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Piecewise monotonic transformations and exactness

Gerhard Keller

§0) Introduction and notati. .ns

The goal of the following pages is to describe the structure
of the tail-ficld of piecewisv monotonic transformations on
[p,1] (pw.m.t.) as they have Lwven considered before vy Lasota
: . . . a4 s . - . .
and Yorke [1], bowen [2], anc rowalexi [3-5], ana to derive from

this description sufricient conditions for exactness.

"In §1) we will zive some detinitions and state the results, in
§2) we will study some special yproperties of the invariant
measures of pw.m.t.'s, and in §{%) we will describe some basic
properties ol such transformations, that similarly can be found
in the papers or most of the auttors having uealt with them,

and give = construction of a set of points with a certain "good"
behaviour with regard to the singularities of the transformation.
Together with a rather special lemma of Lebesgue-density-
theorem-type,that is proved in §4), the results of ¢2) and (3)
will allow us in §%) to "expand" the hi,h density that a set of
the tail-field possesces in a small interval to bigger intervals
with a certain miniwal length., This leads us to the desired
result. y$6) finally contains some recsults (without'proof) for
piecewise expanding transtformations of higher dimensional spaces

that can be proved by applying the same basic lideas,



In the sequel, (|0,1] , 8,2") always denotes the unit-interval
equipped with Lebesgue-measure.

For a set M&JO,{], dia(bi):= sup{}x-y]ix,yem} , and for xE{b,1],
r>0, we will rdenote Dby br(x}:: [ye{o,1]i!x—yi<r} the open
unit-ball with radius r centered at «.

Let Int(4a) = A be the interior of a set AELQ,1}, and for r»>0
sr(x)s.A} .

T is the derivai.ve of a function 1 on {0,17.

lev Int_(A):= { xeA
r L

For . system M of sei.. UM := fxiAjhéuﬂ: th? .
ror n:{0,1}w~>ﬁi wWe sonobe by n(xt):. linm h{y) and Dby
yoX
hix ):= lim h(y) . y>X
y-rX
yeX



§1) Definitions and results

Definition:

T:[O,1}w~%b,1j i called a piecewise monotonic transformation
(pw.m.t.), if there exists a partition ?’:{P1,...,PN} of [b,ﬂ
into subintervals suci that for each Piéj’:
| |
i) T is C on Pi ,
ii) li&1'2°*>1 for a cgnstanucx .
iii) ifPi is Lipschitz-continuous,
iv) ( as a consequence ¢: :l) wnd iili):)
e i . N
i N ot .
e s= sugp s IT(x) | xc jInt(Pi)} < oo
A9 H o
4 result of Lasota and icrke |1 shows, that each pw.m.t.
- . 1. .
T on [0,1! has an iovari«.t measure /L:Irn with a density

function h that can be chosen to be of bounded variation.

-

Denoting by Ol (71):= €¢{1g§ T'k(TK(A))z A (ke]N)} the tail-

field of the transtormation 1, we can now state the main result:

Theorem:
Let T:[b,1]—~9ﬂu1] be a piecewise monotonic transformation and
fA=}T24 the above mentioned Y-invariant measure., Then
1) h can be chosen to be lower semi-continuous and can be
bounded below on its support by a positive constant,

2) OleT) is generated M-mod O by a finite number of atoms,
each of which is M=-mod O a finite union of open intervals.

%) The number of atoms of Cl,(v) is = (“-1)'min{io;2df’rxi1} ’

where N is the number of elements of the partition .



Corollary 1:

There is a power 1P of T such that T¥(4)=A u-mod O for each

Ae O (1) and T%A is exact for each atom A of ({(T).
Some immediate consequences of ihe theorewm have been proved by
Kowalski before: Theorem % of [57 gives an analogous description

of the ergodic atoms of 1.

With some additional considerations we can derive the following

corollary:

Corollary 2:

a) for N oda (i.e. Nz3) ah&ei‘*hgi , 1 is exact, while for
~_ N+1 . 4 ) o , L4
K= =%- 1 need not even be ergodic (example 1).

2
b) For K even we have:
ci>%-:$ ¢ ergodic, while for«m::% T need not be ergodic (ex.2).
\A>Y¥(§:—1)-x§'r exact, while for U(=YN(§+-1) T need not
2N2 A
be exact (example 3).
¢) For N=2, pe¢IN, and a.»E/Eﬁ, (lo(t) hus at most p-1 atoms,

while fora:;P-‘/E1 Olw (1) muy have p atoms.(example 4).

(For N=2 and p=2 cf. Lowen 2 .)

-

The counterexamples mentioned in this corollary are given now:



kxample 1: | /
N odd, N:3, a:ﬂg——- l /
A __J___. v ‘ !
S ‘ / ;
o - :
A(Ry) = 3¢ for |
N .

The Lebesgue-measure

is the invariant

measure.,
i .
¥4 N V-J
Py
Example 2:

For N even, N24, and dﬁ=g , the same construction can serve as
a counterexample fur ergodicity by introducing an arbitrary

additional (unnecessary!) singularity (e.g. at %).



o
Example 3: N.even, N-4, o = \lg(g—+1) , put n::%.

