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INTERPOLATION ERROR ESTIMATES
FOR THE REDUCED HSIEH-CLOUGH-TOCHER TRIANGLE

Philippe G, CIARLET

Abstract 1 We sFudy the unisolvence and interpolation properties
of the reduced Hsieh-Clough-Tocher triangle.This finite ele-
ment of class C!, which has only nine degrees of freedom, can be

used in the numerical approximation of plate problems.
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INTRODUCTION2 MAIN NOTATION

The space_gn is equipped with the Euclidean norm |+| and inner-

product <¢,+> , If B is a subset of g”, we let
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B diameter of B,

B = Sup{h.?}; Pis a bal} .contained:in A},

J dx (assuming B to belmeasurabla),
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le = restriction of the funection v to the set B,
n
P (B) = {p_!B; pEPR (RN}, kEN,
where Pk(Bn) denotes the space formed by all polyndmials of degree < k in
n variables.
= S o : n
Given a multi-index o = (o), A, ..., op) € §n with length |a| = z a,,
we use the usual notation Bav(a) for the partial derivatives of order |a
a function v at a paint a € Bn, while the Fréchet derivatives are denoted

Dmv(a), pr simply Dv(a) if m = 1. We write for brevity

L
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N

1

[

DYv(a)g" if £ = .=k =8,

‘Dmv(a)(gla 529 ey gm)=

k]

DM (@) (€™ g JAE £y = £y = el = £y = s

Following {3,4}, let us recall some general definitions pertaining

te finite elements : A finite element in R

~

is a.triple (X,P,I), where :
£}
(i) K is a subsetvof,gn with a non-empty interior K and a Lipschitz-

continuous boundary in the sense of Ne¥as {7},
(ii) P is a vector space of finite dimensign'N, whose e¢lements are
real-valued functions defined over the set K,
(1i1) % is a set of N linear forms ¢i’ 1 < i <N, defined over the

space P, and the set I is P~unisolvent in the following sense : Given arbi-



trary real numbers a s 1 € i <N, there exists one a%d only one function
p € P which satisfies

6;() =a;, 1 Sis<N

The forms ¢, are called the degrees of freedom of the finite element.

The basis function rj associated with the 'degree of freedqp_¢j is defined
by the relations
r. € P and ¢.(r.) = §,,
3 ¢1( J 1] _
Notice that the functions rj fbrm indeed a basis in the space P sipce the

, 1<1i,j <N,

identity
N

VPpEP, p= ) ¢.(p)r,
PR
. J
holds,
_Given a function v defined over the set K, the P-interpolant Tiv of the
, . e porant
function v is defined through the relations
v € P, and ¢i(Hv) = ¢i(v), 1 <1 <N.

Equivalently, we have

M
= ] ¢j(v)rj.

j=1

Of course, the above definitién makes sense only if the function v {s smooth
enough so that the degrees of freedom ¢j(v) are well defined. For‘finite ele-
ments for which all the degrees of freedom are of the forms Bav(a) (as is

the case in this paper), we shall require, for definiteness, that the function v
be s times continuously differentiable over the set K, where s is the maximal
order of partial derivatives found in the set I, In other words, for such finite

elements, we can define a P-interpolation operator

T : domll = G°(K) — P,

A reduced Hsieh-Clough-Tocher triangle is a triple (K,P,%) where the data K,

P'and I are defined as follows.



(i) The set K is a triapgle, with vertices a;, a,, ag,
(ii) Let a be any point in the interior of the triangle K. Denoting

(cf. Fig. 1) by K, the triangle with vertices a, a, ., a., (the indices

i+1

are counted modulo 3 whenever necessary), and by K'i the side opposite
to the vertex a;, the space P is given by

" P={pe Cl(;;) s plg € P3(Ki), 3,p € pl(xfi), <1< 3},
1

KL .
i
where avle': is the (outer) normal derivative of the functionfij along
i i
the side K'i.

