunctions of A with eigenvalue \2+\2 - [ p j 2 . 

One shall denote, for X < Xo fixed, by hX

zI) the A-eigenfunction hej)(g) = hoig) 

/ H « i ( £ - 1 , *) with J£+l2 = A 0 - A . 

One can summarise the above discussion in the 
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Lemma 15. The minimal X-eigenfunctions of the Laplacian are the functions of 
the form 

hlh(g) = PV*(g,b)f^(g-\z) 

where b e&fze dX^ are related by the condition b c B{z). Here P is the Poisson 
kernel and p the Busemann cocycle ofG. 
One has the formula 

^ > = J hlbig)dm?(b) = hDig)p~^(g-lfz) 

with D c Biz\ 

One has then the statement analogous to corollary 14 for the Green kernel Gx \ 
the proof is the same. 

Corollary 16. Suppose yn eXo is a sequence of X converging to Defy such that 
Giir~"^x Vn) Gxix Vn) 

l im A * is bounded when reR(D) xeX. Then the sequence r* /f\t \ 
n Gx(xfyn)hX

2j)(r-l) Gx(0,yn) 
x 

convergestowardshzj)(x). 

4) Calculation of the Martin compactification (case of Laplacian). 
Now in order, to verify the hypothesis of the last corollary one has to estimate 
the Green kernel Gx ; this is done in the lemmas below. The basic estimate is 
obtained in [An-Ji]. 

Lemma 17. There exist two constants A i , A 2 and a function gxona* such that 

A2gx(H)<>Gx(0,eH)£A1gx(H) 

and the ratio ^ffifrr ^ has a limit when eHn is I-canonical. lim = v, 
gxiffn) n \Hn\ 

Lead). 

This limit is equal to e = hjieh) p (e ^ , UOO). 

Proof. From [An-Ji] the first result is valid with 

where I Q is the set of indivisible roots and 
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c = £ | 1 + i 4 i - i a < A 0 ) . 

For n large, if L € a(J), one has Jfí n - L € a + because e n is /-canonical. Clearly 

l im % = # = 1-

1 -I- rtlJ-T — T ^ 

For the ratio i + a ( g n ) — t w 0 cases occur. If a € [E], then a(L) = 0 and this 

ratio is one ; if a í [E], lim a(Hn) = + oo and lim ^ i ^ j j g ^ ~ 1 ^ e c a u s e ^ i s J ~ 

canonical. 

Finally one has, from euclidean geometry 

l im \Hn-L\ - I/fnl « - < v , L > 
n 

i f l im i f f i i = v. 

All these remarks give : 

The formulas for A/ and /J(e" i, i>oo) give the final equality. 

Lemma 18. Suppose y n eX converges to D1 e Sfy T/ien y n can 6e written yn = e n a n.O 
wAere lim en = e and an isl-canonical. 

n 

Proof. One can write in the polar decomposition yn = kn an , 0 with an e Á + . 

Extracting subsequences, one can suppose an = an an with a n J-canonical, 

an e A 4*/, lim 5^ = 5 € A 4 ^ , lim kn = k eK. 
n n 

Then : l ima^üTa^ 1 = /> /and A a l ^ a " 1 / r 1 =/>*, hence J = / , kaeRiJ). Because 
i* 

2 € P(J) = P(/) one has * e P(/). But P(Z) nK^K1 and is a maximal compact 

subgroup of P(Z); it follows P(I) n K = ü?, A € Because * a € # ( / ) one has 

a € 12(/) n A / = fe}. It follows that for some en with lim en = e one has 
n 

hence the result. 
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Lemma 19. Suppose yn eX is a sequence of the form yn = en an . 0 with an I-

canonical and l im en = e. Suppose x e X is written [using the Langlands 
n 

decomposition ofP(I)]: x = k 77 a . 0 (k e K1, rj e N(I), a e A) . Then one has 

™ Gx(a.O,an.O) ~ 

Proot One has Gx(x, yn) = GxQiQr1 e~„ k) r\ a . 0, an . 0) = GA(C n rj a . 0, a n . 0) 

because kan = an kif keK1 (e'n = fc"1 e n

1 k). 

From Harnack inequality one gets 

l i m QfcM 
On the other hand : 

« . 0, an . 0) = Gx(a . 0, a n(a~ X ?] an). 0). 

Then the relation lim a" 1?] a n = e is valid because a n is /-canonical and Harnack 

n 
inequality imply again 

Gx(ria.Q,an.0) _ 
G A (a .0,a n .0) - 1 

hence the result. 

Proposition 20. Suppose that the sequence yneX converges to (D, z) e XCSF a n ^ 

r eR(D\ x eX. Then with A i , A 2 as in lemma 17 one has 

T — GjSjrxx,yn) ^ Ajl , / ^ H O ^ / \ 
A « M w w > S S- ft0^1)P ( r ' 2 ) 

Proof. From G-equivariance one can suppose D = / ) * , a = Voo € a +(/). From 
lemma 18 one can write yn in the form yn = en an . 0 where lim e n = e, and a n ¿ 5 / -

n 

canonical. If x is written in the form x = k t] a . 0 (k e K1, r\ e N(J\ a e A) with 

a =a a a € A( / ) , a""1 e A+ 7, one has from lemma 18 

l i m Gx(x7yn) _ -
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Denote by b the A(J)-part of r e R(X) in the Langlands decomposition. Then, one 

has also : lim J?n!^ = 1-
n Gxib xa,an.Q) 

It follows • 
G^xtyn) _ - T T — G A ( 6 r l a t a | t . O ) 

n <h!*yn> " * G A (a,a„.0) • 

But, if one write an = e*", a = eH,b = eL with H „ e a+(J), L e a(J), H = H+H 

H e a(7), - # e a+(J) one has from lemma 17 : G^(a, an . 0) > A2#i<Hi» - 3 ~H), 

Gx(.b-l a, a n . 0) £ A i g * -BT+L -H) . 