N IO .
a n+1 n+ (i=0,...,n)
i=
L1 - (“"l) i'l‘ &Iﬁ_ (l=n+1,.oo’N.)
2(x) 5'1 -(ixx-a.) (aiS X <ai+1 and 1<n)
x) = o .
54713 -Ci(x-d ) (ais x<a; 4 and ix n+1

. . . A . .
The invariant measure AM=h-2"1s given by

;! 4nxl (x - )
nix) = N+1 A+n
“fﬁ- w LS
. N+1 (- u‘ﬂ-n)

(Picture for N=6)
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Example 4a: N=2, p=2, og:fé‘ .

2 -2 2- 0< <1-*‘1—')
T(x):{ b +Fx ( x 7z

1—‘(?«(x—1+:r;ﬁ') (1 -v;:sxu)

The invariant measure is #=h-24with

| 2*(2:1—1—5;)‘ (0ex=:2-72")
h(x) = ;
KZQ{]—Z—?ET) (2-72¢<x¢1)

s ¢ r— v e~ ma—— o




Example 4b: N=2, P>2,CX=21/P

(x) (21/p 1+ x 21/P) mod 1 (0 sx< } p)
T = /
* (21/p~x) mod 1 ( } £x K1)

Although this is not really an example for N=2,

we can consider 1t as N=2 by identifying the unit-
interval with the unit-circle, since

1) =2"P_120(1) ana  2(0)=2"P =1(1) .
The invariant measure punh-i'is given by

1

" 2P G-17p, T 24D/ Aaxgt/P -1
p e

h{x)

(The picture is for p=5)



§2) On the density function

From now on let T be a piecewise monotonic transformation. As
already mentioned, Lasota and Yorke proved in [1] the existence
of a Y-invariant measurefizlrz4ior which the density function
h can be chosen to be of bounded variation. That means that
n(x") aad h(x~) exist for each xe[u,1] and h(x") =h(x") = h(x)
Tor all but al most couuntably many xeﬁ),ﬂ . Therefore, by
changing the vaiue of b at the at most countably many discon-
tinuities, we Loy assume that

i) h is lower semi-continuous with h(x)::min{n(x+) ,h(x_)}

for all xg¢0,1j, aind

ii) h is bounded, i.e. b <oa.
(In fact, these two prownerties of h are the only ones we will

refer to later on.)

Kemark: udecause ot the T-invariarce of Moy We hiéve for each
AclE: m(ay « /u(‘l'—1(".1‘(i&}‘)) «/u('.s.‘(A)).

Let us denote vy 0::ao<£xl<.... <aN==1 the points generating

the partition P , and wittout loss of cunerality we will assume

that Int(ki)::(ai_1,ai) (i=1,.4.,N),

Put X:= supplh):= {X¢{O,T}%h\x)> O} .

Lemma 1: i) I(X\{ao,...,awf) c X

i1) AL i\ fag, e eena ) ) =0
Proof: Let x"A\iaO,...,a“} and w.l.0.g. x € Int(P;). Then there
exists an ¢ >0 such that S,(x) €k, and h(y)>5-h(x)>0 for
all ye 5.(x), siuce h is lower semi-continuous. W.l.o.g. we can

assume that h(Tx):]a«Tx)+).Then for &, 0<b< ¢, either



T([x,x+§)) or T((x=8,x]) is of the kind [Tx,Tx+§), and we will
call that one Tvé. W.l.0.g. again, let us assume that Vézz[x,x+5).
Then a) Txe IVy, dia(lVg)— 0 (6—0) and

B) § B aY = w(ev )z M) = § hodnt  En(x) - A(Vy)
A PRt v, 2

14

‘1-1-AZTV5) ,

2 %'h(x)‘ U
and since TV6==[TX,TX+S) and h(Tx)=h({(Tx)"), we can
conclude that h(ix)>0, i.e. Tx€ X. proving 1).

From i) it follows that
ML) = m(XNfa ,eea,a 1) < WWT(X\{aO,...,aNf» < pm(K)

which prove. ii), siice & is the support of um.

Lemma 2: X =supp(h) i% « finite union of upen intervals,

(vee Kowaloki 4 )
Proof: X is owen since h is lower semi-coutinuous. Therefore X
is an at most countable aisjoint union of open intervals:

X=2 "I ., We must show that ) is finite.
Ied

Let U Ic J ;Inéao,...,aﬂy%ﬁ}. jo is finite and
A \\{a yeooyay j is a rinite union of open intervals:

el
STTI1 0, 9, finite. With Ji=(INIL) 0 Y,
e 1 o) 1
TeJ,
T is continuously differentiable on each Ieﬁ , and TI again is

i

U ]o \L o"“’aNj

an open interval with \(TI) o-A(I) , & >1, for each I€79 .

Y Tor 1 }, the open interval TI is

b'il’lce I < X\(ao 900 "‘LN

contained in X (see lemma 1), such that there is an ['e¢ ) with

PIELt,
AN I 1 .
Now let c:= min (A(1)|Iey) >0 ana 3= {1¢T| AT)>c) . then
i) j1 < C“,U , ii) 30 is finite, and

111) MUY e Uy,  since IeJ =3 A(FI)ya-c>c == rleUj,.



