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EIGENVALUE APPROXIMATION 

V I A NON-CONFORMING AND HYBRID F I N I T E ELEMENT METHODS 

B . MERC I E R 

J . RAPPAZ * 

[mau 1976) 

We give some error estimates for the approximation of eigenvalue 

problems via abstract mixed-hybrid finite element method. 

As a main application, we show how to apply these results to the 

case of non conforming approximation of a standard 2nd order elliptic 

problem. 
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INTRODUCTION, 

Let X # W and H be three Hilbert spaces satisfying X included 

and dense in H , the injection from X into H being continuous. Let 

a and b be two continuous bilinear forms, defined on X XX and X xw 

respectively. 

We consider the following eigenvalue problem : 

Vlnd A 6 c , {u,p} € x xw 

(0.1.a) a(u,v) + b(v,p) = A(u,v), V v € X ,· 

(0.1.b) b(u,q) = 0 , V q € W ; 

wheAe. (.,.) dznotoA the, AcaZa/i product H . 

The purpose of this work is to study the effect of the approximation when 

X and W are replaced by finite dimensional spaces X, and W, . Let 
h h 

V = jv € X : b(v, q) =0 , V q £ wj ; 

and 

vh ={ vh € xh : b (VV = 0' vS e wh} ; 

We notice that Problem (0.1) can be written in a more standard way : 

¥lnd A € c and u £ v 6uck that 

(0.2) a(u,v) = A(u,v), V v € V .' 

The conforming case, where c v , has been widely studied. 

We mention STRANG-FIX [16], for the compact and self-adjoint case, BABUSKA-

AZIZ [1], BRAMBLE-OSBORN [3], FIX [9], OSBORN [13], for the compact case. 

For noncompact cases, we refer the reader to RAPPAZ [14], DESCLOUX-NASSIF-

RAPPAZ [8]. The case where the right hand side of (0.1) is 0 and A(p,q) w 

instead of A(u,v) and 0, has been studied by CANUTO [6], with a somewhat 

different technique than the one we use here. 
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We heard that the case where the same right hand side is A ( u , v ) 

and X(p,q), instead of A(u,v) and 0 , would have been considered by 

KOLATA [ 1 2 ] . 

Note that only the present formulation ( 0 . 1 ) can take into account 

the case of non conforming elements (see RAVIART-THOMAS [ 1 5 ] ) , or hybrid 

elements (see BABUSKA [2], BREZZI [ 4 ] , THOMAS [ 1 7 ] ) . 

In Section 1, we review the abstract error estimates of OSBORN 

[13], simplified by DESCLOUX-NASSIF-RAPPAZ [8]. 

In Section 2, we apply the error estimates to the approximation 

of the abstract problem ( 0 . 1 ) . 

In Section 3 , we specialize to the case of non conforming 

elements for the Dirichlet problem. 

Finally, in Section 4 , we add some remarks and comments. 
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1 - ERROR ESTIMATES FOR EIGENVALUE PROBLEMS. 

We shall make a brief review of the general results of OSBORN [13] 

and DESCLOUX-NASSIF-RAPPAZ [8]. However, we shall derive the estimates for 

eigenvalue problems in a somewhat restricted framework. 

Let H be a real Hilbert space, with the scalar product (.,.) 

and the norm |.| .We denote by < H > the Banach space of compact linear 

operators A : H H , endowed with the usual operator norm || A || = sup lAul . 

Let A £ < H > and || || c= < H > be a family of operators l ul 1 

indexed by a positive parameter h , such that 

(1.1) A and A^ are self-adjoint (h arbitrary) ; 

(1.2) lim || A - A. || = 0 . 
h~> 0 n 

The compactness and the self-adjointness of A and A^ show that their 

spectrum has no other accumulation point than the origin, and is located 

on the real line. 

Any value X 0 of the spectrum of A is an eigenvalue of A 

with a finite multiplicity* m , and can be isolated from the spectrum : 

there exists £ > 0 such that the interval [ X - e , X + e ] does not contain 

any other eigenvalue of A than X . 

