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LEAST SQUARES APPROXIMATIONS TO 

FIRST ORDER ELLIPTIC SYSTEMS 

by 

J. A. Nitsehe 

Summary: Linear boundary value problems for elliptic 
systems in the sense of Pctrowski are considered. Using-
linear finite elements a least squares method is discussed. 
The concept of nearly zero boundary conditions - i.e. the 
boundary condition is imposed in the nodes on the boundary ^ 
exactly - gives quasi-optimal error estimates in the L 0- and Wg-
norms. 
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1 . Notations, the Analytic Problem 

1 ? 1 2 

In the following u,v,.,. will denote pairs (u , u " ) 3 (v ,v • ) , . . . 
of functions defined in a bounded domain ft c R " with boundary 
SO sufficiently smooth. If both components are in Lg(n) resp. 
the Sobolev-spaces V/^Co) we will write u € H Q resp. u € . 
We will also use the notation 

(u,v) = ( u 1 ^ 1 ) ^ + ( u 2 , v 2 ) L 2 ( Q ) 

( 1 ) 

(u,v) k - ( u ^ v 1 ) k + (u 2,v 2) 

and 

(2) ||u|| « ( u . u ) 1 ' 2 , ||u||k = ( u , u ) k / 2 . 

As a model problem we will consider the elliptic system 

(3) L u = f in ft 

i.e. 

L Xu - u£ - u 2
 + a11!!1 + a 1 2 u 2 = f 1 

(3) in o . 
L 2u = u* + u 2

 + a 2 V + a 2 2 u 2 - f 2 

We remark that any elliptic system in the sense of Petrovski 

is - up to a cocrdimite-transformation-equivalent to (3 ). see 

i 
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HAACK-HELLWIG [ 1 J . In addition to (3) we impose the boundary 
condition 

1 1 2 
(4) 1 (u) = u cos cr + u sin a - 0 on ôn • 

Essential for the solvability of the boundary value problem 
is the index of a = a(s) - s arc-length on dO - defined by 

(5) ind (a) = i- j ôa • 

In case of n = ind (cr) ̂  0 then ( 3 ) , (4) is always 
solvable, the number of linear independent solutions of the 
homogeneous problem (f = 0) is 2n + 1 . In case of n < 0 

(5) s (j0 possesses a solution only if f fulfills 2|n|-l 
linear independent integral relations. 

In order to characterize in case of n > 0 a special 
solution to following way is possible: Let ^ ( Ô O ) be a sub-
space of Lv^dQ) of dimension 2n + 1 similar to the space 
of trigonometric functions of order n • This means there is 
up to a factor exactly one element in %"Pn(âo) with zeros in 
2n prescribed points on ÔQ , not necessarily distinct. Then 
there is one and only one solution of ( 3 ) , (4) such that 

(6) j p A l 2(u) ds = r± (i = l , . . . , 2 n+l) 
an 

Here 

(7) 1 (u) = -u sin a + u cos a 

denotes the orthogonal complement of the boundary condition ( 4 ) , 
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the set { } forms a basis of ^(d^) and jr^} are fixed 
real numbers. 

In case of a non-negative index n there are especially 
2n + 1 solutions Uj of {J)), (4) with f = 0 according to 

(8) § P j L l2(u.,)ds = 6 i J • 
an 

For negative indices n = ind (a) on the other hand there 
exists one and only one solution, of (3) such that 

(9) l X(u) € ^ ^ j . ! 

In the following we will impose the conditions (6) for non-
negative indices of a and use the weakened form (9) for 
negative indices. 

For functions p,q g L 2(dn) vie will use 

< p,q > = | p q ds > 
(10 ) 

|P| - < P,P > 1 / 2 • 

The conditions (6) may be rewritten: 

( 6 f ) < p., l 2(u) > = r ± (i = l , . . . , 2 n+l) . 

For n = ind (a) >• 0 - only this case will be considered here -
n I P 

let be the set of pairs u = (u ,u ) with u € and 
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fulfilling (4) and H j # r the subspace fulfilling ( 6 ) . 

For the sake of simplicity the coefficients a 1^ in (2) 

as well as a in (H) are assumed sufficiently smooth. Without 

loss of generality the elements of $ (sn) can be chosen 

sufficiently smooth and therefore ^ n(5Q) can be extended 

to a space ? n(o) o f functions defined in Q • 

For the modified boundary vlaue problems ( 3 ) , ( 4 ) . (6) 

in case of a non-negative index resp. 3 (9) in case of a 
negative index shift-theorems of the type 

I M I k + 1 * c { H f l t k + * \r±\} 

are valid, c depends besides of 0 , a i k on 90 and k . 

