PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

YVES GUIVARC'H

Exposants de Liapunoff des marches aléatoires à pas markovien

Publications des séminaires de mathématiques et informatique de Rennes, 1980, fascicule 1

« Séminaire de probabilités », , exp. nº 1, p. 1-16

http://www.numdam.org/item?id=PSMIR_1980___1_A1_0

© Département de mathématiques et informatique, université de Rennes, 1980, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

EXPOSANTS DE LIAPUNOFF DES MARCHES ALEATOIRES

A PAS MARKOVIEN

Yves GUIVARC'H

On considère un espace probabilisé (X,π) et un noyau Markovien P(x,dy)laissant π invariante ($\pi P = \pi$). On se donne un espace vectoriel V de dimension finie d sur R, le groupe G=S1(V) des automorphismes de V de déterminant unité et une fonction f de X dans S1(V) telle que, une norme sur V étant choisie, la fonction $\| \log f(x) \|$ soit π -intégrable. On s'intéresse alors à la croissance du vecteur aléatoire $S_n(\omega)v = f(x_n)...f(x_1)v$ où $v \in V$ et $\omega = (x_n)$ est une trajectoire de la chaine de Markov de noyau P. Le cas indépendant correspond à X=G , f=Id , π =p et le produit $S_{n}(\omega)$ définit une marche aléatoire sur G de loi p. Dans ce cas, envisagé en [3], la croissance exponentielle de $\|S_n(\omega)v\|$ a été obtenue et des résultats plus précis ont été justifiés en [12] et 1151, sous l'hypothèse restrictive que la probabilité p admette une densité. On montre ici que l'étude de $S_n(\omega)v$ est liée à celle de la direction de $S_n^{-1}(\omega)v'$ où v'appartient au dual V* de V, question qui a été envisagée en [4] sousla forme ici utilisée. Elle fait l'objet du paragraphe A et la convergence obtenue ne fait pas intervenir la condition d'intégrabilité de Log||f(x)||. Ce résultat est appliqué aux exposants de Liapunoff du produit $S_n(\omega)$ [10], exposants que l'on montre être ici au nombre de d et donc en nombre maximum. Le comportement asymptotique de ces produits aléatoires présente des applications à certains modèles physiques [5] ou démographiques [1] et apparaît également dans l'étude des phénomènes de rigidité [2]. En particulier les résultats ici obtenus précisent ceux de [7], [11] et [16], On considère ici l'espace projectif P(V), le noyau \tilde{P} sur X x P(V) défini par

 $\tilde{P}\phi(x,v) = \int \phi[y,f(x)v \ P^*(x,dy)]$

où P* est l'adjoint de P (par rapport à π). On se propose d'étudier les mesures λ P-invariantes [λ P= λ] et d'en déduire des convergences en direction. On supposera le noyau P propre au sens suivant : dès que $\pi(A)>0$, on a P(x,A)>0 p.p. Cette condition assure l'ergodicité de P, c'est-à-dire la constance des fonctions P-invariantes. Pour abréger, on dira que $\lambda = \int \delta_{\rm x} \, {\rm x} \, \lambda_{\rm x} \, {\rm d}\pi({\rm x})$ est de dimension maximum (resp propre) s'il n'existe pas de réunion dénombrable de sous-espaces projectifs S_x(resp sous espace H_x) telle que, sur un ensemble non π -négligeable $\lambda_{\rm x}({\rm S}_{\rm x})=1$ [resp $\lambda_{\rm x}({\rm H}_{\rm x})>0$].

On note S_{π} le support de $f(\pi)$, T_{π} le semi-groupe fermé engendré par S_{π} , Ω l'espace produit $X^{\mathbb{Z}}$ muni de la probabilité P_{π} définie à l'aide du noyau P(x,dy)et de la mesure initiale π , $x_n(\omega)$ les fonctions coordonnées sur Ω et l'on pose $X_n = f(x_n)$. Enfin P_x désignera la probabilité naturelle sur l'espace des trajectoires partant de x. Rappelons qu'un semi-groupe T⊂S1(V) est dit proximal sur P(V) si pour tout couple (x,y) de P(V), il existe une suite $t \in T$ avec $\lim_{n} t_{n}(x) = \lim_{n} t_{n}(y)$. On dira que T opère de manière "totalement" irréductible sur V ou P(V) s'il n'existe pas de réunion finie de sous-espaces qui soit T-invariante. Ces conditions sont réalisées si, par exemple, T contient un réseau de S1(V) [시]. Si u est un automorphisme de V, il opère sur P(V)-P(Keru) et cette application, définie en dehors d'un sous-espace projectif, sera dite projective si Ker u={0}, quasi projective si Ker u #0.0n peut alors, de toute suite d'applications projectives, extraire une soussuite convergeant, en dehors d'un sous-espace projectif, vers une application quasi projective. Ceci permet de montrer que la proximalité de T implique que, pour tout mesure m sur P(V), il existe une suite t_n de T telle que t_n m converge vers une mesure de Dirac [4]. On a alors la

Proposition:

Supposons que T opère de manière totalement irréductible et proximale sur P(V) et soit λ une probabilité \tilde{P} -invariante de projection π . Alors la suite de mesures X_1, \dots, X_n est une martingale convergeant p.p. vers une mesure de Dirac. De plus λ est unique.

Cette proposition résultera de deux lemmes.

LEMME 1 :

Supposons le noyau P propre et soient f et g deux fonctions mesurables telles que : $\pi(dx)$ P(x,dy) pp f(y) = g(x)

Alors f=g=cte $\pi-pp$

En particulier P est ergodique

<u>Preuve</u>: Posons $B_x = \{f=g(x)\}$ et, pour un intervalle I fixé $A_I = \{f\in I\}$, ce qui donne $P(x,B_x) = 1$ π -pp. Si $\pi(A_I) > 0$, le fait que P est propre donne $P(x,A_I) > 0$ et donc $B_x \cap A_I \neq \emptyset$ π -pp. On en déduit $g(x) \in I$ π -pp soit g=f=cte π -pp.

