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Abstract 

The purpose of this work is to prove a theorem of propagation of singularities 
for a class of non real pseudo-differential operator with multiple character
istics. The main tools are I? estimates on the time dependent Schrodinger 
equation related to P. We extend here the results of (6j; we improve the 
results announced by the second author in [7]. 

The second part of this work consists in an extension of the result of [5] 
to complex valued symbols. 
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P a r t i 

The General result. 
We start by a general result which could not be optimal in all the cases 
scanned here. The approach is similar to [6] but we use also time depen
dent L2 estimate and some informations on the parametrix constructed in 
[6]. The main difference with the proof in [7] is that we need to have an 
analysis of the microfocal structure of the parametrix of the time dependent 
Schrodinger equation associated with the self-adjoint part of our operator. 

1 Introduction and main statement 
Let P(x} \~1DXJ A) be a pseudo-differential operator depending on a large 
parameter A, defined by the Weyl formula : 
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P(x,X~lDs,X)u(x,X) = oplß((p(x,S/\,\))(u)(x) 

= (~)" / Pi—1^, \)e**-Mu(V, A) dydt 

(1) 

We shall write the operator given by formula 1 (p(x, f, A)) w x . 
The full symbol p(x, 4» A) has an expansion as 

p(x, £, A) - px{x, 0 + tp2(x 9 0 + A^poCx, & A) (2) 

where p\ and p2 are real and pi > 0. po(#X A) is a zero order symbol i.e. 
satisfies estimates : 

For all multi-indices a and ß JD£.D^po(x, A) < Caß. 

It is a consequence of formulas 1 and 2 that 

P ( s , A" 1!)*, A) - Pi(x, \~lDx, A) + tft(ar, \~lDx, A) (3) 

where Pi and P% are self-adjoint pseudo-differential operators with symbols 
respectively 

Pi = (pi(*,0 + A^ifefobfof, A))"* (4) 

P 2 - (pa(*,0 + A"1 Jm(po(x,£, A))« (5) 

We shall make L2 estimates on the solutions u(t) of the Schrödinger 

equation ( A + P{x, \~lDz, \))u(t) ~ 0. We shall therefore use some con

structions made in [6]. We need to recall the hypotheses of this work. 

• (H)i : Let $t be the bicharacteristic flow of p\ at the time t Let po 
in T*R n be a point near which we shall work. Let h(t) € o(t) when 
t -> oo, h > 0 a function, and W a neighborhood of po such that any 
bicharacteristic curve of p\ with end points lying in 

H ' ; ~ \ and i/0 < s < t*,(pa) € Wand |pi(p x)j < exp(-fc(t)) J 

(6) 
is iV0 admissible1 for a function e e JO, 1] -+ NQ(E) e R + . We refer 
to [6] pp 468-469 for a definition and for sufficient conditions which 

l A curve t € [0,T] — y(t) e W is NQ admissible if for any e > 0, there exists a 
partition of [0. T) in intervals of type X and J , the number of these Intervalls is less than 
No(e). An interval of type J remains at a distance less than £ from a point in the double 
characteristic set of Pi, an interval of type J has a lenght less than No(e). 
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imply this property. We shall not recall here the details, but we just 
mention that it is satisfied if the bicharacteristics of p\ whose lenght 
is large enough leave a neighborhood of (po, po). 

Let N = {p € T*(R n); pi(p) = dpi(p) = 0} be the set of double charac
teristics of Pi-

• (H)2 : The main assumption is that on iV, the dimension of the space 
spanned by the generalized eigenvectors associated with eigenvalues of 
positive imaginary part is constant. 

• (H)3 : On JV, Impo(p) > 0. This inequality means that Impo has a 
positive lower bound with respect to p and A. 

Let us define 
C(W)=f)MWrf) (7) 

where u is the set of all non negative increasing functions h(t) e o(t) 
when t -+ co. 

We consider C(W) as a relation in T*(R n ). 
We note by OF(u) the oscillatory front set of a bounded family of 

tempered distributions A). 
Let us recall that we say that (XQ,£O) € (OF(u))c if there are neighbor

hoods V of xo and L of £o such that for any <p € Co°(Vr) 

For all N € N, for A > 1 sup \<pu\ (A£, A) < CN\~". 
set* 

The main result can now be stated. 

T h e o r e m 1 Assume that the assumptions (H)i (H)2, (H)3 are satisfied for 
a suitable set W and for some function ho € v. Let u(x,A) be a bounded 
family of tempered distributions. If OF(Pu) n W = 0 and C(W)(p) DdWn 
OF(u) =0, thenp£OF(u). 

We easily deduce : 

Corol lary 1 Letpo €T*(R n ) \0 , P{x,Dx) a pseudo-differential operator in 
the usual sense. Assume that (H)i (H)2, (H)3 are satisfied for a neighborhod 
W of po and a function ho€u. Let u be a distribution such that WF(Pu)C\ 
W = 0 and C(W)(p) ndWH WF{u) = 0, then p £ WF{u). 
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The main difference between the proof of this theorem and the corresponding 
result in [7] is the presence in the ^characteristic flow of p\ of expansive 
directions. This will make us to use fully the construction of the parametrix 
of [6] instead of using only rnicrolocalisations in a semi-global L2 inequality 
for the solutions of the time dependent Schrodinger equation associated with 
Pi-

2 Estimates on solutions of the Schrodinger equa
tion 

We shall work with a family of solutions of the Schrodinger equation (Dt + 
P(x, \~lDx))u(t) = o, where Dt = (l/i\)d/dt. 

We need to make a Fourier-Bros-Iagolnit2«r transformation (see [9] and 
[6]). Let 

T t l ( x , A) = (A)n/2 J e-xmi*-*)*-*mufa X) dy (8) 

this is a unitary transformation from L 2 (R n ) to the space H^Q(Cn) of entire 
functions in L 2 ( C n , e~ 2 A < P oL(dx)} ? where L(ctr) is the Lebesgue measure in 
C n , and <po(x) - | \x\2. 

We note by the same letter an operator and its conjugate by 7\ 
We have a Bergman projector from L 2 (C n ,e~ 2 A ^L(<ir)) to ff^C1) 

given by the formula 

Su(z, A) = (A)n J e*v/%iy, X)e~^o(y) L { d y ) (9) 

see [9j for these formulas. Let us say that the formula 9 is obtained by 
integrating the formal integral in TT"*1 along a suitable contour. 

In [6] we can find some constructions for an approximate solution Etu{x, A) 
of the equation (Dt + P\{x, \~lDx))(Etu) = 0; Etu\t=o s % we shall make 
this more precise later. 

