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The purpose of this paper is to give some results about powers

and Gevrey regularity in the interior and up to boundary for a system of

differential operators, which is, in particular, an extension of those

of Kotake-Narashiman [g] and Nelson [ll].

I - POWERS AND GS REGULARITY.

At first, we recall the definition '(or characterization) of the

analyticity of a function :

Definition I-1

o

. . n . .. .
A function u, C 1in an open set of R, is analytic in Q if,

for every compact set XK of @, there exists a constant L = Lg > 0 such that,

_ .0
for every o ZN , we have

0%l , < nle* e
L™ (K)
where we have written, for a = (a],...,an),
o
la| = S TRERERL and D% = i_lal aa 3

We denote by a(R) the space of analytic functions in €.

In [8], Kotake-Narashiman characterize the analyticity with the help of

the powers of an elliptic operator in the following manner :

THEOREM 0 :
Let D be an elliptic differentiel operator of order my 1 with analytic
coefficients in an open set Q offﬁn, the two following propositions are

equivalent :

_25_
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(i) u =z al) ;

(i) u e C (Q) and, for every compact set K of Q, there exists a constant

L = Ly > 0 such that, for every k N, we have :

NPl , < o).
L% (x)

In [ll], Nelson characterizes the analyticity with the help of

the powers of n real vector fields linearly independant in the following

manner .

THEOREM O' :

Let Pl""’Pn be some real vector fields, with analytic coefficients and
linearly independant in every point of an open set S of B', the two follo-
wing propositions are equivalent :

() u =alQ) ;

(i2) u & C (%) and, for every compact set K of Q, there exists a constant

L = Ly > 0 such that, for every 1 ¢ ij sn, 1 <£jg<ckandk > 1, we have :

k+1
[P, ...P. ul] s L7 (k!).
T 'k 12k

The purpose of this paper is to extend these results for more
general operators and in the Gevrey's classes of order s > | in the interior
and also up to the boundary.

We recall the definition of the Gevrey's classes :

Definition 2 :

Let K be a compact set of R" and S a real number >1. We mean by Gevrey's
class of order s in K the space GS(K) of the restrictions over K of C”
functions u in a neighbourhood of K such that there gxists a constant

L > O such that, for every g gjmn, we have :
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10%)] , < el e s,
L (K)

Let @ be an open set of rR" ; we mean by Gevrey's class of order s in
the space GS(Q) of the functions which are in GS(K) for every compact

subset K of Q.

If K is "smooth enough", we can replace the LZ(K)—norm by the L™ (K)-norm.

For s = 1, we get, of course, the analytic functions.

Let Q be an open set of R with boundary 32 and Pj = Pj(x;D), J = 1,...,N,

some differential operators of order m, € iN . let be denote by Pj = Pj(x;D)
the principal part of order “ﬁ of Pj ; we introduce the two following con-

ditions

(A) for every x = Q, the polynomial Pj(x;g), for 1 £ j < N, have no common

non trivial real zero ;

(B) for every x = 32, the polynomials Pj(x;&), for 1 € j ¢ N, have no common

non trivial complex zero.

At first, we have the following theorem on powers in the Gevrey's

classes GS(Q), which generalizes the Kotaké-Narashiman and Nelson's theorems :

THEOREM 1 :
If the operators Fﬁ, d = 1,...,N, have coefficients in GS(Q) and satisfy

the condition (A), the two following propositions are equivalent :

(Z) u-€.GS(Q) R

]l

(22) u = €*(Q) and for every compact subset X of q, there exists a constant

L = L, > O such that, for every 1 ¢ ij <V, 1 ¢jckandk 5 1, we have :

k

S

1P, cop ull , <20 Y m o07
1 kLK) J=1 7J

-27~
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Also, we have the following result which is a result on powers in the

Gevrey's classes Gs(ﬁ)

THEOREM 2 :

If Q 28 a bounded open set of'En with Lipschitaian boundary i1f the operators
Pf’ for 1 € j € N, have coefficients in GS(ﬁ) and satisfy the conditions

[3

(A) and (B), the two following propositions are equivalent :

(1) u

i

GS(Q') 3
(1) u= C () and there extsts a constant L > O such that, for every

1 Sif <V, 1sd<skadk s 1, we have :

K :
12, ...p; |] <0 Y mon”

1 k1) J=1 J

We recall that an open set Q of R" with Lipschitzian boundary 3Q
is an open set such that, for every point X € 09, there exists a real number
r > 0, a system of local coordinates (x],...,xn) and a Lipschitzigp func-

tion h = h(x],...,xn_]) such that :

Qn B(xo,r) = {(xl,...,xn) ;x> h(x],...,xn_l)} n B(xo,r)

where B(xo,r) is a ball of center X and radius r.

