BERNARD LASCAR RICHARD LASCAR Nicolas Lerner
Propagation of Singularities for Non Real Pseudo-Differential Operators
Publications de l'Institut de recherche mathématiques de Rennes, 1992-1993, fascicule 1
«Fascicule d'équations aux dérivées partielles», , exp. no 5 , p. 1-25
http://www.numdam.org/item?id=PSMIR_1992-1993___1_A5_0

© Département de mathématiques et informatique, université de Rennes, 1992-1993, tous droits réservés.
L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Propagation of singularities for non real pseudo-differential operators

Bernard Lascar
Mathématiques. URA 213, 4 Place Jussieu 75252 Paris Cedex 05.
Richard Lascar
Mathématiques. URA 213, 4 Place Jussieu 75252 Paris Cedex 05.
Nicolas Lerner
Mathématiques. URA 305.Université de Rennes 1.
Campus de Beaulieu. 35042 Rennes Cedex.
January 1993

Abstract

The purpose of this work is to prove a theorem of propagation of singularities for a class of non real pseudo-differential operator with multiple characteristics. The main tools are L^{2} estimates on the time dependent Schrödinger equation related to P. We extend here the results of [6]; we improve the results announced by the second author in [7].

The second part of this work consists in an extension of the result of [5] to complex valued symbols.

Contents

I The General result. 1
1 Introduction and main statement 1
2 Estimates on solutions of the Schrödinger equation 4
3 Semi global L^{2} estimates. 11
II A more precise result in a particular case. 13
4 Construction of the stable manifolds. 13
5 The energy estimate. 19
5.1 The basic L^{2} inequality. 19
5.2 Concatenations. 21

Part I

The General result.

We start by a general result which could not be optimal in all the cases scanned here. The approach is similar to [6] but we use also time dependent L^{2} estimate and some informations on the parametrix constructed in [6]. The main difference with the proof in [7] is that we need to have an analysis of the microlocal structure of the parametrix of the time dependent Schrödinger equation associated with the self-adjoint part of our operator.

1 Introduction and main statement

Let $P\left(x, \lambda^{-1} D_{x}, \lambda\right)$ be a pseudo-differential operator depending on a large parameter λ, defined by the Weyl formula :

$$
\begin{align*}
P\left(x, \lambda^{-1} D_{x}, \lambda\right) u(x, \lambda) & =o p_{1 / 2}((p(x, \xi / \lambda, \lambda))(u)(x) \\
& =\left(\frac{\lambda}{2 \pi}\right)^{n} \int p\left(\frac{x+y}{2}, \xi, \lambda\right) e^{i \lambda(x-y) \xi} u(y, \lambda) d y d \xi \tag{1}
\end{align*}
$$

We shall write the operator given by formula $1(p(x, \xi, \lambda))^{w_{\lambda}}$.
The full symbol $p(x, \xi, \lambda)$ has an expansion as

$$
\begin{equation*}
p(x, \xi, \lambda)=p_{1}(x, \xi)+i p_{2}(x, \xi)+\lambda^{-1} p_{0}(x, \xi, \lambda) \tag{2}
\end{equation*}
$$

where p_{1} and p_{2} are real and $p_{2} \geq 0 . p_{0}(x, \xi, \lambda)$ is a zero order symbol i.e. satisfies estimates:

$$
\text { For all multi-indices } \alpha \text { and } \beta\left|D_{x}^{\alpha} D_{\xi}^{\beta} p_{0}(x, \xi, \lambda)\right| \leq C_{\alpha, \beta} \text {. }
$$

It is a consequence of formulas 1 and 2 that

$$
\begin{equation*}
P\left(x, \lambda^{-1} D_{x}, \lambda\right)=P_{1}\left(x, \lambda^{-1} D_{x}, \lambda\right)+i P_{2}\left(x, \lambda^{-1} D_{x}, \lambda\right) \tag{3}
\end{equation*}
$$

where P_{1} and P_{2} are self-adjoint pseudo-differential operators with symbols respectively

$$
\begin{align*}
& P_{1}=\left(p_{1}(x, \xi)+\lambda^{-1} \operatorname{Re}\left(p_{0}(x, \xi, \lambda)\right)^{w_{\lambda}}\right. \tag{4}\\
& P_{2}=\left(p_{2}(x, \xi)+\lambda^{-1} \operatorname{Im}\left(p_{0}(x, \xi, \lambda)\right)^{w_{\lambda}}\right. \tag{5}
\end{align*}
$$

We shall make L^{2} estimates on the solutions $u(t)$ of the Schrödinger equation $\left(D_{t}+P\left(x, \lambda^{-1} D_{x}, \lambda\right)\right) u(t)=0$. We shall therefore use some constructions made in [6]. We need to recall the hypotheses of this work.

- $(\mathrm{H})_{1}$: Let Φ_{t} be the bicharacteristic flow of p_{1} at the time t. Let ρ_{0} in $\mathrm{T}^{*} \mathrm{R}^{n}$ be a point near which we shall work. Let $h(t) \in o(t)$ when $t \rightarrow \infty, h \geq 0$ a function, and W a neighborhood of ρ_{0} such that any bicharacteristic curve of p_{1} with end points lying in

$$
\Lambda(W, h)=\left\{\begin{array}{c}
\left(\rho_{1}, \rho_{2}\right) \in W^{2} ; \exists t \geq 0 \text { such that } \rho_{1}=\Phi_{t}\left(\rho_{2}\right), \tag{6}\\
\text { and if } 0 \leq s \leq t \Phi_{s}\left(\rho_{2}\right) \in W \text { and }\left|p_{1}\left(\rho_{1}\right)\right| \leq \exp (-h(t))
\end{array}\right\}
$$

is N_{0} admissible 1 for a function $\left.\varepsilon \in \mid 0,1\right] \rightarrow N_{0}(\varepsilon) \in \mathbf{R}^{+}$. We refer to [6] Pp 468-469 for a definition and for sufficient conditions which

[^0]imply this property. We shall not recall here the details, but we just mention that it is satisfied if the bicharacteristics of p_{1} whose lenght is large enough leave a neighborhood of (ρ_{0}, ρ_{0}).

Let $N=\left\{\rho \in \mathrm{T}^{*}\left(\mathrm{R}^{n}\right) ; p_{1}(\rho)=d p_{1}(\rho)=0\right\}$ be the set of double characteristics of P_{1}.

- $(\mathrm{H})_{2}$: The main assumption is that on N, the dimension of the space spanned by the generalized eigenvectors associated with eigenvalues of positive imaginary part is constant.
- $(\mathrm{H})_{3}:$ On $N, \operatorname{Imp} p_{0}(\rho)>0$. This inequality means that $I m p_{0}$ has a positive lower bound with respect to ρ and λ.

Let us define

$$
\begin{equation*}
C(\bar{W})=\bigcap_{h \in \omega} \overline{\Lambda(W, h)} \tag{7}
\end{equation*}
$$

where ω is the set of all non negative increasing functions $h(t) \in o(t)$ when $t \rightarrow \infty$.

We consider $C(\bar{W})$ as a relation in $\mathrm{T}^{*}\left(\mathbf{R}^{\mathbf{n}}\right)$.
We note by $O F(u)$ the oscillatory front set of a bounded family of tempered distributions $u(x, \lambda)$.

Let us recall that we say that $\left(x_{0}, \xi_{0}\right) \in(O F(u))^{c}$ if there are neighborhoods V of x_{0} and L of ξ_{0} such that for any $\varphi \in \mathrm{C}_{0}^{\infty}(V)$

$$
\text { For all } N \in \mathbf{N}, \text { for } \lambda \geq 1 \sup _{\xi \in L}|\widehat{\varphi} \hat{u}|(\lambda \xi, \lambda) \leq C_{N} \lambda^{-N} \text {. }
$$

The main result can now be stated.
Theorem 1 Assume that the assumptions $(\mathrm{H})_{1}(\mathrm{H})_{2},(\mathrm{H})_{3}$ are satisfied for a suitable set W and for some function $h_{0} \in \omega$. Let $u(x, \lambda)$ be a bounded family of tempered distributions. If $O F(P u) \cap \bar{W}=\emptyset$ and $C(\bar{W})(\rho) \cap \partial W \cap$ $O F(u)=\emptyset$, then $\rho \neq O F(u)$.

We easily deduce :
Corollary 1 Let $\rho_{0} \in \mathrm{~T}^{*}\left(\mathrm{R}^{n}\right) \backslash 0, P\left(x, D_{x}\right)$ a pseudo-differential operator in the usual sense. Assume that $(\mathrm{H})_{1}(\mathrm{H})_{2},(\mathrm{H})_{3}$ are satisfied for a neighborhod W of ρ_{0} and a function $h_{0} \in \omega$. Let u be a distribution such that $W F(P u) \cap$ $\bar{W}=\emptyset$ and $C(\bar{W})(\rho) \cap \partial W \cap W F(u)=\emptyset$, then $\rho \notin W F(u)$.

The main difference between the proof of this theorem and the corresponding result in [7] is the presence in the bicharacteristic flow of p_{1} of expansive diractions. This will make us to use fully the construction of the parametrix of [6] instead of using only microlocalisations in a semi-global L^{2} inequality for the solutions of the time dependent Schrödinger equation associated with P_{1}.

2 Estimates on solutions of the Schrödinger equation

We shall work with a family of solutions of the Schrödinger equation ($D_{t}+$ $\left.P\left(x, \lambda^{-1} D_{x}\right)\right) u(t)=0$, where $D_{t}=(1 / i \lambda) \partial / \partial t$.

We need to make a Fourier-Bros-Iagolnitzer transformation (see [9] and [6]). Let

$$
\begin{equation*}
T u(x, \lambda)=\left(\frac{\lambda}{2 i \pi}\right)^{n / 2} \int e^{-\lambda / 2\left((x-y)^{2}-x^{2} / 2\right)} u(y, \lambda) d y \tag{8}
\end{equation*}
$$

this is a unitary transformation from $L^{2}\left(\mathbf{R}^{n}\right)$ to the space $H_{\varphi_{0}}\left(\mathbf{C}^{n}\right)$ of entire functions in $L^{2}\left(\mathrm{C}^{n}, e^{-2 \lambda \varphi_{0}} \mathrm{~L}(d x)\right)$, where $\mathrm{L}(d x)$ is the Lebesgue measure in C^{n}, and $\varphi_{0}(x)=\frac{1}{4}|x|^{2}$.

We note by the same letter an operator and its conjugate by T.
We have a Bergman projector from $L^{2}\left(\mathrm{C}^{n}, e^{-2 \lambda \varphi_{0}} \mathrm{~L}(d x)\right)$ to $H_{\varphi_{0}}\left(\mathrm{C}^{n}\right)$ given by the formula

$$
\begin{equation*}
S u(x, \lambda)=\left(\frac{\lambda}{2 i \pi}\right)^{n} \int e^{\lambda \pi \tilde{j} / 2} u(y, \lambda) e^{-2 \lambda \varphi_{0}(y)} \mathrm{L}(d y) \tag{9}
\end{equation*}
$$

see [9] for these formulas. Let us say that the formula 9 is obtained by integrating the formal integral in $T T^{-1}$ along a suitable contour.

In [6] we can find some constructions for an approximate solution $E_{t} u(x, \lambda)$ of the equation $\left(D_{t}+P_{1}\left(x, \lambda^{-1} D_{x}\right)\right)\left(E_{t} u\right) \equiv 0 ;\left.E_{t} u\right|_{t=0} \equiv u$, we shall make this more precise later.

$$
\begin{equation*}
E_{t} u(x, \lambda)=\left(\frac{\lambda}{2 i \pi}\right)^{n} \int e^{i \lambda \varphi(t, x, \bar{y})} e(t, x, \bar{y}, \lambda) \chi(t, x, \bar{y}) u(y, \lambda) e^{-2 \lambda \varphi_{0}(y)} \mathrm{L}(d y) \tag{10}
\end{equation*}
$$

where $\varphi(t, x, y)$ is a solution of the phase equation with value $\varphi(0, x, \bar{y})=$ $-i x \bar{y} / 2 ; e(t, x, y, \lambda)$ is a solution of transport equations, $\chi(t, x, y)$ is a cut-off function.

Let

$$
\begin{equation*}
\Gamma_{t}(W, h)=\left\{(x, y) ;\left(x, \frac{2}{i} \frac{\partial \varphi_{0}}{\partial x}, y, \frac{2}{i} \frac{\partial \varphi_{0}}{\partial y}\right) \in \Lambda_{t}^{\prime}(W, h)\right\} \tag{11}
\end{equation*}
$$

where $\Lambda_{t}^{\prime}(W, h)$ is the image by the complex canonical transformation generated by $\varphi_{0}(x)$ of the Lagrangean sub manifold

$$
\Lambda_{t}(W, h)=\left\{\begin{array}{c}
\left(\rho_{1}, \rho_{2}^{\prime}\right) \in W^{2} ; \text { such that } \rho_{1}=\exp \left(t H_{p_{1}}\right)\left(\rho_{2}\right) \text { if } 0 \leq s \leq t \tag{12}\\
\exp \left(s H_{p_{1}}\right)\left(\rho_{2}\right) \in W \text { and }\left|p_{1}\left(\rho_{1}\right)\right| \leq \exp (-h(t))
\end{array}\right\}
$$

where ρ_{2} is the antipodal point of ρ_{2}.
$\Gamma_{t}(W, h)$ is totally real in $\mathbf{C}^{n} \times \mathbf{C}^{n}$. We again refer to [6] for the construction of a convenient projection $\mathbf{C}^{\mathbf{n}} \times \mathbf{C}^{\boldsymbol{n}} \rightarrow \Gamma_{t}(W, h) ; z \rightarrow m(t, z) \in$ $\Gamma_{t}(W, h) ; m(t, z)$ will be defined uniquely by the additional property that $z-m(t, z) \in i \mathrm{~T}_{m(t, z)} \Gamma_{t}(W, h)$.