(iii) The ‘set of degrees of freedom is

(2) L : p={%(a), 1 <i<3, |af <1},



This finite element is derived from the standard Hsieh-Clough~Tocher

triangle by a device common to triangular finite elements of class cl,

which consists. in constraining the normal derivative op the exterior gides

to be polynomials of lower degree, The Hsieh—ClPugthocher triangle (which

is described later in this paper, cf. (6)) is named after Clough & Tocher [6},
and also after Hsieh, who was the first to canceive in 1962 the idea of
matching three polynomials so as to get a finite element of class CI, We
recall that a finite element is said to be of cLasé | ! if; whepever it is
assembled in a triangulation, the resylning‘functions.and their partial derj-

.

vatives of order one are continuous across the sides common to adjacent tri-

angles. Since this;iélgﬁ;vcése of thekredﬁced Hsieh-Clough-Tocher triangle,
and since its interpéiation ﬁ;bperties make iﬁ gmenable for solving fouyrth-
order problems (cf. (5)), this finite élemeﬁf is opgimAL in the sense that
it has the lowest possible number of degrees of freedom;xfﬁat is, nine, com-
patible with a cubic variation of the function and a linear variation of the
normal derivative along the exterior éides. In particular, we obtajn a finite
element of class C! for whiqh the dimension of the space P is quite small,
compared to more traditionnal triangular finite elements of class C} where
only "pure” polynomials are used. We recall that for such elements, %énf§ek [11]
has shown that the dimension of the space P is at least 18, Noticegwhowevef;
that this decrease in the dimension , an obvious compptational ap?antage asr
regards the dimension of-the resulting'linear system, is>qbtainéd at the gxbenée
of an increased complexity in the structure of the space P i As expected, the
basis functions are harder to compute explicitely.

After we have shown (Theorem 1) that the set I is P-unisolvent, with P
and I given as in (1) and (2), we turn to the main object of this paper, which

is to estimate the interpolation errors Iv-nvlm K where the standard nota-
! b

tion



ol s = U 2 Ia“vlzdx]l/zi :

A [a|=m
is used, and where, according to the general definition given above, the

P-interpolant Ilv is uniquely determined by the conditions
(3) v € P and a“(nv)(ai) = a“v(ai), 1 <1i<3, |a] <1,

We are then able to show that (Theorem 2), given a family of reduced Hsieh-
Clough-Tocher triangles which is regular in a sense to be defined below,

and given a function v € H3(K) CC?I(K) = domll, one has

(%) Jo-tv] p = O(hz_m), m=0,1,2,

K
i.e., the arder of convergence is the same as one would expect from the

inclusion P, (K) C PK for an affine family in the sense of [5] (this is thus

another instance of an almost-affine family of finite elements, according -

to the terminology of [4, Chapter 6]). It appeared, however, that the stan-
dard techniques for getting interpolation error estimates for finite elements
of class C! (cf. Bramble & Zlamal [11, the author ([3,4], Raviart [9],
Zen{¥ek [10], Zlamal [13]) did not directly apply to this element, and this
observation led to the present paper.

Let us then assume that we are using this finite element for solving
a fourth-order problem (such as a plate problem) posed over some open set
Q@ C R?, It we let u and u, denote respectively the exact and approximate

solution, then we get from (4),

(5) [ umuy, “HZ(Q) < Chlul3,9 ,

where h denotes the greatest diameters of the triangles found in the finite

e¢lement space where the discrete solution U, is found. Notice that the above
error estimate requires that the solution u be in the space H3(Q), but this

ts a mild regularity assumption, satisfied if Q@ is a convex polygon for

a plate problemn.



The reader interested in finite element methods for fourth-order
problems in general may consult Zienkiewicz [12, Chapter 10] for a discus=-
sion from an engineering viewpoint, while a fairly complete deseription
and a study of their convergence properties are given in [3, Sections 13

and 14] and [4, Chaﬁters 6 and 7] .
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(6) .

UNISOLVENCE

Theorem 1. The set & of (2) is P-unisolvent, the space P being

defined as in (1).