The implications (i)==>(ii) always are true and are easy to prove.

The method used to prove the theorem 2 (like for the theorem 1)
in the implication (ii)===(i) is an adaptation of this of Kotaké-Narashiman

[8] using the tools of Morrey-Nirenberg [10].

At first, we can only consider the operators with the same order m.

~

m.
In fact, for j = 1l,...,N, we put ﬁj =1 m and Qj = Pj 3. The operators
i#]
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N
. = Q.(x3D),for 1 € j < N, have the order m = 1 m. and satisfy the con-
QJ QJ sV, ’ .
Jj=1
ditions (A) and (B) if and only if the operators Pj for j = 1,...,N sa-

tisfy the conditions (A) and (B). And more, if ue C () and if there

exists a constant L > O such that, for every | < ijs N, 1 £ 7 <k and
k > 1, we have
k
S
B T S | B O R R L
1 k L) j=1 1]

then also we have :

oy vooqg ull , s ™ amn®
1 2

with L' = (max(L,1))™.
Then, for the following, we assume that all the operators Pj have the same
order m.

The point of the begining of the proof is a global a priori estimate

which is given in Aronszajn [ZJ, Smith [12] (cf. also Bolley-Camus [i])

Proposition I-1

Under the assumptions of the theorem 2, for every k > !, there exists a

constant L > O such that, for every u € Cm(ﬁ), we have

N
sc. {7 ]|p.ul] + |[ul] }
.=] ] Hk-m L2(

[ul |
1 () Q)

By localization, we are going to deduce two others a priori estimates. At

first

Proposition I-2

Under the assumptions of the theorem 2, for every x ¢ O, for every open

neighbourhoods W and W' of x in &, W' being relatively compact in W, there

_.29_
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exists a constant A > O such that, for every u‘E;Cw(W), we have :

[ Tul]
HY W)

N
< A, { X |[P.u|| + Ilull 1.
FETRRE AR 2w

Proof :

From the proposition I-1, then exists a constant C > O such that, for every

u < Cw(W), and 1 € k € m, we have :

Hull b

N
g C. { P.
ol L legull Zan

+
C) N Y ()

We are going to deduce the proposition I-2 of this estimate in proving by
induction on p, for 1 < p € m, that there exists a constant Cp > 0 and a
function ¢p e;c:(w) equal to 1 on W' such that, for every function u EZCM(W)
we have :

N
(» [l sc.{ 7§ |lp.ull + [ ]ul] +
Zl 37 126 L2 (W) ||¢pu,|

H(W") p j 1P (1)

For p = 1, we consider a function ¢O(E d:(W), equal to 1 on W' ; then, if

u EﬂCw(w), from the precedent estimate written with k = m, we have :

N
ull < |19 ull sc. U7 |e.pwl] .
H(W") W) j=1 h| 4)0“ | Lz(w) IWOUHLZ(W)

However, Pj(¢ou) = ¢0Pju - [Pj’¢o]¢lu where ¢] = C:(w), equal to 1 on the

support of ¢o and [Pj’Qé] means the commutator of Pj and Oo. Hence,

e, ol . <ct £ |lzall 5+ |6 )
J' Yo Lz(w) 1 ] Lz(w) ¢l lle—](w)

for 1 £ 3 ¢ N ; then we get (1).
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Suppose (p) is true and show (P+1) if P+l < m.

From the precedent estimate written with k = m-p, we get, for

every u g c (W) :

N
¢ ul] sc. { ) [Ip.dw|| _ + |9 _ul 1.
P W™ Py j=t 3 P g Py P |L2<W)

Writting P, (fbpu) = ‘prJ-u + [Pj,¢p] ¢p4-]u where ¢ﬁ+|,€ Co(W):’}equfal- to. l

on the support of ¢p. Hence,

25 O] € G el e 100l oy

for 1 £ j < N, from where we get (p+l).