Therefore functions on $\Gamma_{t}(W, h)$ give rise to almost analytic extension in $\mathbf{C}^{n} \times \mathbf{C}^{n}$. Appropriate controls with respect to t are obtained in [6]. From these controls it follows that all derivatives with respect to (t, x) of these maps are bounded by some $\exp (h(t))$ with a function $h(t) \in o(t)$ when $t \rightarrow \infty$. So $\varphi(t, x, y), \ldots, \chi(t, x, y)$ will be almost analytic on Γ_{t} and there derivatives are bounded by some $\exp (h(t))$. A more precise decay in time for the amplitude $e(t, x, y)$ is obtained and this will be discussed later since this point is essential in our discussion.

Proposition 1 There are two constants $C>0, \gamma>0$ such that

$$
\begin{equation*}
\left\|E_{t}\right\| \leq C \lambda^{n} \exp (-1 / 2 \gamma t) \tag{13}
\end{equation*}
$$

γ being as close as we wish of the lower bound of

$$
T^{+}(\rho)=\sum_{z_{j} \in \operatorname{Spec}\left(F_{p_{1}}\right), R e z_{j}>0} R e z_{j} .
$$

We shall not use this result here, but it is woth mentionning since it is the key point of the proof in [6]. The proof will be derived from elements of the proof of the following Proposition.

Proposition 2 There are constants $M>0, C>0$ such that

$$
\begin{equation*}
\left\|E_{t}\right\| \leq C \tag{14}
\end{equation*}
$$

if $\exp (M t) \leq \lambda$, the norms are taken in $H_{\varphi_{0}}\left(\mathbf{C}^{n}\right)$.

Proof. Let us prove Proposition 2. Let E_{t}^{*} be the adjoint of E_{t} in $H_{\varphi_{0}}\left(\mathrm{C}^{n}\right)$. If we write $d \mu(x)=e^{-2 \lambda \varphi_{0}(x)} \mathrm{L}(d x)$ the kernel (with respect to $\mu)$ of E_{t}^{*} is given by $E_{t}^{*}(x, y)=\int S(x, z) \overline{E_{t}\left(y_{1} z\right)} d \mu(z)$, the kernel of $E_{t}^{*} E_{t}$ is therefore $E_{t}^{*} E_{t}(x, y)=\int S\left(x, x_{1}\right) \overline{E_{t}\left(x_{2}, x_{1}\right)} E_{t}\left(x_{2}, y\right) d \mu\left(x_{1}\right) d \mu\left(x_{2}\right)$. We write this integral

$$
\begin{equation*}
E_{t}^{*} E_{t}(x, y)=\int e^{i \lambda H\left(t, x, y ; x_{1}, x_{2}\right)} f\left(t, x, y ; x_{1} x_{2}, \lambda\right) d \mu\left(x_{1}\right) d \mu\left(x_{2}\right) \tag{15}
\end{equation*}
$$

In 15 we have

$$
\begin{equation*}
H\left(t, x, y ; x_{1}, x_{2}\right)=\psi\left(x, x_{1}\right)-\overline{\varphi\left(t, x_{2}, \bar{x}_{1}\right)}+\varphi\left(t, x_{2}, \bar{y}\right)+2 i\left(\varphi_{0}\left(x_{1}\right)+\varphi_{0}\left(x_{2}\right)\right) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(t, x, y ; x_{1}, x_{2}, \lambda\right)=c \lambda^{3 n} \overline{\left(t, x_{2}, x_{1}\right)} e\left(t, x_{2}, \bar{y}\right) \overline{\chi\left(t, x_{2}, x_{1}\right)} \chi\left(t, x_{2}, \bar{y}\right) \tag{17}
\end{equation*}
$$

where c is some absolute constant, $\psi\left(x, x_{1}\right)=-i x \overline{x_{1}} / 2$. We first investigate the critical points of H with respect to (x_{1}, x_{2}); we estimate, using [6] page 505 (5.30)

$$
\begin{align*}
& \operatorname{ImH}\left(t, x, y ; x_{1}, x_{2}\right)+\Phi(x, y) \geq \\
& \quad c\left(\left|x-x_{1}\right|^{2}+\left|\left(x_{2}, \bar{x}_{1}\right)-m_{t}\left(x_{2}, \bar{x}_{1}\right)\right|^{2}+\left|\left(x_{2}, \bar{y}\right)-m_{t}\left(x_{2}, \bar{y}\right)\right|^{2}\right) \tag{18}
\end{align*}
$$

with the notation $\Phi(x, y)=\varphi_{0}(x)+\varphi_{0}(y)$. We have

$$
\begin{align*}
& H_{x_{1}}^{\prime}=-\overline{\varphi_{y}^{\prime}\left(t, x_{2}, \bar{x}_{1}\right)}-i / 2 \bar{x}_{1} \\
& H_{x_{1}}^{\prime}=-i / 2 x-\overline{\bar{\varphi}_{\bar{y}}^{\prime}\left(t, x_{2}, \bar{x}_{1}\right)}+i / 2 x_{1} \\
& H_{x_{2}}^{\prime}=-\overline{\varphi_{\bar{x}}^{\prime}\left(t, x_{2}, \bar{x}_{1}\right)}+\varphi_{x}^{\prime}\left(t, x_{2}, \bar{y}\right)+i / 2 \bar{x}_{2} \\
& H_{x_{2}}^{\prime}=-\overline{\varphi_{x}^{\prime}\left(t, x_{2}, \bar{x}_{1}\right)}+\varphi_{\bar{x}}^{\prime}\left(t, x_{2}, \bar{y}\right)+i / 2 x_{2} \tag{19}
\end{align*}
$$

It results from these relations that we have a "real" critical point when $x_{1}=x,\left(x_{2}, x_{1}\right) \in \Gamma_{t},\left(x_{2}, \bar{y}\right) \in \Gamma_{t}$, i.e. when $x=y$ the critical point being $x_{1}=x, x_{2}=\Phi_{t}(x)$. Let $\varepsilon_{1}>0$ a small number to be chosen later.

In the integral 15 , using 18 we can restrict the integration over the set of $\left(x_{1}, x_{2}\right)$ such that $\left|\left(x_{2}, \bar{x}\right)-m_{t}\left(x_{2}, \bar{x}\right)\right|^{2}+\left|\left(x_{2}, \bar{y}\right)-m_{t}\left(x_{2}, \bar{y}\right)\right|^{2} \leq \varepsilon_{0} \lambda^{-1+\varepsilon_{1}}$, $\left|x-x_{1}\right|^{2} \leq \varepsilon_{0} \lambda^{-1+\varepsilon_{1}}$ for some ε_{0} to be chosen later; we neglect then a term $\mathcal{O}\left(\lambda^{-\infty}\right)$. We deduce from the relations 19 that a zone
$\left|\varphi_{x}^{\prime}\left(t, x_{2}, \bar{x}\right)-\varphi_{x}^{\prime}\left(t, x_{2}, \bar{y}\right)\right| \geq C \varepsilon_{0}^{1 / 2} \lambda^{\left(-1+\varepsilon_{1}\right) / 2}$ give also a term $\mathcal{O}\left(\lambda^{-\infty}\right)$. As $m_{t}\left(x_{2}, \bar{x}\right)$ and $m_{t}\left(x_{2}, \bar{y}\right) \in \Gamma_{t}$, we have $\Phi_{t}\left(m_{t}\left(x_{2}, \bar{x}\right)_{y}\right)=m_{t}\left(x_{2}, \bar{x}\right)_{x}$ and $\Phi_{t}\left(m_{t}\left(x_{2}, \bar{y}\right)_{y}\right)=m_{t}\left(x_{2}, \bar{y}\right)_{x}, \Phi_{t}$ is a diffeomorphism whose first two derivatives are bounded by some $e^{c t}$, we have then $|x-y| \leq C \varepsilon_{0} e^{c t} \lambda^{\left(-1+\varepsilon_{1}\right) / 2}$.

Let us estimate the Hessian of H at real critical points.
We first make a complexification and we write $\widetilde{x}_{1}, \tilde{x}_{2}$ instead of \bar{x}_{1}, \bar{x}_{2}, we shall refer to the set $\left\{\widetilde{x}_{1}=\bar{x}_{1}, \tilde{x}_{2}=\bar{x}_{2}\right\}$ as the real. Let $\varphi_{1}\left(t, \tilde{x}_{2}, x_{1}\right)$ be an almost analytic extension of $\overline{\varphi\left(t, \overline{\tilde{x}_{2}}, \bar{x}_{1}\right)}$. Let \tilde{H} be an almost analytic function on

$$
\tilde{\Gamma}_{t}=\left\{\left(x, y, x_{1}, \tilde{x}_{1}, x_{2}, \tilde{x}_{2}\right) ;\left(\overline{\tilde{x}_{2}}, \bar{x}_{1}\right) \in \Gamma_{t},\left(x_{2}, \bar{y}\right) \in \Gamma_{t}\right\}
$$

extending H. We compute $\nabla^{2} \tilde{H}\left(t, x, x ; x, \bar{x}, \Phi_{t}(\bar{x}), \overline{\Phi_{t}(\bar{x})}\right)$ as the map

$$
\begin{align*}
& \left(\delta x_{1}, \delta \tilde{x}_{1}, \delta x_{2}, \delta \tilde{x}_{2}\right) \rightarrow \\
& \quad\left(i / 2 \delta \tilde{x}_{1}-\varphi_{1 y y}^{\prime \prime} \delta x_{1}-\varphi_{1 z y}^{n} \delta \tilde{x}_{2}, i / 2 \delta x_{1}, \varphi_{x x}^{\prime \prime} \delta x_{2}+i / 2 \delta \tilde{x}_{2}\right. \\
& \left.\quad-\varphi_{1 x x}^{n} \delta \tilde{x}_{2}-\varphi_{1 y x}^{n} \delta x_{1}+i / 2 \delta x_{2}\right) \tag{20}
\end{align*}
$$

the computation being simplified by the fact that at such particular points $\nabla^{2} \varphi$ is C -linear. This map is invertible and its inverse will have the same norms as the inverse of

$$
\begin{equation*}
\left(\delta x_{2}, \delta \tilde{x}_{2}\right) \rightarrow\left(\varphi_{x x}^{\prime \prime}\left(t, x_{2}^{c}, \bar{x}\right) \delta x_{2}+i / 2 \delta \tilde{x}_{2},-\bar{\varphi}_{x x}^{\prime \prime}\left(t, x_{2}^{c}, \bar{x}\right) \delta \tilde{x}_{2}+i / 2 \delta x_{2}\right) \tag{21}
\end{equation*}
$$

with $x_{2}^{c}=\Phi_{t}(x)$. We have then to estimate the inverse of the map $\bar{\varphi}_{x x}^{\prime \prime}\left(t, x_{2}^{c}, \bar{x}\right) \varphi_{x x}^{\prime \prime}\left(t, x_{2}^{c}, \bar{x}\right)-\frac{1}{4}$. We refer to ([6] Proposition 5.2 (5.28)) to obtain

$$
\nabla^{2} \varphi(t, z)=\left(\begin{array}{cc}
\frac{1}{4} \bar{b} a^{-1} & \frac{i^{t}}{}{ }^{t} a^{-1} \tag{22}\\
-\frac{i}{2} a^{-1} & \frac{1}{4} b^{t} a^{-1}
\end{array}\right)
$$

where $(t, z) \in \Gamma, a$ and b are defined by the relation 23

$$
\left(\delta x-i \delta \xi, \frac{\delta x+i \delta \xi}{2 i}\right)=\left(\begin{array}{cc}
a & b \tag{23}\\
\frac{1}{4} \bar{b} & \bar{a}
\end{array}\right)\left(\delta y-i \delta \eta, \frac{\delta y+i \delta \eta}{2 i}\right)
$$

if ($\delta x, \delta \xi, \delta y, \delta \eta$) is a tangent vector of Λ_{t}. We refer to [6] section 5, page 490. We have

$$
\begin{equation*}
(t, z) \in \Gamma,\left\|\varphi_{x y}^{\prime \prime-1}(t, z)\right\| \leq 2\|a(t, z)\| \tag{24}
\end{equation*}
$$

Moreover $\emptyset_{x x}^{n} \varphi_{x x}^{n}-\frac{1}{4}=-\frac{1}{4} a^{-1} a^{-1}$ as a consequence of the relation $a^{*} a-$ $\frac{1}{4}^{t} b \bar{b}=I$. So the norm of the inverse of the map 21 is $|\operatorname{det} a(t, z)|^{2}$. As computed in $[6]$ the module of $e(t, z)$ at a point $(t, z) \in \Gamma$ is precisely $|\operatorname{det} a(t, z)|^{-1 / 2}$.

This means that in the stationary phase expansion of integral 15 the powers of λ and the exponentials decays in time vanish, it remains only the normal λ^{n}. See [6] section 6.2, page 509-510, relations (6.4) and (6.5).

The condition $\exp (M t) \leq \lambda$ will allow us to give sense to the application of stationary phase expansion with a complex phase function (see [4]) uniformly with respect to (t, x, y).

We need to be more specific in the application of the stationary phase method. We check here some steps with uniform controls in t.