LEMME 2 :

Supposons le noyau P propre, le semi-groupe T_{π} totalement irréductible et soit λ une probabilité de projection π $\stackrel{\sim}{P}$ -invariante. Alors λ est propre.

Preuve: Remarquons que, μ étant une mesure bornée positive sur P(V) on peut définir par récurrence sa partie k-dimensionnelle μ^k qui est la plus grande mesure majorée par μ et portée par une réunion de sous-espaces de dimension $\leq k$, réunion qui est alors dénombrable. Observons de plus que pour les sous-espaces H de dimension k, $(\mu^k - \mu^{k-1})(H)$ atteint sa borne supérieure sur un nombre fini de sous-espaces H seulement. Posons alors $\lambda^k = \int_{-\infty}^{\delta} x \lambda_x^k d\pi(x)$ et notons que l'équation d'invariance de λ : $\lambda_x = \int f(y) \lambda_y P(x,dy)$ entraine $\lambda_x^k \leq \int f(y) \lambda_y^k P(x,dy)$. Cette relation conduit en passant aux masses et en tenant compte de l'ergodicité de P à $\lambda_x^k = \int f(y) \lambda_y^k P(x,dy)$ et $\lambda_x^k(1) = \text{cte. Donc } \lambda^k$ est une nouvelle probabilité \hat{P} -invariante de projection π et, en prenant k minimum on peut supposer $k = \lambda^k$, $k^{k-r} = 0$ (r>0). Soit m(x) la borne supérieure des nombres $\lambda_x(H)$ pour H de dimension k

et c(x) le nombre de sous-espaces où $\lambda_{\mathbf{x}}(\mathbf{H})$ atteint son maximum. L'équation d'invariance donne m(x) $\leq \int m(\mathbf{y}) P(\mathbf{x}, \mathbf{dy})$ (cm)(x) $\leq \int (\mathbf{cm})(\mathbf{y}) P(\mathbf{x}, \mathbf{dy})$. On en tire m(x)=cte=m et c(x)=cte=c. Si maintenant $S_{\mathbf{x}}$ désigne la réunion des c sous-espaces correspondants on a

 $cm = \underset{x}{\lambda}(S_x) = f(y) \ \lambda_y(S_x) \ P(x,dy) \ \text{et donc } f(y)S_y = S_x \ \pi(x) \ P(x,dy) \ p.p. \ \text{Le lemme 1}$ donne alors $f(y) \ S_x = cte = S_y = S \ pp. \ \text{La propriété d'irréductibilité de } T_\pi \ \text{donne alors }$ k=dim P(V), ce qui montre que λ est propre.

Preuve de la proposition : L'équation d'invariance de λ sous \tilde{P} s'écrit

$$\int \delta_{\mathbf{x}} \times \lambda_{\mathbf{x}} d\pi(\mathbf{x}) = \int \delta_{\mathbf{y}} \times f(\mathbf{x}) \lambda_{\mathbf{x}} P^{*}(\mathbf{x}, d\mathbf{y}) d\pi(\mathbf{x})$$

$$\int \delta_{\mathbf{x}} \times \lambda_{\mathbf{x}} d\pi(\mathbf{x}) = \int \delta_{\mathbf{y}} \times f(\mathbf{x}) \lambda_{\mathbf{x}} P(\mathbf{y}, d\mathbf{x}) d\pi(\mathbf{y})$$
Soit π -pp $\lambda_{\mathbf{y}} = \int f(\mathbf{y}) \lambda_{\mathbf{y}} P(\mathbf{x}, d\mathbf{y})$.

La suite $X_1 \dots X_n^{\lambda} X_n$ est bien une martingale car $E_{\pi}(X_1 \dots X_{n-1}^{-1} X_n^{\lambda} X_n^{-1} X_n^{\lambda} X_n^{-1})$ n'est autre que $\int X_1 \dots X_{n-1}^{-1} f(y) \lambda_y P(x_{n-1}^{-1}, dy)$ par définition de P_{π} . En tenant compte de l'équation d'invariance, cette intégrale devient $X_1 \dots X_{n-1}^{-1} X_{n-1}^{-1}$.

Si alors d est une distance sur le compact des mesures de probabilité on a, en raison de la convergence de cette martingale vers la probabilité $\alpha_{\substack{X_0\\n\to\infty}}$: p.p lim Sup d[$X_1...X_n\lambda_{\substack{X_n\\n}},X_1...X_n...X_{n+p}\lambda_{\substack{X_n+p}}$] =0.

Ceci fournit, par stationnarité, une sous-suite m d'entiers prositifs telle que

$$\lim_{m\to\infty} \sup_{p\geq 0} d[x_{-m}...x_0\lambda_{x_0}, x_{-m}...x_0 x_1...x_p\lambda_{x_p}] = 0$$

Si alors les parties $A_1 \cdots A_{p-1}, A_p$ de X vérifient $\pi(A_i) > 0$, le fait que P soit propre implique π -p.p $P_{x_0}\{x_1 \in A_1, \dots, x_p \in A_p\} > 0$ et ceci montre p.p l'existence de y_1, \dots, y_p dans A_x, \dots, A_p avec, en posant $f(y_i) = \varepsilon_i$:

$$\lim_{m\to\infty} \, \mathrm{d}[\, X_{-m} \cdots X_{0}^{} \lambda_{X_{0}}^{}, X_{-m} \cdots X_{0}^{} g_{1}^{} \cdots g_{p-1}^{} \, g_{p}^{} \, \lambda_{g_{p}^{}}^{}] \ = \ 0 \ .$$