Etu(x,A) - e ^ e ( t , x J , A ) x ( U , f M y , ^ 
(10) 

where y(t,x,y) is a solution of the phase equation with value v?(0, x, |/) = 
- ixy /2 ; e(t, xy y, A) is a solution of transport equations, x(*» y) is a cut-off 
function. 
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Let 
Tt(W,h)^[(x,V);(x^,y,^)eK(W,h)} (И) 

where A!t(W,h) is the image by the complex canonical transformation gen
erated by <po(x) of the Lagrangean sub manifold 

Л (W h\ - / (Л»Pi) € W2; such that pi = exp(f# p i )(p2) ifO<s<t 1 
Л Н " ' я ' ~ \ ехр(зНп)(р2) eWand |pi(Pi)l < ехр(-ОД) J 

(12) 
where P2 l s ^ e antipodal point of p%. 

rt(W, h) is totally real in С* x C n . We again refer to [6] for the con
struction of a convenient projection С* x C* Tt(W,h); z ~* rn(£, z) € 
Tt(W}h)\ mit.z) will be defined uniquely by the additional property that 
г - т ( * , г ) € г Т т ( м ) Г д а Л ) . 

Therefore functions on Yt{W, h) give rise to almost analytic extension 
in C n x C n . Appropriate controls with respect to t are obtained in [6]. 
From these controls it follows that all derivatives with respect to (t,x) of 
these maps are bounded by some exp(h(t)) with a function h(t) € o(t) when 
t -+ oo. So (p(tj x, y ) , . . . , x{t, xy y) will be almost analytic on Г* and there 
derivatives are bounded by some exp(/i(t)). A more precise decay in time 
for the amplitude e(t, x, y) is obtained and this will be discussed later since 
this point is essential in our discussion. 

Proposi t ion 1 There are two constants С > 0, 7 > 0 such that 

| | ^ | |<СЛ п ехр( -1 /27<) (13) 

7 being as close as we wish of the lower bound of 

T+(p) = £ Rezj. 
Zj€Spec(FPl), Rezj>0 

We shall not use this result here, but it is woth mentionning since it is 
the key point of the proof in [6]. The proof will be derived from elements of 
the proof of the following Proposition. 

Proposi t ion 2 There are constants M > О, С > 0 such that 

Ш\<С (14) 

t/exp(Mt) < A, the norms are taken in # V 0 ( C n ) . 
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Proof. Let us prove Proposition 2. Let E* be the adjoint of Et in 
HlfiQ{C

n). If we write dy,(x) = e - 2 V 0 ( * ) h(dx) the kernel (with respect to 
/i) of El is given by E*(x,y) = / 5(x, s)£*(y,z)d/.(s), the kernel of E^Et 

is therefore EfEt(x,y) = /5(z,x.j&Cxj,xi)E t(x2,y)dn{xx)dn{x2). We 
write this integral 

E*tEt{x, y)^J eiXH^x^)f{t, x, y; XM, A) «fo(*i)«./.(*a) (15) 

In 15 we have 

H{t,x,y;xi,x2) = *i) - W*>*2,£i) 4- ¥>(t,x2,j/) + 2t(v?o(*i) + Vote)) 
(16) 

and 

/(i ,x,y;xi ,X2, A) = c A 3 n ^ ^ ^ ) e ( t ? x 2 , y)x(t, »2, Si)x(*. * 2 , J) (17) 

where c is some absolute constant, $(x,xi) = -xx^T/2. We first investigate 
the critical points of H with respect to (xi, #2); we estimate ,using [6] page 
505 (5.30) 

ImH(tix1y;xuX2) + $(x,y) > 

c(\x - x i j 2 + |(a?2fïi) - m(x2i*i)\2 + l(*2,y) - m t (x 2 ,y) | 2 ) (18) 

with the notation $(x,y) = <#>(£) + <Po(y)- We have 

Hf

xi = - v ^ ( i f X 2 , * i ) - * / 2 * i 

fljj- = ~i/2x - ^ 7 * 2 ^ ) + %/2xi 

H'X2 = -5ÇT*,X2,Si) + vi(*.*2,y) +*Y22?2 

= ^ ( T x ^ + (^( t ,x 2 , I?)+t72a :2 (19) 

It results from these relations that we have a "real" critical point when 
xi = x, (x2,3Êi) € Tt, (x2, V) € r ê , i.e. when x = y the critical point being 
xi = x, x 2 = $t(3J). Let ei > 0 a small number to be chosen later. 

In the integral 15, using 18 we can restrict the integration over the set 
of (xi, x 2 ) such that |(x2,£) - rn t (x2,ï) | 2 + |(x 2#) - m*(x2,£)|2 < eoA~ l+ £ l , 
\x — x\\2 < 6oA~ 1 + € l for some BQ to be chosen later; we neglect then a term 
0(A~°°). We deduce from the relations 19 that a zone 
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|<¿/ x(í,x 2,2) - y x ( t , « 2 , y ) l > c 4 / 2 A ( ~ 1 + e i ) / 2 give also a term 0(\~°°). As 
mt(x2,T) and mt(x2,l?) € r t , we have ^t(^t(x2lT)y) = tfit(ff2f£)* and 
$t(mt(£2»?)y) = í7it(^2)5)ar» $t is a (üfFeomorphism whose first two deriva
tives are bounded by some e*, we have then \x - y\ < CeoePX^1**1^. 

Let us estimate the Hessian of H at real critical points. 
We first make a complexification and we write x i , x 2 instead of x i ,X2 , 

we shall refer to the set { í 1 = %T,x2 - £ 2 } as the real. Let (pi(t1X21x\) be 
an almost analytic extension of <¿?(í,£2>5?i)* Let H be an almost analytic 
function on 

f t = {(z,V,xhxhx2,x2);fa,xi) eTu(x2,y) € Tt} 

extending H . We compute V2H(t, x, x; x, $¿(2?), $e(30) as the map 

(6x1,6x1,6x216x2) 

(i/26xi - <plyy6xi~ <¿iXy6x2li/26xu(pn

xx6x2 + i/26x2> 

- " / i r x ^ 2 - V\yx6xi + i/26x2) (20) 

the computation being simplified by the fact that at such particular points 
V V is C-linear. This map is invertible and its inverse will have the same 
norms as the inverse of 

(6x2i 6X2) -> (<plx(t,xl,x)6X2 + i/26X2,~vlxti^ (21) 

with x% = $t(3f). We have then to estimate the inverse of the map 
?lx(t,x%,%)(plx(t,x%,%) - i . We refer to ([6) Proposition 5.2 (5.28)) to 
obtain 

where (í, z) € I \ a and 6 are defined by the relation 23 

.c~6x + i6Z. ( a b \ , c . r 6y + i6r] , . 
( < 5 * - — 2 i ) = [ ±5 3 ) { S y ~ %6ri> —2i—} ( 2 3 ) 

if (6xy6^)6y16rj) is a tangent vector of A*. We refer to [6] section 5, page 
490. We have 

( M ) € l \ \\^%z)\\<2\\a(tyz)\\ (24) 
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Moreover yfxx<pxx - \ = - ja""1****1 as a consequence of the relation o*a -
1*66 = / . So the norm of the inverse of the map 21 is {det a( i ,z) | 2 . As 
computed in [6| the module of e(£, z) at a point (t, z) € F is precisely 
ide ta( t ,*) |~ 1 / 2 . 