In a neighborhood $V=\left\{(x, y) ;|x-y| \leq \varepsilon_{0} e^{-M_{0} t}\right\}$ of the diagonal we have a C^{∞} map $(t, x, y) \rightarrow Z_{c}(t, x, y) \in \mathrm{C}^{4 n}$, where $Z=\left(x_{1}, \tilde{x}_{1}, x_{2}, \tilde{x}_{2}\right)$, such that $\partial_{z} \widetilde{H}\left(t, x, y ; Z_{c}(t, x, y)\right)=0$. The derivatives of this map satisfy some. estimates like $\left|D_{t, x, y}^{\alpha} Z_{c}(t, x, y)\right| \leq C_{\alpha} \exp (c t|\alpha|)$ for some constants C_{α} and $c>0$. Hence we have

$$
\begin{equation*}
\left|Z_{c}(t, x, y)-Z_{c}(t, x, x)\right| \leq C \exp (c t)|x-y| \tag{25}
\end{equation*}
$$

We can define a symmetric complex matrix $Q(t, x, y)$ such that

$$
\partial_{Z Z}^{2} \tilde{H}\left(t, x, y ; Z_{c}(t, x, y)\right)=i Q^{2}(t, x, y)
$$

which is well defined and smooth since V is connected and simply connected.
We have $\left\|Q^{-1}(t, x, y)\right\| \leq C \exp (c t)$ for some constants c and $C>0$. We have

$$
\begin{align*}
\operatorname{Im} \tilde{H}(t, x, y ; Z)= & \operatorname{Im}\left(\tilde{H}\left(t, x, y ; Z_{c}(t, x, y)\right)+\right. \\
& 1 / 2 \operatorname{Im} \partial^{2} \tilde{H}_{Z Z}\left(t, x, y ; Z_{c}(t, x, y)\right)\left(Z-Z_{c}(t, x, y)\right)^{2}+ \\
& \mathcal{O}\left(\left(\operatorname{dist}\left(Z_{c}(t, x, y), \text { real }\right)\right)^{\infty}+\left|Z-Z_{c}(t, x, y)\right|^{3}\right) \tag{26}
\end{align*}
$$

we choose a point Z such that $Z \in$ real $=\left\{x_{1}=\tilde{x}_{1} ; x_{2}=\tilde{x}_{2}\right\}$, then $\operatorname{Im}\left(\tilde{H}(t, x, y ; Z)+\Phi(x, y) \geq 0\right.$, and $\operatorname{dist}\left(Z_{c}(t, x, y)\right)$, real $) \leq\left|Z-Z_{c}(t, x, y)\right|$. We use then the estimate (2.6) of [4] and we derive

$$
\begin{equation*}
\operatorname{Im} \tilde{H}\left(t, x, y ; Z_{c}(t, x, y)\right)+\Phi(x, y) \geq C e^{-a t} \operatorname{dist}\left(Z_{c}(t, x, y), \text { real }\right)^{2} \tag{27}
\end{equation*}
$$

This relation shows that the stationary phase expansions are independent of the choice of particular almost analytic extensions but is inadequate to bound the L^{2} norm.

We shall compute $H_{c}(t, x, y)=\left(t, x, y ; Z_{c}(t, x, y)\right)$ with a Taylor expansion on the diagonal

$$
\begin{align*}
H_{c}(t, x, y)= & H_{c}(t, x, x)+\nabla_{y} \tilde{H}(t, x, x)(y-x)+1 / 2 \nabla_{y y}^{2} H(t, x, x)(y-x)^{2} \\
& \left.-1 / 2\left(\left(\tilde{H}_{Z Z}^{n}\right)^{-1} \tilde{H}_{Z y}^{n}(y-x), \tilde{H}_{Z y}^{n}(y-x)\right)\right)+\mathcal{O}\left(e^{a t}(x-y)^{3}\right) \tag{28}
\end{align*}
$$

The second term in 28 is $\varphi_{y}^{\prime}\left(t, x_{2}^{c}, \bar{x}\right)(\bar{y}-\bar{x})=-i / 2 x(\bar{x}-\bar{y})$. The third term is given by $1 / 2 \varphi_{y y}^{\prime \prime}(\bar{y}-\bar{x})^{2}$. $\tilde{H}_{z y}^{\prime}(y-x)=\left(0,0, \varphi_{x y}^{\prime \prime}(\bar{y}-\bar{x}), 0\right)$. The inverse $\left(\tilde{H}_{Z Z}^{\prime \prime}\right)^{-1} \delta X=\delta Z$ is given by the relations

$$
\begin{gather*}
\bar{\varphi}_{y x}^{\prime \prime} \delta Z_{2}-\bar{\varphi}_{y y}^{\prime} \delta Z_{1}-i / 2 \delta \tilde{Z}_{1}=\delta X_{1}, i / 2 \delta Z_{1}=\delta \tilde{X}_{1} \tag{29}\\
\left(\delta Z_{2}, \delta \tilde{Z}_{2}\right)=\left(\begin{array}{ll}
-\left(1 / 4-\bar{\varphi}_{x x}^{n} \varphi_{x x}^{n}\right)^{-1} \bar{\varphi}_{x x}^{\prime \prime} & -i / 2\left(1 / 4-\bar{\varphi}_{x x}^{\prime \prime} \varphi_{x x}^{n}\right)^{-1} \\
-i / 2\left(1 / 4-\varphi_{x x}^{n} \bar{\varphi}_{x x}^{*}\right)^{-1} & \left(1 / 4-\varphi_{x x}^{\prime \prime} \vec{\varphi}_{x x}^{\prime \prime}\right)^{-1} \varphi_{x x}^{*}
\end{array}\right)\left(\delta X_{2}, \delta \tilde{X}_{2}\right) \tag{30}
\end{gather*}
$$

We make $\delta X=\left(0,0, \varphi_{x y}^{\prime \prime}(\bar{y}-\bar{x}), 0\right)$. The fourth term in 28 is given by $1 / 2\left(\varphi_{x y}^{\prime \prime}(\bar{y}-\bar{x}),\left(1 / 4-\varphi_{x x}^{\prime \prime} \bar{\varphi}_{x x}^{\prime}\right)^{-1} \bar{\varphi}_{x x}^{\prime \prime} \varphi_{x y}^{\prime}(\bar{y}-\bar{x})\right)$. Adding these two terms we have to compute $1 / 2\left(\varphi_{y y}^{\prime \prime}+\varphi_{y x}^{\prime \prime}\left(1 / 4-\bar{\varphi}_{x x}^{\prime \prime} \varphi_{x x}^{\prime \prime}\right)^{-1} \bar{\varphi}_{x x}^{\prime} \varphi_{x y}^{\prime \prime}\right)$. We recall that $\left(1 / 4-\bar{\varphi}_{x x}^{\prime \prime} \varphi_{x x}^{\prime \prime}\right)=1 / 4 a^{-1 *} a^{-1}$, so $\varphi_{y y}^{n}+\varphi_{y x}^{\prime \prime}\left(1 / 4-\bar{\varphi}_{x x}^{\prime \prime} \varphi_{x x}^{\prime \prime}\right)^{-1} \bar{\varphi}_{x x}^{\prime \prime} \varphi_{x y}^{n}=$ $1 / 4^{t} b^{t} a^{-1}-1 / 4 a^{-1} a a^{*} b \vec{a}^{-1 t} a^{-1}=0$. We have therefore $H_{c}(t, x, y)=H_{c}(t, x, x)-$ $i / 2 x \bar{y}+i / 2 x \bar{x}$.

We have now to compute $H_{c}(t, x, x),(\partial / \partial t) H_{c}(t, x, x)=-\bar{\varphi}_{t}^{\prime}\left(t, x_{2}^{c}, \bar{x}\right)+$ $\varphi_{t}^{\prime}\left(t, x_{2}^{c}, \bar{x}\right)$ where $x_{2}^{c}=\Phi_{t}(\bar{x})$; on $\Gamma_{t} \varphi_{t}^{\prime}(t, x, y)+p_{1}\left(x, \varphi_{x}^{\prime}(t, x, y)\right)=0$ then $\operatorname{Im} \varphi_{t}^{\prime}(t, x, y)=0$; so $H_{c}(t, x, x)=H_{c}(0, x, x)=\psi(x, x)+2 i \operatorname{Im} \psi(x, x)+$ $4 i \varphi_{0}(x)=-\frac{i}{2}|x|^{2}$.

We have obtained

$$
\begin{equation*}
H_{c}(t, x, y)=-\frac{i}{2} x \bar{y}+\mathcal{O}\left(e^{a t}|x-y|^{3}\right) \tag{31}
\end{equation*}
$$

We deduce from 31 that in V,

$$
\begin{equation*}
\operatorname{Im} H_{c}(t, x, y)+\Phi(x, y) \geq C^{-1}|x-y|^{2} \tag{32}
\end{equation*}
$$

From the usual estimate of L^{2} norms, we obtain the result of Proposition 2. Moreover the relation $e^{M t} \lambda^{-1} \leq 1$ shows that we have an convergent asymptotic development in term of uniform decay in λ. \sharp

Proposition 3 Let M and t satisfy $e^{M t} \lambda^{-1} \leq 1$, then $E_{t}^{*} E_{t}$ is a pseudodifferential operator of order zero belonging to a class of $S\left(1, g_{\varepsilon}\right)$ (see [3] Chapter 18) where $g_{\varepsilon}=\lambda^{2 \varepsilon}\left(|d x|^{2}+|d \xi|^{2}\right)$, where $\varepsilon>0$ depends on M and on the properties of the flow of $H_{p_{1}}$; when $M \rightarrow \infty, \varepsilon \rightarrow 0$.

Let us recall that a symbol $a \in S\left(1, g_{c}\right)$ satisfies uniform estimates
For all multi-indices $\alpha, \beta,\left|D_{x}^{\alpha} D_{\xi}^{\beta} a(x, \xi, \lambda)\right| \leq C_{\alpha, \beta} \lambda^{\varepsilon(|\alpha|+|\beta|)}$.
Proof.
We shall derive this property from Proposition 2 and from the characterization of pseudo-differential operators due to Beals [1]. Let us estimate the L^{2} norm of the first commutators $x^{\alpha} D_{x}^{\beta} E_{t}^{*} E_{t}-E_{t}^{*} E_{t} x^{\alpha} D_{x}^{\beta}$ for $|\alpha|+|\beta|=1$. Using the computations of the proof above we express

$$
\begin{align*}
x^{\alpha} D_{x}^{\beta} E_{t}^{*} E_{t} u(x)= & \int x^{\alpha}\left(H_{x c}^{\prime}(t, x, y)\right)^{\beta} f(t, x, y) e^{i \lambda H_{c}(t x, y)} u(y) d \mu(y) \\
& +\mathcal{O}\left(e^{a t} \lambda^{-1}\right) \tag{33}
\end{align*}
$$

in this formula $u \in H_{\varphi_{0}}\left(\mathrm{C}^{n}\right)$, the notation \mathcal{O} means that the remainder has the same form but the order of the symbol is lowered. We have $E_{t}^{*} E_{t}\left(x^{\alpha} D_{x}^{\beta} u\right)(x)=\int f(t, x, y) e^{i \lambda H_{c}(t, x, y)} y^{\alpha} D_{y}^{\beta} u(y) d \mu(y)$, we integrate by part in this formula so

$$
\begin{align*}
E_{t}^{*} E_{t}\left(x^{\alpha} D_{x}^{\beta} u\right)(x)= & (-1)^{|\beta|} \int f(t, x, y) e^{i \lambda H_{c}(t, x, y)} y^{\alpha} \\
& \left(H_{y c}^{\prime}(t, x, y)+i y / 2\right)^{\beta} u(y) d \mu(y)+\mathcal{O}\left(e^{a t} \lambda^{-1}\right)(3 . \tag{34}
\end{align*}
$$

We compare 33 and 34 , using 31 we get $H_{x c}^{\prime}(t, x, y)=-i \bar{y} / 2+O\left(e^{a t}(x-y)^{2}\right)$ and $H_{y c}^{\prime}(t, x, y)=O\left(e^{a t}(x-y)^{2}\right), x-y+\mathcal{O}\left(e^{a t}(x-y)^{2}\right)=H_{y c c}^{\prime}(t, x, y)+i / 2 y$.

We need an extra notation to make these integration by parts (more) rigorous. Let $G=\left(\lambda^{-1 / 2}+|x-y|\right)^{-1} e^{C t}\left(|d x|^{2}+|d y|^{2}\right), M_{k}=\left(\lambda^{-1 / 2}+\right.$ $|x-y|)^{-k}$, let $h=H_{c}(t, x, y)+2 i \varphi_{0}(y)$. Assume that an amplitude $f(t, x, y) \in$ $S\left(M_{k}, G\right)$, we note $A(f)$ the integral operator with amplitude f and phase function h. Using an integration by parts with the operator $L=\left(\left|h_{\bar{y}}^{\prime}\right|^{2}+\right.$ $\left.\lambda^{-1}\right)^{-1}\left(\bar{h}_{\overline{\mathrm{F}}}^{\prime} \partial / \partial \bar{y}+1\right)$ and the fact that $u(y)$ is holomorphic we can replace f by $\lambda^{-N t} L^{N}(f)$; so the same operator is given with an amplitude in $S\left(M_{k+2 N} \lambda^{-N} e^{C N t}, G\right)$. We have shown before that if $f \in S\left(M_{k}, G\right)$
$\operatorname{ad}_{X}(A(f))=A\left(f_{1}\right)$ with $f_{1} \in S\left(M_{k} e^{a t} M_{-2}, G\right)$, where X is either x_{j} or $D_{x_{k}}$. So $a d_{X_{1}} \ldots a d_{x_{k}}(A(f))=A\left(f_{k}\right)$ with $f_{k} \in S\left(e^{C k t} \lambda^{-k}, G\right) . \sharp$

We deduce then that $E_{t}^{*} E_{t}$ is a pseudo-differential operator in the class $S\left(1, g_{t}\right)$ where g_{t} is the metric $g_{t}=e^{2 C t}\left(|d x|^{2}+|d \xi|^{2}\right)$.