In particular, the inequality (m) is exactly the inequality of

the proposition I-2.

In the second step, we establish an other a priori estimate loca-
lized for some paritular open sets W and W'. For that, we need some nota-
tions : let x be a point in I, o < p <R <R ;

W =2 NB(x;R,) W=0Q N B(x;R,)

W, = 2 NB(x;R-p) W o= Q N B(x;R-p).

Then, we have the following refined a priori estimate :

Proposition I-3 :

Under the aséumptions of the theorem 2, for every x € (] and 0 < R < R‘,
there exists a constant C > O such that, for every u ECm(W), for every

@« €N yith |a| < m, p and p' > O with p+p' < R and p $ 1, we have :

_31_
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N
U, e " (fpgell, o+ T elflRugy,
L7V, i=1 L™ (W ) | 8] sm-1 NS

Proof :

We consider a function Q'G'Co(gp,) such that 0 € ¥ < I, Y/= 1 on Wp+

ts

p

||Daf[[ - < Ca p"lOL| where Ca is a constant which depends on o and not
L (W

on x, p and p'.

We apply the proposition I-1 to the function vu for u éICm(W) :

N
%Gl ,  sa (3Nl ,  +llull,
12 ) i=1 L5 (W) L7 (W)

for |a| ¢ m.

Elsewhere, if we put :

we have :

But, there exists some constants C. N

5 8 > 0, independant in p, such that :
b L]

Ay A-B -[A-g]
Ha}jx(s)D 1"!|Lm(w y Ci,e P '
o]
Then,
N i,
Mcal] , can D lleull, e T TRl e
LW ) =13 1t ) |B]<]a] LW )
o P |A]sm
and, since p < 1, we have :
N
D%l cant 3 (gl , o+ Lo o IBlptayy
L°(W ) =13 Lt ) |s]<ad LW )
° |2 sm
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that gives the inequality of the proposition I-3.

We now do an induction on this inequality to obtain an estimate on one

derivative of u in terms of some powers of Pju :

Proposition I-4 :

Under the assumptions of theorem 2, for every x — {, O < R < R] there
exists a constant A > | such that, for every p with O < p < min(l,R),

every u ~ Cw(W), every o = N" with lul < km and k > |, we have

)]ulS o . |u|+l k (v-1)mS +
¢ | 1D u] | 9 T A A )b Y e, ...P. ul] [ ul ]
L (WI”!O) v=] 1<1.<N | o L™W) L7 (W)

Proof
The coefficients ajv of the operators Pj being in the class Gg(é), there

. n
exists a constant B > O such that, for every o = IN , we have

¥ ; ¢ [of+1 S
X ) !|D a'A’I - < B (al)
i=t A £ AW )
then
5 o lal+1, .5 ~las
_X X ||D ajA|| I < B () p .
j=1 [A] <m L (wp)
We put
Sk(u) sk(U;O) =
k
: -1
- ) pmhms e, «..p ull o+ ]l
v=1 lsijsN 1 v o LT(W) L (W)
I<jgv
then we have
N mS
Z o™ 5 (B0 € 5 (W)

_33_
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and Sk(“) £S,,,(w

We now prove the inequality of the proposition I-4 by induction on k. At

first, the inequality of the proposition I-2 gives :

|10%] | < A {Z |P.ul| + [lul] }
ey i 3 2w
for |aj
We can choose A > 1 and since p < |, we have the inequality of the
proposition I-4 for k = 1.

Let o « N" such that km < Ial ¢ (k+1)m and assume proved the inequality
of the proposition I-4 for every 8 = N" such that 8] < |a] -1. We put

a=a + a' with |ao( = m. We use the inequality of the proposition I-3

1
with (lal—l)p insteed of p', @ instead of o and D* u instead of u, that

gives :
N
o118 0% | ce U] 0 Wil
LMy p) 3=1 "] -1
+ O’G|S—m+|8|||DB+a'u|l ) ;.
18] < m-1 L0 a]-1)e)
But, we have :
i L
“.w) - P, (0% W) = ) @ p® Ya, 0",
J ] l)\l £my € ot Y JX
N | ' _ _ L Q
D™ e 11, el e oS ey TS
i=1 LW, )