Assume now that jc#j. Choose I € 5\'30 in such a way that A(T)
is maximal in fJ\jc. since TeJ, A(TI)s o-A"(1) > A(I), and

therefore the interval ['¢7J] containing 1T is not an element of

~~

U‘\UC.
= 1re (J,u7 ) n .

o T eIve Uy o Udge Uy iagse-raytu Ul

“UJ, U la ,...,aNE since J, € 7,
> (U ~uT) =0
> fL(I u{JJC) g /1(1(iﬁxL)]c))€ /4VEE«JLJUC)
:j,u(U'jC)

= fk(f)::O since 1 e ﬁ*.JC such tnat I niJiL:= ﬁ
> X(I)=0 since 1 ¢ supp(h),

—~

which is a contradiction to I being an open interval.

S ~

So we have J_ =1, and since 7, iu rinite, J is finite

and so is 3

>C.

Lemma %: ‘1here is a constua: . C>0 such that IHX

(This proves prt 1 of the theorem.)

Proof: Let X=77 I e a finite disjoint union of open
I

o o e — E oo + -
intervals, X:= X\ia yeees@yt, and X=> J be a finite union

N Jeg

of open intervals, too.

T is continuously difierentiable on each Jej} , and, by the same
arguments as in the preceding proof, for each Je} there exists
an Ied with Td ¢1.

Letting (c,d) be any interval in J or } we will associate

to its endpoints two classes of "standard intervals" (c.o.5.i.)
ec:=5<c,c+ﬁ)% {j>0} and ‘€d::{(d—£,d)f £> U} and call ¢ and
d the "endpoints" of f% and €d respectively.



Between these classes we establish a relation "vr—'":
Let ¥,¢' be classes of standard intervals.
Cr~>¢' iff wue ' for each suiriciently small Ueé€.
This relation has the following properties:
1) If 8‘ 18 a4 ¢.0.8.1. wssociated to an endpoint of an interval
Ie¢3J, then there is at least one c.o.s.i. ¥ such that Ers¢.
proof: let [eJ be arbitrary and ¢ ' be a c.o.s.i. associated
to an enapoint of 1. kor each Jej either TJ&¢1I or TJ(\I::%.
since A (I~ 1Y) g;XKX‘\Ti):=O (see lemma 1), there must be

a Je} with TJey', and the assertion follows immediately.

2) If 1€, ¢' an enapoint of I, lim h(x) = 0, ¥ the c.o.s.i.
X-»c!
XE ]
associated to ¢', Vrow ', wund c¢ the endpoint of ¥,

then lim h(x) = U Jsor each Uey.

X-C
xe U

The proof works with the same arguments used in the proof

of lemma 1.

3) In the situation ol 2, the lower semicontinuity of h implies
that h(c) =0, i.e. c¢ X, and this in turn implies that c is
an endpoint of an interval I€7} ., Denoting by |
Kozz {Jg {gc.o,s.i. associated to an endpoint ¢ of an Ie€7)

with lim h{x) = 0}
X G

X1 I}
we can conclude that:

Ry . ; AT
4) CeK , Uronyg' =y Yok
Now let us assume that R, ¥ 2.

Combining 1) and 4) we see that for each \€¥;KO there is at

least one ¥ ¢ Ky witn e AN
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On the other hand it is trivial that for each €<£Ko there can
be at most one ‘{_"eK.O with ¢+~»¢’, such that, since K, is

finite, "v+u" is a bijective relation on KO.

Let € be any element of K . Then there are ¥ ,..., ¢ € K,
uniguely determined, such that € = I A 2 1o TRl e .
Choosing Uce¢ %f:‘Qn small enouglh we can achieve that T-iU is an
open interval with =1y €¢, _; and 7y ex  (i=0,...,n).

In particular we have 177U« ¢_= ¢ with A(270) ¢ 7R AN,

such that, by induction, we get a sequence of intervails

(7Pu), o in ¥ with A(2TFPU) « o« EPUS(U)  yielding the
following chain of inequalities:

MUY = A (2TER )l A TER ) < nlw TR S (U) (ke D)
== m(U) =0 D A{U)=0 since U<X,

contradicting the fact that Ue ¢ is an open interval.

Thererore the assumption Ko=t¢ must be false, and we can

conclude that 1im h(x) » O for each of the finitely many end-
el

points of intervals I¢7) . Because of this and since h is lower

semi-continuous, a compactness-argument shows that there is a

C>0 with hlxb C.



§3) On partitions generated by T and P

Remember that P ={P ,...,PN} is the partition of [0,1] into

1
intervals of smoothness of T. By'_?"n we will denote the partition
: - n-1 ‘
of lO,1J into intervals on wnich % is C1, i.e. 3212 \\//T kj)
k=0
for nzt1. klements of ;31 can be writien as
. . . =1 m={(n=-1 . .
An(J,l,-oo’Jn):-—— Pj1f\ i Pazf\ .....nl ( >Pjn y Jyel‘],oco,,“}o
(Remark: We will use the symbol zxn(31,...,jn) to denote the
above intersection even if it is void.)
o . ‘ A D T (AT
Detine AO.:[OJ} and yo;z{[o,ﬂjz ?Aoit .
Sometimes, we will write elements of @’ﬂ simply as A, but only
if this does not cause any confusion.