Proof. Since the number of degrees of freedom is equal to the dimen~—
sion of the space P, it suffices to prove that a function p which satis-

fies (cf. (3))

A

pEPand a7p(a,) =0, 1 <i<3, [of <1,

is identically zero. The conjunction of these relations and the relations
€ ', . = . =
va K'. PI(K 1) and avp!K'.(a1+1) a\)le'.(al+2) 0,
i i i
obtained from the definition of the space P, implies that
avaK,i =0, 1 <ic<3.

The unisolvence is then a consequence of the unisolvence established

in [2] (see also Percell [8] for another proof) for the Hsieh-Clough-Tocher
. * *
triangle : This finite element is a triple (K,P ,I ), with

. K = a triangle subdivided as in Fig. 1,

*

P
_k
z

[}

fpeClm), 'lei € P (K, 1 <i<3},

o .
{a%p(ap), Jal <1, 3 p(b,), 1 <i <3},
where avp(bi) denotes the normal derivative at the mid-point bi of the

side K'i. [ |



INTERPOLATION ERROR ESTIMATES

Our fiist objective is to appropriately describe a family of reduced
Hsieh-Clough-Tocher triangles. Let K be a fixed triangle with vertices ﬁi.
Given an arbitrary triangle K with vertices a; x (cf. Fig. 2), we let FK

b

denote:the affine mapping from R? into R? uniquely determined by the con-

ditions

Given a point & interior to the triangle K, let, for i = 1,2,3, Ki(ﬁ)

denote the triangle with vertices FK(ﬁ), a R (cf. Fig. 2). Then

i+1,K° 2i+2

we need the following definitions :




(1)

(8)

(9)

(10)

(11}

(12)

(13)

(K,PK(a),ZK) = reduced Hsieh~-Clough-Tocher tri#ngle constructed on
the triangle K subdivided into the three triangles Ki(ﬁ), 1<1i<3,
HK(Q) = PK(E)—interpolation operator

associated with the finite element (K,PK(a),ZK),

@ ={p& C®; Py (5 €Ps(K@), 1 <i<3],
i

E.(3)

a -~ .
Ex {3 P(a; ) [a] <1, Dp(b; ) [FK(a)—bi’K), 1 <1i<3},

is the mid-point of the side opposite to the vertex a,

where bi ik

K

b
AK(a) = QK(Q)—interpolation operator associated with the finite ele~

ment (K,QK(E),EK(Q)) (the proof of the QK(é)-unisolvence of the set 5(3)

is the same as for the Hsieh-Clough-Tocher triangle).

Following [2], we are then naturally led to define a regular family

of reduced Hsieh-Clough-Tocher triangles as a family

(K’PK(a)’ZK)K67<,aEA

for which :

(i) There exists a constant o independent of K €X such that

<

(i1) Zero is the only point adherent to the set {hK €R; KEKY,

(iii) The set A is a compact subset of the interior of the triangle K
(cf. Fig. 2).
To begin with, we establish a result of a purely geometrical nature.

Lemma 1. Let there be given a regular family of reduced Hsieh~Clough~

Tocher triangles. Then there exists a constant v such that

VKeK,VaeA,hK< 1 <i<3.

vp ar s
Ki(a)
Proof. It suffices to show that an angle such as a, K(5) (cf. Fig. 2)

b1

is bounded below by a strictly positive constant independently of K ek

and 2 € A. Equivalently, we shall show that



..10_

inf o, >0
kek 1K

b

where, for each K ek ,» (cf. Fig. 3)

ai,K = inf {angle (a-a.

a

Loh

, a. -
aEFK(K) \ 1,K 1+1,K

>

it

Let us assume the contrary. With the notation of Fig. 3,

-1
-a, . -a, i ind dent e X i
Ci,K a1+l,K| (|a1+2,K a1+],K|) 1s a constant independent. of K » since

-1
1t 1s equal to the ratio lci_ai+ll (Iai+2_ai+llJ . Therefore the equality

the ratio



(1s)

- 11 -

| -1
;géjai,K = 0 would imply that the ratio lai,K-ai+l,K| (iai+2,K_ai+l,K|)

=1
hes infinit that th ti . -a. . -
approaches i1nfinity or tha e ratio |d1,K al’KI (Ia1+2,K ai+1,K|)
approaches zero, where (d. -a, ) is the height issued from a, (cf. Fig. 3).
1,K "1,K i,K
But neither implication is compatible with assumption (12), and therefore

we have reached a contradiction. ll

We are then in a position to prove our main result.