This result is then optimal with the restriction that we may not have the best constant C and that we consider here spatially homogeneous metrics.

3 Semi global L^{2} estimates.

We shall work as in [7] with L^{2} estimates for solutions of the Schrödinger equation $\left(D_{t}+P\left(x, D_{x}\right)\right) u(t)=0$. More precisely

$$
\begin{align*}
& 2 \lambda I m \int_{T}^{T_{0}}\left(\left(D_{t}+P\left(x, \lambda^{-1} D_{x}\right) u(t), \alpha(t) u(t)\right) d t=\right. \\
& \quad(\alpha(T) u(T), u(T))-\left(\alpha\left(T_{0}\right) u\left(T_{0}\right), u\left(T_{0}\right)\right)+\int_{T}^{T_{0}}(M(t) u(t), u(t)) d t \tag{35}
\end{align*}
$$

with the notation

$$
\begin{equation*}
\left.M(t)=(\partial \alpha(t) / \partial t)-i \lambda\left[P_{1}, \alpha(t)\right]+2 \lambda \operatorname{Re}\left(\alpha(t) P_{2}\right)\right) \tag{36}
\end{equation*}
$$

$\alpha(t)\left(x, \lambda^{-1} D_{x}\right)$ is a family of self-adjoint operators to be chosen later, T_{0} will depend only on λ. We have to make $\left.(\partial \alpha(t) / \partial t)-i \lambda\left[P_{1}, \alpha(t)\right]+2 \lambda \operatorname{Re}\left(\alpha(t) P_{2}\right)\right)$ as large as possible. We choose $\alpha(t)=E_{t} \beta(t) E_{t}^{*}$ where E_{t} has been constructed in section 2. $\beta(t)$ will be chosen later.

If we note $R(t)=(\partial / \partial t) E_{t}-i \lambda P_{1} E_{t}$, we obtain

$$
\begin{align*}
& \left.(\partial \alpha(t) / \partial t)-i \lambda\left[P_{1}, \alpha(t)\right]+2 \lambda \operatorname{Re}\left(\alpha(t) P_{2}\right)\right)= \\
& \quad E_{t}(\partial \beta(t) / \partial t) E_{t}^{*}+2 \lambda \operatorname{Re}\left(E_{t} \beta(t) E_{t}^{*} P_{2}\right)+2 \operatorname{Re}\left(R(t) \beta(t) E_{t}^{*}\right) \tag{37}
\end{align*}
$$

we shall deal later with the last term in 37. We have written in $5 P_{2}=$ $\left(\left(p_{2}(x, \xi)+\lambda^{-1} \operatorname{Im}\left(p_{0}(x, \xi, \lambda)\right)\right.\right.$. Let $\beta(t)=\exp (-2 \gamma t)$ where $\operatorname{Im}\left(p_{0}(x, \xi, \lambda) \geq\right.$ γ. If $Q=P_{2}-\gamma \lambda^{-1}$ the Weyl symbol of Q is non negative. We have to estimate from below the operator $\operatorname{Re}\left(E_{t} E_{t}^{*} Q\right)$, we have proved in Proposition 3 that $E_{t} E_{t}^{*} \in S\left(1, g_{\varepsilon}\right)$, it is then a consequence of the Fefferman-Phong inequality that $\operatorname{Re}\left(E_{t} E_{t}^{*} Q\right) \geq-C \lambda^{-2+2 \varepsilon}$. So from 37 we obtain

$$
\begin{equation*}
(M(t) u(t), u(t)) \geq-C \lambda^{-1+2 \varepsilon} e^{-2 \gamma t}|u(t)|^{2}+2\left(R e\left(R(t) \beta(t) E_{t}^{*}\right) u(t), u(t)\right) \tag{38}
\end{equation*}
$$

We shall deal later with the last term in 38 . In 35 we shall input $u(t)=u$, so the left hand-side of 35 is an $\mathcal{O}\left(\lambda^{-\infty}\right)$ uniformly in time.

We make an induction. Let W be an open neighborhood of ρ_{0}, we say that $u \in H^{\sigma}(W)$ if for any pseudo-differential operator $\varphi\left(x, \lambda^{-1} D_{x}\right)$ with supp甲 $\subset W u$ satisfies $|\varphi u| \leq C \lambda^{-\sigma}$. Assume $u \in H^{\sigma}(W)$.

Let W_{1}, W_{2} be two open sets such that $W_{1} \subset \subset W_{2} \subset \subset W$. We use the construction of $[6]$ section 6.3 of a cut-off function $\chi(t, x, y)$ defined by taking an almost analytic extension of the restriction to Γ_{t} of the function

$$
\tilde{\chi}(t, y)= \begin{cases}\zeta_{1}(y) \exp \left(-\int_{0}^{t} \frac{y}{\zeta^{2}}\left(\Phi_{s}(y)\right) d s\right) & \text { if } \int_{0}^{t} \frac{\psi}{\zeta^{2}}\left(\Phi_{s}(y)\right) d s<\infty \tag{39}\\ 0 & \text { if } \int_{0}^{t} \frac{\xi^{2}}{\zeta^{2}}\left(\Phi_{s}(y)\right) d s=\infty\end{cases}
$$

with the notations $\zeta \in \mathrm{C}_{0}^{\infty}\left(W_{2}\right), \zeta \equiv 1$ in $\bar{W}_{1} ; \psi \in \mathrm{C}_{0}^{\infty}\left(W_{2} \backslash \bar{W}_{1}\right), \psi \equiv 1$ in a neighborhood of $\partial\{x ; \zeta(x)>0\} ; \zeta_{1}(y) \in C_{0}^{\infty}(\{x ; \zeta(x)>0\})$ is one on a neighborhood of \bar{W}_{1}. It was proved in [6] that such constructions give a smooth function whose derivatives are bounded by some $\exp \left(h_{1}(t)\right)$ with $h_{1} \in o(t)$ when $t \rightarrow \infty$. If we add a cut-off function in $\left\{y ;\left|p_{1}(y)\right| \leq e^{-h(t)}\right\}$ the corresponding $\tilde{\chi}$ will be supported in

$$
\begin{equation*}
\Lambda_{W_{2}}=\left\{(t, x, y) ; x=\Phi_{t}(y), \text { for } 0 \leq s \leq t \Phi_{s}(y) \in W_{2},\left|p_{1}(y)\right| \leq c_{2} e^{-h(t)}\right\} \tag{40}
\end{equation*}
$$

with value 1 on $\Lambda_{W_{1}}$.
In view the lower bound

$$
\begin{equation*}
\operatorname{Im} \varphi(t, x, y)+\Phi(x, y) \geq C^{-1}\left|(x, y)-m_{t}(x, y)\right|^{2} \tag{41}
\end{equation*}
$$

we shall remain as close to Γ_{t} as we wish.
We make $T=0$ and $T_{0}=1 / M \ln \lambda$. The condition in Proposition 3 is satisfied for $0 \leq t \leq T_{0} . \alpha(0)=E_{0} E_{0}^{*}$ is elliptic in $W_{1} . \beta\left(T_{0}\right) E_{T_{0}} E_{T_{0}}^{*}$ is a pseudo-differential operator with wave front set contained in W_{2}, belonging to the class $S\left(\varepsilon^{-2 \gamma T_{0}}, g_{\varepsilon}\right)$. We have therefore $\left(\alpha\left(T_{0}\right) u, u\right) \leq C \lambda^{-2 \sigma-2 \gamma / M}$ if $u \in H^{\sigma}(W)$. Using 38 and the fact that ε is close to 0 , we shall conclude that $H^{\sigma+\gamma / M}(W)$ after taking care of the last term 35.

The operator $R(t)$ comes from that E_{t} is not an exact solution of the equation $\left(D_{t}+P_{1}\right) E_{t}=0$, which is due to the presence of the χ. The function χ is itself necessary since we want to localize near $\Lambda(W, h)$ to get our theorem. This analysis has been carried out in [6] section 6.4. That we wish to say is that the assumption $\overline{\Lambda(W, h)}(p) \cap \partial W \cap O F(u)=0$ implies that $\left|R(t)^{*} u\right|=\mathcal{O}\left(\lambda^{-\infty}\right)$. This kind of troncature are precisely what we need to derive a propagation of singularities theorem from an ordinary L^{2} inequality; as we said above this makes all this machineary necessary. \#

Remark 1 The condition $(H)_{3}$ allows to prove a theorem of propagation of singularities with a loss of one derivative, in this sense this condition is sharp.

Part II

A more precise result in a particular case.

We shall be able to get a sharper result in a symplectic case analogous to the case treated in [5].

4 Construction of the stable manifolds.

In this section we shall use some elements of [10] Appendix A, and [6] Section 4, we prefer to recall all this material in our proof than to use obscure references to these works.

Let $p(x, \xi)$ be an analytic complex function. Let $\rho_{0} \in N \cap \mathbf{R}^{2 n}$ where

$$
\begin{equation*}
N=\left\{(x, \xi) \in \mathbf{C}^{2 n} ; p(x, \xi)=d p(x, \xi)=0\right\} \tag{42}
\end{equation*}
$$

Let $H_{p}=p_{\xi}^{\prime} \partial / \partial x-p_{x}^{\prime} \partial / \partial \xi$ be the hamiltonian field, we mean by bicharacteristic of p the integral curves of the real vector field on $\mathbf{C}^{2 n} H_{p}+\bar{H}_{p}$.

Let
$\Lambda_{t}=\left\{(\rho(t, \rho), \rho) ; \rho \in \mathbf{C}^{2 n}, p(\rho)=0\right\}$ and $\Lambda_{t, \mathbf{R}}=\left\{(\rho(t, \rho), \rho) ; \rho \in \mathbf{R}^{2 n}, p(\rho)=0\right\}$
in $43 t \rightarrow \rho(t, \rho)$ is a bicharacteristic curve starting at ρ. We shall assume

- $\left(H_{1}\right):$

$$
\begin{equation*}
\operatorname{Imp}(\rho) \geq 0 \text { if } \rho \in \mathbf{R}^{2 n} . \tag{44}
\end{equation*}
$$

The fundamental matrix is $F_{p}(x, \xi)=d H_{p}(x, \xi)=\left(\begin{array}{cc}p^{\prime \prime}{ }_{\xi x} & p^{\prime \prime}{ }_{\xi \xi} \\ -p^{\prime \prime}{ }_{x x} & -p^{\prime \prime}{ }_{x \xi}\end{array}\right)$.
In the Jordan decomposition of $F_{p}(\rho)$, we note $W_{+}(\rho)=\oplus_{\text {Re }}>0, \lambda \in \operatorname{Spec}\left(F_{p}\right) V_{\lambda}$, $W_{-}(\rho)=\oplus_{R e \lambda<0, \lambda \in \operatorname{Spec}\left(F_{p}\right)} V_{\lambda} . V_{\lambda}$ are the generalized eigenspaces.

- $\left(\mathrm{H}_{2}\right)$: We assume that

$$
\begin{equation*}
\mathrm{C}^{2 n}=W_{+}(\rho) \oplus W_{-}(\rho) \oplus W_{0}(\rho) \oplus K e r F_{p} \tag{45}
\end{equation*}
$$

and the dimensions of these three spaces are constant along N.
The assuption $\left(\mathrm{H}_{2}\right)$ means there are no non zero eigenvalue in $i \mathbf{R}$, that there is also no generalized eigenspace relative to zero and that $\operatorname{dim} W_{+}(\rho)=$ $r_{+}, \operatorname{dim} W_{-}(\rho)=r_{-}$are constant. We note respectively by $P_{+}(\rho), P_{-}(\rho)$ and $P_{0}(\rho)$ the corresponding projectors, it follows from our assumption that these maps are analytic.

As $\sigma\left(V_{\lambda}, V_{\mu}\right)=0$ if $\lambda+\mu \neq 0, W_{+}(\rho) \oplus W_{0}(\rho) \subseteq W_{+}(\rho)^{\perp_{\epsilon}}$, then $r_{+} \leq r_{-}$, then

$$
\begin{equation*}
r_{+}=r_{-}=r \text { and } W_{ \pm}(\rho)^{\perp}=W_{ \pm}(\rho) \oplus W_{0}(\rho) \tag{46}
\end{equation*}
$$

- $\left(\mathrm{H}_{3}\right)$: We also assume that in a neighborhod of ρ_{0}, there is a constant C_{0} such

$$
\begin{equation*}
\left|H_{p}(\rho)\right| \leq C_{0}\left|\left(I-P_{0}\left(\rho_{0}\right)\right) H_{p}(\rho)\right| \tag{47}
\end{equation*}
$$

it is a consequence of the assumptions of constant ranks that 47 is independent of ρ_{0}.