kmp

and

'-y|s
o'y ((a -y>') o'y @'t s Ja]y 9]
( ) ” STTs ((Y )?;;;T———;T) g ( — ) s 1
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since [a'| = la|-m < kn.
Hence,
]
D% (P.u) - PJ.(DO"u)ll <
‘ W
SRR
: L _ - .
o gy Dt letyds e
1
[M<m y<a L5 -1y
then, for km < ]a| < (k+1)m, we have :
o118 0 2 <o 1pllsy ||D‘*'pju|, , R
F ol - LWy,
+ ‘ pluls—m-'-lsl llD())"’fl'ull ) +
IB “m L (VJ’[%+(1||‘))
e e DS et e
i liem v 2w
(m+]v])p

We now can apply the assumption of our ipduction tO estimate each term

of the member of the right side of this inequality;the first perpm o .

. mS |u'|+l
<P A K+ 1

I~

'+
S, (Pou) Al“ | 's  (w,
the second term i1s :

7 almei
IR {m

Sk+|(u) ’

and the third term is :

R i AL N1 A B
|A|sm'r%w

then, we have :

_35_
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S _ ) . o
plal | %l 2 $AIQ‘lﬂskﬂ(u){CA'““+c A"l ) Bl“ Y|+'A [a' Y|}.
- (wla|p) B|<m [A]sm y<a'
But, |
P e i
Hem yea |8]»0

We can choose A large enough, independent of o and p, in order to the term

between the brackets be <1, that achieves the proof of the proposition I-4.

Then, we can give the property about the powers "locally up to

the boundary"

Proposition I-5 :

Under the assumptions of theorem 2, if x €T, ue C (@) N B(x;Rz) and
such that, for every open neighbourhood U of x in © with U relatively compact
in@n B(x;Rz), there exists a constant L = LU > 0 such that, for every

1 < ij €N, 1<£j<kandk>1, we have :

’fPi .. .P.oull € Lk+l(km!)S

i A )

then u € Gs(ﬁ n B(x;Rz)).

Proof :

We fixe R" <R, and put U' = n3(X;R2)- We want to show that u EGS('[_I-')-
We choose R] and R such that R' < R < R1 < R2 and with the notations used

in the proposition I-4, we have :

k
llpil...Pikulle(w) $L H(km!)S

hence,

p(\)'—])ms N\) v+1]

S (W) ¢ 1 L (m S o+ L

N o~ e

\Y
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for every p such that O < p < Min(I,R).

R-R'

We choose p = T R-R' being small enough ; then we get :

((\)m)!)S p(\)_l)ms g (km)mS

for v ¢ k.

Therefore, there exists a constant Bl > 0 such that
t
\

; AVERERVIS | mS k+1

Sk(u) < N" L7 "(km) ~ + L & B

for k » 1.

And with the proposition I-4, there exists a Gonstant B, > 0 such that,

for a& WN" with la] < km and k > 1, we have :

Iofall , et S
L (wR—R')
In particular, if we apply this formula for lal =k, we get, for every
o e:m“ :
o la|+1 la|s
|1p ul]sz_') < B, o ,

that gives u E:Gs(ﬁs).

The theorem 2, for the assertion (ii)=>(i), is proved.

Remark I-1
—-— . o0 . - I3 .
In the case where @ 1saC compact manifold with boundary, the condition

(B) can be replaced, in the theorem 2, by the following condition :

(B'") for every x € 30, the polynomials Ps(X;E) for | ¢ j ¢ N have no

common non trivial complex zero with imaginary part orthogonal to 32 in x.

-37-
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Remark I-2 :

By the same method, the inequalities of coercivness given in Agmon [ﬂ
allow to give some similar results about powers in the classes Gs(ﬁ)

for boundary value problems associated to some systems (Pl""’PN H
Bl""’Bp) where the Pj are differential operators and Bj are differential
operators at the boundary ; the case where the system of Pj is reduced

to a single operator is the case which was studied by Lions-Magenes 9 and
the case where the system of Bj is empty is the case that we have studied

here.

i1 - Gg - REGULARITY.