This means that in the stationary phase expansion of integral 15 the 
powers of A and the exponentials decays in time vanish, it remains only the 
normal A n. See [6] section 6.2, page 509-510, relations (6.4) and (6.5). 

The condition exp(Aft) < A will allow us to give sense to the applica
tion of stationary phase expansion with a complex phase function (see (4j) 
uniformly with respect to (t,x,y)« 

We need to be more specific in the application of the stationary phase 
method. We check here some steps with uniform controls in t. 

In a neighborhood V = {(x,y); \x - y\ < e o e ~ M o t j of the diagonal we 
have a map (L x, y) -+ Zc(t, x, y) € C 4 1*, where Z = (xi, xi, X2, X2) , such 
that 9z#(£,x,y; Zc(t,x,y)) = 0. The derivatives of this map satisfy some, 
estimates like jZ^ x y Z c ( J , x ,y ) | < Caexp(ct\a\) for some constants C* and 
c > 0. Hence we have 

\Zc(t,x,y)~Zc(t,x1x)\ <Cexp(c*) |x~y | (25) 

We can define a symmetric complex matrix Q(£,x, y) such that 

&zzH{t,x, y; Z c(t, x, y)) = iQ2(t, x,y) 

which is well defined and smooth since V is connected and simply connected. 
We have ||Q~ 1(t, x, y)|j < C exp(ct) for some constants c and C > 0. We 

have 

ImH(ty x, y; Z) = Im(H(t, x, y; Zc(t, x, y)) + 
l/2Imd2HZz(t,xv y; Zc(«,x,y))(Z - Ze(t, x ,y)) 2 + 
© ( ( ^ ( Z c ^ x , vJ.reo/)) 0 0 + | Z - Z c (t ,x,y) | 3 ) (26) 

we choose a point Z such that Z € real = {xi = xi;X2 = X2}, then 
/m(/ f ( t ,x ,y ;Z) + $(x,y) > 0, and dtst(Z c(t,x,y)),reoi) < |Z - Z c ( t ,x,y) | . 
We use then the estimate (2.6) of (4J and we derive 

ImH(t,x, y; Z c ( i , x, y)) + <S>(x, y) > Ce"atdi$t(Zc{t,x, y), real)2 (27) 

This relation shows that the stationary phase expansions are independent 
of the choice of particular almost analytic extensions but is inadequate to 
bound the L2 norm. 
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We shall compute Hc(t,x,y) = (t,i,y; Zc{t,x,y)) with a Taylor expan
sion on the diagonal 

Hc(t,x,y) = Hc{t,x,x)^VyH{tJx,x){y-x)^-\/2V2

yyH{t,x,x){y-x)2 

-\/2{{HzzTxHZy{y - x), HZy(y - x))) + 0 ( e o t ( s - yf) 
(28) 

The second term in 28 is (/y(i,x§,X)(]T- x") = - i / 2 x ( 2 - y ) . The third 
term is given by l / 2 ^ ( y - H)2. H"Zy(y - x) = ( 0 , 0 , ^ ( 5 - 3f),0). The 
inverse (H"zz)~lSX = 6Z is given by the relations 

VhSZt - VyySZi - i/25Zi = SXu i/26Zi = 6XX (29) 

(*Z 2 ) *Z 2 ) - ^ _ . / 2 ( 1 / 4 _ ^ L ) _ t ( 1 / 4 _ V L J («a, SXj 

(30) 
We make <W = (0,0,</xy(^ - 2),0). The fourth term in 28 is given by 
l / 2 ( ^ y ( y - 2), (1/4 - <ixjfsx)~yM^xy^5 - 2)) • Adding these two terms 
we have to compute l / 2 (<^ + ^ ( 1 / 4 -WxzVxxY^zzVzy)- We recall that 
(1/4 - = l /4a- 1 *a" 1 , so ^ + ^ ( 1 / 4 - ?x*¥>xx)~ l?xxV?xy = 

\/£tfa-x-\l4arxaa*lsaruarx = 0. We have therefore Hc(t,x,y) = Hc(t,x,x)-
i/2xy + i/2xH. 

We have now to compute Hc(t,x,x), (d/dt)Hc(t,x,x) - ~'^t{t,x%,'S) + 
^ ( i . a ^ . Z P ) where x§ = *t(x") ; on Tt v't(t,x,y) +Pi(x,if/X(t,x,y)) = 0 then 
Inuf/t(t,x,y) = 0; so Hc(t,x,x) = # c (0 ,x ,x) = t/»(x,x) + 2ilro^(x,x) +• 
4»<A)(x) = - I N 2 . 

We have obtained 

Hc(t, x, y) = - l a p + Die* \x - y\3) (31) 

We deduce from 31 that in V, 

ImHc(t, x, y) + *(*, y) > C~l \x - y\2 (32) 

Prom the usual estimate of L2 norms, we obtain the result of Proposition 
2. Moreover the relation eMtA-1 < 1 shows that we have an convergent 
asymptotic development in term of uniform decay in A. H 
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Propos i t ion 3 Let M and t satisfy eMtX~l < 1, then EfEt is a pseudo-
differential operator of order zero belonging to a class of S(l,g€) (see [3J 
Chapter 18) where g£ = A 2 c(|dx| 2 + \dt\2), where e > 0 depends on M and 
on the properties of the flow of HPl; when M -+ oo , e -* 0. 

Let us recall that a symbol a € S(l7ge) satisfies uniform estimates 

For all multi-indices a, fa | l£l?fa(x,£, A)| < Ca,pX£№+w\ 

Proof. 
We shall derive this property from Proposition 2 and from the character

ization of pseudo-differential operators due to Beals [lj. Let us estimate the 
L2 norm of the first commutators xaD%E;Et - EfEtXaD% for |a| + \0\ = 1. 
Using the computations of the proof above we express 

x«D%E!Etu(x) = | * * ( J W , * , y ) ^ 
+0(e<uX'1) (33) 

in this formula u 6 Htpo(Ul)t the notation O means that the remain
der has the same form but the order of the symbol is lowered. We have 
E;Et(xaD$u)(x) = / / ( t 1 x,y)e a *<^>»°l}Ji i (y)d/4(y) . we integrate by 
part in this formula so 

E;Et(x*D%u)(x) = ( - l ) W J' f(t}x,y)eiXH<^y« 

{Hf

yc{t,x,y) + i^i2)*u№ 

We compare 33 and 34, using 31 we get H'xc(t, x, y) = ~ iy /2+0(e a ' ( x - y) 2) 
and H£ c(t,x,y) - 0{**{z-v)2), x -y+e? (e" ' (x -y ) 2 ) = ff^(i,x,y)+i/2y. 