We shall denote by E the eigenspace associated to X (and A ) , 

and by P : H E , the orthogonal projection operator onto E . 

Assumption (1.2) shows that, for h < h 0 sufficiently small, there 

exists exactly m eigenvalues of A^ lying in the interval [ X - e , X + e ] . 

We call those X _ , . . . , X , . Note that some of them may coincide since we lh mh 

count them according to their multiplicity. We call E^ the sum of all 

the eigenspaces corresponding to the X , and : H -* E^ , the orthogonal 

projection operator onto E^ . Note that dim E = dim E^ = m , and that 

* Note that algebraic and geometric multiplicity coincide for self-adjoint 
operators. 
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lim IIP -P. ||=0 (see [10,p.438]). 
h - 0 h 

Finally, we introduce 

II (A - A. ) I II = sup | (A - A. ) u| , 

and recall the following result due to OSBORN [ 1 3 ] : 

THEOREM 1 : Assuming that (1.1) and (1.2) hold, there exist C and h 0 > 0 

such that3 for h < ho 

( 1 . 3 ) IIA - A.. II < C |ll (A - AJ I 11 2 + S U P S U P I (Au - A. u,v) I [ j 
l h I * l E .uCE , V £ E " 'J 

|u|=i |v|=i 
( 1 . 4 . a ) sup |u - P^ul < C II (A - A. ) I II ; 

u GE h 1 1 l E 

1-1=1 
( 1 . 4.b) sup l u

h " P u h l < c II (A - A h) I I I . • 

For the convenience of the reader, we shall give a simplified proof of this 

result. 

Proof : Let : E -> E^ be the restriction of to E , i.e. A^ = P ^ | 

For u 6 E , we have 

l A j u l > |u| - | (P - P h ) u | > (1 - IIP - P h H ) | u | ; 

therefore, for h sufficiently small, is one to one from E onto E^, 

and has a uniformly bounded inverse A^ 1? there exists Ci independent 

on h and ho > 0, such that 

( 1 . 5 ) l A ^ 1 u j < Ci l u j , for £ E h and h < h 0 . 

We define the operators & and ^ : E -* E by 
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A = A | e (restriction of A to E), 

\ = V \ | E h \ · 
We check that X is the unique eigenvalue of A and (X , ) ^ . are the 

in l^i^m 

eigenvalues of A^ (however, the eigenvectors of A^ have changed and 

are not orthogonal any more). 

From WILKINSON [l8,p.80], we have 

| x - x i h | < C 2 HA - Ajl , 
E 

where the norm is the operator norm on E . 

To set (1.3), we shall estimate the quantity IIA - A^ || . For 

u,v € E , we have 

(Au - A h^,v) = (Au - A ^ 1 ^ P h ^ ,v) = (Au - A^*P h ^ u ,v) 

= (A^P h(A -Ah)u,v) 

= ((A - Ah)u,v) + ( < A h l p
h " I)(A - A h)u,v). 

Moreover, as 

( ( A h l p h " I } ( A " V U ' P h v ) = ( P h ( A h l p h " I } ( A ~ A h ) u ' v ) = 0 ' 
we get 

(Au-A hu,v) = (Au-A hu,v) + ((A^ lP h-I)(A - Ah)u,v - P h v) . 

Using (1.5), we get 

II A-A^ II < C < sup sup | (Au - A. u,v) | + ll(A - A. ) I I I . sup |v-P.v|> . 
1 1 E l.uCE (v€E n n IE fv€E n J 

|u|=l |v|=l |vf=l 

In order to complete the proof of (1.3), we need (1.4.a) which we 

prove now. In this purpose, the easiest way is to extend the Hilbert space 

H from the real to the complex case. Let T denote the circle of the 

complex plane C centered at X and with radius e . The projection operators 

P and P^ can be written as Dunford integrals : n 
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For u € E , we have 

|u -P hu| = | (P -P h)u| = |^[(z - A ) " 1 - (z - V " 1 ] u d z l 

-£i]r
u-v"l(*-v(*-A)"1 u d z · 

We check easily that assumption (1.2) implies the existence of C3 and 

hi ^ 0 such that, for h ̂  hi and z 6 T : 

II ( z - y ^ K c 3 , 

II (z - A)" 1 II < C 3 ; 

as (z - A ) " 1 u € E , we have 

|u - P h u | < cl II ( A - y ^ l l . I u 1 , 

which sets (1.4.a) ; the derivation of (1.4.b) uses the same techniques. • 
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2 - EST IMATES FOR ABSTRACT NON CONFORMING PROBLEMS. 