Cette propriété est d'ailleurs vraie pour tout p et lorsque chacun des A_i décrit un ensemble dénombrable. En particulier fixons A_p = A de façon que

l'adhérence C de l'ensemble des mesures de la forme $f(a)\lambda_a$ (a&A) ne contienne que des mesures propres, ce qui est possible d'après le lemme 2, et prenons les A_i de la forme $f^{-1}(U)$ où U décrit une base dénombrable d'ouverts du support S_π de $f(\pi)$. Si alors τ est une application quasi-projective adhérente à la suite $X_{-m} \dots X_0$ on obtient, pour $\gamma \in (S_\pi)^{p-1}$ un η voisin de γ et un λ de C avec $\tau \eta \lambda = \tau \lambda_0$ donc aussi un λ' de C avec $\tau \lambda_0 = \tau \gamma \lambda'$. Les propriétés de proximalité et d'irréductibilité de $T_\pi = U$ $(S_\pi)^p$ permettent de faire converger $\tau \lambda'$ vers une mesure de Dirac δ_Z telle que $\tau(z)$ soit défini. Ceci montre que $\tau \lambda_0$ est une mesure de Dirac et donc, puisque λ_0 est propre, que τ est constante. La suite $X_{-m} \dots X_0 \lambda_0$ n'a donc comme valeurs d'adhérence que des mesures de Dirac ; on a aussi pour toute mesure propre λ : $\lim_m d[X_{-m} \dots X_0 \lambda_{x_0}, X_{-m} \dots X_0 \lambda] = 0$. Par stationnarité on obtient une nouvelle sous-suite notée encore m telle que pour μ variant dans un ensemble dénombrable dense formé de mesures propres : $\lim_m d[X_1 \dots X_m \lambda_m] = 0$. Ceci donne $\alpha_0 = \lim_m X_1 \dots X_m \lambda$ et l'arbitraire de λ permet de conclure que α_0 est une mesure de Dirac.

Pour obtenir l'unicité de λ observons que $E_\pi(\alpha_\omega/X_k;k\leq 0)=\lambda_{x_0}$. Observons également que, la détermination des sous-suites étant basées sur le théorème de Beppo-Levi, on peut, si ν est une probabilité \tilde{P} -invariante, choisir une sous-suite commune m telle que

$$\alpha_{\omega} = \lim_{n} X_{1} \dots X_{m} \mu$$

$$\beta_{\omega} = \lim_{n} X_{1} \dots X_{m} \mu$$

On en déduit P_{π} p.p $\alpha_{\omega} = \beta_{\omega}$ et $\lambda_{x_0} = v_{x_0}$ soit $\lambda = v$

En renforçant la condition sur le noyau P on obtient le

THEOREME :

Supposons P propre et quasi-compact dans $\mathbb{L}^1(\pi)$. Alors, pour toute mesure propre μ sur P(V) la suite $X_1 \dots X_n \mu$ converge p.p. vers une mesure de Dirac dès que T_{π} opère de manière proximale et totalement irréductible.

Montrons d'abord le lemme

LEMME 3:

Supposons P quasi-compact dans $\mathbb{L}^1(\pi)$ et soit π une mesure $\tilde{\mathbb{P}}$ -invariante propre. Alors l'image essentielle de $x \to \lambda_x$ est formée de mesures de dimension maximum.

Preuve: Ecrivons P = K+R où K est un opérateur compact et R un contraction stricte de $\mathbb{L}^1(\pi)$ et $\mathbb{L}^\infty(\pi)$. Soit $\alpha_{\mathbf{x}}(\mathbf{x}\in\!\!\mathbf{X})$ la mesure sur P(V) définie par $\alpha_{\mathbf{x}}(\phi) = \mathrm{K}\psi(\mathbf{x})$ où ϕ est continu et $\psi(\mathbf{y}) = f(\mathbf{y})$ $\lambda_{\mathbf{y}}(\phi)$. On a alors, avec $\rho>0$: $\lambda_{\mathbf{x}} = \int f(\mathbf{y}) \ \lambda_{\mathbf{y}} \mathrm{P}(\mathbf{x}, \mathrm{d}\mathbf{y}), \ |(\lambda_{\mathbf{x}} - \alpha_{\mathbf{x}})(\phi)| = |\mathrm{R}\psi(\mathbf{x})| \le (1-\rho) \|\psi\|_{\infty} \le (1-\rho) \|\phi\|_{\infty}$ et donc, en variation : $\|\alpha_{\mathbf{x}} - \lambda_{\mathbf{x}}\| \le 1-\rho$

Si la conclusion du lemme n'était pas vraie, il existerait une suite de fonctions continues ϕ_n sur P(V) avec $||\phi_n||=1$ et de supports convergeant vers un fermé contenu dans une réunion dénombrable de sous-espaces projectifs et une suite ε_n de limite zéro avec $\forall n$ $\pi\{x\in X \; ; \; \lambda_x(\phi_n) \geq 1-\varepsilon_n\} > 0$. On aurait donc, à partir d'un certain rang : $\alpha_x(\phi_n) > \frac{\rho}{2}$ sur un ensemble non négligeable.

D'autre part, λ_y étant propre π -pp, on aurait pp $\lim_n y \lambda_y(\phi_n) = 0$ et donc, par compacité de K dans $\mathbb{L}^\infty(\pi)$, la suite $\alpha_x(\phi_n) = \mathrm{K}\psi_n(x)$ convergerait en norme essentielle vers zéro. Ceci contredit : $\forall n$, $\pi\{x\in X \ ; \ \alpha_x(\phi_n) > \frac{\rho}{2}\} > 0$.