We need an extra notation to make these integration by parts (more) 
rigorous. Let G - (A~ 1 / 2 + |x - y\)~leCt(\dx\2 + \dy\%Mk = (X~1/2 + 
\x — y|)~*, let h = Hc(t, x, y)+2iVo(y). Assume that an amplitude /(£, x, y) € 
S(MklG), we note A(/) the integral operator with amplitude / and phase 
function h. Using an integration by parts with the operator L = uhSA + 

X"l)"l(Ji^d/dS + 1) and the fact that u(y) is holomorphic we can replace 
/ by X~NtLN(f); so the same operator is given with an amplitude in 
S(Mk+2N*~NeFm, G). We have shown before that if / € S(Mk, G) 
adx(A(f)) = A(fi) with fx € S(MkeatM„2,G), where X is either Xj or 
DXk. So ad X l . . .adx f e(A(/)) - A(fk) with /* € S(ec*A~*,C).Ji 
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We deduce then that £^ is a pseudo-differential operator in the class 
5(1 ,gt) where gt is the metric gt = e2Ct(|efcr|2 + |d£| 2). 

This result is then optimal with the restriction that we may not have the 
best constant C and that we consider here spatially homogeneous metrics.! 

3 Semi global L 2 estimates. 
We shall work as in [7] with L2 estimates for solutions of the Schrodinger 
equation ( A + P(x, Dx))u(t) = 0. More precisely 

/•To 
2XIm J ( ( A + P(x, k-lDs)u(t), <x(t)u(t)) dt = 

(a(T)u(T),u(T)) ~ (a(To)ti(T0),U(r0)) + fT\M(t)u(t)Mt))dt 
JT 

(35) 

with the notation 

M(t) = (da(t)/dt) - iX[Pu «(«)) + 2XRe(a(t)P2)) (36) 

a(t)(x, X~lDx) is a family of self-adjoint operators to be chosen later, To will 
depend only on A. We have to make (da(t)/dt)-iX[Pu a{t)]+2XRe(a{t)P2)) 
as large as possible. We choo6e a{t) = EtP(t)E* where Et has been con
structed in section 2, 0(t) will be chosen later. 

If we note R{t) = (d/dt)Et - iXPxEu we obtain 

(da(t)/dt) - tA[Pi, a(t)\ + 2XRe{a{t)P2)) = 
Et(d0(t)/dt)E; + 2XRe(Etp(t)E;P2) + 2Re(R(t)0(t)E^) (37) 

we shall deal later with the last term in 37. We have written in 5 P2 = 
((P2(x ,0+A- l /m(po(x,^A)) w . Let/3(i) = exp(-27t) where/m(pd(x,€^) > 
7. If Q = P2 — 7A""1 the Weyi symbol of Q is non negative. We have to 
estimate from below the operator Re(EtE*Q), we have proved in Proposi
tion 3 that EtE* € 5(1, ge), it is then a consequence of the Fefferman-Phong 
inequality that Re(EtE*Q) > ~CA~ 2 + 2 c . So from 37 we obtain 

(Af(t)t*(*),ti(0) > -CX~l+*e~w\u(t)\2 + 2(Re(R(t^ 
(38) 

We shall deal later with the last term in 38. In 35 we shall input u(t) = % 
so the left hand-side of 35 is an C?(A""°°) uniformly in time. 
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We make an Induction. Let W be an open neighborhood of po, we say 
that u e H*(W) if for any pseudo-differential operator <p(x, \~LDX) with 
supptp cWu satisfies \tpu\ < C\~9. Assume u € Ha(W). 

Let Wu W2 be two open sets such that W\ CC W2 CC W. We use 
the construction of (6j section 6.3 of a cut-off function x{t, x, y) defined by 
taking an almost analytic extension of the restriction to I \ of the function 

X (''" ) = { o * / / ^ ( * . t o ) ) * - = c ( 3 9 ) 

with the notations C € C0

oo{W2), ( s l i n Wx\ j> € C%>(W2\Wx),i> s 1 
in a neighborhood of d {x; C(x) > 0}; Ci(lO € Cjf({x;((x) > 0}) is one on 
a neighborhood of W\. It was proved in [6j that such constructions give 
a smooth function whose derivatives are bounded by some exp(h\(t)) with 
hi e o(t) when t -* 00. If we add a cut-off function in {y; \p\(y)\ < e~k^} 
the corresponding x will be supported in 

Aw2 = { ( * , * , y); x = * t ( y ) , /or 0 < s <t<f>s(y) € W2l |p i (y) | < c z e ^ } 
(40) 

with value 1 on Ahv 
In view the lower bound 

Irrupt x, y) + *(x, y) > CT 1 |(x, y) - m t(x, y) | 2 (41) 

we shall remain as close to Ft as we wish. 
We make T = 0 and To = 1/A/ln A. The condition in Proposition 3 is 

satisfied for 0 < t < T 0 . a(0) = EQE$ is elliptic in Wx. 0(To)ETOE%q is a 
pseudo-differential operator with wave front set contained in W%, belonging 
to the class 5 ( g - ^ T o , p £ ) . We have therefore {a(T0)%u) < C \ ^ ^ ' M if 
u € H*(W). Using 38 and the fact that e is close to 0, we shall conclude 
that H*+*'M(W) after taking care of the last; term 35. 

The operator R(t) comes from that Et is not an exact solution of the 
equation (A + P\)Et == 0, which is due to the presence of the x- The 
function x *s itself necessary since we want to localize near Ii(W} h) to get 
our theorem. This analysis has been carried out in [6] section 6.4. That we 
wish to say is that the assumption A(W, h)(p) n dW n OF(u) = 0 implies 
that \R(t)*u\ = 0(\~°°). This kind of troncature are precisely what we 
need to derive a propagation of singularities theorem from an ordinary L 2 

inequality; as we said above this makes all this machineary necessary. J 
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R e m a r k 1 The condition (H)s allows to prove a theorem of propagation 
of singularities with a loss of one derivative, in this sense this condition is 
sharp. 

Part II 

A more precise result in a 
particular case. 
We shall be able to get a sharper result in a symplectic case analogous to 
the case treated in [5]. 