The statements of these sections are consequences of the 
theory on elliptic systems developed by VEKUA [ 3 ] . 
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2 . Finite Element Spaces 

Let •r h be a subdivision of 0 into generalized triangles A , 
i.e. j\ is a triangle if A and So have in common at most 
one point and otherwise one of the sides of A may be curved. 
We will only consider regular subdivisions: For H > 1 fixed 
there are to any A 6 r h two circles with radii n"*1h and 
nh contained in A resp. containing A • 

The finite element spaces = ^h^h^ w e w w o r k with 
1 2 

consist of pairs x = (X >x ) of functions having the properties 

i) X 6 H x , i.e. x 1 6 WgCQ) 3 

ii) x 1 restricted to any A 6 r h is linear. 

Let JP | be the set of nodes of n on So • The subspace 1 v h 
c S ' consists of those elements with h — h 

( 1 2 ) l*(x) |p = 0 
1 v 

Finally s £ # r c s£ consists of elements with 

( 1 3 ) < P ± s 1 2 ( X ) > = r ± (1 = 1 , . . . , 2n+l) . 

Then the following approximation property holds: 

Lemma: Let n = ind (a) ^ 0 . There is a linear projection-
operator Q h * r Q^- r : H j ' r - S£* r 
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with 

( 1 4 ) l l u - Q j ^ H j S c h ||u||2 

for vi e H^* r = H j * r n H 2 

First let I h denote the linear interpolation. For u e H 2 

we have obviously 1^ u € and 

( 1 5 ) Ilu-Vllx * c h 2" 1!^!^ ( 1 = 0 , 1 ) . 

Further we get 

( 16 ) |r. - < P j , l 2(l hu) > I £ | P l | |i 2(u-I bu)| 

and because of 

(17) | » | 2 * N i ^ ) M w | ( o ) 

for any z Ç V/g(n) therefore 

(18) 1 ^ - < p ± , l 2(l hu) > | <; c h 5 / 2 ||u!|2 . 

In order to get we add a proper combination of the inter­

polated homogeneous solutions of (8) 

2n+l 
(19) V - lhu + £ a± I hu. . 
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The conditions on ja^l are 

2n+l p _ 

(20) s < , 1 (I hu ±) > a± - < P.j, l"(u-I hu) > 

(.1 = 1 , . . . , 2 n + l ) . 

Because of 

( 2 1 ) | l 2 ( u f I h U i ) | £ c h ? / 2 

and (8) the inverse of the matrix of the linear equations (20) 

is bounded away from zero for h small enough. Using the bound 

(18) for the right hand side of (20) we get 

(22) | o^l -s c h 5 ' 2 | | u | | 2 . 

Therefore 

2n+l 

(23) Ilu-O^ujlj < Hu-I^Hj + Max { H V i l l J E laj 

which gives ( l 4 ) . 
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3* Least Squares Method, Error Estimates 

For u g U1 and v £ resp. w £ H Q let us define the 
bilinear functionals 

a(u,v) = (Lu, Lv) 
(24) 

- (L'Tu, L*v) + (L 2u, L 2v) 

resp. 

b(u,w) - (Lu,- w) 
(25) 

= (L*u, w 1 ) + (l 2u, w 2 ) . 

Obviously we have 

(26) a(u,v) = b(u, Lv) 

We get by partial integration - for w £ H 1 -

b(u,w) = (u, /CT,w) + 
+ (J) l^iO-jw 1 sin (a+y) cos 

+ j l^u)-^; 1 cos (a+y) + V f 2 sin(rr-l-Y)}ds 

with Y denoting the angle betv;een the tangent at a point of 

do and the x-axis, and 
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V w = -wj - w 2
 + a 1 1* 1

 + a 2 lw 2 , 
(28) 

* ? 1 2 1? ] 2? ? l/'w - - w£ + a w + a w 

being the adjoint of the differential operator L • 

If 

(29) n - ind (a) s 0 

then the index of the boundary condition 

1 2 
(30) w cos (CT+Y) + v ; s i n (tf*Y) = 0 

* 1 ? with respect to the operator L - w and w~ have to be 

interchanged in order to give the Cauehy-Riemann principle 

part - is 

n* = ind (a*) 
( 3 D 

= ind (TJ-0~Y) - " N ~ 1 

According to (9) then (30) has to be modified 

(32) w 1 cos (rr+Y) + w 2 sin ( a+ Y) 6 P 2n+1 o n d n 

in order that 

(33) *Lw = g in o 

together with (32) has a unique soJution. 
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For simplicity we will consider the boundary value 
problem ( 3 ) , (k), (6) only with r± = 0 . Then we have the 
duality relation 

W (u,g) = b(u,w) . 