Preuve du théorème : Soit τ une application quasi projective adhérente à la suite $X_1 \dots X_n$ et soit μ_n une suite de mesures bornées par λ_{x_n} telle que, le long de la sous-suite n_k définissant τ , μ_n admette comme valeur d'adhérence une mesure n_k non nulle propre, ce qui est possible d'après le lemme. On a à la limite $\tau_n = ||n|| \alpha_{\omega} \text{ puisque } n \text{ est propre et on en déduit que } \tau \text{ est constante avec}$ $\tau \delta z = \alpha_{\omega} \text{ dès que } z \text{ est défini. D'où, pour toute mesure propre } \mu : \tau \mu = \alpha_{\omega},$ $\lim_n X_1 : X_n \mu = \alpha_{\omega}.$

On reprend les notations introduites au début et l'on notera par B l'espace des drapeaux sur P(V), c'est-à-dire l'espace des suites de d-1 sous-espaces projectifs strictement emboités et distincts de P(V). Deux quotients de B joueront un rôle important, l'espace des hyperplans de P(V) qui s'identifie à P(V*) et l'espace des éléments de contacts, c'est-à-dire des couples formés d'un point de P(V) et d'une droite passant par ce point. On note par $S_n(\omega)$ le produit $X_n \dots X_1 = f(x_n) \dots f(x_1)$ où $x_n(\omega)$ est une trajectoire de la chaine de Markov sur X de noyau P(x,dy). Pour un élément de contact $\xi = (\overline{v}, \overline{v}, \overline{v}, \overline{v})$ défini par le vecteur v et le bivecteur v Δw on pose $\sigma(g, \xi) = \frac{\|gv \wedge gw\|}{\|gv\|^2}$ où $g \in S_1(v)$ et l'on observera que $\sigma(gh, \xi) = \sigma(g, h, \xi)$ $\sigma(h, \xi)$. Il y a une relation entre les comportements asymptotiques de $S_n(\omega)v$ et $S_n^{-1}(\omega)v'$ en direction $(v \in V, v' \in V^*)$ en raison de la proposition

Proposition.-

Soit u_n une mesure de probabilité propre sur $P(V^*)$ et u_n une suite d'applications projectives telle que $u_n^{-1}m$ converge vers une mesure de Dirac δ_s . Alors si l'origine de l'élément de contact ξ n'est pas dans l'hyperplan s on a

$$\lim_{n} \sigma(u_{n}, \xi) = 0$$

<u>Preuve</u>: On peut choisir une norme qui soit euclidienne et telle que v soit orthogonal à s. Prenons alors une base orthonormée avec $e_1 = v$ et donc (e_1, \ldots, e_d) dans s et écrivons $g \in Sl(V)$ sous forme polaire g = kak' où k,k' sont orthogonales et a diagonale, de coefficients vérifiant $a_1 \geq a_2 \geq \ldots \geq a_d$.

Ceci implique que si $u_n = k^n$ a k^n , la mesure $(a^n)^{-1}m$ ne peut converger vers une mesure de Dirac que si $a_j = o(a_1)$ (j>1), cette mesure de Dirac étant alors δ_s . La convergence de $u_n^{-1}m$ vers δ_s donne alors $\lim_{n \to \infty} (k^{n})^{-1}s = s$, lim $k^n e_1 = e_1$ puisque k^n est orthogonale. Supposant ξ défini par (e_1, e_2) ce qui est possible par le choix de (e_2, \dots, e_d) on a la majoration

$$\sigma(u_{n},\xi) = \frac{\|a^{n}k^{n} + a^{n}k^{n} - a^{n}k^{n} -$$

Or
$$\|\mathbf{a}^{n} \mathbf{k'}^{n} \mathbf{e}_{2}\| \le \mathbf{a}_{1}^{n} | < \mathbf{k'}^{n} \mathbf{e}_{2}, \mathbf{e}_{1} > | + |\mathbf{a}_{2}^{n}| = o(\mathbf{a}_{1}^{n})$$
 et $\|\mathbf{a}^{n} \mathbf{k'}^{n} \mathbf{e}_{1}\| \ge |\mathbf{a}_{1}^{n}| | < \mathbf{k'}_{n} \mathbf{e}_{1}, \mathbf{e}_{1} > | \sim |\mathbf{a}_{1}^{n}|$

D'où lim
$$\sigma(u_n, \xi) = 0$$

Les divers résultats vont se déduire du théorème fondamental suivant

THEOREME 1 :

Supposons que le noyau P soit propre et quasi-compact dans $\mathbb{L}^1(\pi)$, que le semi-groupe T_π^{-1} opère de manière proximale et totalement irréductible sur le dual de P(V). Alors pour tout élément de contact ξ à P(V), la suite $\frac{1}{n} \ \text{Log}\sigma[\ S_n(\omega),\xi]$ converge pp vers une fonction $C(\xi)$ strictement négative et ne prenant qu'un nombre fini de valeurs.

On a d'abord le lemme suivant, bien connu en théorie ergodique [43].

LEMME 1 :

Soit (E,τ,μ) un système dynamique où μ est une mesure $\tau\text{-invariante}$ finie ; h une fonction $\mu\text{-intégrable}$ telle que $\sum\limits_{0}^{n-1}h(\tau^ke)$ converge pp vers $-\infty.$ Alors $\int\!h_E \mathrm{d}\mu$ < 0.

Introduisons le noyau P^1 sur $X \times B^1$ défini par la formule $P^1\psi(x,\xi) = \int \psi[y,f(x)\xi] \ P(x,dy)$ considérons les mesures λ^1 sur $X \times B^1$ de projection π qui sont P^1 -invariantes

LEMME 2 :

et désignons leur ensemble par C.

Supposons que pour tout λ^1 de C, l'intégrale $\int Log \ \sigma[\ f(x),\xi] \ d\underline{\lambda}^1(x,\xi)$ soit négative. Alors, pour tout ξ , la suite $\frac{1}{n} Log \ \sigma[\ F_n(\omega),\xi]$ converge pp vers une fonction $c(\xi)$ strictement négative et ne prenant qu'un nombre fini de valeurs.