4 Construction of the stable manifolds. 
In this section we shall use some elements of [10] Appendix A, and [6] Section 
4, we prefer to recall all this material in our proof than to use obscure 
references to these works. 

Let p(x,£) be an analytic complex function. Let po € NO R 2 " where 

N = € C 2 n ; p(s,£) = dp(x ,0 = 0} (42) 

Let Hp = pf^d/dx -j/xd/d£ be the hamiltonian field, we mean by bichar
acteristic of p the integral curves of the real vector field on C 2 n Hp -f Jfp. 

Let 

At = {(p(hp),p); p € C 2 n , p(p) = 0} andA t , R = {(p(i,p),p); p € R 2 n , p(p) = o} 
(43) 

in 43 t —• p(£, p) is a bicharacteristic curve starting at p. We shall assume 

• (Hi) : 

Imp(p) > 0 if p € R 2 ". (44) 

The fundamental matrix is Fp(x,£) = dHp(x,0 = ( P | x pJe J. 
\ ~P XX ~P xi j 

In the Jordan decomposition of Fp(p), we note W+(p) = ©/kA>o,A€Spec(Fp)K\> 
W.{p) = ©R eA<o,Ae5p«(Fp)Vx- Vx are the generalized eigenspaces. 
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© ( # 2 ) : We assume that 

C 2 n - W+{p) © WL(p) © Wb(p) 9 KerFp (45) 

and the dimensions of these three spaces? are constant along N. 

The assuption (H2) means there are no non zero eigenvalue in *R, that 
there is also no generalized eigenspace relative 'to zero and that dim (p) = 
r+, dim W„ (p) = r_ are constant. We note respectively by P+(p), P-(p) 
and Po(p) the corresponding projectors, it follows from our assumption that 
these maps are analytic. 

As a(Vx, = 0 if A+m / 0, W+(p)©Wb(p) £ ^ ( p ) 1 * , then r + < r_, 
then 

r+ = r _ = r and ^ ( p ) ^ = W±{p) © VVb(p) (46) 

# ( H 3 ) : We also assume that in a neighborhod of po, there is a constant 
Co such 

| / fp (p) |<C 0 | ( / -P 0 (po)) / fp(p) l (47) 

it is a consequence of the assumptions of constant ranks that 47 is 
independent of po. 

• (HA) : We shall assume that on N* = { ( O P , 0 € R2*; itep(x, £) = 
dikp(x, 0 - 0}, we have C 2 n = W'+ © © © © fferFjfcp 
where W'± are the correponding spaces for and W±i = ©iAespcc(F f l e p),i:A>o^-
We suppose also that the quadratic form [v, v] - j<r(t/, v) < 0 on W^. 
This means in fact simply that VQ ~ KerF^tp and that there are no 
no difference of harmonic oscillators in a spectral decomposition of 
FRep> In addition we assume that Nf is a smooth manifold and that 
Kerfoip) = TpN*. 

The first step is to construct stable manifolds for the complex symbol p. 
Let (x,y) be coordinates such that x € W+(po) © W0(po), y € W-(po), we 
split again x = (x7,*) where x 7 € W+(po), z 6 Wb(po). We note W+(p) = 
W+(p) © Wb(p). Let us note again by P+(p) an analytic extension of this 
function away from N. 

When we split C 2 n = W+(p) © W-(p), we have a decomposition of 

F p(p) = ^ * (p). We shall split further a = ^ ^ j along ^ ( p ) © 
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It is a consequence of the assumptions that in a close neighborhood of 

Spec(aQ) C {z e C, Rez > c}, Spec(6) C {z € C, Rez < ~ c } , , . 
11011 < €, |J7ll < 11« || < £ /or 1 < i <3; c> 0, e is small ^ 

Let p be a point close to po and £ p{t,p) the bicharacteristic issued 
from p. The evolution of tangent vectors is given by the linear differential 
equation £vt = F P(p(i, p))t;t, t/ t, t = 0 = =t*). 

We find a linear map <pt(p) from W+(po) to W-(po) such that the evo
lution of the space W+(po) along the flow is given by 
Wf(p) = {(6x, <pt(p)6x)> 6x € W^+(po)}. This is achieved as in [6] by solving 
the equation 

<Pt +<pta - 6<pt + <Pt0<Pt - 7 = 0» <Plt=o = 0. (49) 

In view of the relations 48, which imply that Spec(a) C {z e G, Rez > -e} 
we know that the equation 49 can be solved for t > 0 and we have ||<pt|| < Ce 
for some small e. 

We define a suitable norm to construct regions stable under the flow. 
Let ao = a(po) and 

Co = / exp(£a5) exp(ta 0) dt, Co > 0, CQOQ + a 0 C 0 = Idw^) (50) 

The restriction of Fp(po) to W(po) is expressed by Sy -* <fo(5y), Spec(£0) C 
{z € C, Rez < - c } . We define Do > 0, D0<$o + 6QD0 = - I d ^ - ^ . 

We note I M P = ( C o t v . t v ) 1 ' 2 , | |v,|| 2 = IIM* 2 + M 2 > I M . -
( D 0 t ; y , v y y * and ||t/||2 - | K | f 2 + !KJ|2 + \vz\2. 

We expand 
iifh - po) = ^P(PO)(A - A>) + ©((Pi - Po)2) so 

~ llPt - A>||2 - l(Pt - Po)^| 2 - i(Pt - Po)vl2 + ^((Pt - Po)3) (51) 

Proposi t ion 4 Let 0 < f(x) € C§°(R"h) 6e a function f < rj. le t 

5(po , / ) = {*€ W+(PO); ||*T < / ( W 2 ) } (52) 

E(po,T,f) be the region 

E(po,T,f) = ^ and\(H-po\<eforO<t<T ] ( 5 3 ) 
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There exist a bounded set of analytic functions x € B(po, f) — A(t,x) € 
"^.(Po) such that E(po,T,f) can be identified with the set 

r f \ - l P; P-Po€W+(po),forO<t<T\pt-po\<eand \ 
* KPo, , J) - j 3 x f 6 H / + ( p o ) j X t € B ( / 3 0 ) / ) T O c f c that(H-Po = (x t,A(t,x t)) J 

(54) 

This is proved as in [6] by induction on T. Let us sketch the proof. 
Assume that we have constructed the function X(t, x) for t = To. We shall 

prove that it can be extended for some amount in time. The curve s ~* p(s) 
defined by p(s) = exp(-Toflp)(po + {XT0 + s6x, A(TO,XT 0 + sSx)), is a curve 
in po+W+(po). It follows from the definition of <pt that (d/dx)\(To,x) = 
VTO(P(°))« therefore ||(0/fo)A(7b,*)|| < Ce. We have also A(To,0) = 0. In 
view of the analyticity we derive further controls on all the derivatives. 