It comes from the teorem 1 the following corollary about the

‘GS(Q)—regularity :

Corollary II-1 :

Under the assumptions of theorem 1, the two following propositions are
equivalent :
(i) uve€e GS(Q)

(ii) u e (Q) and Piu €Gg(R) for I < j < N.

and from the theorem 2, we get the following corollary about the Gs(ﬁ3—

regularity :

Corollary II-2 :

Under the assumptions of theorem 2, the two following propositions are
equivalent :
(i) ueG (D ;

(ii) u € €*(3) and Pju ecs(g) for 1 ¢ j ¢ N.
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Remark II-1 :
Using the results of regularity given by Smith [lf] (cf. also Bolley-
Camus [3]), we can replace u eC () By ueo@’(Q) in the corollary II-2.
In the same way, we can replace u€& Cw(Q) by u 6@'(Q)Nin the corollary
I-1, using for that, the ellipticity of the operator ‘Xl P? Pj in Q.
j= .
It is easy to see that the condition (A) for the corollary

IT-1 and the conditions (A) and (B) (or (3')2 for the corollary 11~-2 are

not necessary.

When the operators Pj = Pj (D) have constant coefficients, we

introduce the following condition:

(C) The set of the comp’ex common roots ¢ of the polynomails Pj(g), for
1 £ J ¢N, is finite.
Then, we have the following necessary and sufficient condition of GS(Q)-

regularity :

THEOREM [1-1 :

Let & be a bounded open set of‘ﬁﬂ with Lipschitgian boundary, and Pj be
some operators with constants coefficilents, 1 § j § N; the two following
propositions are equivalent :

(i) The space {ued'(9) ; Pju €GS(§), 1& 4 s N} Zs the space 63(5) H

(27) The operators Pj,, 15 J <N, salisfy the condition (C).

The proof made in the case of the space C (9) in Bolley—-Camus

[3'] can be applied for the space Gs(g—i). We recall it here.

Proof :

We assume that (i) 1is true. We introduce the space

_39_
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Y@Q) = {lued'©) ; Pju =0, 1¢]j¢N}

We denote by YO(Q) (resp. YI(Q)) the space Y(R) equipped with the LZ(Q)—
1 . . . .
norm (resp. H (2)-norm). The identity map from Y](Q) into YO(Q) being con-
tinuous and these spaces being Banach spaces, the two norms Lz(Q)-norm and
H](Q)4norm are equivalent on Y(Q). Then, there exists a constant C > 0O
such that, for every u € Y(Q), we have :
ol <clloll, .
1! (o) L@
The unit ball of YO(Q) is then compact and thereforeY(Q) is of finite

dimension.

“But, if ¢ & ¢" satisfies Pj(g) =0 for 1 £ 3 ¢ N, the function

i<x, &>

u(x) = e satisfies Pju =0 for 1 & j € N. Then, necessarily, the

set of complex common roots of the polynomials in finite.

een 1 v
We now assume that (ii) is true. Let & ,...,£ be the complex common

root$ - of the~p01ynomials Pj for 1 £ j < N. For each 1 £ j & n, we consider

the polynomial :

\Y

- 1
Qj(E) (Ej Ej)

i=1

where we have put & = (gl,...,gn).

Then, we have Qj(gi) =0 for 1 ¢ i ¢ y; that is, the polynomials
Qj’ I ¢ ] T vanish on the set of the complex common roots of the poly-
nomials Pj’ 1 ¢ j ¢ N. From the Nullstellensatz's theorem (cf. Van der
Warden [ij] for example), there exists an integer p > 1 such that the po-
lynomials 'Q? for 1<j<n belong to the ideal spanned by the polynomials

Py, 1<4<N ; that is, there exists some polynomials Aj such that
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N
0 . P .
Q;(8) = QZ] A, (&) Pp(®) , 1 sj<n

The polynomials Q? are polynomials of order vp of which the prin~
cipal part is equal to 5;0 : these principal parts have only O like complex
common root, that is, they satisfy the conditions (A) and (B). Hence, if
ugd () and satisfy Pju €GS(5) for 1 £ j § N, then que(}s(ﬁ) for
1 £ J §$n. And from Smith []2], Bolley—Camus [3], u €ZCm(§) and the corol-

lary I1-2 gives u € GS .