Preuve: La suite $X_k(\omega)$ étant stationnaire, on sait déjà d'après [;c], que P_{π} -pp la suite $\frac{1}{n}$ Log of $S_n(\omega)$, ξ] converge pour tout ξ vers $C(\xi)$ dont les valeurs en nombre fini sont des quotients d'exposants de Liapunoff; on a aussi, cette convergence ayant lieu dans $\mathbb{L}^1(P_{\pi})$:

$$C(\xi) = \lim_{n} \frac{1}{n} \int Log \sigma[S_n(\omega), \xi] dP_{\pi}(\omega)$$

Mais la propriété de multiplicativité de σ donne :

Log of
$$S_n(\omega)$$
, ξ] = $\sum_{k=0}^{n-1}$ Log of X_{k+1} , S_k . ξ] = $\sum_{k=0}^{n-1}$ $F(x_{k+1}, S_k, \xi)$

avec $F(x,\xi) = \text{Log } \sigma[f(x),\xi]$

$$\operatorname{soit} \frac{1}{n} \int \operatorname{Log} \sigma[S_{n}(\omega), \xi] dP_{\pi}(\omega) = \frac{1}{n} \int_{0}^{n-1} \langle (P^{1})^{k} F_{n}, \pi \times \delta_{\xi} \rangle$$

L'ensemble des mesures sur X x B de projection π est compact pour la topologie de la convergence sur les fonction $F(x,\xi)$ continues en ξ et π -intégrables en x et l'on peut donc extraire de la suite $\frac{1}{n}\sum_{j=0}^{n-1}(\pi x\delta_{\xi})(P^{j})^{k}$ une sous-suite convergente vers une mesure λ^{j} vérifiant $\lambda^{j}P=\lambda^{j}$ et de projection π : à la limite on a

$$C(\xi) = \lim_{n \to \infty} \frac{1}{n} \int Log \ \sigma[S_n(\omega), \xi] \ dP_{\pi}(\omega) = \lambda^{1}(F)$$

Preuve du théorème : Pour démontrer l'inégalité 0 > $\int Log \ \sigma[\ f(x),\xi] \ d\lambda^1(x,\xi)$ à laquelle on est ramené par lemme 2, on considère l'espace $E = X^{\mathbb{N}} \times B^1$ muni de la mesure $\mu = \int P_n \times \lambda_X^1 \ d\pi(x)$ et la transformation $\overline{\theta}$ définie par

$$\overline{\theta}[\omega,\xi] = [\theta\omega,f(x_0).\xi]$$

où $x_0^{(\omega)}$ est la première coordonnée de ω et θ la translation sur x^N La mesure μ est θ -invariante car

$$\mu \overline{\theta} = \int P_{\mathbf{x}} \theta \times f(\mathbf{x}) \lambda_{\mathbf{x}}^{1} d\pi(\mathbf{x}) = \int P_{\mathbf{y}} \times f(\mathbf{x}) \lambda_{\mathbf{x}}^{1} P(\mathbf{x}, d\mathbf{y}) d\pi(\mathbf{x})$$

Mais l'équation $\lambda^{1}P^{1} = \lambda^{1}$ permet d'écrire

$$\int \delta_z \times \lambda_z^1 d\pi(z) = \int \delta_v \times f(x) \lambda_x^1 P(x, dy) d\pi(x)$$

et donc
$$\mu \overline{\theta} = \int P_z \times \lambda_z^1 d\pi(z) = \mu$$

Enfin, posant $h(\omega,\xi) = \text{Log } \sigma[f(x_0),\xi]$ on a

$$\int \text{Log}\sigma[\ f(x),\xi]\ d\lambda^{1}(x,\xi) \ = \ \int h(\omega,\xi)\ dP_{x}(\omega)\ d\lambda^{1}_{x}\ (\xi,d\pi(x)) \ = \ \int hd\mu$$

Ayant observé que $\sum\limits_{0}^{n-1} h_0 \overline{\theta^k}(\omega, \xi) = \text{Log } \sigma[S_n(\omega), \xi]$, il suffit donc de voir, en raison du lemme 1 que $\lim\limits_{n} \sigma[S_n(\omega), \xi] = 0$ $\mu\text{-pp}$.

Les hypothèses du théorème permettent d'appliquer le théorème de A) à la suite de mesures sur $P(+V^*)$ $\alpha_n = X_1^{-1} \dots X_n^{-1}$ λ' où λ' est propre et celui-ci donne $\lim_{n \to \infty} \alpha_n(\omega) = \delta_{Z(\omega)}$ où $Z(\omega)$ est un élément de $P(V^*)$ et il suffit donc de voir, n en raison de la proposition, que, pour ω fixé, l'ensemble des ξ dont l'origine $\overline{\xi}$ appartient à l'hyperplan $Z(\omega)$ de P(V) est $\lambda_{X_0}^1$ -négligeable, ce qui signifie que la projection $\overline{\lambda}_{X_0}^1$ de $\lambda_{X_0}^1$ sur P(V) ne charge pas l'hyperplan $Z(\omega)$. Mais l'invariance de λ^1 sous P^1 donne l'invariance de $\overline{\lambda}^1 = \int \delta_X \times \overline{\lambda}_X^1$ d $\pi(X)$ et l'irréductibilité de T_{π}^{-1} sur $P(V^*)$ donne l'irréductibilité de T_{π} et T_{π}^{-1} sur P(V); d'après le lemme 2A, $\overline{\lambda}_X^1$ est propre π -pp ce qui donne bien $\overline{\lambda}_X^1$ $[Z(\omega)] = 0$ μ -pp

