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SPECTRAL ASYMPTOTICS FOR THE ETNEUMANN PROBLEM.

Guy METIVIER"
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Laboratoire Associé& n® 305
Campus de Beaulieu

35 QL2 - RENNES CEDEX

O— INTRODUCTION.

_With the rather extensive study of the 3-Neumann problem (see for instance
HSrmander [ 5 ], Folland~Kohn [ 3 ], and the references there) it may be of some
interest to give an asymptotic formula for the eigenvalues of this self adjoint non

elliptic boundary value problem.

When considering the problem cn @ C t? we have {in a sense which is made

precise in [91])
(0.1) CE() e AT+ BV

where N(A) denotes the number of eigenvalues less or equal to A, ¢y is the "usual
interior constant" for elliptic problems, and B()\) measures the contribution of the
boundary .For elliptic boundary value problems it is well known that B(A) is negli-
gible in front of the interior term, while for some degenerate problems the opposité
phenomenom is occuring (see for instance [10], [12]...). Here, using min-max argu-
ments, one can show, when 3Q is a C  manifold, that B(A) is equivalent to the coun-
ting function Nb(x) of the eigenvalues of a pseudodifferential operator on the boun-~
dary 3Q. When this operator is subelliptic with loss of one derivative (and in our

case, that means that condition Z(q) is satisfied), one could make use of the results

of Menikoff-Sjdstrand [8] (suitably extended to systems) and cbtain that

n
(0.2) Nb(x) Noey A



So it appears that for the 3-Neumann problem the boundary term B(A) has
the same order of growth as the interior term ¢y Xn, and one can expect a formula

of the kind

(0.3) N(A) ~ (e. + e )X

However, using the ideas of [11], we will give in this paper a self con-
tained and indepndant proof of (0.3), the main interest of which being that it does
not require 3Q to be very smooth (02 will be sufficient). Also we will localize (0.3)
and show that the spectral function satisfies (see section 2 for a precise statement):

n+1 J e—2Ard(z)

0

(0.4) tr e(Ayz,z) ~ cy AR+ 2t cl(z,t)dr

where d(z) denotes the distance of z € @ to the boundary 3R ; the constants iy Cpo

c, and c¢(z,7) occuring in (0.3) and (0.4) will be explicited in sections 1 and 2.

1.—- STATEMENT OF THE RESULT.

For a detailed presentation of the 3-Neumann problem we refer the reader
to [ 31, [ 5] (see also the references given there) We just recall now what is ne-

cessary for our purpose.

Let @ be an open set in ¢” whose boundary 3Q is of class C2 ; we note

B R2n is equipped

z = x+iy the points in ¢ , and dxdy the Lebesgue measure ; C
with the Euclidian metric and dS in the induced measure on 3f. Furthermore we select

2 . .
a C real valued function ¢, such that ¢ < 0 in Q, ¢ =0 and dé # O on 3Q.

We shall note L2(Q;q), Hk(Q;q), Cm(ﬁ;q)... etc the spaces of (0,q) forms

with LQ(Q), HK(Q), c®(R)...etc coefficients. Also we set



u] |2 =28 T |ul?
L2(Q;q) [7]=q J £2(q)

Here and below J is an ordered sequence (j1,...,jq) with 1€ §; < jo<...

< jq s n, of length g = |[J| ; in the sequel we shall note {J} the subset {jT""’jq}

of {1,...,n}.

The operator 3 acts from Cm(ﬁ;q) into Cw(ﬁ;q+1) and its formal adjoint,
@ from C(Q3q) into CT(R3g-1).

For u and v in C (R,q) we set
a(u,v) = (3u,av) + (Qu,0v)

and

Qu,v) =

|
2
=
<
+
=
<

Let ¢(@)(z,z) be the symbol of @ and let D(Q;q) be the space of the

u € Cakﬁ;q) satisfying the boundary condition :
(1.2) a(®)(z,d¢(z))ulz) =0 ¥z € 3Q.

At last let V(Q3q) &» L2(Q;q) be the completion of D(Q;q) for the norm

(@l.,. N2

. Then the operator g on (0,q)-forms is the operator associated via the
variationnal method to the space V(Q3;q) and the sesquilinear form a :
a(u,v) = (Qu,v) 5

L7(Q,q)

for u in the domain of @ and v in V(Q;q).

A classical manipulation shows that for u and v in D(Q4q) one can write :

' 3 v
(1.3) a(u,v) = 24t ( 4 s —3) + %
i€jsn 9Z; 9z,

T 4as

) J °r, k% 7lE
an

l=a 7 i)

|7]=%|=q



where the c¢ 's are continuous functions on 3Q and satisfy ¢ For each

J,K J,k - °k,T

z € 3Q let T, be the {n-1) dimensional space of the holomorphic tangent vectors and

(a)
let LZ

(

be the restriction to A?TZ of the hermitian form defined by the matrix

)

; note that Liq can be intrinsecally defined by a formula :

°7,%)7|=|K] =
Liq)(A,B) = <‘z2q), A B> , ABE f@TZ

with j€<1) =2 8(——1—-5¢), and:f(q) =+ e o o wa(1) where the sign depends only
A !d¢l z - q! A z n
on g, and where there are g-1 products of the metric form w = Z

ik, dszdz

j-

(1)

Z

Recall that LZ = L is called the Levi-form at z € 3Q.

Now our basic assumption will be :

CONDITION Z(q) : at each point of 3R the Levi-form has at least n-q positive eigen-

values or at least q+1 negative ones.

It will be shown that if Q is bounded and satisfies condition Z(gq), then
the embedding V(Q;q)aelg(ﬂ;q) is compact, and then the spectrum of a (which is
clearly self adjoint and non negative) is discrete. In that situation we note Nq(k)

the number of eigenvalues of a (on (0,q)-forms) less or equal to A.

THEOREM 1 : Let Q be a bounded open set in " whose boundary is of class 02 and sa-

tisfiles condition Z(q) for some q ¢ n. Then, as A~ += we have :
(1.4) W) =t () meas J e(z)ds + o(1)
q T (em™ nr Jag
with ola) =0 41if q =nand c(z) given when q < n by :
@ L -t|L_]|

@ -tL
(1.5) O R — J tr(e 2 Je Pdetlc|p | (1 %)
2.02m)" nt o

-;}dr.

In formula (1.5) tr—LZ is the sum of the negative parts of the eigenvalues

. * .
of L [LZ] is the non negative square root of LZLZ, and f(s) = is seen as an

z? -
1-e

nolomorphic function near the real axis, so that f(T[Lz!) is well defined.



REMARK 1 : When q = n, condition Z(n) is always satisfied, and the operator a is
known to be elliptic with elliptic (Dirichlet) boundary condition ; in that case

formula (1.4) is well known so in the sequel we shall always assume that q < n.

REMARK 2 : Let Jq be the set of the sequences J of length q such that n € {J}. If
(aq)

Hiseoesh,_; are the eigenvalues of the Levi-form, then the eigenvalues of L,"" are
(1.6) Ky = 'Z Hy o J Gj;
JEJ
- n-1
and setting ﬁj =u;+trl, =u;+ Z Max(O,juj), we gee that (1.5) can be written :
j=o
) 1 o —Tﬁ& n-1 Tlujl
(1.7) cl(zg) = ——— j e I ) dr
H2Hf1n!JEJé 0 j=11_eflﬁ[

Note that condition Z(q) is precisely equivalent to the fact that ﬁ& > 0
for all J € jq, so that it is now clear that the integral (1.5) defines a continous

function on 3Q.

Before beginning the proof we recall the very important following result.