Since for each n<511\40: _JA = 1_,ij7*n=[0,1], the symbol Anfx_f can be
Le

defined for each xe[o,ﬂ nto denote that A e:Pn for which xed.

Lemma 4:
1) For m,n:o0, xa[0,1] holds:
A m+n
2) For Oslsn and %[0 1}i° Tl(ﬂ x]) ¢ A [Tlx1
T ’ LY = n s “n-1 <

To A ol am=T o oam
xi= A [xin® ZBHLL X |

n

3) Let Meju,1), beP,, and X,yc A LT M.

-1

! -Nn

Then |x-y|< x = Myle o Thdia(M) .
4) There is a constart $>0 such that for all A,Be @ and
all 4¢P with %'(ZnB)>0:
AAnA) g 2 D0s)
NarB) T X'(AaB)
5) If reX and A={u,1] is a closed set with A<TP,

then T—1(A){1P is closed,

Proof: 1), 2), and %) are immediate.
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4) is established by a straightforward computation using the
exponential expansion of ™ on sets A ean and the Lipschitz-
continuity of the restrictions Tuﬁf (Compare the proof of
lemma 3/ii) in Bowen [2].)

To show 5) ubservé that P and 1P are intervals and that TLP is
a homeomorphism between them. As a closed subset of [0,1], A
is compact. Therefore (TLP)-1(A) also is compact, but

UHP)‘1(A)= T—1(A)r\P , such that this set is closed in [0,1].

Later on it will be essential to find, given a fixed k,e¢NN, as
many points xe[o,1] as possible satisfying for arbitrary k:k,
not only the inclusion TK”K"( Ak[x]) < Akolfl‘k-k°x] (see lemma 4/2)
but also the inversion,

the following construction will provide us with such points x:

1

Construction: Let M¢® and k,éN be so that T “°Mna is

closed (it may be empty!) for each A€Iﬁ(-
0

Then we define sets Mko’Mko+1 sy eessee inductively

by
. -k,
i) M, =T M and
1) My qi= TNy 0 I(a™hdia(m)) (k) ,
where I(r):= C(\\J(TP\Intr(TP)) (r>0) .
Ped ;

Remark: In the inductive step of this construction we first cut

off from M, those points being too close to the endpoints of

1
any TP they are contained in, and then take the preimage under T.
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Lemma $: For the sets obtained in the above construction the
following is true:
k(

1) Tl-k(Ml)Slﬂ € PTH(M) for 12kz2k,

k

2) Let 13k, and xeM iihen for each As;T—k°(M) holds

1.
1Ko (A [x]) p=(1=ko) 4y = Ay [t *ex] na
L’]
3) There is a constant H>0Q0 for which
p(hy) > p(i) - Hedia(M) o Ko (1 k,) .

4) lllD{th—l(M) is closed for 12k, and xel.

Kemark: Assertion %) gives a hint, why things change in
dimensions > 1: In higher dimensions, Lebesgue-measure and
diameter of an interval are not so closely related as in the

one-dimensional case,

Proof of the lemma:
1) is obvious.
2) is proved by induction ou 1:

i=kg: is trivial

1=141: oMK (4 [x]n 2T (IR ()

= ol ke (Al e A1) T (1K) (4
(see lemma 4/1)

ke (244 [x] o Agfrd] o 717K (4))
() s TR0 A fra o o= (1Re) (4))
ZSk['}rlﬂ--k

o

= 1

i

TX(;T(M1+1)€£M1 .

Vx}nA by inductive hypothesis, since

To show the revers inclusion of (%) let ze[yﬂTx)nT'(l_hQ(A).

1

From lemma 4/3% it follows that |z -1Tx| ¢ & ~-dia(M) ,

since TxeﬁMlﬁiT‘l(m) and zeiT"(l-kJ(PU by assumption,



3)

4)

- 17 -

and we obtain: z € S _ (Tx) .
oL gia(M) )
Additionally we have:
> X ¢ Ml+1
= Ix e I( o "1 dia(M))
= PeP: Tx TEF~ int TP
v ¢ w1 aiai) T
=3 Tx € Int T ALx since A,lxje’
o&"l-dia(M)( 1D ! ’

and we can conclude that zefPLLJxL thus obtaining

immediately the desired reversion of ().