From the theorem II-1, in particular, we deduce the following

sufficient condition of GS(Q)-regularity :

Corollary II-3 :

Let Pj be some differential operators, | g j < N, with constant coefficients
and satisfying the condition (C) ; the two following propositions are equi-

valent :

(i) uEGg(®) ;

(ii) u € () and P.u €Gg(?) for 1 < j s W.

Remark II-2 :

It comes from the precedent theorems that, if the polynomials Pj = Pi(i),
I £ j s N, (with constant coefficients), have principal parts without
complex common root different from O, that is the condition (B), then,
they have only a finite number of complex common roots, that is satisfy

the condition (C) : it is a "classical" result in algeabraic geometry.

IIT - "REDUCED POWERS" AND GS-REGULARITY.

In [51, Damlakhi gives a refinement about the Nelson's theorem

(theorem 0') in the following sense

..4]_
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THEOREM [5) :

Let Pry... P be some real vectors fields, with analytie coefficients and
linearly independant in each point of an open set 9; the' two following

propositions are equivalent :

(Z) uealQ ;
(i1) we C (R) and, for every compact subset. K of Q, there exists a cons—

tant L = Ly > 0 such that, for every k > 1 and 1 $ % ¢ n, we have :

NES ull , <« ¥
12(x)

In a similar way and, according to the precedent chapters I and

11, we are going to put the two following conjectures ;

Conjecture 1 :

Under the assumption of theorem 1, the two following propositions are
equivalent :

(i) u EGS(S}) 3

(ii) u EZCW(Q) and, for every compact guybset K of 2, there exists a cons~-

tant L = LK > O such that, for every k > 1 and 1 € i € N, we have :

~

| [e¥ul | 2 ¢ L (Gem ) 1S,
L (K

Conjecture 2 :

Under the assumptions of theorem 2, the two following propositions are

equivalent :
(i) uve 6 @ ;
(ii) u €C7(Q) and there exists a constant L > 0 such that, for every

k>»1 and 1 ¢ 1 ¢ N, we have :

|17l 2 ¢ L () 05,
L™ (@
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Then, a positive answer is given in a particular case by
Damlakhi [5] who uses for that the notion of analytic wave front set of
an hyperfunction and the fundamental theorem of Sato, and also the idea
to add an other variable t (in R) and to consider the evolution operators

9 . .
Pj == 1 Pj » 1 £ 3 < N.

Also, the conjecture | is true in the case of operators Pj of
order 1, with complex and constant coefficients. The proof of this result

is based on the following proposition :

Proposition ITI-|

Let Pi = Pj(g) be some polynomials, j = 1,...,N, of order 1 with complex and
constant coefficients ; we assume that their principal parts have no real

common root different from O. Then, for every compact sets Kl and K2 of

2] [¢]

R, KI being included in the interior K2 of KZ’ there exists a constant

C > 0 such that, for every u¢g Cm(Kz) and a € N", we have

o]

N -
%], sclelt gy T8l le]
L&) =t fsl<lal 4o, (Jal-|8]-3)tita!

18]

o]

[elel=tel=igyy )
L (KZ)

This proposition is obtained in using, in particular, the special function

of truncation given in Hormander [7].

Another positive answer to the conjecture 2 has been given for s = 1,
Q= (]—],+][)n and for the canonical system of the first partial derivatives
by Damlakhi [5] who uses for that the spectral theory of the Legendre's

operator in n-variables.

_43_
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The conjecture 2 is also true "locally" in the half-space lRi_1 = {(x,t);t30}

for the case of a transversal operator P1 of order | with constant and

real coefficients and some tangential operators P2,...,P .with complex

N
and constant coefficients. The proof isbased on the following a priori

. . o .
estimate : there exists a constant C > O such that, for all u E:CO(R+),

u(x,t) = 0 for t » 1, k » 1 and aeﬂ\ln—], we have

k Ia|+k+] la]+k+l
NPT Cppelelseny
x| LZ(IRI:) ! L2 @®D)
N +k+1 L
+ 2 ’al }‘ / \||P|a|+k+l—2u” b
e - \ / ] 2, n
j=2 g=o0 ‘|a|+k+1 L™ (R,)

We prove such an inequality in using the inequalities given in Cartan [4]

and Hardy-Littlewood-Polya [6] .
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