We note g(x) = | | x T - / (M 2 ) , and /(«) - /(!*| 2) with /(0) > 0. 
We define tft^O) = P + (pb)(exp((i-T 0 )# p ))(po+(*, A(T0, x))-po),x = 

^t.To(x). The map Vt,r0 is close to the identity when t is close to To. We 
have 

| ^ T > r o ( x ) - x | < C j r - T o | | x i (55) 

We want to prove that ^ t , r 0 ( x ) € / ) implies x € £(po, / ) • We assume 
first that jx'l > C " 1 |x|. 

-VmrJo(x))M-£l>r,To(x))z (56) 

In view of relation 55 we can replace $T,TQ{X) by x in the first term of 
56 modulo 0((T - T 0)). 

We compute ^R,T0(x) = ^(po )# P (M r >7b,x)) where / x ( T , T 0 , X ) = 

exp((r - T0)Hp))(po + (a, A(T 0 ) *))). 
Using the estimate ||/*(T, T 0, X) - (po + (x, A(T0, x))|| < C \r - T 0 | |x|, we 

obtain HP(H(T, TO, X)) = Fp(po)(x, A(T0, x))) + 0{[r - T0) |x| + |x | 2 ) . There
fore /f P 0i(r ,r 0 ,x)) = (a0(po)x' )0>5(po)A(To,x)) + 0 ( ( r - T 0 ) |x | + |x | 2 ) . 
Hence 

I№r,!b(a0«'ir~1 < lM,(*)*-> (£i>T,Ta(x))*> >> C~l |x'| (57) 

We want now to estimate the second term in 56, (jfi>T,T0(.x))z - ®((T ~ 
T 0 ) |x | + | x | 2 ) , V / ( 2 ) = 0( | z | |V/ | ) . Therefore £s(tMb(*)) > C'lW\ 
when Ix'l > C~l |x|. Then 0(^r,r o(*)) £ 9(x), so x 6 B(po, / ) . 
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If on the contrary we have \z\ > Clja/H*, then the point x is interior to 

We prove now : 

Proposi t ion 5 There exist an involutive manifold E(po, oo) of codimension 
r, stable under Hp, contained inp~l(0)9 such that l im^oo p(-*,p) exist and 
belongs to N = {p; p(p) = Hp(p) = 0} for any bicharacteristic curve issued 
from a point p€ £(po,oo). 

By the Ascoli's theorem, we know that there is a sequence tj —• oo, such 
that the functions A(t,*,x) -+ A(oo,x). 

Let &{po,f) = exp(t/f p)(£(A),t,/)). 
Let t —• p(t,p) be a bicharacteristic curve such that pt £ Et(po,f)J 

let 7t € Et(p0lf) such that pt ~1t € (T^jB^po,/))" 1, the orthogonality 
being relative to the || jj norm, the length of fh~ It measures the distance 
d (p t , # (po , / ) ) . 

We compute £(pt - 7t) = Hpifh) - ¡£7*- Let us write 7t = Pg + 
(x t ,A(t,x t)); and 7* - exp(tHp)(*t), S* 6 £(po>*,/)> so ^7 t = # P (7 t ) + 
d(exp(tHp)(6t))6t, St € W+(po). Then d(exp(tHp))(St))Su St = 
for some (* € W + (po). We have proved above that <pt(&) = (d/dx)X(t,yt) 
where exp(-£iJ p)((po + (yuHtyyt))) = fc, so y* = x* and (Ct><Pt(£t)<t) 6 
T 7 t ^ ( p o J ) . 

Therefore Jj ||pt - 7*11 = < #P(P*) - # p ( 7 t ) > p t ~ l t > , where < , > is the 
scalar product for j| ||. 

Hp(pt)-Hp(it) = F p (po)(pt-7t) + 0(i(pt - 7 t ) | 2 + l(Pt -~7t)ll7t - Pol)-
As (pt - 7t) 6 (T 7 t£*(po, / ) ) x , we have the relation 

( °o ° i ) i p t - l t ) x + vWBoto ~ = a 

We deduce that \{pt - 7t)*| < |(p* - 7t)yl-

< FP(po){pt - 7t), Pt - It > = ((Pt - 7t)x! 2 — |(pt - 7 t ) /> therefore 

d{pt, E'ipoyf)) < Cexp(-C~lt) (58) 

Let p t = (x, A(t,x)) € ^ ( p o , / ) , if 5 < t we write p t = ps{pt-$)i then there 
exist y € W+(po) such that j(y, A(s,y)) - (x, A(t,x))| < Cexp(-C"" 1 s), so 
|A(t ,x)-A(s,x) | < C e | x - y I + |A(5,y))-»A(t,x)| < 2Cexp(-C'- 1 s) . We 
have therefore proved that A(£, x) A(oo, x) in the space of holomorphic 
functions. 
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We define 

E(po, oo) = {p;p = po + (x, A(oo,x)) forsomex e £(po, / )} (59) 

A proof similar shows that 

dipt, £(po, oo)) < Cexp(-CT l t ) . (60) 

Starting from a point p e E(PQ, oo), we prove then that lim*—«> p(-£, p) 
exist. 

We prove first that E(po, oo) is Hp invariant. The tangent space TPE(po, oo) — 
|(5x, (^j)A(oo,x)<5x) j is the limit of the spaces |(<$x, (g|)A(f,x)&r)} when 
t oo. For a point p = po + (x, A(oo, x)) we note yt(x) € B(po, / ) the point 
defined by po + (x, A(t, x)) = exp(tHp)(po + (»*(*), 0). (£)A(t ,s) = <pt(po + 
(Ve(s),0)) f Hp(p) = rn(£,po + (y*(x),0))t/ t l where vt = #p(po + (jfc(s),0)), 
so to t = rn(£,po + {yt(x),Q))((vt)x,0) = ((wt)*,Vt(po + (lfe(&)>0)(ti*),)) € 
TPEt(pOy i), the evolution of (%)j, by mt is an 0(exp(~~C~1*)), therefore the 
distance from Hp(p) to the space j(£x, (gj)A(t, x)£x) j is also an 0(exp(-C~ l £)}. 
So Hp{p) €T p £(po 5 oo) , 

- p ( - t , p ) = -Hp(p(-t,p)) = -(Hp(p(-t,p))x,(—)\(co,xt)Hp(p(-t,p))x) 
(61) 

where p(-t, p) - po+(xt, X(oc,xt)). We bound the Hp(p{-t, p))z component 
of Hp by C0(\Hp(p(-t,p)U + \Hp(p(-t,p))y\) < C0 \Hp(p(-t,p))A using 
the assumption 47 and 61. In the backward evolution, the x' directions are 
contractive so 

\HP(p(-t,p)M < Cexp(-C-lt) \Hp{p)\ (62) 

this means that \Hp{p{~t,p))\ < Cexp(-C~lt)\Hp(p)\, then 
p — lim*_oo p(-t, p) exist and belongs to N' — {p; Hp(p) = 0}. On the con
nected component of po of N', p = 0, then p € N. But p(p) = p(p(-t, p)) = 
p(p) = 0, hence p| = 0. 