THEOREM (Hérmander [ 5 1) : if Q satisfies condition Z(q) then for any z2° € 3Q there
are a neighborhood & of 2° and a constant C such that :
du
Jy, 2
(1.7) Iols5d

T o) i ; Jag 1% < ¢ atww
7 j 4

for all (0,q) forms u € C (R3q) supported in & N &

In fact, in [ 5] this theorem is proved either when Q is strongly pseudo-
convex or when 3Q is of class C3, but it can be easily extended to the case where
3Q 1s of class C2 . for the case where that would not be already written in the lit-

terature we shall briefly discuss that point in the appendix.

At last let us point out the following simple consequence of this theorem :

if u € V(Q3;q), then u has a trace on 32 which belongs to Lg(BQ), and (1.2) holds z.e.



2.- REDUCTION TO THE BOUNDARY.

In the remainder of the paper @ is a given open set in ¢® with 02 boun-~

dary satisfying condition Z(q) for some q < n. As a differential operator in Q,

o0 is given by (cf. (1.3))
(2.1) :r(ng=q uy dzg) = -IJLq 5 (8uy) dz;

and 0 being elliptic and smooth it follows that the spectral function e(i;z,w) (i.e
the distribution kernel of the spectral resolution E(X) of ) is ¢” on @ x 2. To be
clear, we recall that we are dealing with a system and that e{X;z,w) is then a Cc°
function on © x @, valued in the space of linear operators in the (©) dimensional

space of the (0,q)-co-vectors.

From (2.1) we deduce immediatly, using a very classical result [4 ], that

for z € Q :

2.2 13 A Ptr e(hsz,z) = () (2m)™2R | a8 = (7)) ——
( ) N im+w re Z4,2 a J{EGRQn/l€l2$2} q (2H)nn!

Furthermore the convergence is uniform in z if z remains in a compact set

contained in Q.

Moreover, if we denote by d(z) the distance of z € Q to 30, for each & > 0

there is Cd such that

(2.3) YA > 0, ¥z € Q, d(z) > Sf; t O s tr e(r;z,2z) < cdxn

Because the boundary value préblem is non elliptic, this estimate is pos=-
sibly not quite classical, and for the sake of completeness a very short proof will be
given in the appendix.

The main problem is of course to study the spectral function near the

boundary, and we will prove :

PROPOSITION 2.1. : For 2z° € 3Q and for O < § & 1 we have :




v -7

. -1/2
(2.4) lim  {a / J ltr(e(r;z,2z) - g(1;z,2°)|dxdy} = 0
A > oo |z—z°|§d//x
with g(r;z,2°) = An+1 J e-2krd(z) 21 c(1,2°) dr

0
d(z) denoting the distance of z € @ to 3R, and <(1,z°) being a positive continous

function such that J e({1,2%)dtr = c(2°) where c(z°) is defined in (1.5).
0

A consequence of (2.4) is that ; for some C > O :

(2.5) %7 J tr(e(i;z,z)) dxdy < C
'Z'ZOISG//X

but we will also prove :

PROPOSITION 2.2. : for each compact set Z C 3R, there are C, Ao’ 60 such that (2.5)

holds for A > A, § < §_, 2° € v,

Indeed it could be proved that the convergence (2.4) is uniform in z° Q'Z,

but the weaker and easier result of proposition 2.2 is sufficient for our purpose.

PROOF OF THEOREM 1 : Q is assumed to be compact and near 30 there are local coordi-

nates z = (o,t) with 0 € 30 and t = d(z). Then dxdy = p(o,t) 4 (o) dt with p(o,0)=1.

We choose § small enough such that |o - ZOI < G/VX and o < t < G/VX implies
Z‘ZO|S1//X.

Note that g(A;z,z°) only depends on t and

6//—
A ™
(2.6) J g(x;z,z0)at = B J elt,2®) (1 - e—gd/xr)dr

o o)

The dimension of © is 2n-1 and there are constants C1 < C2 such that
1
- _n

(2.7) C, A PP J ds(g) § C, A

Ic-zolsé/yx

and with (2.6) it follows that



-% rﬁ//x o} o o
(2.8) lim {x J o ds(e) J g(hsz,z7)dt = x c(z )|} =0
At |o-2z lsé/Qi o
Because ¢ is a continous function we can replace in (2.8) c(z°) by clo) ;

then making use of (2.8), propositions 2.1 and 2.2, and integrating in z° € 3Q we

get :

'% ° /4 v

A J o as(z") das(o) f tre(i;z,z)dt - A c(o)| = O

|o-2 |§6/Vx o
Therefore with (2.7) and because p(0,0) = 1, it follows that

-n [

(2.9) A tre(i,z,z)dxdy > J c(g)as(o)
d(z)<6//x R

Now theorem 1 follows immediatly from (2.2) (2.3) and (2.9) (included the

compactness of the embedding V(Q;q) & L2(Q;q)).



3.= REDUCTION TO A PERTURBATION PROBLEM.

The main idea of this paper is to make use of dilations near the boundary

in order to transform the asymptotic study into a perturbation problem.

Fram now on z° is a given voint of 30 and after a unitary change of coor-
dinates we can assume that z° = O and that, near z°, 2 is the set of points

z=(z',zn)€Cn—GCsuchthat:

(3.1)  Imz > f(', Rez)

2 real valued function such that YO =0and d¥(0) =0. We

where Y(z',r) is a C
can also assume that the Levi-form at z° is diagonal that is :

2

3 =1 - -
(3.2) W(O) =7 Gj,k for 1 s 3, kgn-l
J77k
(Gj X is the Kronecker's symbol).
14
Near z° we consider the following set of antiholomormhic vector fields :
3
1 o
Lh =3z
n
(3.3) 5 5
| I - 1 £ ) = n-—
Lj =53 aj (z', Rezn)—==—az for i 1,...,n~1
3 n
. as . 3P -1 39
with aj = 2i (1+1i Br) 8Ej .
We also orthenormalize the LJ'. 's and get an orthonormal set Ll' cee ,Ln
of antiholamorphic vector fields with Ll’ .en ’Ln-l tancent to 3Q :
( n-1
Ly = kzl 35,k (2 Iy for j < n-1
(3.4)
n
Ln = =1 an,k(“) I"k

The coefficients a. K are Cl functions (near z°) and satisfy :
14
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aj'k(z) = /2 dj,k + 0(|2z-2°]) if j £ n-1, k ¢ n-1

(3.5)
° -

a, (%) = V2 85 % for k < n.

Now we flatten the boundaryv by considering the following change of varia-
bles :

z=(2',2) — K(2) = (z',zn)
(3.6)

Z, =2yt v, Imz) - iY(z',Re2 )

where ¢(2',r) is the following real valued function :

29 2¢
3.7 v(z',r) =Re { ] -3-%-—&—(0) 2r} -Im{ J 52:7(0) z.z, }.
j<n 3 J j<n 737k J R
k<n

2
Let us call O a neighborhood of z°, such that kis a C“-diffecmorrhism
fram O onto & L= KOs . shrinking O if necessary we can assure the L' 5 's are defi-

ned on &. In the sequel we shall note 5_1 =t + is.

Let M'. be the image of L'. under «. With (3.2) and (3.7) we see that :

3 3
o= 9 41, 3 :
Mj'az."'zsjat for j <n
(3.8) J
vo= 9 1,08 1 9
Mn—-a?;q’-zsn 5t T2 'n 3s
With :
( 3 3 ~
By2"st9) = zgzg(z',s) = oy, 0) () =gz + ozt D+o(lZ D

(3.3) s, (z',t,9)

i g—?’,(Z',s)

Yo (2'/t,s) = i%%(z',t) =8 (z',t,8) + o(lz]) +O(15n]).