- (H_{4}): We shall assume that on $N^{\prime}=\left\{(x, \xi) \in \mathbf{R}^{2 n} ; \operatorname{Rep}(x, \xi)=\right.$ $d \operatorname{Rep}(x, \xi)=0\}$, we have $\mathbf{C}^{2 n}=W_{+}^{\prime} \oplus W_{-}^{\prime} \oplus W_{+i}^{\prime} \oplus W_{-i}^{\prime} \oplus \operatorname{Ker} F_{R e p}$ where $W_{ \pm}^{\prime}$ are the correponding spaces for $F_{\text {Rep }}$ and $W_{ \pm i}^{\prime}=\oplus_{i \lambda \in S p e c}\left(F_{\text {Rep }}\right), \pm \lambda>0 V_{\lambda}$.
We suppose also that the quadratic form $[v, \bar{v}]=\frac{1}{i} \sigma(v, \bar{v}) \leq 0$ on W_{+i}^{\prime}. This means in fact simply that $V_{0}^{\prime}=K e r F_{\text {Rep }}$ and that there are no no difference of harmonic oscillators in a spectral decomposition of $F_{\text {Rep. }}$ In addition we assume that N^{\prime} is a smooth manifold and that $\operatorname{Kerpep}_{\operatorname{Rep}}(\rho)=\mathrm{T}_{\rho} N^{\prime}$.

The first step is to construct stable manifolds for the complex symbol p. Let (x, y) be coordinates such that $x \in W_{+}\left(\rho_{0}\right) \oplus W_{0}\left(\rho_{0}\right), y \in W_{-}\left(\rho_{0}\right)$, we split again $x=\left(x^{\prime}, z\right)$ where $x^{\prime} \in W_{+}\left(\rho_{0}\right), z \in W_{0}\left(\rho_{0}\right)$. We note $W^{+}(\rho)=$ $W_{+}(\rho) \oplus W_{0}(\rho)$. Let us note again by $P_{+}(\rho)$ an analytic extension of this function away from N.

When we split $\mathrm{C}^{2 n}=W^{+}(\rho) \oplus W_{-}(\rho)$, we have a decomposition of $F_{p}(\rho)=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)(\rho)$. We shall split further $\alpha=\left(\begin{array}{ll}\alpha_{0} & \alpha_{1} \\ \alpha_{2} & \alpha_{3}\end{array}\right)$ along $W+(\rho) \oplus$ $W_{0}(\rho)$.

It is a consequence of the assumptions that in a close neighborhood of N,

$$
\begin{gather*}
\operatorname{Spec}\left(\alpha_{0}\right) \subseteq\{z \in \mathrm{C}, \operatorname{Re} z \geq c\}, \operatorname{Spec}(\delta) \subseteq\{z \in \mathrm{C}, \operatorname{Rez} \leq-c\}, \\
\|\beta\| \leq \varepsilon,\|\gamma\| \leq \varepsilon\left\|\alpha_{i}\right\| \leq \varepsilon \text { for } 1 \leq i \leq 3 ; c>0, \varepsilon \text { is small. } \tag{48}
\end{gather*}
$$

Let ρ be a point close to ρ_{0} and $t \rightarrow \rho(t, \rho)$ the bicharacteristic issued from ρ. The evolution of tangent vectors is given by the linear differential equation $\frac{d}{d t} v_{t}=F_{p}(\rho(t, \rho)) v_{t}, v_{\left.t\right|_{t=0}}=v_{0}$.

We find a linear map $\varphi_{t}(\rho)$ from $W^{+}\left(\rho_{0}\right)$ to $W_{-}\left(\rho_{0}\right)$ such that the evolution of the space $W^{+}\left(\rho_{0}\right)$ along the flow is given by $W_{t}^{+}(\rho)=\left\{\left(\delta x, \varphi_{t}(\rho) \delta x\right), \delta x \in W^{+}\left(\rho_{0}\right)\right\}$. This is achieved as in [6] by solving the equation

$$
\begin{equation*}
\dot{\varphi}_{t}+\varphi_{t} \alpha-\delta \varphi_{t}+\varphi_{t} \beta \varphi_{t}-\gamma=0,\left.\varphi\right|_{t=0}=0 \tag{49}
\end{equation*}
$$

In view of the relations 48 , which imply that $\operatorname{Spec}(\alpha) \subseteq\{z \in \mathrm{C}, \operatorname{Re} z \geq-\varepsilon\}$ we know that the equation 49 can be solved for $t \geq 0$ and we have $\left\|\varphi_{t}\right\| \leq C \varepsilon$ for some small ε.

We define a suitable norm to construct regions stable under the flow. Let $\alpha_{0}=\alpha\left(\rho_{0}\right)$ and

$$
\begin{equation*}
C_{0}=\int_{-\infty}^{0} \exp \left(t \alpha_{0}^{*}\right) \exp \left(t \alpha_{0}\right) d t, C_{0}>0, C_{0} \alpha_{0}^{*}+\alpha_{0} C_{0}=I d_{W_{+}\left(\rho_{0}\right)} \tag{50}
\end{equation*}
$$

The restriction of $F_{p}\left(\rho_{0}\right)$ to $W_{\left(\rho_{0}\right)}$ is expressed by $\delta y \rightarrow \delta_{0}(\delta y), \operatorname{Spec}\left(\delta_{0}\right) \subseteq$ $\{z \in \mathrm{C}, \operatorname{Re} z<-c\}$. We define $D_{0}>0, D_{0} \delta_{0}^{*}+\delta_{0} D_{0}=-I d_{W-\left(p_{0}\right)}$.

We note $\left\|v_{x^{\prime}}\right\|^{*}=\left(C_{0} v_{x^{\prime}}, v_{x^{\prime}}\right)^{1 / 2},\left\|v_{x}\right\|^{2}=\left\|v_{x^{\prime}}\right\|^{* 2}+\left|v_{z}\right|^{2},\left\|v_{y}\right\|_{*}=$ $\left(D_{0} v_{y}, v_{y}\right)^{1 / 2}$ and $\|v\|^{2}=\left\|v_{z^{\prime}}\right\|^{* 2}+\left\|v_{y}\right\|_{*}^{2}+\left|v_{z}\right|^{2}$.

We expand
$\frac{d}{d t}\left(\rho_{t}-\rho_{0}\right)=F_{p}\left(\rho_{0}\right)\left(\rho_{t}-\rho_{0}\right)+\mathcal{O}\left(\left(\rho_{t}-\rho_{0}\right)^{2}\right)$ so

$$
\begin{equation*}
\frac{d}{d t}\left\|\rho_{t}-\rho_{0}\right\|^{2}=\left|\left(\rho_{t}-\rho_{0}\right)_{x^{\prime}}\right|^{2}-\left|\left(\rho_{t}-\rho_{0}\right)_{y}\right|^{2}+\mathcal{O}\left(\left(\rho_{t}-\rho_{0}\right)^{3}\right) \tag{51}
\end{equation*}
$$

Proposition 4 Let $0 \leq f(x) \in \mathrm{C}_{0}^{\infty}\left(\mathbf{R}^{+}\right)$be a function $f \leq \eta$. Let

$$
\begin{equation*}
B\left(\rho_{0}, f\right)=\left\{x \in W^{+}\left(\rho_{0}\right) ;\left\|x^{\prime}\right\|^{*}<f\left(|z|^{2}\right)\right\} \tag{52}
\end{equation*}
$$

$E\left(\rho_{0}, T, f\right)$ be the region

$$
E\left(\rho_{0}, T, f\right)=\left\{\begin{array}{c}
\rho ; \rho-\rho_{0} \in W^{+}\left(\rho_{0}\right) ; \rho_{t}-\rho_{0} \in B\left(\rho_{0}, f\right) \tag{53}\\
\text { and }\left|\rho_{t}-\rho_{0}\right|<\varepsilon \text { for } 0 \leq t \leq T
\end{array}\right\}
$$

There exist a bounded set of analytic functions $x \in B\left(\rho_{0}, f\right) \rightarrow \lambda(t, x) \in$ $W_{-}\left(\rho_{0}\right)$ such that $E\left(\rho_{0}, T, f\right)$ can be identified with the set
$E^{\prime}\left(\rho_{0}, T, f\right)=\left\{\begin{array}{c}\rho_{;} \rho-\rho_{0} \in W^{+}\left(\rho_{0}\right), \text { for } 0 \leq t \leq T\left|\rho_{t}-\rho_{0}\right|<\varepsilon \text { and } \\ \exists x_{t} \in W^{+}\left(\rho_{0}\right), x_{t} \in B\left(\rho_{0}, f\right) \text { such that } \rho_{t}-\rho_{0}=\left(x_{t}, \lambda\left(t, x_{t}\right)\right)\end{array}\right\}$

This is proved as in [6] by induction on T. Let us sketch the proof.
Assume that we have constructed the function $\lambda(t, x)$ for $t=T_{0}$. We shall prove that it can be extended for some amount in time. The curve $s \rightarrow \rho(s)$ defined by $\rho(s)=\exp \left(-T_{0} H_{p}\right)\left(\rho_{0}+\left(x_{T_{0}}+s \delta x, \lambda\left(T_{0}, x_{T_{0}}+s \delta x\right)\right)\right.$, is a curve in $\rho_{0}+W+\left(\rho_{0}\right)$. It follows from the definition of φ_{t} that $(\partial / \partial x) \lambda\left(T_{0}, x\right)=$ $\varphi_{T_{0}}(\rho(0))$, therefore $\left\|(\partial / \partial x) \lambda\left(T_{0}, x\right)\right\| \leq C \varepsilon$. We have also $\lambda\left(T_{0}, 0\right)=0$. In view of the analyticity we derive further controls on all the derivatives.

We note $g(x)=\left\|x^{\prime}\right\|^{*}-f\left(|z|^{2}\right)$, and $\tilde{f}(z)==f\left(|z|^{2}\right)$ with $f(0)>0$.
We define $\psi_{t, T_{0}}(x)=P^{+}\left(\rho_{0}\right)\left(\exp \left(\left(t-T_{0}\right) H_{p}\right)\right)\left(\rho_{0}+\left(x, \lambda\left(T_{0}, x\right)\right)-\rho_{0}\right), \tilde{x}=$ $\psi_{t, T_{0}}(x)$. The map $\psi_{t, T_{0}}$ is close to the identity when t is close to T_{0}. We have

$$
\begin{equation*}
\left|\psi_{\tau, T_{0}}(x)-x\right| \leq C\left|\tau-T_{0}\right||x| \tag{55}
\end{equation*}
$$

We want to prove that $\psi_{t, T_{0}}(x) \in B\left(\rho_{0}, f\right)$ implies $x \in B\left(\rho_{0}, f\right)$. We assume first that $\left|x^{\prime}\right| \geq C^{-1}|x|$.

$$
\begin{align*}
\frac{d}{d \tau} g\left(\dot{\psi}_{\tau, T_{0}}(x)\right)= & \left\|\psi_{\tau, T_{0}}(x)_{x^{\prime}}\right\|^{*-1}<\psi_{\tau, T_{0}}(x)_{z^{\prime}},\left(\frac{d}{d \tau} \psi_{\tau, T_{0}}(x)\right)_{x^{\prime}}> \\
& -\nabla \tilde{f}\left(\left(\psi_{\tau, T_{0}}(x)\right)_{z}\right) \cdot\left(\frac{d}{d \tau} \psi_{\tau, T_{0}}(x)\right)_{z} \tag{56}
\end{align*}
$$

In view of relation 55 we can replace $\psi_{\tau, T_{0}}(x)$ by x in the first term of 56 modulo $\mathcal{O}\left(\left(\tau-T_{0}\right)\right)$.

We compute $\frac{d}{d \tau} \psi_{\tau, T_{0}}(x)=P^{+}\left(\rho_{0}\right) H_{p}\left(\mu\left(r, T_{0}, x\right)\right)$ where $\mu\left(\tau, T_{0}, x\right)=$ $\left.\exp \left(\left(\tau-T_{0}\right) H_{p}\right)\right)\left(\rho_{0}+\left(x, \lambda\left(T_{0}, x\right)\right)\right)$.

Using the estimate $\| \mu\left(\tau, T_{0}, x\right)-\left(\rho_{0}+\left(x, \lambda\left(T_{0}, x\right)\right) \| \leq C\left|\tau-T_{0}\right||x|\right.$, we obtain $\left.H_{p}\left(\mu\left(\tau, T_{0}, x\right)\right)=F_{p}\left(\rho_{0}\right)\left(x, \lambda\left(T_{0}, x\right)\right)\right)+O\left(\left(\tau-T_{0}\right)|x|+|x|^{2}\right)$. Therefore $H_{p}\left(\mu\left(\tau, T_{0}, x\right)\right)=\left(\alpha_{0}\left(\rho_{0}\right) x^{\prime}, 0, \delta\left(\rho_{0}\right) \lambda\left(T_{0}, x\right)\right)+\mathcal{O}\left(\left(\tau-T_{0}\right)|x|+|x|^{2}\right)$. Hence

$$
\begin{equation*}
\left\|\psi_{\tau, T_{0}}(x)_{x^{\prime}}\right\|^{*-1}<\psi_{\tau, T_{0}}(x)_{x^{\prime}},\left(\frac{d}{d \tau} \psi_{\tau, T_{0}}(x)\right)_{x^{\prime}}>\geq C^{-1}\left|x^{\prime}\right| \tag{57}
\end{equation*}
$$

We want now to estimate the second term in $56,\left(\frac{d}{d r} \psi_{\tau, T_{0}}(x)\right)_{2}=\mathcal{O}((\tau-$ $\left.\left.T_{0}\right)|x|+|x|^{2}\right), \nabla \tilde{f}(z)=O(|z||\nabla f|)$. Therefore $\frac{d}{d \tau} g\left(\psi_{\tau}, T_{0}(x)\right) \geq C^{-1}\left|x^{\prime}\right|$ when $\left|x^{\prime}\right| \geq C^{-1}|x|$. Then $g\left(\psi_{r . T_{0}}(x)\right) \geq g(x)$, so $x \in B\left(\rho_{0}, f\right)$.

