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LEAST SQUARES APPROXIMATIONS TO

FIRST ORDER ELLIPTIC SYSTEMS

by
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Summary: Linear boundary value problems for elliptic
systems in the sense of Pectrowski arce considercd. Using
linear finite elements a least squares method is discussed.

The concept of nearly zero boundary conditions - i.e. the
boundary condition is imposed in the nodes on the bouncary 1
exactly - glves cuasi-optimal error estimates in the L2- and w2

nerms.
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1. Notations, the Analytic Problem

In the following u,v,... will denote pairs (ul,ue), (vl,va),...
of functions defined in a bounded domain a ¢ R® with boundary
o0 sufficiently smooth. If both components are in LQ(Q) resp.
the Sobolev-spaces WS(Q)’ we will write u € H, resp. u €H_ .

We will also use the notation

(,v) = (VD ) + 5 )

(1)

o1t 2 2
(u,v)k = (u,v )wg(n) +_(u sV )wg(n)
and
(2) el = @l = w2

As a model problem we will consider the elliptic system

(3) Lu-=T+¢ in o |,

i.e.
11 2 11..1 12 2 1
L'u = ux - uy + a "u + a uy = T

(%) in o .
2 1 2 21 .1 22 2 _ f2

= u
L™u Uy tug + au +au

We remark that any elliptic system in the sense of Petrovskil

1s - up to a cocrdinate-transformation-equivalent to (3), see



HAACK-HELIWIG [ 1 ] . In addition to (3) we impose the boundary

condition

2

(%) ll(u) - ul cos a +u” sino =0 on 3 .

Essential for the solvability of the boundary value problem

is the index of ¢ = O(s) - s arc-length on 3Q - defined by
. 1
(5) ind (0) = 5h § o0 .
o0

In case of n = ind (o) =2 0 then (3), (4) is always
solvable, the number of lincar independent solutions of the
homogeneous problem (f = 0) is 2n + 1 . In case of n < O
(3), (4) possesscs a solution only if  fulfills 2|n|-1

linear independent integral relations.

In order to characterize in case of n = 0O a .special
vsolution to following way is possible: Let Bn(én) he a sub-
space of L2(aQ) of dimension 2n + 1 similar to the space
of trigonometric functions of order n . This means there is
up to a factor exactly one element in ﬁn(ao) with zeros in
2n prescribed polnts on 30 , not necessarily distinct. Then

there is one and only one solution of (3), (4) such that

2 .
(6) § p; 17 (u) ds = ry (1 =1,...,2n+1) ..
on
Here
(7) 12(u) = -u! sin o + ue cos @

dcnotes the orthogonal complement of the boundary condition (%),



the set {pi} forms a basis of ﬁn(aﬂ) and {ri} are fixed

real numbers.

In case of a non-negative Index n there are especially

2n + 1 solutions uJ of (3), (4) with £ = 0 according to

(8) § by 1%(uyas =8y,
on

For negative indices n = ind (o) on the other hand therc

exlists one and only one solution. of (3) such that

(9) V@ e

In the following we will impose the conditions (6) for non-
negative indices of g and use the weakened form (9) for

negative indices.

For functions p,q € Le(an) we will use

(10)

il
A
e |
b

Vv

Ip|
The conditions (6) may be rewritten:
(6") < Py, 12(u) > =Ty (1 =1,...,2n+¢1) .

For n = ind (g) = 0 - only thls case will te considered here -

let Hg be the set of pairs u = (ul,ue) with u ¢ H1 and



i

fulfilling (%) and Hg'r the subspace fulfilling (6).

B 4n (3)

as well as ¢ in (%) are assumed sufficiently smooth. Without

For the sake of simplicity the ccoefficlents a

loss of generaliuvy the clements of $n(ao) can be chosen
sufficiently smooth and therefore $n(an) can be extcnded

to a space ﬁn(ﬁ) of functions defined in 0 .

For the modified boundary vlaue problems (3), (4), (6)
in case ol a non-negative index resp. (3), (9) in casc of a

negative index shift-~theorems of the type

(11) hall,,, <ec {“f“k R 'ri'}

are valid. ¢ dcpends besides of ¢ , aik on 3N and k .