-

Fram now on we drop the tildas, no confusion being nossible betwreen func-—
tions or operators in the new or old coordinates, and in the new ones we introduce

the dilations :
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(3.10) h (2,z) = (oZ',ozzn).

If we set M'j’o =% (hp)* Mj we get fram (3.7)
M'j,p = ?Qz; +—é— Bj,p %:- for j <n
where 85 = o Bjohgl and Y, =0 Ynoh;l are defined on 07 = B () . From (3.9)

one immediatly gets :

LEMA 3.1. : for any § > O, O’o contains the set {z € €' / |2'| < &, 2| s o8} if
p is large enough. On this set the functions Tn,o and Bj 5 for j=1,...,n are

14 14
bounded as well as their first order derivatives with a bound indevendant of o.

Furthermore on compact sets we have the following convergences as p —> +° :

def
3 1 3
M' s —_— Z = —— = - . P
3.0 3 Zy 2 M5 29 3€
M - (o +8 ) — 0.
n,e n,p' 3z
n

Similarily we define M, ==(h oc). L. (for = 1,...,n) and fram (3.4)
Jree 0 p TR T]

(3.5) and lemma 3.1 we deduce that M; = —> V2 z; for J < n and M)

1

v V2
n

’

(this will be made more precise in lemma 6.4).

Now we go back to the 3-Neumann problem ; first we introduce Wyreee sy
the orthonormal dual basis of Ll’ - "Ln in the space of (0,l)-forms ; as usual, if
J is the orderad secuence (jl,...,jq) we set wy = mle"'ij . Ifuis a O,g)-form

- q
with support ir OMQ we can write it in the w;'s basis :

(3.12) u= % Uy wy
|Jt=a
and then
2 2
(3.13) | ul | = 7 lugll
2@ |97 Y 2@
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In the decamposition (3.12) the boundary condition (1.2) beccres :

(3.14) = 0 whenever n € {J}

Urfaq

We note Qp = hpOK(QmC‘) = {2 € O;) , I.rrzn > 0} and we introduce the follo~

wing unitary operator from 2 (o) on 12 (Q p)

@.15)  ¥f= o= ™) (lget ax; V%) oo™

With the decamposition (3.10) we extend :ﬁ; acting camonent by cammonent
n
from L2 (@NE ; q) on the space (L2 @,) @ Ghich will be noted £2 (@, ;@ . Ve also
introduce Q}"(Qp ;y q) the image under J(,p of the space of the u € V{(Q,q) with supmort

concained in QN
For u and v in 'U(Qo,q) we define :
_1 -1 -1
(3.16) a (w,v) =35 a (]60 u,J(p V)

o

and fram (1.3) it follows immediatly that a, has the form :

"
a (wv) = §J M _u, M, _v) +
g j,3 30 0 el J LZ(QO)

(3.17) = M.  u., a. V.. + . . , M. +
R P R I‘)L2<czp> ®3,3,8,0 % M3.0 VJ)rF(Qp)
l*z ] (8 U, V) + 1 [(Y u. V) dx'dy'dt
GiEE J/Ke T3 K2 @) gk | TEP T ls=0

where the aj,J,K,o ’ BJ,K,o and YJ,K,p are continucus functions on O‘p, bounded

uniformly for ¢ » 1 ; furthermore, due to condition (3.14) the inteqral over s = O
only involves the sequences J and K which do not contain n. At last because the
Levi-form at z° is diagonal, (see (3.2)) the matrix CJ,K(ZO) (for J and K which do
not contain n) which appears in (1.3) is also diagonal (see the intrinsic meaning
of this matrix recalled after (1.3)). Therefore it follows that, as p goes to infi-

nity :

<
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converges on campact sets: 00 if J # K and to T Yo if

YJIKIO jEJ J

J = K.

(3.18)

From the main estimate (1.7) we deduce that if O is small enough. There

is a constant C such that for all o zlandué‘lf(ﬂp;q)

' 2 2 1 2
(3.19) M! u + J u dx'dy'dt < C , ==
ng s 30 Yl ILZ(QQ) g | 6= AR s C g 02, . I'fzmo)}

Now we go to the limit as p + +», Fram (3.19) and the equivalence

M;l o V2 o ST- , it is clear that on the "limit space” we rust have S—ZE— = 0. More
’ n n
precisely, noting Cn+ the half space Imzn > 0, we define j)(d?‘:,q) to be the space of

n
the (u) e @3 (@) @ with campact support in the 7'~directions, satisfying :

|J|=q

3 -
(3.20) =5 Yy = O for all J

n

-and also satisfying the boundary condition, analogous to (3.14)

(3.21) qumn=o=Owhenevern€ {J}.

In fact, with (3.20), (3.21) is equivalent to :

(3.21) ! uJ=O when n € {J}.

On ,@(Qf: ; 9) we define the following sesquilinear form :

n-1

(3.22) a_(u,v) = ) {2'21 (Z5uy ZjVj)Lz(Cn) + qu(qu3)|O=o dx'dy'dt}.
-+

Z{J} J

We shall show in section 5 that a_ is positive.

Let #fbe the closure of @(C‘E ; Q) in fz(a:i‘ ; ) and let ? be the or-
thogonal projector on # ; let Dm be the self adjoint operator in ﬁ associated
toa ; let E (}) be the spectral resolution of O and let ﬁm(x) be the operator

Em(x).ﬁ . The following lemma will be proved in section 5 :
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IEMA 3.2 : the distribution kernel of E_(}) is a c” (matrix valued) function
e(r,.,.) on (Bf: X (Ei and satisfies :
© =2 Im

tr e_(1;2,2) = J e " 27 c(r,z%)ar
O

where c(t, 2°) is as in proposition 2.1.

Now the main idea of this paper is to deduce proposition 2.1 fram the
convergence "ap ~ a_". In order to make this idea precise we introduce a cut-off
function @ € C: (©, which is equal to 1 in a neighborhood of 2°, and we consider

the operator :
(3.2 E 0 =& B 8 X'

(If we could take 98 = 1, E:p (\) would be the spectral resolution of an operator asso-

ciated to ap) . In terms of kernels/ (3.23) means that :

1
det d<z) | |det dxw) |2 e (1 ho<(@), B oxw).

-

(3.24)  8(2) 6w e(priz W) = poT2

From the oconvergence "ao + a_" we will deduce :

PROPOSITION 3.3 : for any § > O and » > O, we have :

[

. 1j
im = ltr e (A;z,2) - tr e _(A;z,2) |dxdy = O
0 [z'lié 0 ’ o ’

P
12,1<08

PROCE THAT PROPOSTITICON 3.3 IMPLIES PROPOSITION 2.1.

For each § > O there is §' > O such that if |z-z°| < §/o then w = hp ox (2}
satisfies |w'| ¢ §' and lwn] < p8'. Therefore with lemma 3.2 and (3.24), proposi-

tion 3.3 implies that :

lim 1

ot P [ | 2-2°| <5 ltr e(x“:2,2) ‘a‘(ozizrzc’)!dXdY:O
p - <

with : 2
w =207 (Im _-Y(z',Rez))

a(p2;2,2°) = ozmzldet de(2) 5[ e n ™20 c(r,20)ar.
(@]
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Because Imz , - Y(z', Rez)) = x(2 d(z) where d(z) denotes the distance
of z to 82 and x is continuous and satisfies x(z°) = 1, and because [det de(2°)| = 1,

it is easy to see that :

1

IE(oz,z,Z") - g(oz,z,2°) | dxdy + 0
P Jo)z-z°|<8

where g(pz,Z,Z°) is given in proposition 2.1.