For 1>k, we have

1

MMy q) = MMy (™™ dia(M))

(TP))

\"%

/A(Ml) - /A(%Zé(TP\IH?i_l.dia(M)

ply) = u-2~mmw-afl-dia(M) ’

\V3

and by induction:

1-1 ;
P> ) - 2l dia(u) 3 o7
Q i:'o

k,

> p(M) = H-dia(M)- o~ since M, = p~Ky(y),
(o]

where H = N-2-|lnf 57

is proved again by induction on 1:
1=k, : is valid by assumption.

is TxeMl and

-(1+1)(M)

1=1+1: ltor xe&Ml+1

JARPI BV
= Aylx) a7 fax) a 1THOD)
where lﬁlﬁTxlfﬁ T_l(M) is closed by inductive hypothesis,
Because of lemma 4/5) it suffices to show that
ajfrx) o =l (M) ¢ 1( O [x]). But this follows directly from
the following two facts: ‘
a) dia(fx] n 27Hm) < o 7h dta(n) (lemma 4/3)

b) xe¢ M =P Px € In (T(A1[x])) , what already

t
1+1 a~L-dia(M)
has been proved under 2). End of proof of lemma 5.
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Denoting by O(1P):= \_J J(TP) the finite set of endjoints of
PeP

k-1
the intervals TP (PeP ), 2, := Lig Tk(a(TP» is a finite set

Ko k=0

for all k,eIN,
Since X =supp(h) is a finite union of open intervals, X\\Zk
o

also can be written as a finite disjoint union of open intervals:

X\\Zkoz };{ R; , R; open intervals,

Lemma 6:

Let M SRy, ie{1,...,r], be a compact interval , and O<1l¢k,.
Then for each A€P, with Ant H(M) +g, AnTH(M) is a
compact interval and Tl(ZBer—l(M) r\T_l(A))zlﬂnA for
each ASBL1].

Proof by induction on 1:

1=0; is trivial since A€ Po:-‘—‘)A -_-[0,1]

1=1+1: (l<kg~1)

An ’1‘_(1+1)(I‘~‘1) #55. There are P €3 and
A ==> A7) £ 6.

=—==>(by inductive hypothesis): [Qr\T—l(M) is a compact

Assume that A€ Pl+1 ,

A'€P) with A=Fn g

interval with Tl(AC,\T_l(M))= M. lioreover we have

N, _— . . ‘
1) JAYOR\ (M) ~n J(1E) = ¢, since M r\Zko= ¢.
2) TP n A A2 H0) 56, since AT (Ap 2TIM) = Aty 4 g,
From 1) and 2) follows: A'n T 1(M) cTP .
Since TLP is a homeomorphism between » and TP,
zxer—(l+1)(H)::T“?_1(A'n T—l(M)) is a compact interval and
oA A om0y < vlarn T ) = b
For AS[O,1§ we finally have:

Tl+1(AﬂT—(l+1)M r)T—(1+1)A) - Tl+1(A A T—(1+1)M) AA=HMnAA .
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§4) Something similar to a Lebesgue-density theorem

As indicated in the introduction, the main idea to prove
exactness~properties is the following:

Imagine that for a measurable set A, a small interval Uétkéfz)
and a small &> 0 holds: (%) 7\A(U NA) < é»?(‘(U) .

Then A(T™0 \T"4) < § 8% (t7U), where T7U is an interval much
bigger than U. For sets A of the tail-field of 1, such a property
will be enough to prove that /A(A) is "sufficiently" large.

What we have to show is that situations as described by (%)

really occur., This is done in the following lemma:

Lemma 7:
Let JeIN be an infinite index set, Up,4;€® with & ¢ & (1¢J),
and d>0 a constant, such that for all 1€J and erl_ the
following holds:
i) Al[x]nql is closed,
11) A(Adn Q) 2 d-5 (4 5.
Let @":= () \JQ .

k€ed 1=k
led

Then for each A€® with :f(QﬂwA)>-O and ¢ >0 there is an
x e W*nA  such that
erl and

View, Jies,1-1: , ” ) ~

| A (AxIn Gy a [8) - (D nG)
Proof: Let us assume that the statement of the lemma is false.
Then there is an A€@® with A (Q*nA)>0 and an ¢ >0 such that
Vxe Q*nA:-]]DeIN V1eJ,1alo:

A oo N . 4 S T
XGQI@ Z(Alzx_'n‘«il-"» LA)>5’7\(A1£X}(‘Q1) .
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By v we denote

Vi= le {ACTil AnQnA % 95', AﬁQl# ¢, /{'(A“aln CA)\)E'X(A“&:L)}
€

and by Pe:=1%) 7P

n
n=0

Assertion 1:

If 02[0,1] is open and V= {A\ 63?,0’ AN 0}, then there is an at
most countable set fEVn.VG of pairwise disjoint sets for which

GnAnG ¢ Ung R

Proof: Since va Vg © %, is partially ordered by inclusion, it
makes sense to define f::{.ACVnV(ng maximal in vnvg}, aud the
following are valid:

1) fgvnvest'?’

Yooy

consequently f is at most countable.
2) A1,A2€f, Aqynby*0 == [fycl, or A2£A1 (a property or ..
e L-’},1=L\2 since 61,62 35
S50 the elements of f are pairwise disjoint,
) U = U(v}‘ve):
Uf ¢ U(vr‘.ve) is trivial,
Un the contrary let A EVavVg. Since A sg‘ for at most riniteily

¥ e . . J .
many A€ P,, there exists a maximal A € vav, with Ac .,

v
such that A ¢ A c Uf. That means U(vnve,) < UJf.

4) From 3) it follows that Uf = U(vnvﬁ) €O by definition of v,.