E(po, oo) is a smooth manifold of codimension r. 
We shall prove that TV(E(p 0 )oo))- u C T p(£(po, oo))i W_(po)x* = 

WL(po)©Wb(po). 

^ ( P o ) ^ = ImFp(po) = W+(po) © W-(po), so <r|tv0{po)" 1 1 0 7 1 degenerate. 
(63) 
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Let VQ e T p ^ p o . o o ) ) 1 - , vt = m(*,p)t/0 , % € (T* oo))-^. Then 
for aU Sx e W+(po) 

cr(6x\ (vt)y) + <r(5z, (t%)«) + <r((J^)A(oo)fe, fa)*) = 0 (64) 

so \(vt)y\ + \(vt)z\ < Ce\(vt)^l therefore |tfe| = 0(exp(C" l t )) when i -> 
—oo. Therefore vo € T p(#(po, oo)). 2£(po, oo) is an involutive manifold.ft. 

We shall prove now I? estimates. This is done by working on the real 
line only since we look at C°° singularities, let us note by {/, g} the usual 
Poisson bracket. 

We can now state the main result of this section. 

Theo rem 2 Let P(x, X"lDXf A) = (p(x ,0 + \-lpi(x,Z, \))w* be a pseudo-
differential operator such that p(x, f) satisfies the assumptions H\, ..., H*. 
Let Xj be the eigenvalues of Fp with ReXj > 0 at the points of 
NR = {P € R 2 n ; p(p) = dp(p) = 0}, we assume that 

ipi(x,Z, A) + J2(aj +1/2)A,- ^ 0, for all aj € N. (65) 
i 

Let 7(p) and c(p) > 0 be smooth functions such that (p, 7} + cp > 0. 
If u is a small neighborhood of po € NR. , suppose that 7(po) > 0 and 
{7 > 0}DunOF(Pu) = 0 and {7 > Q}ndvC)OF{u) = 0, t/ien po £ OF(ti). 

R e m a r k 2 /£ is possible to make a less technical statement in the particular 
case where W±{ = {0}. In this case Nf is a smooth symplectic manifold of 
codimension 2r*. The involutive manifolds E± have a foliation, we note 
by F-(/i) the leaf of EL throught \x € Nf. Then the geometric statement of 
Theorem 2 is : if F-(po)nuC\OF(Pu) = 0 and F-(pQ)\{po}n<jjnOF(u) = 0 
then po£OF{u). 

This remark will be justified below when we will construct appropriate func
tions 7. Moreover the presence of the function c(p) is needed to have a 
statement invariant by multipication of P by an operator with a positive 
symbol. 

5 The energy estimate. 
5.1 T h e bas ic L2 inequal i ty . 

The basic L2 estimate will be described in the case Imp\ > 0. We shall 
use microlocal weighted estimates. Let 7(x,f) € C°°(R 2 n) a bounded real 
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valued function, we note e-> = ( A 7 ^ ) * * , we write \x = In A/A. Let eL 7 be a 
parametrix of &y. If A = (a(x.£) is a pseudo-differential operator with Weyl 
symbol a(ar ,0 € 5 ( 1 , 5 ) , then Ay - e;Ae-.7 - ( a ( x , 0 + i / x { a , 7 } + O ( / i 2 ) r A -
We write our operator as P = (p(x,£) + A~ !pi(x,£, A))w*. Then 

P 7 = ( p ( x , O + ^ { p > 7 } ( x , 0 + A - 1 p l ( x , ^ A ) + OQ?))*>. (66) 

We use also a multiplier A/ = (m ; + zpm"), with two real functions mf € 
5 ( 1 , 5 ) and rn € 5 ( 1 , 5 ) . We get an energy estimate from the computation 
of Irn(P7% M*u). We have 

Irn(MPy) = ( m 7 m p + M ( m " / ^ m ' { J l ^ 
(67) 

We must make the symbol in 67 positive. The first term m'Imp is nonegative 
if mf > 0. We now concentrate on the second terra m Rep + m'{Rep, 7}. 
Let m /m!{p) = c(p) be a C°° function. cRep + {Rep, 7} is null on iV7 so 
the best possible choice of 7 is to make it transversally elliptic on Nf. 
7 = 70 + 7i, c = Co + Ci, To and Co are the functions which appears in the 
statement of Theorem 2, 71 and c\ are constructed below. If 71 is null at 
the second order on 2V'f the hessian of c\Rep + {Rep, 71} at p € N' is given 
by the fundamental matrix ci(p)F/kp(p) + (F/kp, F 7 l j (p). 

We shall localize at points of N'> let p € N' we note 

G(p) - c i (p)F^(p) + [F^p, F 7 1 ] (p). (68) 

The assumption ( # 4 ) implies that at each point in N' there is a symplectic 
basis such that the hessian of F ^ p is a sum of terms 

(i) Q(x, 0 = ax.£, with Spec(a) C {z € C; /tez > 0} 

(ii) <2(x, 0 = a(x2 + f 2 ) , with a > 0. 

(Hi) O(x,0 = o. 
We shall find appropriate quadratic form 71 and constant ci at p so that 
G in 68 is positive and piece them together. If we are in case (i), we 
chose 7i(x,£) — (ax, x) - (>3£T£) a and 0 are two positive matrices so that 

{FB*P< Fyi] (*»€)) > 1/C(x2 +C 2); any cx > 0 will fit. 
If we are in case (ii), we take 7i(x,£) - -k(x2 + f 2) with fc > 0 and small 
with respect to c\. 
In case (iii) 71 = 0. Therefore we can construct functions 7(p) and c(p), 
such that 

(cRep + {Rep, 7»(P) > C~ ld(p, iV')2. (69) 
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Moreover if 71 is small with respect to 70 we shall have {7 > 0} n du) n 
OF(u) C {70 > - e } n du n OF{u) = 0. 