Similarily proposition 2.2 is an immediate consequence of (3.22) and of

the following result :

PROPCSITION 3.4 : there are §, ¢ and 6 such that for p » o5 *

j tr e (1;2,2) dxdy < o C
R °
[znlspé
Furthermore §, C and g Can be chosen independantly of z° if z° remains in

a campact subset of 3Q.

Now the remainder of the paper is devoted to the proof of propositions 3.3

and 3.4.

4.- A 'EW LEMMAS.

Before going on we must prove a few preliminary results. Following [ 3] we

introduce the norm :

ot

4.1 |l = (J(1+[C'I2+T2)G 18z, 7,s) |%de tands) 2

where U denotes the partial Fourier transform relative to (z',t), and where the

-2
integral is taken for (z',1,s) € g2 x R x R,

For further use we remark that if o is a Cl function with campact supoort,

then for every |o| < 1 we have :
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(4.2) Hioul 1l < c lalll,

; 1
where C depends only on the dimension n and the norm of « in C™.

For p > 1 we introduce the spaceWp of the u € LZ(GIE) such that :

2 2 2 3 2
(4.3) Hullg = a1+ 0% 1] 52— 1) <.

Of course only the norm depends on p, and we also introcduce the Space W_ of

the u € W, suchthatg—u.z.—=O;Ww is equipped with the norm [H.H|1/2.Asusual
n

now we note W the space of the u = such that u EWD for all |J| = q.

(uJ) IJ|=q 7

Atlastfor6>0andpalwenoteuostheset{zeﬁlf:/Iz'lsér

r

|zn| < pdlt.

LEMVA 4.1 : for any ¢ > O there is C such that for evervy o > 1, every u € 7)’(90 ; Q)

with support in wp N
14

2

«fz (Qo ;P Q)

2
(4.4) | ul [Wo $Cla ww + |luf] }.

PROOF : fram theorem 2.4.5 of Folland-Kohn [ 3] we know that (4.4) holds for p = 1
if & is small enough (although they assume @ to be smooth their proof is valid
without changing a word if 3Q is only of class C2) . Using the dilations hp we imme—-

diatly get the estimates :

3 2 1 2
.5 SR E 321115, < © o w + 5 {1y

0 3@2 (Qp e}

for all u € ’U(QO ; @) (without any condition on the sumport of u).

§ > O being given, let y € C;(Cn) such that x{(z) =1 for z € Wy s and
’ .

x(z) =0 for |z| » 46 ; for o » 1 we set Xp(z‘,z ) = x(z',2z_/p) so that for

n

u € ‘U(Qo ; Q) supported in W, 5 we have u = X, U then from lemma 3.1 and (4.2)
!

we deduce that :
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au - ou
1185 5 58 oy < C i1l 5E 1oy
My, 58 1oy p < C 138 1oy

Therefore with (4.5), (3.11) and the main estimate (3.19) we see that :

u 2 2 Ju 2 1 2
D s TS o + 0 1= (12,5« C {a (wu += ||uf]
351 azj 1/2 azn 1/2 0 02 Z(Qp;q)

and with (4.5) the estimate (4.4) follows.

In order to study with more details the "convergence Wp > W " we introduce

au
3 Zn

trace, noted yu, on the hyperplane s = O and more precisely we have :

thespaceHoftheuELz(tti)suchthat = O, It is easy to see that u € H has a

IFMMA 4.2. : the operator

. 1 (e iZnT
(4.6) (R ¢) (2,7 =mJ e o(z',t) V2t dr

o

is unitary from L2 (@} x Jo,) onto H and
' ’ 1 1 A '
CI)(Z IT) = m‘m ft(YR‘P) (Z IT)
where F € denotes the partial Fourier transform in the t-variable.

The proof is immediate and left to the reader.

The adjoint operator R' acting fram 12 ((I:i_l) onto L2 (@ ! x Jo,d) is given

by :
* ' 2 [T ' -st
(4.7) (Ru) (2',7) = T J'o (u‘"tu) (z',7,8)e ~ ds.

. *
and the ortogonal projector P form I..2 (ci) on His P=RR.

Now we can state :



vV - 18

LEMMA 4.3; There is a constant C such that for all o > 1 anduEwp :

D llaPuiw s c (el
p p
i) | G5Bl + 11 sga2ulll_y, < ¢ ] IRy
iii) J(1+|c':;i12)1/2 |Y(1-P)u|2 dg' dr s C 11 %%; [[]_1/2
REMARK. Fran definitions 4.1 and 4.3 we see that for u € Wo :
[Hlal 11y, + 11 32 111y, < 2 [l 17

and it follows that u has a trace yu € Lz(drn"1 xR) on o =0, so y(1-P)u is also

well defined.

PROCF : for simplicity we set £ = 2i 3%— and v = (1-P)u. We have g% + w = -f and

%2y

it is easy to check that :

(4.8) v(z',1,8) = f £(z',1,0)e ST g5 = F(2',1,5) where t < O and
S

S

(4.9) v(z',r,s) f(C',T,o)e-(S-G)Tdo

e-STJ f(C',wc,cx)e.(JT do -~ J
o o

q(z',1,8) =2t e " [ d(z',r,0e 9" do
o}
when t > O. From (4.8) and (4.9) we deduce the following estimates :

w IV(<:',r,s)|2ds‘< J lu(c',r,S)lzds
o ' (o]

(4.10) |72 J lv(z',t,9) |%s < 4 J 1£(c',r,8) Zds
(@] (@}

ITIIV(C',T,O)IZ < j 55, r,s)| 2ds

~ O

from which lemma 4.3 follows immediatly.
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LEMMA 4.4 : for u € Wp and v € W_ we have :

Q

[(y v,y (1-P )u)

o)
< — |[}u v
gt gl €5 1 Tl

Proof : with the point iii) of the preceding lemma, it is sufficient to

notice, making use of lemma 4.2, that for v € W, o

2., 12,1/2
1+l + ~— 2 2 2

Jaslet el 5520 = 114112 = 1ol

1/2 o
LEMMA 4.5 : for each f € Lg(mf) we have :
lim Sup  |(£,(1-P )u) 5 o 0L =0
o+ += ) | fulfy L (c,)
p\

Proof : it is sufficient to prove the convergence when f is in a dense

subspace of Lz(wi), and it follows from lemma 4.3, ii) if :

D20 121/2
J£J+|C | TéTl ) If(c',r,s)lgdg'drds < 4o,
|t

ls’

In section 7 we shall need another kind of information about the wp
namely estimates of the n-diameters of their unit ball. Let us recall [ 7] that

if B is a bounded subset of an Hilbert space H, then the v-diameter of B in H is

¢ (B,H) = Inf Max Inf ||u-vi|g
v dim G=v uE€B vEG

These estimates will be usefull in order to give bounds to the Kernels
ep(x) (see Propositicn 3.4) : indeed let us recall that an operator T acting from
an Hilbert space H1 into another one H, is said to be of class é%(HT,H) (see [11)

if

(b ] = ] (4, rE D < e

C%;(HW’H) V=0
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Here H, denotes the unit ball of H,, and this notation will be systemati-

cally used in the sequel. We also recall that if H, =H= L2(®§), any T € Z?(H,H)

is associated to a Kernel T(z,w), defined for almost every z and almost every w,

and :

(4.12) I o 1T(z,2)] axdy < !IT|%,
C

A 7 (1,8)