5) Let x € (*rnAn¢. Then
a) E{]oel‘w VleJ,lz]D: XeQ; = ;(‘(Al[x]n 61” EA) > £- 7;'([31{}(] r--"\;fl')
( by assumption)
b) VleN: xei*nanliix]
c) View reg,r>1: xe Qe since x¢oF
d) xe0, O open ==> Jl, €N Yi=21,: Al[x"j

{1

v

That is why there is a k?«]b,l1 with ked and

-
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a') A(A LG nla) > e XA KaT))

b') Wahan lx] + g

c') erk , i.e. Ak[x]an#;‘

a') A lx]eo,

such that AK[X]EVnV@,
X € Ak[x] c U(ane)= Uf~.

Since x€ Q*nAn® has been arbitrarily chosen, the proof

, what in turn implies that

of assertion 1 is complete.

Now let #¥:= }Eé {Analll}. EVnPl} .

By assumption, all A\e{; are closed, since QAevam ?l — Aan# ;6

Assertion 2:

For each &§>0 there is an at most countable set £¢V of pairwise
disjoint sets with the following properties:

1) A(QWA\UB) =0,  ii) A(UB) ¢ (1+8) A(¢*na) .
Proof: We will comnstruct the family & inductively:
By regularity of )4 we can find an open set 02 Q*AA in such a
way that 2A(0) ¢ (1+§) AA(Q*nA) .
n=0: Let g := ¢

nedn+l: We will assume that éngw'} has been constructed with
the following properties:

1) éh is a finite (or void) collection of pairwise disjoint sets.
2) VB, <o

3) \)én is closed.

4) 0 < A(Q*AINUB) ¢ (1= DT A(Wha)

(These 4 conditions are trivially satisfied by go.)

In case A‘((Q"nA)\Uén) =( the construction can be finished

here by setting g:= §n .
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Otherwise we choose an open set Uc® with Q*aA¢U and
AUNQ ' A)) € %- A A)NUE) .
Then for O 4 := UNUE~ the following holds:
i) 6,,4 is open, O  ,<€0
i1) (QnA)\NUE, < 0,
i11) A0, N~ NUE ) ¢ 5 - X(QTnA) \VE,)

Let v0h+1:={}>6$§ I A C'Oh+1} . By ussertion 1, there is an

at most countable collection f 1..v.«v0 +1 of pairwise
- . x .
disjoint sets, for which G nd n& 4 ¢ Ufn+1ggﬁh+1 .

Putting f {A"Qll Def 4 n ?l} , we have

+1 1EJ n+

a) £ ¢V consists of at most countably many pairwise disjoint,

n+l <
closed sets,

b) Ufn+1 c Ur

n+1“ n+1

=2 A(AaG)) = a E ,&,‘_,: AA)

n+1)
anQpefy g s

by assumption ii) of the lemma, since
Aet Vv /=) An nQy * é .

YR

2( Ufn+1) d- 7\(Q "Aﬁ n+1)
d- A(Q* A n (INUE)))
d- A (A A)\Uén) since §"nA ¢U,

n+1 €

i

]

(%)
and we get the following estimation:

XQ*A)NUB ONVE )

]

< 2(0’+{\ljfn+1) by ii) above

= Lf(®n+1) - :A(L)fh+1) by b) above

= A0, N(Q*nB)NUE ) + AU, 50 (QnA)NUE,) = A(UE )
< (%4—1-d)'XY(Qﬂ1A)\JJén) by (%) and iii) above

= (1= §) A (W A)NUE,)
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~ A .
Therefore, there exists a finite subset hn+1 9fn+1 with

a') Bn+1 €V consists of finitely many pairwise disjoint, closed

sets,
b') Uh <6, ,=UNUE co ,
') AWENUEINUR, 1) ¢ (1-9) A(Qna)NUE,) ,

d') as a finite union of closed sets, Uhn+1 itself is closed.

A
& uh

n+ti= 8y Uy 4 . Then

Put g
11) gn+1s‘9 is a finite collection of pairwise disjoint sets.
2') Ug
3') U,
4') X(Q'na)\NUB

n+1
is closed,

A ((Pn ANUB NUR o)
(1-9) A(Pa\NUEy)
(1= X (@)

n+1) =

/N

I

5') tjé;.5\1é£+1

Putting g.- \_/ g we get:
ne N

1") 8 ¢V is an at most countable collection of pairwise
disjoint sets.

2n) UBeco implying that X(UB) ¢ X(0) ¢ (148)- 7(G"nA)

4m) X(Q*A)NUB) = Lim X(Q*A)\UZ,) ¢ lim (1-9"

n-se n->0

thus accomplishing the proof of assertion 2.