If on the contrary we have $|z| \geq C\left\|x^{\prime}\right\|^{*}$, then the point x is interior to $B\left(\rho_{0}, f\right)$. $\#$

We prove now :
Proposition 5 There exist an involutive manifold $E\left(\rho_{0}, \infty\right)$ of codimension r, stable under H_{p}, contained in $p^{-1}(0)$, such that $\lim _{t \rightarrow \infty} \rho(-t, \rho)$ exist and belongs to $N=\left\{\rho ; p(\rho)=H_{p}(\rho)=0\right\}$ for any bicharacteristic curve issued from a point $\rho \in E\left(\rho_{0}, \infty\right)$.

By the Ascoli's theorem, we know that there is a sequence $t_{j} \rightarrow \infty$, such that the functions $\lambda\left(t_{j}, x\right) \rightarrow \lambda(\infty, x)$.

Let $E^{t}\left(\rho_{0}, f\right)=\exp \left(t H_{p}\right)\left(E\left(\rho_{0}, t, f\right)\right)$.
Let $t \rightarrow \rho(t, \rho)$ be a bicharacteristic curve such that $\rho_{t} \notin E^{t}\left(\rho_{0}, f\right)$, let $\gamma_{t} \in E^{t}\left(\rho_{0}, f\right)$ such that $\rho_{t}-\gamma_{t} \in\left(\mathrm{~T}_{\gamma_{t}} E^{t}\left(\rho_{0}, f\right)\right)^{\perp}$, the orthogonality being relative to the $\left\|\|\right.$ norm, the length of $\rho_{t}-\gamma_{t}$ measures the distance $d\left(\rho_{t}, E^{t}\left(\rho_{0}, f\right)\right)$.

We compute $\frac{d}{d t}\left(\rho_{t}-\gamma_{t}\right)=H_{p}\left(\rho_{t}\right)-\frac{d}{d t} \gamma_{t}$. Let us write $\gamma_{t}=\rho_{0}+$ $\left(x_{t}, \lambda\left(t, x_{t}\right)\right) ;$ and $\gamma_{t}=\exp \left(t H_{p}\right)\left(\delta_{t}\right), \delta_{t} \in E\left(\rho_{0}, t, f\right)$, so $\frac{d}{d t} \gamma_{t}=H_{p}\left(\gamma_{t}\right)+$ $d\left(\exp \left(t H_{p}\right)\left(\delta_{t}\right)\right) \dot{\delta}_{t}, \dot{\delta}_{t} \in W^{+}\left(\rho_{0}\right)$. Then $\left.d\left(\exp \left(t H_{p}\right)\right)\left(\delta_{t}\right)\right) \dot{\delta_{t}}, \dot{\delta}_{t}=\left(\zeta_{t}, \varphi_{t}\left(\delta_{t}\right) \zeta_{t}\right)$ for some $\zeta_{t} \in W_{+}\left(\rho_{0}\right)$. We have proved above that $\varphi_{t}\left(\delta_{t}\right)=(\partial / \partial x) \lambda\left(t, y_{t}\right)$ where $\exp \left(-t H_{p}\right)\left(\left(\rho_{0}+\left(y_{t}, \lambda\left(t, y_{t}\right)\right)\right)=\delta_{t}\right.$, so $y_{t}=x_{t}$ and $\left(\zeta_{t}, \varphi_{t}\left(\delta_{t}\right) \zeta_{t}\right) \in$ $\mathrm{T}_{\gamma_{t}} E^{\mathrm{t}}\left(\rho_{0}, f\right)$.

Therefore $\frac{d}{d t}\left\|\rho_{t}-\gamma_{t}\right\|^{2}=<H_{p}\left(\rho_{t}\right)-H_{p}\left(\gamma_{t}\right), \rho_{t}-\gamma_{t}>$, where $<,>$ is the scalar product for $\|\|$.
$H_{p}\left(\rho_{t}\right)-H_{p}\left(\gamma_{t}\right)=F_{p}\left(\rho_{0}\right)\left(\rho_{t}-\gamma_{t}\right)+\mathcal{O}\left(\left|\left(\rho_{t}-\gamma_{t}\right)\right|^{2}+\left|\left(\rho_{t}-\gamma_{t}\right)\right|\left|\gamma_{t}-\rho_{0}\right|\right)$.
As $\left(\rho_{t}-\gamma_{t}\right) \in\left(\mathrm{T}_{\gamma_{t}} E^{t}\left(\rho_{0}, f\right)\right)^{\perp}$, we have the relation

$$
\left(\begin{array}{cc}
C_{0} & 0 \\
0 & I
\end{array}\right)\left(\rho_{t}-\gamma_{t}\right)_{x}+\varphi_{t}\left(\delta_{t}\right)^{*} D_{0}\left(\rho_{t}-\gamma_{t}\right)_{y}=0
$$

We deduce that $\left|\left(\rho_{t}-\gamma_{t}\right)_{x}\right| \leq C \varepsilon\left|\left(\rho_{t}-\gamma_{t}\right)_{y}\right|$.
$\left\langle F_{p}\left(\rho_{0}\right)\left(\rho_{t}-\gamma_{t}\right), \rho_{t}-\gamma_{t}\right\rangle=\left|\left(\rho_{t}-\gamma_{t}\right)_{x}\right|^{2}-\left|\left(\rho_{t}-\gamma_{t}\right)_{y}\right|^{2}$, therefore

$$
\begin{equation*}
d\left(\rho_{t}, E^{t}\left(\rho_{0}, f\right)\right) \leq C \exp \left(-C^{-1} t\right) \tag{58}
\end{equation*}
$$

Let $\rho_{t}=(x, \lambda(t, x)) \in E^{t}\left(\rho_{0}, f\right)$, if $s \leq t$ we write $\rho_{t}=\rho_{s}\left(\rho_{t-s}\right)$, then there exist $y \in W^{+}\left(\rho_{0}\right)$ such that $|(y, \lambda(s, y))-(x, \lambda(t, x))| \leq C \exp \left(-C^{-1} s\right)$, so $|\lambda(t, x)-\lambda(s, x)| \leq C \varepsilon|x-y|+\mid \lambda(s, y))-\lambda(t, x) \mid \leq 2 C \exp \left(-C^{-1} s\right)$. We have therefore proved that $\lambda(t, x) \rightarrow \lambda(\infty, x)$ in the space of holomorphic functions.

We define

$$
\begin{equation*}
E\left(\rho_{0}, \infty\right)=\left\{\rho ; \rho=\rho_{0}+\left(x, \lambda\left(\infty, x_{j}\right) \text { for some } x \in B\left(\rho_{0}, f\right)\right\}\right. \tag{59}
\end{equation*}
$$

A proof similar shows that

$$
\begin{equation*}
d\left(\rho_{t}, E\left(\rho_{0}, \infty\right)\right) \leq C \exp \left(-C^{-1} t\right) \tag{60}
\end{equation*}
$$

Starting from a point $\rho \in E\left(\rho_{0}, \infty\right)$, we prove then that $\lim _{t \rightarrow \infty} \rho(-t, \rho)$ exist.

We prove first that $E\left(\rho_{0}, \infty\right)$ is H_{p} invariant. The tangent space $\mathrm{T}_{p} E\left(\rho_{0}, \infty\right)=$ $\left\{\left(\delta x,\left(\frac{\partial}{\partial x}\right) \lambda(\infty, x) \delta x\right)\right\}$ is the limit of the spaces $\left\{\left(\delta x,\left(\frac{\partial}{\partial x}\right) \lambda(t, x) \delta x\right)\right\}$ when $t \rightarrow \infty$. For a point $\rho=\rho_{0}+(x, \lambda(\infty, x))$ we note $y_{t}(x) \in B\left(\rho_{0}, f\right)$ the point defined by $\rho_{0}+(x, \lambda(t, x))=\exp \left(t H_{p}\right)\left(\rho_{0}+\left(y_{t}(x), 0\right) .\left(\frac{\partial}{\partial x}\right) \lambda(t, x)=\varphi_{t}\left(\rho_{0}+\right.\right.$ ($\left.\left.y_{t}(x), 0\right)\right), H_{p}(\rho)=m\left(t, \rho_{0}+\left(y_{t}(x), 0\right)\right) v_{t}$, where $v_{t}=H_{p}\left(\rho_{0}+\left(y_{t}(x), 0\right)\right)$, so $w_{t}=m\left(t, \rho_{0}+\left(y_{t}(x), 0\right)\right)\left(\left(v_{t}\right)_{x}, 0\right)=\left(\left(w_{t}\right)_{x}, \varphi_{t}\left(\rho_{0}+\left(y_{t}(x), 0\right)\left(w_{t}\right)_{x}\right)\right) \in$ $\mathrm{T}_{\rho} E^{t}\left(\rho_{0}, t\right)$, the evolution of $\left(v_{t}\right)_{y}$ by m_{t} is an $\mathcal{O}\left(\exp \left(-C^{-1} t\right)\right)$, therefore the distance from $H_{p}(\rho)$ to the space $\left\{\left(\delta x,\left(\frac{\partial}{\partial x}\right) \lambda(t, x) \delta x\right)\right\}$ is also an $\mathcal{O}\left(\exp \left(-C^{-1} t\right)\right)$. So $H_{p}(\rho) \in \mathrm{T}_{\rho} E\left(\rho_{0}, \infty\right)$.
$\frac{d}{d t} \rho(-t, \rho)=-H_{p}(\rho(-t, \rho))=-\left(H_{p}(\rho(-t, \rho))_{x},\left(\frac{\partial}{\partial x}\right) \lambda\left(\infty, x_{t}\right) H_{p}(\rho(-t, \rho))_{x}\right)$
where $\rho(-t, \rho)=\infty_{0}+\left(x_{t}, \lambda\left(\infty, x_{t}\right)\right)$. We bound the $H_{p}(\rho(-t, \rho))_{z}$ component of H_{p} by $C_{0}\left(\left|H_{p}(\rho(-t, \rho))_{x^{\prime}}\right|+\left|H_{p}(\rho(-t, \rho))_{y}\right|\right) \leq C_{0}^{\prime}\left|H_{p}(\rho(-t, \rho))_{z^{\prime}}\right|$, using the assumption 47 and 61 . In the backward evolution, the x^{\prime} directions are contractive so

$$
\begin{equation*}
\left|H_{p}(\rho(-t, \rho))_{x^{\prime}}\right| \leq C \exp \left(-C^{-1} t\right)\left|H_{p}(\rho)\right| \tag{62}
\end{equation*}
$$

this means that $\left|H_{p}(\rho(-t, \rho))\right| \leq C \exp \left(-C^{-1} t\right)\left|H_{p}(\rho)\right|$, then
$\tilde{\rho}=\lim _{t \rightarrow \infty} p(-t, \rho)$ exist and belongs to $N^{\prime}=\left\{\rho ; H_{p}(\rho)=0\right\}$. On the connected component of ρ_{0} of $N^{\prime}, p=0$, then $\widetilde{\rho} \in N$. But $p(\rho)=p(\rho(-t, \rho))=$ $p(\tilde{\rho})=0$, hence $\left.p\right|_{E(\infty, \infty)}=0$.
$E\left(\rho_{0}, \infty\right)$ is a smooth manifold of codimension r.
We shall prove that $\mathrm{T}_{\rho}\left(E\left(\rho_{0}, \infty\right)\right)^{\perp_{0}} \subseteq \mathrm{~T}_{\rho}\left(E\left(\rho_{0}, \infty\right)\right)_{i} W_{-}\left(\rho_{0}\right)^{\perp_{\infty}}=$ $W_{-}\left(\rho_{0}\right) \oplus W_{0}\left(\rho_{0}\right)$.

$$
\begin{equation*}
W_{0}\left(\rho_{0}\right)^{\perp_{0}}=I m F_{p}\left(\rho_{0}\right)=W_{+}\left(\rho_{0}\right) \oplus W_{-}\left(\rho_{0}\right) \text {, so }\left.\sigma\right|_{W_{0}\left(\rho_{0}\right)} \text { is non degenerate. } \tag{63}
\end{equation*}
$$

Let $v_{0} \in \mathrm{~T}_{\rho}\left(E\left(\rho_{0}, \infty\right)\right)^{\perp_{\infty}}, v_{t}=m(t, \rho) v_{0}, v_{t} \in\left(\mathrm{~T}_{p_{t}}\left(E\left(\rho_{0}, \infty\right)\right)^{\perp_{\infty}}\right.$. Then for all $\delta x \in W^{+}\left(\rho_{0}\right)$

$$
\begin{equation*}
\sigma\left(\delta x^{\prime},\left(v_{t}\right)_{y}\right)+\sigma\left(\delta z,\left(v_{t}\right)_{z}\right)+\sigma\left(\left(\frac{\partial}{\partial x}\right) \lambda(\infty) \delta x,\left(v_{t}\right)_{x^{\prime}}\right)=0 \tag{64}
\end{equation*}
$$

so $\left|\left(v_{t}\right)_{y}\right|+\left|\left(v_{t}\right)_{z}\right| \leq C \varepsilon\left|\left(v_{t}\right)_{x^{\prime}}\right|$, therefore $\left|v_{t}\right|=\mathcal{O}\left(\exp \left(C^{-1} t\right)\right)$ when $t \rightarrow$ $\rightarrow \infty$. Therefore $v_{0} \in \mathrm{~T}_{\rho}\left(E\left(\rho_{0}, \infty\right)\right) . E\left(\rho_{0}, \infty\right)$ is an involutive manifold. $\|$.