Before beginning we also remark that dv(g1,H) < § is equivalent to the
existence of a §' < § and of a subspace G C H, of codimension less or equal to v

such that ||u{|H € 6'l|u|]H for all u € G.
1

Now we state :

LEMMA 4.6, let x € c:(mf) and let xp(z',zn) = X(Z',EE)- There is a constant C, such

that for all p > 1 and all v € N :

2,.n vy=1/bn
dv(xpup » Lo(e)) < c,(1 +3)

Proof : for u € Wﬁ we extend v = (T—Po)u for s < O by setting v{(z',ts) =

v(z',t,=s). From lemra 4.3 we deduce that :

- ’ 2
(L.13) (1] | 24020%40%62) 215(c 1 11,00 | Pag ando < ¢, Ilully
Y

where v denotes the Fourier transform of v in all the variable. Let us call Xp the
space of the u € Lz(mn) such that the integral in the left hand side of (4.13) is

finite. Using the change of variables (z',zn) > (z',zn/p) we see that

r2(e%) ¢ c(1 + v)‘1/hn

L9

n —
a,(x,% L5 (%) = 4 (x, X

the last inequality being a consequence of the results of [2 ] and of the fact

that X, = H1/2<cn). It follows that

(k.78) 3, (%, (12 D, < o olr + )T
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It remains to study the v-diameters of W_ ; denoting by f.?’; y - the Fourier
transform with respect to the 2' variables, we introduce for A > O the cperator G)\

in Lz(tll'n-l x 10,9 ) given by :

]2+12\<>\2

(F,60 €0 = F L0 @0 when 1+ o

=0 when1+|c'|2+1:2>>\2

The operator Fx =R GA R" is an orthogonal projector in L2 (CE) ; its

kernel is C and with (4.6) (4.7), we get that :

-2n+1 J e'ZTReZn
1+ ' 242602
>0

F,(2,2) = (21) 2t dg' dr

fram which it follows that :
(4.15) j]xp(z) |2 Fk(z,z) dxdy s C'p 2l
Now for u € W we have :

<

@.16)  |lu-F.,uf| |
A L2(Cn) Vi Wco

+

Because the integral in the left hand side of (4.15) is the Hilbert-

Schmidt norm of XpFA we have :

. 2 2 ' 2n-1

(417 WS F, L (@) < C'9 &

, _ ,v.,1/2n
and choosing A = (E-.-D—) we get from (4.16) and (4.17)

a (W, L2(@) €2 =74

v Kplet = + s C'o
Because || .|| 5 € 1.1 ‘W we always have d_ (Xpwm, 1 (C:l)) < 1 and because
L © -

of lemma 4.3 we have X, P V_VQ C (Co+l)wm ; finally we have just oroved the estimate :

2 “ v, -1/4n
(4.18) &, (P W, L (©)) sc(+ )

Lemma 4.6 now follows from (4.14), (4.18) and the inequality :
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Gprpon G0 T2ED) € 4,0 (0, (=P, 12@)) +duix, P W oL 2@

LEMMA 4.7 : let x and X, @s in lemma 5.6 and let ¢z € C (R) be such that z(s) = O for
s <1 and z(s) = 1 for s > 2. We set CT(s) = c(s/T). Then there is C, such that

for all p 2 1 and v EWN :

2, n Tv,-1/kn
d\)(CTXQHD’L (m+)) 53 (:2(1 —')

0 - 1 !
LEMMA 4.8 : let y' € co(o:n 1) and let w(z',zn) = w—z(—%)— There is 03 such that for
n

all vEWN :

2,.n -1/12n
a, (v, 22(60) ¢ 51 )

The proofs are quite similar to the proof of lemma 5.6 and we don't give the

details. Let us just mention that (L4.15) is to be replaced by :

and
j|W(z)]2 Fy(z,2)dxdy s C yon-t
Because Lo X, = 0 if o ¢ CuT, it is an immediate consequence of (k4.1L)
that
2, n Tv\-1/kn
a,(zpx, (1-P JH ,15(€,)) s C5(1 + 3=)

and for lemma 48, (4.14) is to be replaced by :
d\,(WU—P )E1,L ((Di)) < C(1 +\))-1/1 2n

which is a consequence of :

17206, 12(cY) ¢ cliw) /12

N 1
RN PRECR
We end this section with the following remark : it is clear that the es-

timates of lemmas b .6, 4.7, and 4.8 are still valid if we replace W by u, and

n
c,.) byo(v:
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5.- THE LIMIT PROBLEM.

In this section we study with more details the operator o introduced
in section 3. We shall make an essential use of lemma 4.2 in order to reduce the

procblem to the boundary.

We note j the set of the ordered sequences J of length |J|= g such that
n?—’{J},andﬁ? thespaceofthe¢ (¢Jjej w1th¢J€L(Cnlx(R) Forq:GiZ/

wedefmeu“cﬁcbefa(dfn q)bysettlngu Olan{J}andu —R¢J1fn¢{J}

Fram (3.20) (3.21) and lemma 4.2 we see that QD(CE ; ) is the image un-
der JQ of the space '(Do of the ¢ G(’/’% with campact support in z' and satisfying
reaa, 45 € 1.2 @ !« R,) for |a|+|8] < 2. Because Ebo is dense in dﬂfo, it follows

that the closure #of oD(CT_ ; @) in fz(d:f: ;q) is simply J? %g

Making use once more of lemma 4.2 we get that for u = 4:€¢ E-'D(c!:‘:_1 ; Q) we

have :
(5.1) a_(u,u) = bi(s,¢)
with
b = I L1 2118, 5113 e 2l gl }
ﬁLUﬂ L€ R, (
and
=2 +1 § = -
Bj- = 5 jrzj for j l,¢0.,n~1.

J

The form b is non negative on -@ o i let B be the operator in %f o associa-

ted to b, and let F()) be its spectral resolution. We clearly have :
. /~ _*
5.2 B =X&roy K%

PROCF OF LEMMA 3.2.

On Cn-l we consider for J € jq the operator :

3 1
. Z. —+ Z oy, 2z +
5 23 3Zj + 35 Hy z]) 2 vT

N —
=

N
\_/

d
=2 z (-~ =+
. Szj



V - 24

and in {L o )} 9 the diagonal operator . = (B Jél. A, is elliptic, self
adjoint and bounded fram below by 2 'JJ =2 uy t+ 2 X bﬁx(o,—uj) ; therefore Fbis
j<n

bounded from below by 2 W = Inf 2 ii;, and due to condition Z(q), ¥ > O. It follows
that the sepctral resolution of afhas a C kernel FO(A ; 2', w') on (En'l X Cn-l ;
that F (A ; z', w') =0 for A < ¥ ; and that F, (05 2", w') =00 n-l) uniformly

for z' and w' in a campact set.

With (5.2), formulas (4.6) (4.7), and the use of the hamogeneity we see
that 'ﬁw(k) has a C~ kernel given by :
oo i(zn-W )T

(5.3) Ew(x : 2,W) =%;-J e R R FO(A/r, YTz', vTw')dr
o

(Indeed the integral is over ]10,i/fl , and absolutely convergent at T = 0O).