Theorem 2. Given a regular family of reduced Hsieh—Clough-Tocher triangles,

there exists a constant C such that

VReX , vaea, Ve,

3-m

X = 0,1,2.

Iv—HK(a)va’K < Ch ‘v|

3,k

Proof. There are two reasons that prevent us from using the "affine"
interpolation theory :

(a) The points 3 may vary inside K : This possibility will require the
use of a compactness argument, as in [2]. |

(b) Gi&en a subfamily corresponding to a fixed point 3, the spaces PK(ﬁ)
are not in an affine correspondence (since the sets ZK are in such a corres-
pondence, we are therefore in a situation opposite to that corresponding to
the Hsieh-Clough-Tocher triangle; cf. [2]).

In what follows, the letter C stands for any constant (not necessarily
the same in its various occurences) independent of K ek , 4 € A, and of the
functions occuring in the inequality where C appears.

The proof is subdivided in several steps.

(1) We first notice that the inclusion

H3(K) CCl(k) = domll, (8) = domA, (3)
holds (cf. definitions (8) and (11)). Next the same argument as in

[23 equ. (3.4)] or [ 4, equ. (6.1-31)] shows that there exists a constant C



(15)

_12—
such that
vkek , Vaea, Ve udx,

[v—AK(a)vlm’K < Chz_mlv]3’K , m=0,1,2.

(11) In view of estimating the semi-norms IAK(Q)V—HK(ﬁ)V|m,K .

let us expand the difference (AK(a)v—HK(ﬁ)v] over the basis functions of the

(16)

a7

(18)

finite element (K,QK(Q),EK(ﬁ)] (cf. definitions (9) (10)). This is indeed

'possible since the inclusion PK(ﬁ) - QK(§) holds. Denoting by r, K(5) the
’

basis function associated with the degree of freedom Dp(bi’K) (FK(E)--bi K)
’ 9
and using the respective interpolation properties of the functions AK(ﬁ)v

and HK(ﬁ)v, we obtain :

AK(ﬁ)-HK(a)v

=izl{D(AK(5)v-HK(§)v)(bi,K)(FK(§)~bi,K)}ri,K(5).

Let us introduce the unit vector Vi x normal to the side K'i opposite to
: b

the vertex a; g» as indicated in Fig. 2. The equality of the functions
’

AK(Q)V and HK(a)v along the side K'i implies that
D(AK(a)v—HK(a)V)(bi,K)(FK(a)—bi’K] =
= 3 — a < a)-
8, (A (@) HK(a)v)(bi,K) Fe@@)=by s v; ¢ >

and thus we get from (16)

| g )V @v o < by i=1‘3v(AK(a)V Te@v) by D ry (@1 ¢
(iii) Let us next transform the expressions

[

BV(AK(a)v-HK(a)v)(bi’K).
To do this, we shall use the following result : Given a (smooth enough)
function w whose restriction to the side K'i belongs to the space PZ(K'i),
we have

=1 _ 152 - N2
i, K Z{W(ai+l,K) * w(ai+2,K)} v @ k)



(19)

(20)

(21

..]3_

Applying identity (18) to the functions
avAK(a)v € P2(K'i) and avnK<a)v € PI(K'i)
and taking into account the respective interpolation properties of the
functions AK(a)v and HK(a)v at the points ai+],K and ai+2,K’ we obtain
3, (A (B)v=IL (3) V) (b; ) =

1 ~
= - (A (B)v) (b; ((ahz,K-aiﬂ’K)-’-,vi,K)-

Therefore,
IBV(AK(E)v-HK(a)v) (bi’K)[ < ChéIAK(a)v|3’w’Ki(a), 1 <i <3,
where
Iw] o R = max Baw" - .
m, 9B |a|=m ” L (B)

Notice in passing that in the right-hand side of inequality (19), we cannot

use the semi-norm |'|3 w K ° since the space PK(E) is not contained in the
5 > -
space WB’W(K) (it is only contained in the space Wz’m(K».