The statements of these sections are consequencés of the

theory on elliptic systems developed by VEKUA (37 .



2. Finite Element Spaccs

Tet -rh be a subdivision of O into generalized triangles A ,
l.e. A is a triangle if A and an have in common at most
one point and otherwise one of the sides of A may be curved.
We will only consider regular subdivisions: For u > 1 fixed
there are to any A € rh two circles with radii n'lh and

xh contained in A resp. containing A .

The finite element spaces Sy, = Sh(rh) we will work with

consist of pairs Y = (xl,xg) of functions having the properties

i1) xi restricted to any A &€ T

is linear.
h g

Let {PV} be the set of nodes of T, on 30 . The subspace

Sp © S, consists of those elements with

1
v
Finally Sg'r S 8y consists of elcments with
(13) <py 5 19(X) > = 1, (i =1,..., 2041) .

Then the following approximation property holds:

Lemma: TLet n = ind (¢) = O . There is a linear projection-

operator Q = Qg‘r : Hg'r - Sg‘r



wlth

(14) fu-qull; =< ¢ h i,
for u € Hg'r = Hi'r nH, .

Pirst let Ih denote the linear interpolation. For u Q‘Hg
we have obviously T, u € Sg and
(15) lu-T, ull. = ¢ no (1 =0,1)
- iptliy " ’ ’
Further we get
e . )
(16) lri - <py s (W) 2 s o] 27 (u-T W) |
and because of
a7y 12175 izl (g N2l
2 wg(n)

for any z € Wé(o) therefore

(18) lry - <Py » 12(Ihu) >

p

polated homogeneous solutions

In order to get we add a

2n+1

(19)

Q. u

T
I, u
h

.h+

i=1

2 ] Thu

| s e /2 jull,

proper combhination of the inter-

of (8)

i



The conditions on f{a;} are

2n+1 o o
(20) by p, , 1 (Ihui) >ay = <Dy l‘(u-Ihu) >

._.1 (3,

If

(j = 1,...,21’1-}-1) .

Because of

' /
(21) |12(ui--1hui)| < ¢ n°

and (8) the inverse of the matrix of the linear coguations (20)
is bounded away from zero for h small cunough. Using the bound

(18) for the right hand side of (20) we get
2
(22) log| < e n¥2 ull, .

Therefore

2n+1

(22)  |lv-ull; = flu-Tufl; + Max {”Ihuinl} ? Jog |

which gives (14) .



3. Least Squares Method, Frror Lstimates

Fer u ¢ Hi and Vv ¢ Hl resp. W € HO let us define the

bilinear functionals

a(u,v) = (I, Iv)

(24)
N
= (Llu, le) + (Lgu, L°v)
resp.
b(u,w) = (Lu, w)
(25)

o]
(Llu, wl) + (L u, wg) .

il

Obviously we have
(26) a(u,v) = b(u, Lv) .
ie get by partial integration -~ for w € H, -

bu,w) = (u, *I_.w) +
2
+ § ll(u){w1 sin (g+y) -w COS(7+y)}dS

+ § 12(u){w1 cos (m+y) +W2 sin(ﬂ+y)}ds

with y denoting the angle between the tangent at a point of

-

30 and the xz-axis, and



O

*Llw = -wi - wi + allwl + aelw2 B
(28)

I, ' 2 21 22

F1euw e w; - w; + ateyt 4 af W

being the adjoint of the differential operator 1. .
Ir
(29) n = ind (g) = 0

then the index cof the boundary condition

1 2 .
(30) W cos (a+y) + W sin (sty) = O
; ¥ 1 2
with respect to the operator L - w and Ww - have to be
interchanged in order to give the Cauchy-Riemann principle

part -~ 1is

3
*
il

ind (o%)

ind (g-a-v) = -n - 1 .

According to (9) then (30) has to be modified
2
(32) W cos (g+y) + v° sin (a+ty) € PHrisl on 3N
in order that
(33) " = g in Q@

together with (32) has a unlque solJution.
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For simplicity we will consider the boundary valuve

broblem  (2), (4), (6) only with r;, = 0 . Then we have the

duality relation

(34) (u,g) = blu,w) .