Now we remark that, for each w' € (En—l,ﬁ camutes with the unitary opera-

. n-1
tor : Im u.Z.G.
58y %97

u(z") > v(z') = u(z'-w') e

and so does its spectral resolution ; therefore we have FO(A;z',z') = FO(A;O,O) and

with (5.3) we get the formula :

» 1 ) i21'-Imzn n
(5.4) tr Ew(k;z,z) = 5= J e 27 trFo()\/r;0,0)dT
: o

The proof of lemma 3.2 will be complete il we show that :

1

_1 (7 nm1 .
c = o jo T tr FO(A/T,O,O)dr

. ) ° .
is exactly equal to the value at z of the function defined in (1.5). First we note

that :

B n-1 1 -
Jo T Fo(k/r)dr =7 J e wﬁ‘Tn 1 dr
o
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-1 (AJ) :
and setting GJ(r) =e we get :
(5.5) c= 7 %;.%T J AL Gy (r70,0)dr.
JEﬂé :

The Kernels G;(r,0,0) have been worked out by many authors (8 1, (13]...

and it is easy to see that :

9 (e gy a4 (1,2,
Gy(t72',0) = (2m) 2(n=1) Je J de'dn’

with z' = x'+iy', ¢' = £'+in' and

T liml? - T gl
¢_(r;2',5")=35 lusllzs - Ci(t) |y “=2t
J 2j=1 33 521 3 3 J

n-1 ~2|uyle

where IIJ =g+ ) Max(O,-uj) and Cj(r) = ST

j=o j
It follows that :
=2U_1 n-1 2|
. = = (n-1) J J
GJ(‘L',O,O) = (2m) e ng (—_7‘1??).
) l-e

Substituting in (5.5) and changing 2t into t we get formula (1.7) and

the proof of lemma 3.2 is camplete.

We end this section with the following lemmas we shall need later on :

LEMMA 5.1. O_ has no positive eigen values.

of

= .

This is a consequence of (5.4) or, more directly, of the quasihamogeneity
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LEMMA 5.2, j)(c‘: ;q) 1is contained and dense in the damain of o ; furthermore for

ue D sa) and v € U we have

(5.6) z ?.(zJ {85V 2@ + § ug v,y )szn Ly
+
= (a_u,&v) + ) uglyag,y (1-P)v.) -
=Tt 37T T2 @ Lm)
Proof : Indeed for u and v in @(C?_ ; 9) we have :
(5.7) a(uv)-zzz ,v)+}:uy srYVy) = (£,v)
jug 339 7 7 £ (@q)
n
with £ = 321 2szJuJ + u; R(2t R u) €L (a:“)

It follows that u € D(O) with @_u = f. Furthermore the second equality
of (5.7) can be extended to v € X; splitting any v € u{ into &V + (1-§v and re-

marking that Z;‘Ezju& €EHifu€ @(0:2 ; Q) we immediatly get (5.6).

6. = STRONG CONVERGENCE.

The first step in the proof of provosition 3.3 is to get the strong con-

> Em(k) . Unfortunately, for technical reasons which will be clear

vergence Elp (»)
in the next section, we also have to introduce another parameter and to study the

translated operators of E:p () in the t—direction.

First, denoting by R(u) the resolvant operator of Cfor u € C\[O,®], we

‘set with the same function 6 as in (3.23)
(6.1) R, (W) = ij 6 o2R(pzu)9’jC;l

and we extend Rp (u) as an operator in }82(@‘2 ; Q) by setting that RQ (W} f is the

extension by O oustide of R, of R (W) (£,

| sz

Then, as announced, we introduce for t € R the translation operator :
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(r £) (z',t,s) = £(2',t-p1,Ss)
P,T
and we set
-~ ~ -1
6.2 2 =
(6.2) ’?cplt(u) : TQ,T Rp(u) Tp’T
On the other hand we note Rm(“) the resolvant of = in 7’{.” and we extend

it to £2(@q) by setting X () = R (W&

PROPOSTTION 6.1.

Let A be a compact set in C\[ O,m]/let § be a positive number and let
£ esz (q:‘:;q) . Then ﬁp 1_(u)f converges to ﬁm(u)f as ¢ goes to +», uniformly for
’

W€ Aad || < 8.

Before giving the proof of this proposition we shall make a few remarks.
Let us introduce the operators Mj 0,1 and the forms ap . deduced by translation
4 14 r

fram the Mj 57S and ap's. They are defined on Q . = {(z',t,s) € ‘I!I_:/(z',t-p-r,s)
14 ’

€Q }.0On the space V. _ =T " we introduce the norm :
p PrT P,T p

1
2 .2
£2°

2

iz

n
[lafly o= €1 1y o ullgy + [l
’ 3

=1 Je0,T

First we note :

LEMMA 6.2. Let A be a campact set in C\[O,~{ . Then there is Co > O such that for

all £ € £2(c%q) all p > 1, all 1 and all u € A.

IR

Wl <G lIEl

llimmllzz $ collfllzz

Proof : The second inequality is quite trival, while the first is a conse-

quence of the following ones :
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Then we remark that ?{Q < (1) locks like a resolvant for ap i because we
14

’

have :

ILEMMA 6.3. Let A be a compact set in C€\[O,~{ and let § > O. There is Cl such that
for fe_‘ﬁz(@i;q), w'e v; . |[t] <« 6 and p > 1 we have :
’
@ - ® _WEH - ¢ £8 w | <c o [IE]] ., |W]
PrT orT ! prt ot OZZ e | 2 p,T

. _ . -1
with eo = Tp . (SO(hDOK.) ).

’ ’

Proof : Let 6' € C_(60) be 1 on the support of 9. We set g = 6-«

o}
u= p2 R(pzu)g and v = 8" K;l T;lrw. By definition we have :
14

@ (ﬁp,rmf,w) = iz (a=p2u) (©u,v)

’

1 2 - =
and ;E {a=p"u) (U,GV) = (glev) = (ep,TfI ep’_rw)

Clearly we also have :

n
lau,v) - at@ev)| < clflul] , ] |[%;——[|
=1 7] ;2

n
au
+ vl 5 THs + Hall o, vl 3
L2 =1 8zj L2 L2 L2
and the lemma follows if we note that :

P H-%‘.j—_ll <c Hfl}tg

J=1

O |

fall 5 +

1 v
+ — —_— < c'
||V||L2 5 jzl Hasz < C' Wl

It must be noted that if w has its support contained in the set
{z/|z'] s 6, |zn| < pd} then, with the notations of the proof above, we have g= 1

on the support of v provided that |t| s § and p is large enough, so that we have

exactly :
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(6.3) (ap__r-u) (Rp’r(u)f,w) = (f’W)afz

’

An important step in the proof of proposition 6.1 is the following lemma.

IFMMA 6.4. Let x € C;(Cn) be equal to 1 on a neighborhood of O. For ¢ > O and
o > Oweset x _(z',3) = ilez', o™t ez). Let u € Dieq) . Then for fixed 5§ and ¢
’

(e small enough) we have uniformly in |t| < 6 :

ﬂw" M (x. W — 22z 3z.u
€,

.jlpl‘r j’pIT P J 3 “-59.
" l\%rp ' T (Xsrpu)“

2 °
N

Proof : From (3.4) (3.5) we see that :

.ﬁo

= s !
(6.4) Mj,O,T ]E aj,k,pr’f Mkrpr'f

with coefficients a.
J ler ' T

V2 dj } On campact subsets.
'

bounded as well as their derivatives and converging to

Fran formula (3.11) we see that the derivatives MJ' 0 r(Xa p) are bounded,
14 7 ’

even for j = n, and converge to O on canpact supsets of supp u if ¢ is small encugh.

(Recall that u € i)(a::l;q) is campactly supported in z').
Now lemma 6.4 follows easily fram (3.11), lemma 3.1 and (6.4).

Proof of proposition 6.1.

In view of lemma 6.2 it is sufficient to make the proof for £ in a dense
subspace of f,z (Ci;q) and we assume from now on (seelemma 5.2) that u = ﬁ’m(u)f

belongs to D (Ci;q) .