We choose m'(p) = v?(p)2, where <p is a C 0 0 function supported by a;, 
/mpi > 0 is positive, while {Rep, m'} is supported near dw. We derive the 
estimate 

Im(Pyu, M*u) > cm(X) biMI^+cA" 1 |v?ti|2+C?(A-1) |^| 2+<9(A"V) M2 

(70) 
the Vj form a set of equations of N\ tp is supported near du. We replace 
u by e^u and we note Af7 = e^Mety. In the following the third term in 70 
could be neglected since OF(u) n du n {7 > 0} == 0. 

We introduce the additionnal notation : let m be an order function and 
g a metric a symbol a(x,£) € S(myg) if it is the sum of a symbol in S(myg) 
supported by a neighborhod of the support of <p and a symbol of order -oo . 
In the following TO will have the form Am(ln A)p and g = go or m = A7(In \ ) p 

and gf --= (In A)2po- Then we have 

Im(PuyM;u) > c{^\v^u\2) + A - V 7 " I 2 ) + U k y - a ^ , * ) . (71) 
i 

with A € S(A 2 7 ~ 2 (ln A)2,</). We shall use the notation |t*|7 = |e'7u|. 

5.2 C o n c a t e n a t i o n s . 

We move the subprincipal symbol using multiplication by non elliptic oper
ators, this is named concatenations. 

Im{JUNPuy JM;UNu) = Im([JUN, P] uy JM;UNu)++Irn(PJUNy M;jUNu) 
(72) 

where UNU = (Uau)\a^N and C/a = (u™x)ai • • • « x ) a r , J is a linear opera
tor in the space C ^ ' of multi-indices of length N. We can apply inequality 
71 to the second term of 72. 

We compute the commutator [P, Us\. Let PQ be the principal part of P , 
i.e. P 0 - ( p ) w * = Zi<j<r(Pi*i)wx and P = P 0 + i\~l(pi)w\ Pi is the sub 
principal symbol. 

[uQ, p 0] = £ W T 1 • • • ( « D P [ < \ ft] • • • Wx)°"-

(73) 
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But [uJ\P0] = E!<*<r [uJ\iPkUk)^}, foil*)-* = ? r C - d A (P* .« f c r
X + 

0(A "2) , so [ < \ P 0 [ = Ei<*<r + 
We deduce then 

Z • • • ( u r ) a * + 1 • • • W T ' " 1 • • • («?*)*" 

/?<a 

where Ca,0 are symbols of degree - 1 — \a\ + ¡01 
We know that Spec({pkyUj}) C {z € C, Rez > c}. 

The operator (za) ~> (otjZa„(j)+(k)) is algebraically the operator z^^f-. 

With the notation a^k = {^,Pfc}, and 

we have 

The same result will hold for P since Pi will contribute to the second term 
in 75. 

We construct the linear operator J, such that JAN(PO)J~1 = ((Ylj otj\j)6a,p)+ 
o(N)> the contribution o(N) is due to that eventually a(po) cannot be made 
diagonal. We see that the self-adjoint part of operator MyJAxJ~l is posi
tive elliptic. Using the Carding inequality for systems we have 

Itti{JANUnu, JM;UNu) > cN\<pw*eF

YJUNu\2 - CN{R2^h2UNu, UNu) 
(76) 

where i ? 2 r - u € S{\*i-\\jx\)2^\ 
We estimate 

im{j pNl p] ti, jm;unu) > 

cN\-l\<pe^JUNu\2 + (R^12i2UN%UNU) + £ Re(JCsjLUtutM;jsu) 
1<N 

(77) 
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where JjW € S(A 2 7~ 2(lnA) 2 ,5'), the CNj are operators of order -l-N+l. 
We estimate the third term in 77. The operator M 7 = e 7 (v5 W A ) 2 e 7 +• #27-1,2» 
then 

Re(MyJCNiiUiu,JUNu) < 
e\-x\^%JUNu\2 + C^A-^^IOittg + CivA- 3(lnA) 4|lM! 

(78) 

So we get 

7 m ( 7 [ ^ , P l u , J M » > 

cJVA" W ^ l 2 + ( 4 ^ 2 , 2 ^ , ^ « ) + Y; d*!-2N+vUi%Uiu) 
1<N 

(79) 
If we chose AT such that Imp\ + cN > 0, using 71, 72 and 79 we obtain 

Im(JUsP%JM;Usu)> 
cN\~l\<pw%JUNu\2 - CA~ 2(ln\)*W%Unu\ 2 

-CN £ A - l - w + t t | ^ < % t t | a + 0(A-°°) (80) 
0<Jb<.V-l 

where <pi is a function supported by a neighborhod of $upp<p. 
As in [5] the proof is based on a recurrence on the H3 regularity of the 

UkU in the domain {y(xy£) > 0}flu;. 
We must modify the Proposition 1 of [5j to take care of the last terms 

in 80. We shall estimate = Eo<KJt X\eL,VwxUku\ by cat, N is now fixed. 
To do that we use the equation 

Pu = / = £ p J S ^ + C ^ r ^ . P i l + A - ^ + ^ A - 2 ) ) ^ ) (81) 
l<J<<r 

We note 

*l = 2? 5 3 K ' M + P i (82) 

We use as above commutators with the operators from formula 75 we 
obtain 

Unf = UnPu = i A - ^ ^ W + £ QnjUj(u) 

l<;<<r 
(83) 
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The Qnj are operators of order — 1 -• n + j . 
It is a consequence of the assumptions that the matrix = An+IdCn^pf

l 

is invertibie for any n in a neighborhod of po- Let B n an operator of order 
7 such that B n-4^ = (fioe^ïd + 0(A~°°). We apply on the members of 
equation 83 

Bn(f) - iX<fi%Un + E + £ BnQnjUjU (84) 
l<;<r K n 

We multiply both members of 84 by <pw\ using <pWx<p%x = <pw* + 0(A**°°), 
[ B ^ , ^ * ] 6 S{X>~l{ln\),sf) and t M n j , ^ l € 5(A^ 2 -^ ' ( lnA),<y') we 
obtain 

l ^ e ^ t i l < 

C(o(l) £ iv^^^C/^}^! ^ E I ^ H - n + u ) 

+0(A"°°) (85) 

This justify the notations = E ;<n A ' l e^^u l and dn = (In A) £ ^ < n A J ' |e^* Att | . 
We have proved 

Cn < 0(l)c*+i + *o E c i + + 0(\-°°) (86) 

&o, k\ are some constant. 
The basic idea of Propsition 1 of (5) is to derive from 86 an upper bound 

of the Cj for 0 < j < N - I by c,v, where N is an integer choosen large 
enough with respect to the imaginary part of pi.We shall need eventually 
to shrink u accordingly. The dj are controlled by using the steps of this 
recurrence. So we obtain by recurrence the smoothness of u in the domain 
{ ( x , O î 7 ( ^ O > 0 } r i u ; . 

Now we can finish the proof as in (5). 
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