Now, the assumption that the statement of the lemma is false
can easily be led to a contradiction:
Applying assertion 2 with §= % guarantees the existence of

a set @s;? with the properties listed there, and we can conclude:



- 24 -

\'g

(1+£)- A(Q"a) 3 A(UB) = A(UE nh) + A(UEn (M)

X(Q¥nA) + 2 2(anlyn )
nQ1€€'

(@A) + 2 £ (pnly)
AeQ B

since An&,l €8 -=> NeV ,
AQ* A A) + €-X(UB)» X(Q%A) + €-X(Q*%A)
= (1+€) A(Q%4) ,

N4

\'2

i

contradicting £>0 and AA(Q*nA) >0, and the proof of the

lemma is complete.
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§5) The tail-field of a piecewise monotonic transformation

Remember that O(f1) ={A c‘(Bl'l‘_k(Tk(A)) = A (ke]N)} is the
tail-field of T and the notation introduced at the end of §3:

k -1 T
4y = K://Tk(a(T?» , X~z =\_J R, , R, open intervals.
ko k___o k i"—‘1 1 1

(=4

Lemma 8:

k,€IN can be chosen in such a way that for each component Ri
of X\Zko as above and each A€0l,(T) the following holds:
For each ¢> 0 and each infinite index set J&€IN there is an

infinite subset J(£)<¢J such that for each je€J(&)

, . . _
A'(R;n 79a) ¢ € A(K,) or %A(RinTJCA) < € A(Ry) .

Proof: Choosing k,¢e N so big that H-u7k°

£ %-C (where C and H

are the constants from lemmas %) and 5) respectively,) and a
compact, nonvoid interval MQ}%_ with X%Ri\M) £ %- {kRi) ,

lemma 6) tells us that T—k%ﬂ satisfies the assumptions of the
construction in §3, which gives us sets Mko’Mkd+1’mkd+2"""

with the properties listed in lemma 5).

Without loss of generality we will assume that Js{ka,k;F1Jg+2,...5.

In order to apply lemma /) to this situation for the case Ql==IV1l

Iy (leJ) we first must check that the conditions

and Q1=T
of lemma 7) are satisfied:

1

a) M, € TT"M by lemma 5/1).

b) l3lfx]nff—lM is closed for each xeM; (leJ) by lemma 5/4).

) .o -3
¢) Let 1leJ, xery. If ,A(A]Jxﬁ >0, we have

AALdn 1) 1 XA xa 1)
AL D 7 s ATa X))

by lemma 4/4)
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» 1. ca | [rt e aFon)) by lemma 5/2)
o
= %--;(M) by lemma 6), since
r¥ Koy epl™®oy ¢ g sT7MoM  such that
pl=k, -k,
A et ex]anon s 4
>0 since I is a nonempty interval.
Pherefore we can take for the constant 4 in lemma 7): ==%-XKM).

d) By 3) of lemma 5) we have for each 1€J:
k

M) 2 (M) = Hedia(M) o0
> C-A'(M) - H XA(M)-d_k" since McX and hIX C,
> %-:f(M) by choice of k,,

For M := /(Y \_J K, , consequently (M*) > g-7((M) >0 .
ked 1k A

So, for AC(H,KT) two cases, not mutually excluding, can arise:

£
Case 1: 7(UAI\A):>O Case II: 7C(MﬂwﬁA) >0

Both are treated in the same way, so, without loss of
generality we will have a closer look at case I:
Lemma 7) tells us that for each ¢ >0 there is an xed*nA such
that V1en {1ed,151 :
(xaM and
(%) VoA ! ; -1 £ A - -1
LA (A [x] e 2TTMA [A) ¢ S5 A(A[X]a D)
Since for each led
X (M Tt [a)
| A (M)

A . -
A (e (p [1EEed e Ko p7Re (0l [a))
I < — by lemma 6)

(N8 1Ko x] 27 )
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p (_L‘l(A [X] nT F; n (lu))
L T A v by lemma 5/2)

At a lm D)

5. MAbd T e 1) Uy lewna 4/4)

7\( L/,\]_LXJ nT 11’1)

it follows from (§) that for cach 1,6l there is an leo, 121

4 -l, , i R R
such that A(MnTTA) ¢ 5 A(M) .

since MeR; with (i ) € % A(H ), the proof of the

lemma is complete,

now we can tur:n to the

proof of the theoreu:

Applying lemwa 8) inuactively to all k; we :an obtain:
Let A€0U,(7). “hen
VeE>OYJelN,idi=o |4« 1(e)ed Y i=1,...,r:
(%) {eithur fciuji.wlA) < XlRi)
. e ;.‘l“", P LA
or /\(Rin {5 tA) - ,\_U.(i)

- : ‘e N - y . ~ SIS 4 “] P . g
Since hiax for all Ri and C ,\\L)_‘/A ) ¢ HhH“, B) for all
measurable B<X, we is0 have:

(% %) (%) is valid for p instead of ',

but rfor /L(A):>O and éa/»(A) it is impossible, secause of the
P—invariance of Mo that for all Ri’ i=1,.e.,r, holds
1 4
.m X 'S
f“(Ri nl7h) ¢ ;;..tU(l) .
JPhnerefore, tor each ¢ >0 there is at leust oue Ri with

fﬁ(ﬁiflwl(g)EA) < - f(ni) R cuenh thas



w2 s (1) ARy
and since /A(Tlﬂ): /A(A) (lel, Ae0l(T)), we have for
each Ae¢ O, 1) with /A(A)> O:
/A(A) > min {jf(Ri) 'ir1,...,rj >0 .

S50 0Ol,(T) is generated /4—mod U by a finite number of atoms.