As in lemma 6.4 we introduce y € CZ(Cn) which is 1 near O, and for ¢ > O,

_l A
' = ' . =R wf and v =
o > 0 we set Xp,e(z ’zn) xlez'y o Ezn) We note Vp,r o,T( ) PrTsE
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Because the derivatives Mj 0,1 Xe o are bounded by C ¢ it follows fram
14 7 r

formula (3.17) that for o > 1, we have :

( ,W) - a (V X

<
Vo,t,e PrT P,T sw)l = CZEHVQ

|aprT Py rT'lorTHwHDIT

and with (6.3) and lemma 6.2 we see that there is C3, such that for each ¢ < 1, and

§ > O one can find p, suchthatforpaol,lﬂ sdandwe’U;Twehave:
14

6.5 @ - v W) - (xo,ef,w)le s Cyellwl])

On the other hand, we set u.p e = Xp U and from formula (3.17) it follows

’ [
that :
n-1 *
I (@ ~w (@ W - j£1 0y oMy up'E'W),gz
1
u(up’e,w):;z J(Yp,r up,e'w) |s=o0 $ C4 { an,o,rup,el ['*‘p'l |£] ‘lzzH |w| lpﬂ.

(6.6) (ap T-u) (up

14

;
,E'w) = (£, W)I? + §“JJ (uJ,l—Pw) |s0 *© | |w| 'o,r

where o(l) stands for a function (depending on £,e,1,p,u) converging to o as ¢ +» +=,
uniformly for u € A and |t]| < 6.

Now we set w =v -u and we insert w = w in formulas
PrTrE PrTsE PsE PrTsE

(6.5) and (6.6). With lemmas 4.4 and 4.5 we see that :

(@ -u)(w

: +
T OITIE' WDITIE)I < (o(1) C3€) ! ’W{ IQIT

and with the main estimate (3.19) which is cbviocusly still valid after the transla-

tions we get :

(6.7) | |v -

u < 1) + Cle.
P,TsE o,sl |o,r s ol1)

3
From lemas 6.3 and 6.5 we deduce that :

Making use of (3.18), lamas 6.4 and 5.2 we get :
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[a -u) (v _-v W) =6 _~x_ )E,wW) .|

orT PrT PsTsE prT Tp,e’ T P2

-1
< ¢ oM lelp + S 1w,

ard taking now w = vp - Vp r.c Ve get with the main estimate that :
14 7

<Gyl H e+ []6o, £l

i

For each § > o and n > o there is ¢ small enough such that for all |t| < §

(6.8 llv. _ -v |

0,T PrT,€ P,T

and o large enough we have || (8 £ n. On the other and it is clear

0, T e)f]E§2
that u e—»uaso—>+ooifelssmallenough. (u is assumed to be campactly supported

P

in 2'). So from (6.7) and (6.8) we conclude that Vp LTuaso > +w, uniformly for

7

|t] < 6, and proposition 6.1 is proved.

Similarly to (6.1) we set Eo 1_(k) = Tp . IE:p M T -l. Then we have :

’ ’ Pr

PROPOSITICN 6.5.

Forfé‘.f,z(ﬂ:'i;q), A >0and § > O we have :

Max || (E () - E ()£
|t]<s Prt 22l

Proof : This result is a consequence of proposition 6.1 and of theorem

1.15, Chap VITI of T. KATO [ 6] . (See also the proof of lemma 4.5 of [11]).
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Because it is clear that U, coonverges to u as p > += pfcposition

? 6.1

is a consequence of (6.10) and 6.11).

A~ ~ —-1 ~ .
1mi = ) A) T E (A th
Similarly to (6.3) we set ED’T(A) Tp,r Ep( ) 0. where p( ) is the

extension to-82(¢i,q) of Ep(A) defined in (3.21).

PROPOSITION 6.2. : for f € iz(cf,q), A >0 and § > O we have :

Max II(E () - E A))filng > 0 as p +> +=o

|TI$5 »T & (Cf,q)

This proposition is a consequence of proposition 6.1, lemma 5.3 and a

theorem of T. Kato [ 6] . (See also the proof of lemma 4.5 of [11]).

7.~ ESTIMATES FOR THE SPECTRAL FUNCTION.

The second step in the proof of proposition 3.3 is to give a priori esti-
mates for the spectral function. Here we follow closely the method of section 2.3

of [ 17].

Let t € £2(a ,q) and let u =E (\)Ff ; if v = E(pgx)e_k'1 7 T,
DT 0,7 0,T e PsT

v belongs to the domain of(:lk for all k € W, and it follows that the functions

(7.1) JB) ]CG -2k k

o’ pST

are well defined and satisfy :

(7.2) | lu QT|I2(I1 <A ||f‘||2(n
C,,a) £ (T,,q)
Note that u(o) is simply u_ _. We have :
0,T 0,1
LEBR T-1 ¢ 1et y € C2(C%) and let p be large enough so that T 9, =1on the
B b

support of x. Then :
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k) _ (k) (k+1) (k) (k)2

( u( u < R +

0,7 X, 2% p,r) s e(xuo,r ’Xuo,rL‘f2 °| IMO,T<X)uo,T! La;2

where Mp T(x) = 1 + Max|(M, x)|2, and C is independant of f, k, ¥, ¢ and T.
3 : JabP T

J

Proof : Commuting with xin formula (3.17) one gets

(xu(k) u(k)) ~Rea _(u k

( k)2
PST T PLT N p,T LT P, rll

(
Py ;gz

D < el (0w

and because Tp r eb = 1 on the support of x, we have (cf. (6.5)) :
>

(k) 2 (k)y _ , (k+1) 2 (k)
D,r(uo,r’ uo,r)'<uo,r ’ up,r)2

and lemma 7.1 follows.

Now we set N = 12n + 2 and we consider a sequence of cut-off functions

X(J) € C:(En), J=0,...,N, such that X(J+1) X(J) = X(J). We introduce xéJ)(z',zn) =

(3) (3,

are uniformy bounded for p 3 1,

[Tl £ & ; furthermore Tp . @b is equal to 1 on the support of XéJ>
?

X z',z_, ) and we remark that the M (¥
n/p

PsT

for |T| < ¢ and

o large enough. Therefore, from proposition 4.1 and lemma 7.1 we get

(k+1 N ALR

(7.3) le(j)“&ht Sco{llxéj)uo,r )'lze %o é #2

~
i
From lemms 4.6 we deduce that for u € R there is a subspace @u of‘ﬂé of

codimension less than C1p uhn such that on ¢u we have

()

M)

T8l < 11+l
£ U

If we assume that X£J> uékz belongs to @u for all J and k such that
b

1 ¢ j*k € N, then by induction on N-(j+k), starting with 7.2, and using (7.3)

and (7.4) we see that

N-j-k

N-j=k,_ (3) (k)

u [Ixg? g L1 € €p(2C ) el
and with (7.3) we get
(7.5) uN‘1||Xg°>up,T|LU_ < cgliel]
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2v )1/hn
C1o(N+1)(N+27

The integer Vv being given we choose u = ( and it follows

from (7.5) that

~ C (N-1)
(1.6) o, E 0P « ol
u

Because ﬁ; T()\) is a contraction the v-diameter in the left hand side of
’

(7.6) is also less than one, and summing up we have proved :

(o) &

LEMMA 7.2 : The operators x
_— P PsT

(A} are in the trace class fromig to(w; and,

for each § > O there are C and p such that for Irl $68,p 2 p we have :
o o

x50V 8 ]

Similarly one can prove :