We shall prove now L^{2} estimates. This is done by working on the real line only since we look at C^{∞} singularities, let us note by $\{f, g\}$ the usual Poisson bracket.

We can now state the main result of this section.
Theorem 2 Let $P\left(x, \lambda^{-1} D_{\boldsymbol{x}}, \lambda\right)=\left(p(x, \xi)+\lambda^{-1} p_{1}(x, \xi, \lambda)\right)^{w_{\lambda}}$ be a pseudodifferential operator such that $p(x, \xi)$ satisfies the assumptions H_{1}, \ldots, H_{4}. Let λ_{j} be the eigenvalues of F_{p} with Re $\lambda_{j}>0$ at the points of $N_{\mathbf{R}}=\left\{\rho \in \mathbf{R}^{2 n} ; p(\rho)=d p(\rho)=0\right\}$, we assume that

$$
\begin{equation*}
i p_{1}(x, \xi, \lambda)+\sum_{j}\left(\alpha_{j}+1 / 2\right) \lambda_{j} \neq 0, \text { for all } \alpha_{j} \in \mathbf{N} \tag{65}
\end{equation*}
$$

Let $\gamma(\rho)$ and $c(\rho) \geq 0$ be smooth functions such that $\{p, \gamma\}+c p \geq 0$.
If ω is a small neighborhood of $\rho_{0} \in N_{\mathbf{R}}$, suppose that $\gamma\left(\rho_{0}\right)>0$ and $\{\gamma>0\} \cap \omega \cap O F(P u)=\emptyset$ and $\{\gamma>0\} \cap \partial \omega \cap O F(u)=\emptyset$, then $\rho_{0} \notin O F(u)$.
Remark 2 It is possible to make a less technical statement in the particular case where $W_{ \pm i}^{\prime}=\{0\}$. In this case N^{\prime} is a smooth symplectic manifold of codimension $2 r^{\prime}$. The involutive manifolds $E_{ \pm}^{\prime}$ have a foliation, we note by $F_{-}(\mu)$ the leaf of E_{-}^{\prime} throught $\mu \in N^{\prime}$. Then the geometric statement of Theorem 2 is: if $F_{-}\left(\rho_{0}\right) \cap \omega \cap O F(P u)=\emptyset$ and $F_{-}\left(\rho_{0}\right) \backslash\left\{\rho_{0}\right\} \cap \omega \cap O F(u)=\emptyset$ then $\rho_{0} \notin O F(u)$.

This remark will be justified below when we will construct appropriate functions γ. Moreover the presence of the function $c(\rho)$ is needed to have a statement invariant by multipication of P by an operator with a positive symbol.

5 The energy estimate.

5.1 The basic L^{2} inequality.

The basic L^{2} estimate will be described in the case $I m p_{1}>0$. We shall use microlocal weighted estimates. Let $\gamma(x, \xi) \in \mathrm{C}^{\infty}\left(\mathbf{R}^{2 n}\right)$ a bounded real
valued function, we note $e_{n}=\left(\lambda^{\gamma(x, \xi)}\right)^{w_{\lambda}}$, we write $\mu=\ln \lambda / \lambda$. Let $e_{-\gamma}^{\prime}$ be a parametrix of e_{γ}. If $A=(a(x, \xi)$ is a pseudo-differential operator with Weyl symbol $a(x, \xi) \in S(1, g)$, then $A_{\gamma}=e_{\gamma}^{\prime} A e_{-\gamma}=\left(a(x, \xi)+i \mu\{a, \gamma\}+\mathcal{O}\left(\mu^{2}\right)\right)^{w_{\lambda}}$. We write our operator as $P=\left(p(x, \xi)+\lambda^{-1} p_{1}(x, \xi, \lambda)\right)^{w_{\lambda}}$. Then

$$
\begin{equation*}
P_{\gamma}=\left(p(x, \xi)+i \mu\{p, \gamma\}(x, \xi)+\lambda^{-1} p_{1}(x, \xi, \lambda)+\mathcal{O}\left(\mu^{2}\right)\right)^{w_{\lambda}} . \tag{66}
\end{equation*}
$$

We use also a multiplier $M=\left(m^{\prime}+i \mu m^{\prime \prime}\right)$, with two real functions $m^{\prime} \in$ $S(1, g)$ and $m^{\prime \prime} \in S(1, g)$. We get an energy estimate from the computation of $\operatorname{Im}\left(P_{\gamma} u, M^{*} u\right)$. We have

$$
\begin{equation*}
\operatorname{Im}\left(M P_{\gamma}\right)=\left(m^{\prime} I m p+\mu\left(m^{\prime} \operatorname{Rep}+m^{\prime}\{\operatorname{Rep}, \gamma\}\right)+\lambda^{-1}\left(m^{\prime} I m p_{1}+\left\{\operatorname{Rep}, m^{\prime}\right\}\right)+\mathcal{O}\left(\mu \lambda^{-1}\right)\right)^{w_{\lambda}} . \tag{67}
\end{equation*}
$$

We must make the symbol in 67 positive. The first term $m^{\prime} I m p$ is nonegative if $m^{\prime} \geq 0$. We now concentrate on the second term $m^{\prime \prime} R e p+m^{\prime}\{$ Rep, $\gamma\}$. Let $m^{\prime \prime} / m^{\prime}(\rho)=c(\rho)$ be a C^{∞} function. cRep $+\{$ Rep, $\gamma\}$ is null on N^{\prime} so the best possible choice of γ is to make it transversally elliptic on N^{\prime}.
$\gamma=\gamma_{0}+\gamma_{1}, c=c_{0}+c_{1}, \gamma_{0}$ and c_{0} are the functions which appears in the statement of Theorem $2, \gamma_{1}$ and c_{1} are constructed below. If γ_{1} is null at the second order on N^{\prime}, the hessian of $c_{1} \operatorname{Rep}+\left\{\operatorname{Rep}, \gamma_{1}\right\}$ at $\rho \in N^{\prime}$ is given by the fundamental matrix $c_{1}(\rho) F_{\text {Rep }}(\rho)+\left[F_{\text {Rcp }}, F_{\gamma_{1}}\right](\rho)$.

We shall localize at points of N^{\prime}, let $\rho \in N^{t}$ we note

$$
\begin{equation*}
G(\rho)=c_{1}(\rho) F_{R e p}(\rho)+\left[F_{R e p}, F_{\gamma_{1}}\right](\rho) . \tag{68}
\end{equation*}
$$

The assumption $\left(H_{4}\right)$ implies that at each point in N^{\prime} there is a symplectic basis such that the hessian of $F_{\text {Rep }}$ is a sum of terms
(i) $Q(x, \xi)=a x . \xi$, with $\operatorname{Spec}(a) \subseteq\{z \in \mathrm{C}$; Rez $>0\}$
(ii) $Q(x, \xi)=\alpha\left(x^{2}+\xi^{2}\right)$, with $\alpha>0$.
(iii) $Q(x, \xi)=0$.

We shall find appropriate quadratic form γ_{1} and constant c_{1} at ρ so that G in 68 is positive and piece them together. If we are in case (i), we chose $\gamma_{1}(x, \xi)=(\alpha x, x)-(\beta \xi, \xi) \alpha$ and β are two positive matrices so that $\sigma\left((x, \xi),\left[F_{R e p}, F_{\gamma 1}\right](x, \xi)\right) \geq 1 / C\left(x^{2}+\xi^{2}\right) ;$ any $c_{1}>0$ will fit.
If we are in case (ii), we take $\gamma_{1}(x, \xi)=-k\left(x^{2}+\xi^{2}\right)$ with $k>0$ and small with respect to c_{1}.
In case (iii) $\gamma_{1}=0$. Therefore we can construct functions $\gamma(\rho)$ and $c(\rho)$, such that

$$
\begin{equation*}
(c \operatorname{Rep}+\{\operatorname{Rep}, \gamma\})(\rho) \geq C^{-1} d\left(\rho, N^{\prime}\right)^{2} . \tag{69}
\end{equation*}
$$

Moreover if γ_{1} is small with respect to γ_{0} we shall have $\{\gamma>0\} \cap \partial u \cap$ $O F(u) \subseteq\left\{\gamma_{0}>-\varepsilon\right\} \cap \partial \omega \cap O F(u)=\emptyset$.

We choose $m^{\prime}(\rho)=\varphi(\rho)^{2}$, where φ is a C^{∞} function supported by ω. $I m p_{1}>0$ is positive, while $\left\{\operatorname{Rep}, m^{\prime}\right\}$ is supported near $\partial \omega$. We derive the estimate

$$
\begin{equation*}
\operatorname{Im}\left(P_{\gamma} u, M^{*} u\right) \geq c \mu\left(\sum_{j}\left|v_{j}(\varphi u)\right|^{2}\right)+c \lambda^{-1}|\varphi u|^{2}+\mathcal{O}\left(\lambda^{-1}\right)|\psi u|^{2}+\mathcal{O}\left(\lambda^{-1} \mu\right)|u|^{2} \tag{70}
\end{equation*}
$$

the v_{j} form a set of equations of N^{\prime}, ψ is supported near $\partial \omega$. We replace u by $e_{\gamma}^{\prime} u$ and we note $M_{\gamma}=e_{\gamma}^{\prime} M e_{\gamma}^{\prime}$. In the following the third term in 70 could be neglected since $O F(u) \cap \partial \omega \cap\{\gamma>0\}=0$.

We introduce the additionnal notation : let m be an order function and g a metric a symbol $a(x, \xi) \in \dot{S}(m, g)$ if it is the sum of a symbol in $S(m, g)$ supported by a neighborhod of the support of φ and a symbol of order $-\infty$. In the following m will have the form $\lambda^{m}(\ln \lambda)^{p}$ and $g=g_{0}$ or $m=\lambda^{\gamma}(\ln \lambda)^{p}$ and $g^{\prime}=(\ln \lambda)^{2} g_{0}$. Then we have

$$
\begin{equation*}
\left.\operatorname{Im}\left(P u, M_{\gamma}^{*} u\right) \geq c\left(\mu \sum_{j}\left|v_{j} \varphi e_{\gamma}^{\prime} u\right|^{2}\right)+\lambda^{-1}\left|\varphi e_{\gamma}^{\prime} u\right|^{2}\right)+\left(R_{2 \gamma-2,2} u, u\right) . \tag{71}
\end{equation*}
$$

with $R \in \tilde{S}\left(\lambda^{2 \gamma-2}(\ln \lambda)^{2}, g^{\prime}\right)$. We shall use the notation $|u|_{\gamma}=\left|e_{\gamma}^{\prime} u\right|$.

5.2 Concatenations.

We move the subprincipal symbol using multiplication by non elliptic operators, this is named concatenations.

$$
\begin{equation*}
\operatorname{Im}\left(J U_{N} P u, J M_{\gamma}^{*} U_{N} u\right)=\operatorname{Im}\left(\left[J U_{N}, P\right] u, J M_{\gamma}^{*} U_{N} u\right)++\operatorname{Im}\left(P J U_{N}, M_{\gamma}^{*} J U_{N} u\right) \tag{72}
\end{equation*}
$$

where $U_{N} u=\left(U_{\alpha} u\right)_{|\alpha|=N}$ and $U_{\alpha}=\left(u_{1}^{w_{\lambda}}\right)^{\alpha_{1}} \cdots\left(u_{\tau}^{w_{\lambda}}\right)^{\alpha_{r}}, J$ is a linear operator in the space $\mathbf{C}^{N^{\prime}}$ of multi-indices of length N. We can apply inequality 71 to the second term of 72.

We compute the commutator $\left[P_{1} U_{N}\right]$. Let P_{0} be the principal part of P, i.e. $P_{0}=(p)^{w_{\lambda}}=\sum_{1 \leq j \leq r}\left(p_{j} u_{j}\right)^{w_{\lambda}}$ and $P=P_{0}+i \lambda^{-1}\left(p_{1}\right)^{w_{\lambda}}, p_{1}$ is the sub principal symbol.

$$
\begin{equation*}
\left[U_{\alpha}, P_{0}\right]=\sum_{1 \leq j \leq r, p+q=\alpha_{j}-1}\left(u_{1}^{w_{\lambda}}\right)^{\alpha_{1}} \cdots\left(u_{j}^{w_{\lambda}}\right)^{p}\left[u_{j}^{w_{\lambda}}, P_{0}\right]\left(u_{j}^{w_{\lambda}}\right)^{q} \cdots\left(u_{r}^{w_{\lambda}}\right)^{\alpha_{r}} . \tag{73}
\end{equation*}
$$

$\operatorname{But}\left[u_{j}^{w_{\lambda}}, P_{0}\right]=\sum_{1 \leq k \leq r}\left[u_{j}^{w_{\lambda}},\left(p_{k} u_{k}\right)^{w_{\lambda}}\right],\left(p_{k} u_{k}\right)^{w_{\lambda}}=p_{k}^{w_{\lambda}} u_{k}^{w_{\lambda}}-\frac{1}{2 i \lambda}\left\{p_{k}, u_{k}\right\}^{w_{\lambda}}+$ $O\left(\lambda^{-2}\right)$, so $\left[u_{j}^{w_{\lambda}}, P_{0}\right]=\sum_{1 \leq k \leq r}\left[u_{j}^{w_{\lambda}}, p_{k}^{w_{\lambda}}\right] u_{k}^{w_{\lambda}}+O\left(\lambda^{-2}\right)$.