Further let v be defined by

L v=w in 0 s
(35) 1t(v) = 0 on 2Q ,
< p, 12(v) > =0 fer p ¢ Pog .

Then we have
(36) (w,g8) = a(u,v) .

Using the shift theorem (11) we get v ¢ ., for g €H, .

In order to approximate the solution u of (3), (4), (6) -

with ry = 0 -~ we use the least squares method: The approximation

u € sg'o is defined by

(37) a(u,x) = (£,Lx) for x e s82°° .

Though a(.,.) 1s positive definite in H7'® it might only
1

be semi-dcfinite in sg°° . Vith e =u -u  and - using
an appropriate approximation Uh on u. in Sg'o - g = u—Uh
and therefore e = ¢+ % wlth & = U, - uh € S;.o we getv

h
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(38) a(e,X) = 0 for X ¢ 8°°
resp.

(29) a(s,x) = -a(e,X) ror X e Sg.o .
By

(40) L= a., )2

a semi-norm is defined. Obviously we have for v € H1

(41) Ivil* =

N

c ”an *
So we get from (39)

Nall' = el
(42)
5cC ”5“1 <ch nu”fa

and consequently
(43) flef* =2 ¢ n full, .

Next we identify g = e 1in (34) and let w resp. v Dbe the

solutions of (32), (33) resp. (35). Then we get



lel® = (e, "Lw)
(4d)
;.(Le,w) - § {ll(e) *le(w) - l?(o) *ll(w)} das .

Because of (13) and (32) the last term on the right hand side

vanishes. Therefore we get
. : 1 *.2
(15)  flef® = (re,wv) - ¢ 1M (e) M1P(w) as .

We will estimate the two terms separately. Using the shift-

theorem (11) we find v ¢ H, and ”v”2 < clle]]. With an appropriate

approximation X ¢ Sg‘o on Vv we get with (38), (43)
(Le,Lv) = a(e, v-%)
(46) < fleli' o nlvl,
5 o bl lell .

In order to find a bound for the second term in (45) we

first notice - using (17) -
(47) 1P| s elle] .

Next we make use of conditions (12) which play the role of
'nearly zero boundary conditlons' introduced in (2] . with

arguments parallel to there we get

Proposition 1: Mo any v ¢ HT'O NN, there 1s a X ¢ Sg.o

according to

48)  1h(v-x)| = e nepl,
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. .0
Proposition 2: For any X € SE nearly zero bhoundary

.conditions of the type
(49) 110 ] s e n¥/? il
hold.
For y-regular triangulations inverse properties
(50) Xl = e vt ]
hold for X ¢ Sy, - Therefore (49) can»be replaced by

51y  plx) = e nt/? x .

T er P s ot .
Now let Uh be an approXimation on u according to Promosition 1
g0 .0

eand put & = Uh-uh € h - Then we get

1te)t = 11t ueu) e ey

=

< ¢ hgllun2 + ¢ nl/2 (k3
(52) . ‘
< C hd ”u !p_ +

Q

n/2 v + -y 1}

= ¢ 1ol + ¢ nl/2)e]

The pounds (46) znd (A7), (52) give - see (45) -
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(52)

lel® = ¢ n2fully llell + ¢ nY/?ye)”

and so for h small enough

(54)

lell = ¢ n®full, .

Since we now know e to be bounded we Lhave as a conseguence

the unique solvability of the defining couaticns (37).

Using (50) we also get the error estimate

(55)

lell, = e nlull, -

Literature

[1]

[2]

[3]

HAACK, W. and G. HELLWIG

Die Uberfiihrung des Randwertnroblems flr Systeme
elliptischer Differentislgleichungen auf Fredholmsche
Integralgleichungen T .

Math. Nachr. 4 (1950/51), 408-418

NITSCHE, J.A.

A projection method for Dirichlet-Problems using
subspaces with nearly zero houndary condltions in
"The mathematical foundations of the finite element
method with application to partial differential
equations", ¥. Aziz and I. Pabuska eds., Acad. Press,
New Vork and London, 1972, 603-627

VEKUA, TI.N.

Generalized fnalytic Functions.
Pergamon Press, Oxford (1962).