REMARQUE. - $C(\xi)$ est une constante C dès que λ^1 est unique, ce qui est assuré, d'après la proposition de A dès que T_{π} agit de manière proximale et totalement irréductible sur P(V) et $P(\Lambda^2 V)$. Mais la constance de $C(\xi)$ résulte de l'irréductibilité seule car pour α donné l'ensemble des $v \in V$ tels que $\overline{\lim} \frac{1}{n} \log \|S_n(\omega) \cdot v\| \leq \alpha \text{ est un sous-espace qui est } T_{\pi}\text{-invariant en raison de la définition de } P_{\pi}$ les limites possibles sont donc imposées par l'une d'entre elles. Alors, en particulier, en raison de l'égalité des limites de $\frac{1}{n} \log \|S_n(\omega)v\|$ et $\frac{1}{n} \log \|S_n(\omega) \cdot w\|$ on a $\lim_{n \to \infty} \frac{\|S_n(\omega) \cdot w\|}{\|S_n(\omega) \cdot w\|} dP_{\pi}(\omega) = C < 0$

ce qui s'interprète géométriquement comme une décroissance exponentielle vers zéro de l'angle de S_n v et S_n w. En particulier, dans le cas indépendant [f=Id , π =p], ceci permet de montrer [S] que l'opérateur sur P(V) défini par convolution avec p se comporte essentiellement comme un barycentre de contractions, situation que l'on rencontre dans l'étude de modèles d'apprentissage.

Considérons l'espace B des drapeaux sur P(V), le noyau \dot{P} sur X x B défini par

$$\dot{P}\psi(x,b) = \int \psi [y,f(x)b] P(x,dy)$$

et les mesures $\bar{\lambda}$ sur X x B de projection π qui sont \dot{P} -invariantes. Décomposons $g \in S1(v)$ en produit d'une matrice orthogonale $k \in K$ et d'une matrice triangulaire supérieure t et désignons par $a_i(g,k)$ les coefficients diagonaux de la partie triangulaire de gk. En fait $a_i(g,k)$ ne dépend que de g et de l'image canonique de k dans B et il sera donc également noté $a_i(g,b)$. On vérifie également la relation de cocycle

$$a_{i}(gg',b) = a_{i}(g,g'.b) a_{i}(g',b)$$

Rappelons [AC] que , P_{π} -pp, les suites $\frac{1}{n} \log ||S_{n}(\omega)v||$ convergent pour tout $v \in V$ et que les limites possibles prennent d valeurs au plus, de somme nulle, appelées exposants de Liapunoff du produit de matrices aléatoires $S_{n}(\omega)$. On peut calculer [AC], ces exposants en introduisant la transformation $\dot{\theta}$ sur Ω x B définie par $\dot{\theta}(\omega,b) = [\theta\omega,X_{0}(\omega)\ b]$ où $\Omega = X^{Z}$ et $X_{0}(\omega) = f[x_{0}(\omega)]$ et en choisissant une mesure $\dot{\mu}$ de projection P_{π} sur Ω qui soit $\dot{\theta}$ -invariante ; ces exposants avec leurs multiplicités sont alors donnés par les intégrales $\iint_{Log} a_{i}[X_{0}(\omega),b] d\ \dot{\mu}(\omega,b).$ Dans le cas présent, celles-ci se réduisent à

$$\gamma_{i} = \iint_{XxB} \text{Log } a_{i}[f(x),b] d \lambda(x,b)$$
On posera enfin
$$\sigma_{i}(g,b) = \frac{a_{i+1}(g,b)}{a_{i}(g,b)}$$

THEOREME 2 :

Supposons que le noyau P soit propre et quasi-compact dans $\mathbb{L}^1(\pi)$, que le semi-groupe T_π^{-1} opère de manière proximale et totalement irréductible sur les espaces projectifs associés aux puissances extérieures de V et soit λ une mesure P-invariante sur X X B de projection π . Alors, pour tout $b \in B$, la suite $\frac{1}{n} \text{ Log } \sigma_i[S_n(\omega),b]$ converge P_π -pp vers le nombre strictement négatif $\int \int \text{Log } \sigma_i[f(x),b] \, d\lambda(x,b)$. En particulier, les exposants de Liapunoff de $S_n(\omega)$ prennent $d = \dim V$ valeurs distinctes.

<u>Preuve</u>: Si k est une rotation transformant le drapeau défini par la base canonique (e_i) en b on a $(a_1...a_i)(g,b) = ||gk(e_1^{\Lambda}...\Lambda e_i)||$ et ceci fournit, par les

mêmes considérations qu'au théorème 1, et en raison de la remarque suivant ce théorème, que, pour tout $b \in B$, la suite considérée ici converge bien vers une constante égale à l'intégrale $\iint Log \ \sigma_i[\ f(x),b] \ d\lambda(x,b)$. Pour voir que cette intégrale est négative il suffit donc de voir que $\lim_{n \to \infty} \frac{1}{n} Log \ \sigma_i[\ S_n(\omega),e] < 0$. Or $\sigma_i(g,e) = \frac{a_{i+1}}{a_i} = \|gE_i \wedge gF_i\| \|gE_i\|^2$ où $E_i = e_1 \wedge \dots \wedge e_i$ et $F_i = e_1 \wedge \dots \wedge e_{i-1}$. Il suffit donc d'appliquer le théorème 1 en remplaçant V par $\Lambda^i V$, ξ par $(E_i,E_i \wedge F_i)$, puisque le dual de $\Lambda^i V$ n'est autre que $\Lambda^{d-i} V$.