We shall apply the previous estimates to the abstract problem 

considered in Introduction. 

We make the following assumptions : 

a(.,.) ¿6 6ymme£/UcaZ and co&iclvz on V: thtnz vuAtb a > 0 
(2.1) 

Auch that a(v,v) > a llvll* , V v £ V ; 

( 2 . 2 ) tkz imbzddinQ v -> H ¿ 6 compact ; 

tWvia zxJJ>t6 3 > 0 4ucfi £ha£ 

( 2 . 3 ) 
Inf sup b(v.q) > (3 . 
g f W v £ X 

These assumptions imply the continuity of the operators 

A : H - > V ; B : H - > W , 

where, for f € H, Af € V and Bf 6 W are uniquely defined by the relation 

(2.4) a(Af,z) + b(z,Bf) = (f,z), V z € W. 

Note that A is self-adjoint since a is symmetrical ; moreover, A is 

compact in view of ( 2 . 2 ) . 

The eigenvalue problem ( 0 . 2 ) (and then (0.1)) is equivalent to 

the eigenvalue problem Au = Xu which has been considered in the previous 

section, with the operator A defined in ( 2.4). Note that X is indeed 

the inverse of the X appearing in (0.1.a). 

The approximate operator A^ : H -> V^ is defined together with 

B. : H W, in the following way : for f 6 H, A^f € and B.f 6 W^ 
n n n n n n 

are solution of 

( 2 . 5 ) a(A hf,z h) + b(z h,B hf) = (f,zh>. 

We assume that A^ converges to A in < H > , which requires some compatibility 

between X^ and W u (see [4], [ 5 ] , [17]). 
n n 
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We want to derive some error estimates for the approximation 

of an eigenvalue A of A . For this respect, we apply the abstract 

estimates (1.3) and (1.4), where only the term (Au - A^u,v) needs to 

be evaluated more specifically. 

THEOREM 2 : We have the estimate for f,g € H : 

|(Af-Ahf,g)| <C jlltA-A^gll ( II (A - A ^ f 11̂  + ||(B-Bh)fll^ 

+ IKA-i^Jf llx I K B - B h ) g H w } . 

Proof : We apply (2.4) to g with z = (A - A^)f . We get 

(2.6) (Af-A hf,g) = a(Ag, (A - A ^ f + b ((A - A ^ B g ) ; 

substracting (2.4) and (2.5), we get, for all z^ £ X^ , 

(2.7) a((A -A h)f,z h) + b (z^, (B - B^) f) = 0 . 

As Ag £ V , we also have 

b(Ag, (B -B h)f) = 0 ; 

with (2.7), this implies 

(2.8) a(Ag,(A - A h)f) = a (Ag - z , (A - A ^ f) + b (Ag - , (B - B h) f) . 

Choosing z^ = A^g and using the continuity of a and b, this gives 

|a(Ag, (A - A h)f) | < C II (A - A ^ g llx ^ II (A - A ^ f llx + ||(B - B^) f 1 ^ . 