Let & €Ul 4v) be sucn an atom.
Then TlAawﬂaﬂT) are atoms too (lelV), and consecuently tne:e
exists a p=p(A)¢r I with Pa=2a J=wod 0.
Applying (##) with the sjpccial index set J:= pIN shows
immediately that i'ur each R (i=1,...,1)

either N(Ri” A)=0 or /;(Rf\A)::J,
thus proving that 4 Is f&—mod O a firnite union o1 open intervals

(part 2 of the theorem).

venote by Li the biggest open interval contained /A*MOd U 1ir
i (i=0y4¢00,p(A)=1) and by n. the number of singulariti-:g
from {a1,...,a { contuined in Li. For each i=C,...,p=1,

N—1: v
'
. -2 (L, 1,
n, must satisry o ’S%@l-s Ay q)
i+

since n, singularities divide Ll into ni+1 open subintervrals

A
, . A(L; N X
at leasl one ol which hus length }Wﬁgiﬁl-,sucn thiat the image
i i
under 1 of such an interval is an interval with length > ¢ - A
. . i+1 \ 4
contained in ¥ A ;t-mod O.
1
From the relationuo
.-."' T s
A (Li)

(§) ¢y a < (n+1), ¢ - My =0 pe)
-1
with i ! ey = 1 (cince L =L ), we can independently
i=0 ° p -0

deduce two estimates for p:
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‘ p-1 p-1 p-1
1) a? < (ni+1) == prlog,™t ¢ > logz(ni+1)5‘ > __n;
i= i=0 i=0
1 po]
——_ P é F— e _;__ I
logo iop 1
p-1 -1 p-1 p-1
2) p+ 2_mn; =3 (ni+ 1) & 2 ¢; > prt, since [T e, =1
i=0 1= i=0 1=0
-1
1 L
T O N
SRR R =

Loth estimates wre valid for each cycle A,TA,.....,TP(A)-1A

of atoms of CXW(T). Thus, since there are only N-1 singularities

of Ty we have

Py ¢ N=1. o N -1
<':1.“c0111.sa(01‘,c,(l))§ 10;;;2u( and !atomu(OIm(T)) < =T ¢

This is statement3dot the theorem,
Coroliary 1) irolloweg immediately from 2) of the treo.’em,

For the proof of corollary 2) we need another estimace thet cun
be obtained in an analogous way as the one above, on.y much
simpler (see Kowalski [3]):

-

Let b@::nnjx{neﬂﬁgrlaa} . Then the number of ergodic .toms

of T' is <« “‘“1)W-1:q .

In order to show exactness of 1 we need |avoms{O(.(T)] <2 ,

for which - by 3) of th¢ theorem - a sufficient ccndition iu:

d)'ﬂigl . This proves a) of corollary 2).

Now let us assume N24, I cven, and CA)V% (g‘+ 1) « Then [w]> g—+1

and by the estimation of the number of ergodic atims above we
see that T is ergodic. Similarly, %) of the theorem tells us

that the number ot atoums of UOl,(T) is € 2. Assumirg that this
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2
)y o

number is =2 we could specialise (§) on p. 28

following relaiion

[9 d}\., S ?;-cdgfn +1, n+n,=N=-1 for a sultable
Ly A 1 0 1

= ,\ 0(‘} lzl {,{].{I‘J+1
show that this is impossibie fou

;icerationed

but simple Con;
A > @» =+ 1) and arbitrary . 0.
and b) of corollary 2) is proved for N3 2

L0 1Y 1s exact,
2 is proved togeiner with c¢):
2 and (Xi»l%ﬁi‘_holds:

that fvr iv =
: and for p-

The case N
thus proving c¢),

%) ol the theorem tells
. e ’ ’\' i) < R 1 . = 5
latomb\nl¢il)ﬁ N 1og .5 < p
we also have ihe remaining case from part b)

us
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§6) Remark on higher dimensions

With the same basic idea we can prove results for higher
dimensional spaces too, for example the followin; onc¢ for

. 2
transformations on &k ::{(x1,x2)|0 €X4,X, 51}-.
Let 3’={P1,...,PN} be a finite partition of E2. de call 7
smooth, if the boundary of each of the Pi consists of finivtely

many C1-curves. I'hen we can state

Proposition:

2 2.2

Let P be a smooth partition of E, « >1, and T:8°-—E

a transformation satisfying: ‘

i) For each P¢?, Tip is (31, V xef: “(DT|P(X))—1“\( o('_1, and the
Jacobian of D%P(x) as a function of x is Lipschitz-
continuous on P.

i1) T posseses an invariant measure /}:ll-ﬂ‘With Il < o+
Then:

I) If there is a set W eEa with the properties

a) m(H) =0 and
b) Vxel V>0: m(l ™8 (x) =1,
rielN

then (T,F) is ergodic.,

II) If there is a set M ¢ E°

with the properties
a) m(M) >0 and
b) Vxen VY §-0: sup lu('l‘n(Ss(x))) =1,

ne IN

then (T,PJ is exact.

Analogous results hold for trinsformations in n-dime: sional

spaces, (For dimension 1 cf. wen [1].)
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