Les intégrales $\gamma_i = \iint_{XXB} \text{Log a}_i[f(x),b] d\lambda(x,b)$ vérifient donc $\gamma_i > \gamma_{i+1}$, ce qui justifie l'assertion relative aux exposants de Liapunoff.

sans facteurs compacts, précisons quelques notations empruntées à [9]. Si G est un tel groupe d'algèbre de Lie 2, on peut le faire opérer par l'action adjointe $\operatorname{sur} \mathcal{G}$ et on a alors $\operatorname{G} \subset \operatorname{Sl}(\mathcal{G})$. Ayant fixé un sous-groupe compact maximal K de G et un produit scalaire sur ${\cal A}$ K-invariant, on désigne par A un sous-groupe connexe abélien formé d'éléments auto-adjoints et qui est maximal. Un tel sous-groupe appelé polaire est isomorphe à R^t et formé de matrices diagonales. Si **H**est l'algèbre de Lie de A on désigne par $\{\alpha_1,\ldots,\alpha_r\}$ un système fondamental de racines simples de ${\mathcal Z}$ dans ${\mathcal Z}$ et toute racine ${\mathfrak a}$ est alors conbinaison linéaire à coefficients entiers de même signe des α_i , ce qui précise la notion de racine positive. Posons alors $\mathcal{G}_{\alpha} = \{x \in \mathcal{G} | [a,x] = \alpha(a)X \forall a \in \mathcal{B} \}$ $\tilde{\mathcal{J}} = \underset{\alpha \in \mathcal{O}}{\oplus} \mathcal{J}$, $m + \mathcal{L} = \mathcal{L}$ et désignons par N, N les sous groupes [nilpotents] de G correspondants. Si M est le centralisateur de A dans K, la frontière de Furstenberg de G [4] est alors B = $^{\rm G}/_{\rm MAN}$. Soit a(g) la composante sur A de g dans la décomposition de g $^{\rm T}$ sous forme d'Iwasawa G = KAN et pour α forme linéaire sur 🔏, posons $\sigma_{\alpha} = e^{\alpha} [a(gk)]$ pour geG, keK, expression dépendant de k seulement par l'image \overline{k} dans B. Dans les notations introduites précédemment le rôle de S1(V) est joué par $G \subset Sl(\mathcal{G})$ et leur traduction est immédiate ; en particulier l'espace des drapeaux de V a été noté B, ce qui est compatible avec la définition ici posée. Les propriétés d'irréductibilité doivent être ici renforcées : une partie U de

Afin d'énoncer un résultat général pour les groupes de Lie semi-simples

THEOREME 3:

Supposons que le noyau P soit propre et quasi-compact dans $\mathbb{L}^1(\pi)$, que G_π soit algébriquement dense, que T_π opère de manière proximale sur B et soit $\hat{\lambda}$ une mesure P-invariante de projection π . Si α est une forme linéaire négative sur \mathcal{E} , alors pour tout $b\in B$, la suite $\frac{1}{n}\log\sigma_{\alpha}[S_n(\omega),b]$ converge P_π -pp vers le nombre strictement négatif $\int \log\sigma_{\alpha}[f(x),b]\,d\lambda(x,b)$.

G C S1(2) sera dite algébriquement dense si les polynomes nuls sur U s'annullent

sur G. Enfin on note G_{π} le sous-groupe fermé engendré par T_{π} . On a alors le

Enfin λ est unique si T_{π} est proximal sur B.

Preuve: On va appliquer le théorème 1 à l'action de G sur un espace projectif P(V) où V est l'espace d'une représentation irréductible de G telle que le sous-groupe MAN soit le stabilisateur d'un point e de P(V) [9], ce qui identifie B à une sous-variété compacte de P(V). Pour un élément de contact ξ tangent en e à B, on a alors $\sigma(g,\xi) = \sigma(kt,\xi) = \sigma(t,\xi)$ où kek et tean; d'autre part $\sigma(g,\xi)$ ou $\sigma(t,\xi)$ n'est autre que le coefficient de multiplication des distances dans la direction de ξ , lorsqu'on effectue l'application t laquelle conserve le point e et donc l'espace tangent à B en e. Mais l'action de ξ MAN sur l'espace tangent en e à B s'identifie à celle de Adt sur \mathcal{N} , action définie par passage au quotient suivant l'algèbre de Lie de MAN. Comme, pour les racines simples α_1

$$: [\mathcal{K} + \mathcal{N}, \mathcal{Y}_{-\alpha_{\hat{1}}}] \subset \mathcal{M} + \mathcal{K} + \mathcal{N} \quad \text{on a, pour } \xi_{\hat{1}} \in \mathcal{Y}_{-\alpha_{\hat{1}}} \text{ et teman } : \\ \operatorname{Adt}(\xi_{\hat{1}}) = e^{-\alpha_{\hat{1}}} [a(t)] \xi_{\hat{1}} \pmod{\mathcal{M}} + \mathcal{K} + \mathcal{M})$$

D'où $\sigma(g,\xi_i) = e^{-\alpha i}[a(g)] = \sigma_{-\alpha_i}(g,e)$ et $\sigma(g,k\xi_i) = \sigma_{-\alpha_i}(g,k)$ (kEK d'après les propriétés multiplicateurs de σ et σ_{α_i} .

Il est clair, d'après la densité de G_{π} , que T_{π}^{-1} opère de manière totalement irréductible sur le dual de P(V). D'autre part par construction de V, il existe un point e de P(V) dont le stabilisateur est MAN et B s'identifie aussi à une sous-variété de P(V) non contenue dans un sous-espace projectif. La proximalité de l'action de T_{π}^{-1} sur B fournit alors la proximalité sur P(V) tout entier, et les hypothèses du théorème 1 sont donc satisfaites. On en déduit la convergence de la suite $\frac{1}{n}$ Log $\sigma_{-\alpha_i}[S_n(\omega),k]$ vers un nombre strictement négatif C(k) qui est aussi la limite de $\frac{1}{n}$ Log $\sigma[S_n(\omega),k]$. Ce nombre est indépendant de k en raison de la remarque suivante : si ρ est une représentation de G dans un espace G0, elle se décompose en représentations irréductibles G1, pour lesquelles la limite de G2 Log G3 Log G4. Poppiété qui se transmet à G5 et G5 dont les composantes G6, sont non nulles à cause de la relation

$$\|\rho[S_n(\omega)w]\|^2 = \sum_i \|\rho_i S_n(\omega)w_i\|^2$$

Enfin, en raison de l'invariance de $\dot{\lambda}$ et de la propriété de multiplicateur de σ_{α} , on a

$$\frac{1}{n}\iint \log \sigma_{-\alpha_{i}}[S_{n}(\omega),k] dP_{x}(\omega) d\lambda(x,\overline{k}) = \iint \log \sigma_{-\alpha_{i}}[f(x),k] d\lambda(x,\overline{k})$$

ce qui fournit le résultat voulu dans le cas particulier où $\alpha = -\alpha$. Dans le cas général, la forme linéaire α est combinaison linéaire à coefficients positifs des α et le résultat s'étend donc à ce cas. L'unicité de $\dot{\lambda}$ découle directement de A).

