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A mixed finite élément method for 

plasticity problems with hardening 

C. Johnson 
The University of Chicago 
Chicago, 111. 60637 

Introduction. In this note we continue the study begun in [4] of 

incrémental finite élément methods for finding approximate solu­

tions of quasi-static plasticity problems. We shall here prove 

convergence of a mixed finite élément method for finding approxi­

mations to the stresses in a body made up by a hardening elastic-

plastic material and acted upon by a time dépendent load. Mixed 

finite élément methods are often used in practice, see e.g. [11 # 

[7]. In a mixed method the displacements and stresses 

are approximated independently using two finite dimensional spaces. 

This allows for greater flexibility and often makes the construc­

tion of the finite élément method easier as compared with a more 

orthodox use of Galerkin's method using approximations of either 

the displacements or the stresses. 

In order to be able to prove convergence of the présent mixed 

method, we have to assume a certain type of hardening behavior of 

the material. The reason is that under this assumption the exact 

solution is known to have a certain for the proof required regu-

larity (see [5] and the remark after Theorem 1 in Section 3 ) . 

The finite élément method will produce approximations to the 

stresses successively at a finite number of time levels. At each 

time level one has to solve a finite dimensional saddle point pro-

blem. We also discuss an itérative method (Uzawa's method) for 

solving this problem. At each step of the itération one has to 
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solve a convex minimization problem and a linear problem, both 

finite dimensional. With the particular choice of finite élément 

spaces made in this note, the convex minimization problem is easy 

to solve (see the remark in Section 4 ) • 

By C we will dénote a positive constant not necessarily 

the same at each occurrence. 

I want to thank Prof. B. Mercier and Prof. R. Falk who pointed 

out an improvement of the error estimate obtained in the original 

version of this paper, cf. [8]. 
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1. The plasticity problem 

3 

Let n be a polyhedral domain in R = {x = ( x ^ x ^ x ^ ) :x^C R} and 

let I = [0,T], T > 0, be a time interval. By o - c R ' 

i,j = 1,2,3, we shall dénote stress vectors depending on 

(x,t) €. Q x i with components a s u c h that a £ j E aji* Stress 

vectors will also be denoted by T and x * Hardening parameters 

will be denoted by scalars Ç,n#ç c R depending on (x #t)
 € Q * I. 

Define 

R 6 = {T = { T 1 ; . } e R 9: T ; L j = T j i } # 

H = {x = { x ^ } € [L 2(f2)] 9: T ± J = T J J L } # 

H = H x L 2 (fi) . 

For u = (u^ #»-«,u ) , w = (w^,««-,w ) € R n , we define 

(u,w) = l u.w., |u| = ( u , u ) 1 / / 2 ' 
i=l 1 1 

2 n 
and for ( U j , - " , ^ ) , w - (Wj,»'"»^) £ [L (fi)] , we define 

(u,w) = S (u(x) ,w(x) ) dx, ||u|| = (u,u) 1 /' 2. 
fi 

In particular, we have, using the convention that repeated indices 

indicate summation from 1 to 3, 

fi 1 3 J 

and ||T|| = ( T , T ) ^ , T é H. Furthermore, let 

a(t,x> = J A i j k h

T i j X k h d x , 

where the A. . are elasticity constants such that A. . = 
îjkh 2 îjkh 

A . . 1 U = A,, . . and for some positive constant y 
}ikh khi] 
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(1.1) a(x,T) > y | | T | | 2 , T <L H. 

We shall assume that the material satisfies the von Mises 

yield condition. More precisely, we shall assume that the yield 

condition is given by the function F: R x R -> R defined by 

(1.2) F(i,n) = |T| - (YH+1)/ 

T.. = T . . - Ô . . T , T = -=rT . . , 

1 3 1 3 îj m m 3 n f 

where y is a positive constant and 6^ = 1 if i = j and 

6. . = 0 if i ^ i. Here T = {T. .} is the so called stress 

deviatoric given by T. The set of admissible pairs (x ,r\) is 

then given by 

P = {(x #n) € H : F(T(X) /TI(X) £ 0 a.e. in fi}. 

In our formulation of the plasticity problem, the above choice of 

the function F will correspond to an isotropic strain-hardening 

material (see [5], where also yield conditions of more gênerai 

form are considered). 

We shall assume that the displacements of the body are zéro 

on the boundary of fi. It is therefore natural to introduce the 

1 3 1 0 0 

space V = [HQ(fi)] , where HQ(fi) is the closure of CQ(fi) in 

the norm 

l l - l l v » < l l | D ? | | 2 ) 1 / 2 . 
M 1 1 

The displacement rate will be given by a function v: I V. Given 

w = (w 1 #w 2 /v7 3) £ V, we define e (w) , the strain rate associated 

with w, to be the vector function e(w) in H with components 

1 8w. 3w. 

e i j < w ) - + 

a i 
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We shall assume that the body is acted upon by a time dépen­

dent (volume) force f of the form f(x,t) = g(t)G(x), where 

g : I -> R is a smooth nonnegative function with g(0) = 0, and 

3 
G:Q R is smooth. For technical reasons we shall also assume 

that G has a smooth extension to a domain SI with smooth boundary 

a, 
such that a £ fl. 