Because an is /-canonical, and -Re ~a+I one has for n large 

From the lemma 17 above 

.. gx(Hn-R+L-H) -p(LhiX0-X<vJL> 
lim 2 — = e 

» gx(ffn-8-H) 

if lim i # V = u e 0+ 

The form of hjfef') and of aCe1', UOO) gives : 

Theorem 21. For A < Ao, one has 

n Gx(Q,yn) - h*rtx)-

The Martin compactification ofX with respect to the Laplacian is equal to XVSF 

and the cocycle 0x[g, (D#)] is equal to hoig"1) P ig, z). 

The points (D>z) €XCSF which give minimal eigenfunctions are the pairs such thatD 
is conjugate to a subgroup MN and D c Biz). 

Proof. In order to obtain the first equality, one consider a sequence yneX such 

that \imyn = (D9z)eXCSF. 
n 

Because of proposition 19, the hypothesis of corollary 15 are satisfied hence 

n Gx(Q,yn) " h * ^ x ) ' 



- 5 9 -

As in the corollary 11 to theorem 9 one sees that the map from X C S F into Xc 

given by (D,z) -> h^p [V Xo~l = c] is a homeomorphism onto its range, in 

particular it is injective. This gives the second assertion. 

In the situation where G is a semi-simple algebraic group defined a local field 
(see part III), the random walk framework considered above remains valid. 
The "conical" compactification of & I K is well defined [Bor-Se] as well as the 
Busemann function if one uses the natural metric on the Bruhat-Tits building. 
The validity of the content of theorem 21 in this situation depends only of the 
validity of an analogue of lemma 17. 

In this case simple explicit formulae are available for the spherical functions 
and the Harish-Chandra c-function [Mac]. Hence the expression of the Green 
kernel restricted to A . o c reduces to an explicit Fourier integral on an r-
dimensional torus. Using the methods described in [Bab2] it is easy to show 
that lemma 17 is valid with natural changes. Hence the same description of the 
Martin compactification should remain valid in the ultrametric situation. 

Suppose now that G is the connected component of the set of real points of a 

fixed R-algebraic group, again denoted by G. 

One can then express the minimal A-eigenfunctions in terms of the 
fondamental representations of G [Bor], Consider the inverse root system of X 
and the canonical basis defined in terms of the Killing form which allow 
identification of a and a* : 

_r 2<xj 

Then if G>i denotes the dual basis of the Killing form has the expression : 
R 

= 2 di(v)(Di(a) 

where v, a e a. 

The linear form coi defines a fondamental representation pi of G in a finite 

dimensionnal real vector space Vt [Bor]. This representation is strongly 

rationnal, irreducible [Bor-Til] and its highest weight is a rationnal multiple of 

coi. If this weight is denoted r~* to/, the rationnal r^ 1 is supposed to be the 

smallest positive rationnal having such a property. If G is split over R and 

simply connected, then rj = 1. There exist a unique line in V( which is invariant 
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under B and its stabilizer is a maximal parabolic subgroup Pi z> B. One denotes 

b y / / a unit vector in this line and by I J the unique (up to a scalar) IT-invariant 

scalar product in Vi: 
- L 

Pi<g)fi = en 

ifgePi. 

In the projective space P(V/), the orbit of ft is isomorphic to typ/ and every point 

in this orbit corresponds to a point in S*\ Then, if x is a unit vector in Vi 

corresponding to b e the fondamental cocycle oj{g, b) is defined by the 

formula : 

The restriction of the Busemann function to A when z e corresponds to a 

unit vector v in a + is given by 

A(a . 0, Voo) = <vf Log a>. 

Hence the above formula giving the Killing form leads to the following formula 

for the Busemann cocycle /3 

1=1 1 

Here \v\ = 1, z = k . Voo where k e K corresponding to b e The Poisson kernel 

corresponds to v = - 2p with standard notations [He]. But from [ H e ] : 
R 

p = coi, hence 
¿=1 

Py2(g~\ 6) = n a T V 1 , b) 
¿=1 1 

with rt the rationnal defined above. 

This leads to the following formula for the minimal eigenfunctions : 

where u e a+ , |t/| = 1. 

One consider now the special case G = S£(d, R ) . Then if » = diag(vi, »2, , I ' D ) e a 
d 2 

the Killing form is given by ]i>||2 = 2d jT u f . The fondamental roots are given by 
¿=1 
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<*i(v) = Vi - Vi+i (1 < i < d-1), hence Ja/P2 = ^ . The fondamental representations 

are the representation of G in the wedge product Vi = A* R d (1 < i < d) and = 1. 
A sequence of unit multivectors : b\ = x\ , 62 - * 1 A ^ 2 , . . . 6rf-i = *i A .... A xd-i 
defines a flag b and the fondamental cocycles 07 are given by aj(g, 6) = [g bi\. 
From the above formulae, one gets the Poisson cocycle 

o(gtb)=njgbil-2. 

A vector i ; € Q + defines a point Voo e c X? and if 6 e & corresponds to k e K, 

one denotes by z the point of dXP defined b y : 

Z k . VQQ. 

Because [ai\2 = ^ , one has d$y) = 2d(vf-i;jf 1) and the Busemann cocycle /}(£, z) 

is now given by 

f}(g,z) = d n j g b i l V i - V M 

with the condition y? = 2d. 
»=i 

Hence the minimal A-eigenfunctions are given by the formula : 

= II \ r x b i \ 

with the conditions 

D D 2 

i=1 i=l 
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