Further let v be defined by 

L v = w in o y 

(55) l X(v) = 0 on an , 
< p, l 2(v) > = 0 for p <E P 2 n + 1 

Then we have 

(3 6) (u,g) = a(u,v) 

Using the shift theorem (11) v;e get v c H k + 2 for g 6 H k 

In order to approximate the solution u of (J>), ( 4 ) , (6) -

with r i = 0 - we use the least squares method: The approximation 
U h 6 Sh*° i s d e f i n e d b y 

(37) a(uh,x) = (f,Lx) for x € s£*° . 

Though a(.,.) is positive definite in H£*° it might only 

be semi-definite in s£*° . With e = u - u h and - using 

an appropriate approximation U h on u in s£'° - t - u _ U h 

and therefore e = e + $ with $ = - u h e Sh*° w e g e t 
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(38) a(e,x) - 0 for X Ç. s£*° 

resp. 

(39) a($, X) = -a(e,x) for X € s£'° . 

By 

(40) ï | . | | '= a ( . , . ) 1 / 2 

a semi-norm is defined. Obviously we have for v ç 

(41) ||v||' < c Hvllj 

So we get from (39) 

11*11' S || e|l ' 

(42) 

S c IJelli £ c h ||u||2 

and consequently 

(43) ||e||' < 2 c h ||u||2 . 

Next we identify g = e in (34) and let w resp. v be the 

solutions of ( 3 2 ) , (33) resp. ( 3 5 ) . Then we get 
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||e||2 = (e,*Lw) 

- (Le.w) - § {^(e) V ( w ) - l 2(c) V ( w ) } cis . 

Because of ( 1 3 ) and (3?.) the last term on the right hand side 

vanishes. Therefore we get 

(45) ! H | 2 = (Lc,Lv) - <f l\e) *l 2(w) ds . 

We will estimate the two terms separately. Using the shift-

theorem ( 1 1 ) we find v c. K 2 and ||v|}2 <, c||e||. With an appropriate 

approximation x € s^*° o n v w e £ e t w i t h ( 3 8 ) , (43) 

(Le,Lv) = a(e, v-x) 

(46) < | |e | ! ( c h | J v | | 2 . 

S? c h2||u||2 He|I . 

In order to find a bound for the second term in (45) we 
first notice - using ( 1 7 ) -

(47) |*l 2(w)| £ c| |e| | . 

Next we make use of conditions ( 1 2 ) which play the role of 

'nearly zero boundary conditions' introduced in [ 2 ] . With 

arguments parallel to there we get 

Proposition 1 ; To any v r: Hj*° n Hg there is a X g s j j ' ° 

according to 

(48) jl1 (v-x) | s c h2!|v>!2 . 

(44) 
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Proposition 2: For any X € s£*° nearly zero boundary 

conditions of the type 

( W |i 1(x) ! s-c h 5 / 2 ||X»! 

hold. 

For K»regular triangulations inverse properties 

(50) l l x H , < c h" 1 I J x I l 

hold for X Ç S h . Therefore (49) can be replaced by 

( 5 1 ) 1 1 1
 (X) J S c h 1 / 2 ||X|| . 

Nov; let U h be an approximation on u according to Proposition 1 

8-nd put $ = u h " u h ç Sh*° • T h e n v f e S e t 

ll^e)] * l l ^ u - u ^ l + la.1 C »> I 

«S c h2||u||2 + c h V 2 

(52) 

< c h 2 | | u | | 2 + e h
1 / 2{||u-U h|| + ||u-uh||} 

< c h2||u||2 + c h

1 / 2||e|| . 

The bounds (46) and (47), (52) g i v e _ s e e (45) -



14 

(33) | | e f £ c h2||u||2 ||c|| + c h
1 / 2||ef 

and so for h small enough 

(54) ||e|| < c h2||u||2 

Since we now know e to be bounded we have as a consequence 

the unique solvability of the defining equations ( 3 7 ) • 

Using (50) we also get the error estimate 

(55) Hellj < c h||u||2 
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