On the other hand, as Af £ V and A^f £ , we have 

b((A -A h)f,q h) = 0 , V q h £ W h ; 

hence 

b( (A - A h)f ,Bg) = b((A-A h)f , (B -B h)g) , 

where we have chosen q. = B.g . This gives 
n h 

I b(A -A^f ,Bg) | < C II (A -A^f II ll(B -B Jgl^ , 

hence, (with (2.6), (2.8)), the desired result. • 
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As in Section 1 , we shall consider an eigenvalue X of A 

with multiplicity m , and the eigenvalues (A . , ) of A. converging 
l h X < i < m 1 1 

to A . We denote again by E and E, the corresponding eigenspaces. 
h 

We shall use the following norm for a linear operator C : Y -> Z : 

« C « Y Z * U
S ^ «Cu« z · 

llullY=l 
As a consequence of Theorems 1 and 2, we have 

THEOREM 3 : Under assumption (1.2)3 one has the following estimate 

M J < c , , » - V | e » h x { .<* - V | E » H X •'»- J · 

for 1 < i < m . • 

REMARK 2.1 : In the conforming case (V,_ c v ) , the quantity II (B-B^)l II 
h ' E HW 

disappears in the previous result. • 
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3 - A P P L I C A T I O N TO NON CONFORMING ELEMENTS FOR THE D I R I C H L E T 

PROBLEM (SEE THOMAS U 7 1 ) , 

Let ft c: 3Rd be a bounded open set of 3Rd (d=2,3). For the 

sake of simplicity, we assume that ft is a polygone. We call T^ a family 

of triangulations of ft . The elements of are triangles in the case 

d=2, and tetraedrons in the case d=3. 

For K an open set of 3Rd , we denote by H m(K) the Sobolev 

space of functions, the derivative of which, up to the order m are in 

L 2 (K) , and by II . II v , the associated norm (note that II . II is the 

m,K o ,K 
norm of L 2(K)). 

We choose H = L 2 (ft) and X = II H l (K) with the norm 

_ / 2 \ 1 K £ T h 
Hull =| I II u II 1 .To define the space W , we introduce 

x \ K e T h 

H(div,ft) = jq £ (L2(ft))d : div q € L2(ft)| , 

where div is the divergence operator, and the following relation of 

equivalence 

(R) p ¿6 zqivivaZcyvt to q p.n = q.n on 3k £OK OJUL k € T^ , 

where n denotes the normal vector to the boundary 9k of the element K, 

outwards directed. We choose then W = H(div;ft)/R . 

As a norm for H(div;ft), we choose the following 

•*«ii(div,n> * K I r h ( , l q l l o 2 , K + h K l | d i v q l l o 2 , K ) 5 ' 

where h denotes the diameter of an element K . 

We endow W with the corresponding quotient norm, and assume 

that h = max h, . 
K € T h 

As for the bilinear forms, we choose 
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a(u,v) = I Vu .Vv dX , 
K J 3K 

b(u,v) = I u(q.n) ds , 
K J3K 

where the integral on 3K is indeed the duality between (3K) and 

H " * O K ) . 

We notice that V = Ho (ft) =|v € H 1 (ft) : v = 0 on 3ft J , and 

u = Af is the solution of the Dirichlet problem 

Î- Au = f on ft , 

u = 0 on 3ft . 

For the approximate problem, we choose = II IP. (K) , where 

JP K(K) denotes the set of functions defined on K which are polynomials 

of degree less or equal to k . 

We call (K) the subset of (IP^tK))^ made with vector functions 

q , uxcth a no mat tAA.cz q.n o£ dQ.QH.zz lu* oi zqual to k-l on each hldz 

oi tkz zZzmznt K · 

We define W^ as the subspace of W made with vector functions 

the restriction of which to each K € T. is in S, (K) . Note that the normal 

n k 

trace of such a function has no discontinuity across a side common to two 

elements since W is included in H(div;ft). 

We notice that V H ¿6 not ^nctudzd X*l H J (ft), and constitutes 

a so-called non consuming ^iyiitz eJtzmznt ¿pa.cz. 

We recall the following result due to RAVIART-THOMAS [l5,thm 4 & 5] : 

THEOREM 4 : If the family of triangulations is regular (that is3 no 

angle tends to zero as h tends to zero) 3 there exists a constant c 

independent of h such that 

Il (A -A, )f II +||(B-B,)fll < C h £ | | f | l ^ 
* x h w J M , f t 

for all £=1,2,...,k , such that Af € H A + l ( £ ) . • 

http://tAA.cz
http://dQ.QH.zz
http://�pa.cz
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We also have the following L -error estimates proved by THOMAS 

[17, chapter V, Thm 4.4] : 

THEOREM 5 : Under the same assumptions as in Theorem 43 provided that ft 

is convexj we have 

0+1 
for all £=l , 2,...,k 3 such that Af £ H (ft). 