(iv) We now estimate the semi-norms |A_ (3)v ~y 1n terms of the

/\ K B,Q’Ki(a)

semi-norms [A (§)v| ~ .., Where, for i = 1,2,3,'§.(5) denotes the tri-

K 3,M,Ki(a) i

angles with vertices &, 4. (cf. Fig. 2), and where, given a function

i+1° 3542
w : K— R, we define the function & = R — R by letting
V% € K, %(%) = w(F (B)] .
Using the standard formulas for transfofming Sobolev semi-norms
(see e.g. [3, Sect. 6] or [4, Theorems 3.1-2 and 3.1f3]), we get
IAK(a)VI3,°°,Ki(5) < C(hf&i(a))3(":<i(a))_3 I@'Lm,ﬁi(a)‘

Combining this inequality with inequality (13) of Lemma 1, we obtain

- e —
max |A_(8)v] - ~y < Ch 3 max | (3)v| o NP
e e A 1 I s SRR e



_]4_

(v) Given an arbitrary function $ in the space Qﬁ(ﬁ) and a multi~index

a with |a] = 3, we have
Oa _ a g "1/2 Qa
E p!O,m,ﬁi(a) = {meas Ki(a)} K plo,ﬁi(a) s

. a . .
since 9 p’ﬁ (3) i1s a constant function. Consequently,
i

~ _1/2 A

max |p|, o < max {meas X, (3)} 131 o .
i<s 2K @) gq i 3,8, (@)

1/2

<c[1 130 )"

i=1 3,Kl(a
since
inf meas Ri(a) >0, 1 <i<3

a€A
(to prove this last property, observe that an angle such as &i (cf. Fig. 2)
is > 0). Applying this to the function § = K;ZETV, we obtain
(22) max |§(g‘\)v|3 o3 S c{ i IA/(g)\Vl% 5 (a)]l/Z .
I<i<3 >0y i=1 i
(vi) Using the correspondence (21), we notice that
23) @V = f@s,
where X(ﬁ) is the Qﬁ(ﬁ)-interpolation operator associated with the finite
element (ﬁ,Qﬁ(a),Eﬁ(a)). Because this interpolation operator leaves the

A . .
space P,(K) invariant, an easy adaptation of the compactness argument used

in [2] or in[4, Theorem 6.1-3] shows that

A 1/2 .
(24) sup [ g !G'A(5)9I3 R (5)] < Clvlq g
i i -’

€A ‘i=]

By combining (23), (24) and the triangular inequality, we obtain
(25) [ MLAEHE
i

(vii) Using again the inequalities for transforming Sobolev semi-norms,

we have
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A ~A < 2
(26) [%] ChKlv|3,K .

3,K

(viii) Another compactness argument, as in [2] or [4, Theorem 6.1-3]

shows that
l/(\‘)l 2
su r. a A< » m= 0.1
aen | KV InK > T
and consequently,
- L, l=-m
(27) Eup Irl K(a)lm K < (‘hK ’ m = 0,1,2.
aEA > b

(ix) To finish the proof, it suffices to combine inequalities (15), (17),

(19), (21), (22), (25), (26), (27), established in the previous steps. B

Remarks. (i) The same type of proof applies to the 18-degree of freedom

triangle, with a double simplification in that the corresponding space P
consists of pure polynomials (there are no assembled subtriangles), and there
is no variable point such as a. Thus, for this finite element, the present

approach provides an alternate proof to that given by Bramble & Zlamal [I].

(ii) The interpolation error estimates (14) of Theorem 2 can be gene-

ralized. In particular, one can establish under the same assumptions that

i ) 1/2
- A <
A e @vlg < lvly ¢
1=] 1

(we cannot let m = 3 in (14) because the space PK(ﬁ) is not contained in
the space H?(K); it is only contained in the space H2(K)). Another generali-

zation would consist, as in [4, Chapter 6], in considering more general Sobolev

semi-norms in both sides of the interpolation error estimates.
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