We deduce then

$$
\begin{align*}
& {\left[U_{\alpha}, P_{0}\right]=} \\
& \quad \sum_{1 \leq k \leq r, 1 \leq j \leq r} \frac{1}{i \lambda}\left\{u_{j}, p_{k}\right\}^{w_{\lambda}} \alpha_{j}\left(u_{1}^{w_{\lambda}}\right)^{\alpha_{1}} \cdots\left(u_{k}^{w_{\lambda}}\right)^{\alpha_{k+1}} \cdots\left(u_{j}^{w_{\lambda}}\right)^{\alpha_{j}-1} \cdots\left(u_{r}^{w_{\lambda}}\right)^{\alpha_{r}} \\
& \quad+\sum_{\beta<\alpha}\left(c_{\alpha, \beta}\right)^{w_{\lambda}} U_{\beta} \tag{74}
\end{align*}
$$

where $c_{\alpha, \beta}$ are symbols of degree $-1-|\alpha|+\{\beta \mid$.
We know that $\operatorname{Spec}\left(\left\{p_{k}, u_{j}\right\}\right) \subset\{z \in \mathbf{C}, \operatorname{Re} z>c\}$.
The operator $\left(z_{\alpha}\right) \rightarrow\left(\alpha_{j} z_{\alpha-(j)+(k)}\right)$ is algebraically the operator $z_{k} \frac{\partial}{\partial z_{j}}$. With the notation $a_{j, k}=\left\{u_{j}, p_{k}\right\}$, and

$$
\left(\mathcal{A}_{N} U\right)_{\alpha}=\sum_{\alpha=\beta-(j)+(k), 1 \leq j, k \leq r} a_{k, j} \beta_{j} U_{\mathcal{B}}
$$

we have

$$
\begin{equation*}
\left[U_{N}, P_{0}\right]=i \lambda^{-1}\left(\mathcal{A}_{N} U_{N}\right)+\left(\sum_{\beta<\alpha}\left(c_{\alpha, \beta}\right)^{w_{\lambda}} U_{\beta}\right)_{\alpha} \tag{75}
\end{equation*}
$$

The same result will hold for P since P_{1} will contribute to the second term in 75.

We construct the linear operator J, such that $J \mathcal{A}_{N}\left(\rho_{0}\right) J^{-1}=\left(\left(\sum_{j} \alpha_{j} \lambda_{j}\right) \delta_{\alpha, \beta}\right)+$ $o(N)$, the contribution $o(N)$ is due to that eventually $a\left(\rho_{0}\right)$ cannot be made diagonal. We see that the self-adjoint part of operator $M_{\gamma} J A_{N} J^{-1}$ is positive elliptic. Using the Gärding inequality for systems we have

$$
\begin{equation*}
\operatorname{Im}\left(J A_{N} U_{N} u, J M_{\gamma}^{*} U_{N} u\right) \geq c N\left|\varphi^{w_{\lambda}} e_{\gamma}^{\prime} J U_{N} u\right|^{2}-C_{N}\left(R_{2 \gamma-1,2} U_{N} u, U_{N} u\right) \tag{76}
\end{equation*}
$$

where $R_{2 \gamma-1,2} \in \bar{S}\left(\lambda^{2 \gamma-1}(\ln \lambda)^{2}, g^{\prime}\right)$.
We estimate

$$
\begin{align*}
& \operatorname{Im}\left(J\left[U_{N}, P \mid u, J M_{\gamma}^{*} U_{N} u\right) \geq\right. \\
& \quad c N \lambda^{-1}\left|\varphi e_{\gamma}^{\prime} J U_{N} u\right|^{2}+\left(R_{2 \gamma-2,2}^{(N)} U_{N} u, U_{N} u\right)+\sum_{l<N} \operatorname{Re}\left(J C_{N, l} U_{l} u, M_{\gamma}^{*} J_{N} u\right) \tag{77}
\end{align*}
$$

where $R^{(N)} \in \tilde{S}\left(\lambda^{2 \gamma-2}(\ln \lambda)^{2}, g^{\prime}\right)$, the $C_{N, l}$ are operators of order $-1-N+l$. We estimate the third term in 77. The operator $M_{\gamma}=e_{\gamma}^{\prime}\left(\varphi^{w_{\lambda}}\right)^{2} e_{\gamma}^{\prime}+R_{2 \gamma-1,2}$, then

$$
\begin{align*}
& \operatorname{Re}\left(M_{\gamma} J C_{N, l} U_{l} u, J U_{N} u\right) \leq \\
& \quad \varepsilon \lambda^{-1}\left|\varphi^{w_{\lambda}} e_{\gamma}^{\prime} J U_{N} u\right|^{2}+C_{N, \varepsilon} \lambda^{-1-2 N+2}\left|U_{l} u\right|_{\gamma}^{2}+C_{N} \lambda^{-3}(\ln \lambda)^{4}\left|U_{N} u\right|_{\gamma}^{2} \tag{78}
\end{align*}
$$

So we get

$$
\begin{align*}
& \operatorname{Im}\left(J\left[U_{N}, P\right] u, J M_{\gamma}^{*} u\right) \geq \\
& \left.\quad c N \lambda^{-1}\left|\varphi e_{\gamma}^{\prime} J U_{N} u\right|^{2}+\left(R_{2 \gamma-2,2}^{(N)} U_{N} u, U_{N} u\right)+\sum_{l<N} R_{2 \gamma-2 N+2 l}^{(N, l)} U_{l} u, U_{l} u\right) \tag{79}
\end{align*}
$$

If we chose N such that $I m p_{1}+c N>0$, using 71,72 and 79 we obtain

$$
\begin{align*}
& \operatorname{Im}\left(J U_{N} P u, J M_{\gamma}^{*} U_{N} u\right) \geq \\
& \quad c N \lambda^{-1}\left|\varphi^{w_{\lambda}} e_{\gamma}^{\prime} J U_{N} u\right|^{2}-C \lambda^{-2}(\ln \lambda)^{4}\left|\varphi_{1}^{w_{\lambda}} e_{\gamma}^{\prime} U_{N} u\right|^{2} \\
& \quad-C_{N} \sum_{0 \leq k \leq N-1} \lambda^{-1-2 N+2 k}\left|\varphi_{1}^{w_{\lambda}} e_{\gamma}^{\prime} U_{k} u\right|^{2}+O\left(\lambda^{-\infty}\right) \tag{80}
\end{align*}
$$

where φ_{1} is a function supported by a neighborhod of supp φ.
As in [5] the proof is based on a recurrence on the H^{s} regularity of the $U_{k} u$ in the domain $\{\gamma(x, \xi)>0\} \cap \omega$.

We must modify the Proposition 1 of [5] to take care of the last terms in 80 . We shall estimate $c_{k}=\sum_{0 \leq i \leq k} \lambda^{\prime}\left|e_{\gamma}^{\prime} \varphi^{\omega_{\lambda}} U_{k} u\right|$ by c_{N}, N is now fixed. To do that we use the equation

$$
\begin{equation*}
P u=f=\sum_{1 \leq j \leq \leq r} p_{j}^{w_{\lambda}} u_{j}^{w_{\lambda}}(u)+\left(\frac{1}{2 i \lambda}\left\{u_{j}, p_{j}\right\}+\lambda^{-1} p_{1}+O\left(\lambda^{-2}\right)\right)^{w_{\lambda}}(u) \tag{81}
\end{equation*}
$$

We note

$$
\begin{equation*}
p_{1}^{\prime}=\frac{1}{2 i} \sum_{1 \leq j \leq r}\left\{u_{j}, p_{j}\right\}+p_{1} \tag{82}
\end{equation*}
$$

We use as above commutators with the operators U_{k}; from formula 75 we obtain

$$
\begin{align*}
U_{n} f=U_{n} P u= & i \lambda^{-1} \mathcal{A}_{n} U_{n}(u)+\sum_{0 \leq j \leq n-1} Q_{n j} U_{j}(u) \\
& +\sum_{1 \leq j \leq \leq r} p_{j}^{w_{\lambda}} u_{j} U_{n}(u)+\lambda^{-1} p_{1}^{\prime w} U_{n}(u)+\mathcal{O}\left(\lambda^{-2}\right)(u) \tag{83}
\end{align*}
$$

The $Q_{n, j}$ are operators of order $-1-n+j$.
It is a consequence of the assumptions that the matrix $\mathcal{A}_{n}^{\prime}=\mathcal{A}_{n}+I d_{C^{\prime}} p_{1}^{\prime}$ is invertible for any n in a neighborhod of ρ_{0}. Let \mathcal{B}_{n} an operator of order γ such that $B_{n} \mathcal{A}_{n}^{\prime}=\varphi_{0} e_{\gamma}^{\prime} I d+\mathcal{O}\left(\lambda^{-\infty}\right)$. We apply \mathcal{B}_{n} on the members of equation 83

$$
\begin{equation*}
\mathcal{B}_{n}(f)=i \lambda \varphi_{0}^{w_{\lambda}} e_{\gamma}^{\prime} U_{n}+\sum_{1 \leq j \leq r} B_{n} P_{j}\left(U_{n} u\right)+\sum_{l<n} \mathcal{B}_{n} Q_{n, j} U_{j} u \tag{84}
\end{equation*}
$$

We multiply both members of 84 by $\varphi^{w_{\lambda}}$, using $\varphi^{w_{\lambda}} \varphi_{0}^{w_{\lambda}}=\varphi^{w_{\lambda}}+\mathcal{O}\left(\lambda^{-\infty}\right)$, $\left[\mathcal{B}_{n} P_{j}, \varphi^{w_{\lambda}}\right] \in \tilde{S}\left(\lambda^{\gamma-1}(\ln \lambda), g^{\prime}\right)$ and $\left[\mathcal{B}_{n} Q_{n, j}, \varphi^{w \lambda}\right] \in \tilde{S}\left(\lambda^{\gamma-2-n+j}(\ln \lambda), g^{\prime}\right)$ we obtain

$$
\begin{align*}
& \left|\varphi^{w_{\lambda}} e_{\gamma}^{\prime} U_{n} u\right| \leq \\
& \quad C\left(o(1) \sum_{1 \leq j \leq r}\left|\varphi^{w_{\lambda}} u_{j} U_{n} u_{1}\right|_{\gamma+1}+\sum_{l<n}\left|\varphi^{w_{\lambda}} U_{l} u\right|_{\gamma-n+l}+\sum_{l \leq n+1}\left|\varphi_{1}^{w_{\lambda}} U_{l} u\right|_{\gamma-n+l, 1}\right) \\
& \quad+O\left(\lambda^{-\infty}\right) \tag{85}
\end{align*}
$$

This justify the notations $c_{n}=\sum_{j \leq n} \lambda^{j}\left|e_{\gamma}^{\prime} \varphi^{w_{\lambda}} u\right|$ and $d_{n}=(\ln \lambda) \sum_{j \leq n} \lambda^{j}\left|e_{\gamma}^{\prime} \varphi_{1}^{w_{\lambda}} u\right|$. We have proved

$$
\begin{equation*}
c_{n} \leq o(1) c_{n+1}+k_{0} \sum_{j<n} c_{j}+k_{1} d_{n+1}+\mathcal{O}\left(\lambda^{-\infty}\right) \tag{86}
\end{equation*}
$$

k_{0}, k_{1} are some constant.
The basic idea of Propsition 1 of $[5$) is to derive from 86 an upper bound of the c_{j} for $0 \leq j \leq N-1$ by c_{N}, where N is an integer choosen large enough with respect to the imaginary part of p_{1}. We shall need eventually to shrink ω accordingly. The d_{j} are controlled by using the steps of this recurrence. So we obtain by recurrence the smoothness of u in the domain $\{(x, \xi) ; \gamma(x, \xi)>0\} \cap \omega$.

Now we can finish the proof as in [5].

References

[1] R. Beals, Characterization of pseudo differential operators, Duke Mathematical Journal 42, (1975), 1-42
[2] J.M. Bony and N. Lerner, Quantification asymptotique et microlocalisations d'ordire supérieur I, Ann. ENS, 4 série, 22, (1989) 377-433.
[3] L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer-Verlag, 274, 1985.
[4] A. Melin and J. Sjöstrand, Fourier Integral Operators with complexvalued phase function, Lecture Notes in Mathematics, Springer-Verlag, 459, 1975.
[5] B. Lascar and R. Lascar, Propagation des singularités pour des opérateurs dont la matrice fondamentale contient des valeurs propres non purement imaginaires. Comm. in Partial Differential Equations, 17 (3\&4), (1992), 437-446.
[6] B. Lascar and J. Sjöstrand, Equation de Schrödinger et propagation pour des o.p.d. à caractéristiques réelles de multiplicité variable II, Comm. in Partial Differential Equations, 10 (5), (1985), 467-523.
[7] R. Lascar, Propagation des singularités pour des opérateurs à symboles complexes, To appear, Comptes Rendus Acad. Sciences, 1992.
[8] N. Lerner, A nonlocally solvable pseudo-differential operator which satisfies the condition (Ψ). To appear in Annals of Maths.
[9] J. Sjöstrand, Singularités analytiques microlocale, Astérisque 95, 1984.
[10] J. Sjöstrand, Analytic wave front sets and operators with multiple characteristics, Hokkaido Mathematical Journal 12 (1983) 392-433.

[^0]: ${ }^{1}$ A curve $t \in[0, T] \rightarrow \gamma(t) \in W$ is N_{0} admissible if for any $\varepsilon>0$, there exists a partition of $[0, T]$ in intervalls of type I and \mathcal{J}, the number of these intervalls is less than $N_{0}(\epsilon)$. An interval of type I remains at a distance less than ϵ from a point in the double characteristic set of P_{1}, an interval of type \mathcal{J} has a lenght less than $N_{0}(\varepsilon)$.