For f € L 2(ft), Grisvard's regularity results for the Dirichlet 

problem, give Af 6 H 2(ft). Theorem 5 with m=l shows the uniform convergence 

of A^ ot A and the validity of assumption (1 . 2 ) ; ( 2 . 2 ) results from 

the compactness of Sobolev's imbedding and implies the compactness of A . 

THEOREM 6 : Assuming that the eigenspaoe E 3 associated to an eigenvalue X 
£+1 

of A 3 is included in H (ft) with 1 < £ < k, then there exists a 

constant C such that 
|X - A | < C h 2 J l for 1=1,...,m.j 

where m denotes the multiplicity of X and X i h the eigenvalues of 

converging to X . Moreover, E^ being the eigenspace associated to the 

(X., ) . we have the following bound on the distance between E and E, 
i h i < i < m h 

£+1 
sup inf l l u - u , l l < C h 

Proof : Note first that the norms II . II ~ and II . II are equivalent 
o#n £-l,ft 

on E which is finite dimensional. 

From Theorems 4 and 5 , we get 

II (A-A.) I II < sup ll(A-Ajfll < C h* ; 
1 1 IE uv f £ E 7 1 y 

H X ||flio-l x 
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II (A - A ) I II < C h £ + l ; 
* IE HH 

II (B-Bjl II < C h* . 
h ' E HW 

The result follows then from Theorems 1 and 3 . • 
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4 - REMARKS AND COMMENTS, 

1 - The estimates given in Theorem 6 are the same as in the conforming case, 

and give then the optimal order. 

2 - To give an example of a polygonal domain, where the eigenvectors are 

k+1 

in H (ft) for k large enough, we mention the case where Q is a square, 

where the eigenvectors are known explicitly. 

3 - To get the same estimates in the case where Q is not a polygone, it 

is necessary to use isoparametric elements, and we refer the reader to 

THOMAS [ 1 7 ] for a definition of the spaces and in this case. 

4 - Estimate of the distance between E and E, in the X-norm. Under the 
• • •• • n • 

same assumptions as Theorems 6 , we set the estimate 

SUP Inf II u - ir II < C h 
uens u^EE^ n x 

l lu l l x =i h h 

For simplicity, assume that m=l. For u E E , we let = P^u € E^ . 

We have u = y Au ; u^ = ' hence 

h 

u - u h = x ( A - V u + T r V + r V u - u h ) -

h h 

We use then the uniform continuity of A^ , 

Il A, f II < C II f II for all f € H , 
1 1 X o,£i 

which results from (2.5), and the discrete Poincaré inequality proved by 

THOMAS [ 1 7 , chap.V]. 
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5 - Other examples. The abstract framework considered in this paper contains 

the case of hybrid and mixed elements (see THOMAS [17], BREZZI-RAVIART [5], 

BREZZI [4]). A non conforming method for 4th order value problems has been 

considered by KIKUCHI [ll], and the convergence of eigenvalues is proved 

by other methods. Eigenvalue problems for the Stokes equations are also 

a special case of our work when one considers the formulations of CROUZEIX-

RAVIART [7]. 

6 - Unsymmetric case. It is also possible to extend the present method to 

the case of a nonsymmetric tilinear form a . However, the operator A is 

not self-adjoint any more. The method is not as simple as in the self-adjoint 

case. However, one gets the same estimate as in Theorem 6, but for the 

distance between X and the average of X ^ · W e refer the interested reader 

to the work of OSBORN [13] to pick up the techniques for the non self-adjoint 

case. Note that BREZZI, RAVIART and THOMAS' results still hold when the 

bilinear form a is unsymmetric. 
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