LEMMA 7.3 : we have the following estimates uniformy for [t] & § and p large enough :

(o)
—2— (] .
(w) 0 PT B EEup)

Proof : the proof is quite similar to the preceding one : instead of lemma 4.6 we
use lemma 4.8 ; instead of (7.3) we use the following consequence of lemma 7.1 and

proposition 4.1

L) ()

(j+1)

—2— o) o e () X (k)

(Zn-;_.i)p p,‘rll. o (z.n+i)P uQ > T H 2 * H(—:—_‘?p- up ,‘L" %2}
n

and (7.4) is now to be replaced by :
()

ZD = v < |]|v
vl < vl

vl

E@?ﬁil;ﬁ= let ¢ be as is lemma L.T7 ; then we have

Hex !PT (1] e

5,1t £ Cp T
b

£ 6e.3
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Proof : we already know that (7.5) holds if f in is a space of codimension less

than C) o uhn with lemma 4.7 we know that

|

(7.7) p' llché 2 < HVHU"
D

. .. . . -1 ,bn
if v is in a space of codimension less than CoT u
; ] _ Vv t/4n _ , VT \1/kn
v being given we choose u = (EEEZ) and u' = (53@§) and from (7.5)
and (7.7) we get that
(e 02 88) ¢ w2 o @y
v Txp 0sT ——_’ ~ u H 6 0 .

and the lemma follows.

Proof of proposition 3.3

Let § > O and A > O be given 3 for T > O we choose ¥ €.C:(@n) such that
X(z"%1> = 1 when |z'| ¢ § and | QJ & 2T. Because the embedding ofcw; inﬂiﬁ is of
norm less than 1 and because TE;%IT is bounded from below on support of x we deduce
from lemma 7.3 that there is C > O and Po > O such that for o 2 o, lrl § § we

have

(7.8) E o (A) ] < C
1 He‘i(«tg,lq) |

Now we use the following general fact : if EO is a family of operators
from an Hilbert space H into another ore W ,which is compactly embedded in H, if the
trace norms IIE || are uniformy bounded and if E_converges strongly to E_,

P ﬁ(st) P ®
then EO converges to E_ in the trace norm gj(H,H) ; furthermore if Ep depends on
parameters, t, if the strong convergence is uniform in 1, and if the given estimates
for the trace norms in ﬁ?(H,W) are uniform in 1, then the convergence in KHCH,H) is

also uniform with respect to .

From lemma 4.8, the embedding of {u € W, / supp u € supp X} into;ﬁ2 is
compact, and with (7.8) proposition 6.2 and (4.12), the result recalled above

tells us that for given T > 0, § > 0, A > O
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(7.9) MaT { ltr@é T(k-,z,z) - tr é;(k,z,z)[dxdy >0 asp > o
fT]<6 i ’

z'|<8
|z |seT
n
Because @b T(k;z,z) = QB(A;(Z'!t-pr+is) (z2',t-pt+is)) and because & (1;z,2)
b L,

depends only on Imzn, (cf. lemma 3.3) we deduce from (7.9) that

(7.10)  1im { = J

ltr € (\;2,2) - tr 8;(A,z,z)fdxdy =0
P>+ o

lz* <8
[t|<6o
0<s<2T

On the other hand, from lemma (7.l4) and (L.12) we see that

(7.11) J ltr € (1,2,2)|dxdy ¢ C o 71/
EARRY P

|t]<80
s32T

From lemma 3.3 we deduce that

(1.12) ltr 3’(A;z,z)’dxdy =0 | 72T e(r,2”)dr
FARRY ® am 1y

|t |<8o
s32T

Letting T go to +», proposition 3.3 is now a straightforward consequence of

(7.10), (7.11), (7.12).

Proof of proposition 3.h4.

An immediate consequence of lemma 7.2 and (4.12) it that

J ltr e (A;z,2)|dxdy < C o
l2' <8 °
Izn|506
If we look closely at the proof of lemma 7.2 we see that the constant C
depends only on the constants occuring in the main estimate (3.17) and in proposi-

tion 4.1, and on the bounds of the functions M (X(J)

) occuring when lemma 7.1 is
gr P

used. It is then almost obvious that C can be chosen independantly of z°, i¢ 2°

3

stays in a compact set included in 3Q.
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APPENDIX.
First we show that HOrmander's theorem stated in section 1 is still valid
if 3Q is assumed to be only of class CQ. Let z9 € 30, we can assume that near z°

Q is given by (3.1), and that the Levi form at z° is diagonal (i.e. (3.2)).

First we recall some convenient notations used in [ 3 ]: we set
1/2
- 2 2
(u) = zu AL [ +j|ulj
1%(a) Pa) 4

and we denote by R(u) any expression such that for each § > O there is a small neigh-

vorhood O of 2 such that for u € C'(3) with support in 6N Q we have : IR(u)IsSE(u)2'

Then we recall the following Green's formula :

u_  3v = (3w v 3w _, 24,y -
(A1) (3;3 , 3;;) , = (3Ek , 35.) , + f (v 32 Vs afk) v
L7(2) I 1) e
where (near 2z°) vj = d;l %%T and ¢(z) =_?(z',Re zn) - Imz,
Let L'j = —%f = oy 5%— (3 = 1,...,n-1) be the antiholamorphic tangent
J n
vector fields introduced in (3.3). We have L'; = - 3%7 + 3%_ aj. Developping
j n
R u[[ and making use of (A.1) we see that for u € @ -
1 )
HL'.“‘quz = ||L'.u||22_ + OE W) | |ull 2 )+J v L!(a.){u[z. ’
R A 65) DR A() L (2) 3 ]

With the assumptions (3.1) and  (3.2) and remarking that IIL'ju||22 =
L™ ()

II ||2 + R(u), we see that :
(Q)

2
a3 |13 || z-lu.J i -oEW||ul| , )+ R@.
L2 () 273 Uy 22 (@)
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Now if u € C1 (@¢3q) has its supportipesiell neigborhood of z°, we can write
. . . 1, = .. . e .
it as in formula (3.10), with C (Q) coefficients ur 3 1f u satisfies the boundary

condition (1.2) or equivalently (3.12) we deduce from formula (1.3) that

_ Sur 2 2
(A.4) alu,u) =2 J =115+ 1 v lus|© + o(E(w)]|ul] 5 ) +R(u)
JsJ J J J L(

ET L™(2)

Note that the second term on the right makes sense because u, = O on 3Q

J

if n € {J}, and if n & {J} My is, as before, equal to Z u..
€T

Now it is well known that condition Z(q), (A.3) and (A.L4) imply the main

estimate (1.7) (see for instance [3]).

At last we give a short proof of (2.3). For z° € Q let hp 40 be the dila-
3

o{A) is the spectral function of OO0 in LZ(Q %q )t

i z° + -z°). I
tion z - p(z-2°) f eo,z 0.2
With @ o = h_  o{R), it is clear that
3z 0,2
2 2n -1 -1
(A.5) e(pAsz,w) = o ep’zo(k,ho,zo(z), hp’zo(W))-

On the other hand if B6 20 denotes the open ball of radius § centered at
2

z° we have for k > n/2.

(4.6) lu(z0)] ¢ ¢, {]]a%u]] + |ul| }
s L2(Bé,zo L2<B6 zo)

and clearly CG depends only on §.

If afz°) > 5/0\90 40 contains Bg ,o and it follows from (A.6) that
bl

(A.T) tr e o(x3;z°,z°) ¢ C (Ak+1)

'
£,z 8

Now (2.3) is an immediate consequence of (A.5) and (A.7).
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