Décrivons enfin un type de situation, considéré de manière générale en [7], où s'introduisent des marches aléatoires à pas markovien sur des groupes discrets non nécessairement représentés matriciellement. Soit V une variété riémanienne Γ un groupe d'isométries de V tel que le quotient $^{V}/_{\Gamma}$ soit une variété compacte et fixons un domaine fondamental D de Γ dans V, domaine que l'on identifie à $^{V}/_{\Gamma}$. Considérons le mouvement brownien sur $^{V}/_{\Gamma}$ et munissons l'espace Ω de ses trajectoires ω de la mesure canonique définie à l'aide de la mesure riémanienne m comme mesure initiale ; cette mesure est alors invariante par le semi-groupe θ^t de translation. On peut relever ce mouvement brownien dans le revêtement V et l'on note alors $S_t(\omega)$ la position atteinte dans V, à l'instant t, en suivant la trajectoire sur V définie par ω et partant d'un point de D $^{V}/_{\Gamma}$. Notons alors, pour $v\in V$, \overline{v} l'image de v dans $^{V}/_{\Gamma}$ $^{\circ}$ D et $\gamma(v)$ l'isométrie de V définie par $\gamma(\overline{v})=v$. Si l'on pose $\sigma(t,\omega)=\gamma[S_t(\omega)]$, on a la relation de cocycle sur $\mathbb{R} x\Omega$ à valeur dans Γ :

$$t+t'\sigma(t \in t',\omega) = \sigma(t,\theta^{t'}\omega) \sigma(t',\omega)$$

et ce cocycle s'identifie à une marche aléatoire à pas markovien. En effet, notons Q^t le noyau de transition du mouvement brownien sur V, prenons X=V et soit P le noyau sur X défini par P(v,dv')=Q[v,dv'], noyau qui admet $\pi=mQ$ comme mesure invariante et qui vérifie les conditions de régularité introduites en A. Si l'on choisit la fonction f par $f(v)=\gamma(v)$, on obtient, en désignant par $x_k(\omega)$ la position de la chaine de noyau P à l'instant k:

$$\sigma(n,\omega) = f(x_n) f(x_{n-1})...f(x_1)$$

Dans le cas particulier où V est elle-même un groupe de Lie muni d'une métrique invariante à droite et Γ un sous-groupe discret, la quantité $\sigma(t,\omega)$ s'écrit à l'aide d'un cocycle η sur $Gx^G/_{\Gamma}$ à valeurs dans Γ . En effet, posons pour $g \in G$ et $\overline{x} \in G/_{\Gamma} \sim D$: $\eta(g,x) = \gamma(g\overline{x})$ ce qui implique :

 $\eta(gh,x)=\eta(g,h|x)$ $\eta(h,x)$ où $(g,h)\in GxG$ et permet d'écrire $\sigma(n,\omega)=\gamma[\,S_n(\omega)\,]=\eta[\,S_n(\omega)\,,e]$. Dans ce cas particulier des informations sur le cocycle $\eta(g,x)$ et par conséquent sur Γ , peuvent être obtenues à l'aide de la marche aléatoire $\sigma(n,\omega)$ qui a été envisagée sous une forme voisine en [2]. Dans la situation générale ici envisagée, le cocycle η n'est pas défini mais on peut lui substituer la marche aléatoire $\sigma(n,\omega)$ dont l'étude présente un intérêt pour la structure de Γ et le mouvement brownien sur V lui-même.

BIBLIOGRAPHIE

- [1] COHEN: Ergodic theorems in demography B.A.M.S., juin 1979.
- [2] FURSTENBERG: Séminaire Bourbaki, 1979-1980, nº 559.
- [3] FURSTENBERG: Non commuting random products T.A.M.S. 108, 1963, p.377-428.
- [4] FURSTENBERG: Boundary theory and stochastic processes on homogeneous spaces Proc. Symp. Pure Math vol 26, 1972, p.193-229.
- [5] GOL'DSEID, MOLCHANOV, PASTUR: A pure point spectrum of the stochastic onedimensional Schrödinger operator. Funct. Anal. Appl. 11-1 (1977), p.1-10.
- [6] GUIVARC'H: Quelques propriétés asymptotiques des produits de matrices aléatoires -Lecture Notes In Math 774 (1980), p.176-250.
- [7] GUIVARC'H: Marches aléatoires à pas markovien C.R.A.S. Paris t.289, 1979.
- [8] LE PAGE: Théorèmes limites pour les produits de matrices aléatoires C.R.A.S. 1981 (à paraître).
- [[9] MOSTOW: Strong rigidity of locally symmetric spaces Annals of Math Annals of Math Studies 78 (1973).
- [10] OSEDELETS: Trans Moscow Math Soc 19, 1968, p. 197-231.
- [11] ROYER: Croissance exponentielle de produits markoviens de matrices aléatoires Université P. et M. Curie, mai 1979.
- [12] RAUGI: Fonctions harmoniques et théorèmes limites sur les groupes de Lie Bul S.M.F. mémoire 54, 1977.
- [13] SCHMIDT: Lecture on cocycles of ergodic transformations groups; Tata Institute 1977.
- [14] TUTUBALIN: Some theorems of the type of laws of large numbers Theory of Proba. 1969, p.313-319.
- [15] TUTUBALIN: The central limit theorem for products of matrices Symposias math. 1977, p.101-116.
- [16] VIRTSER: Theory of Proba 24 B 1979, p.361-370.