Let us also introduce the following notation: For x = (x ,n ) , 

X = ( X , ç ) £ H # we define 

[x , x l = a(x, X) + Y ( n , C ) , I M f l l l = [ x , î ] 1 / 2 , 

where y is the constant in (1.2). For X a normed space, let 

L P(X) = L P(I;X) , 1 < p < «, be the set of L P - integrable functions 

from I to X. Let C(X) dénote the set of continuous functions 

from I to X. Finally, write u' instead of 

We can now formulate the plasticity problem; Find 

(a,v):I + P x v, a = (a,Ç) , such that a.e. on I, 

(1.3a) [aA,,x - 6] - (e(v),x - a) ^ 0, x £ P, 

(1.3b) (e(w),a) = (w,f) , w £ V, 

(1.3c) a(0) = 0. 

Existence of a unique solution of this problem satisfying 

3 ér C(H) , 3' C L (H) and v £ L (V) follows from Theorems 1 and 

2 in [5] and the following lemma. Here 

E(t) = {T = (T,n) ^ H: (e(w),x) = (w,f(t)), w ÊL V } , 

K(t) = E(t) O P, 

and for a vector function u:A -> R n, 

I l ul L A = sup |u(y) | . 
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Lemma 1. There exists x(t) c K(t) , t t. I, such that 

(l+ô)x(t) C P, t £ I, 

for some positive constants C and ô. 

Proof • By assumption G has a smooth extension G to a domain 

fi with smooth boundary such that fi C fi. Let ( x * v ) be the solu­

tion of the linear elastic problem 

a(X/T) = U ( V ) , T ) ^ , T £ H, 

(e(w) , x ) ^ = (W/G)^, w £. V, 

f\, — % 
where a (•,•)/(•/• ) A # H and V are defined as above with fi re-

placmg fi. Then x is smooth and in particular H XII o < c -

Also, extending w £ V by zéro outside fi, it follows that 

(e (w) , x ) = (w,G) , w £ V. 

Therefore, defining 

X(t) = g(t ) x , U t ) = Cjgft), î « (X/Ç)/ 

we have x(t) è E(t) , t e l , 

H0H-. f lx Ii<=' J - 0.1.2, 

and,chosing the constant sufficiently large, 

IXI — Y C 1 0 on fi x I. 

This shows that x satisfies the requirements of the lemma (with 

6 an arbitrary positive number). 
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2. A mixed finite élément method 

Let h be a small positive parameter and let = {T} be 

a triangulation of Q^, 

fi, = VJ T, 

such that the diameters of the tetrahedrons T are less than h. 

Let us also assume that the triangulation is regular, i.e., there 

is a positive constant p independent of h such that the ratio 

between the inscribed and circumscribed sphère for any T €. is 

bounded below by p. 

Let us now introduce the finite élément spaces we shall use. 

For k = 0 (k=l) let Pj^T) b e t h e s e t o f constant (linear) func-

tions defined on T and define 

H H = { T t H : T | t e [ P Q ( T ) ] 9 x P Q ( T ) # T e T h} # 

v h = {w G V : w | T e [ P 1 ( T ) ]
3 , T. G T h ) , 

P h - H h n P-

Let us also introduce a time discretization: For N a natural 

number, let k = T/N, t = nk for n = 0,1, let 

I k = {tg,t^, • • • ,t^} and write u n = u(t^) . Define the différence 

quotient 3u n = (u n-u n ^)/k. 

We can now formulate the finite élément method: Find 

( a h , v h ) : I k P h x v h # a h = ( a h , Ç h ) , such that for 

n = 1,•••9N, 

(2.1a) I35£,T-a£] - (e(v£),x-a£) > 0, T C P h , 

(2.1b) (e(w),a£) = (w,f n), w 6 v h, 

(2.1c) a? = 0. 
h 



8 

Let us now show that this problem has a solution ^ h / V h ^ 

v/ith uniquely determined. At the same time we also establish 

an a priori estimate which will be used below in proving conver­

gence of the finite élément method. We shall use the following 

notation : 

E h(t) = {x £ H h : (e(w),x) = (w,f(t)), w c V h> , 

K h(t) = E h(t) A P, 

11*11 2 = ( * I l ^ l | 2 k ) 1 / 2 . 
JT(H) n=l 

We shall also refer to the following lemma. 

Lemma 2. Let TT be the orthogonal projection in H onto H^, 

let t £ I, and suppose that T = (x,n) £ K(t). Then 

(i) M - I L / Q 1 N î l L , 0 < 

(ii) TTT = ( T h , n h ) £ K h(t) . 

i i 9 
Proof. Note that T h ' T is t n e projection of T | t onto [PQ(T)] 

2 9 

in [L (T) ] and that Hjjrji i s t n e projection of n | T onto 

P 0(T) in L 2 ( T ) . It follows easily that 

( 2 * 2 ) . 1 0 

V t - alFialT) \ n d x ' 

which clearly proves (i) . To prove (ii) , observe that since e (w) 

is piecewise constant if w G and T é E(t) , we have, 

(e(w) #x h) = (e(w),x) = (w,f(t)), w £ V h , 

i.e., £ E h ( t ) . Further, since (2.2) will be true also if we 

replace x and x, by the stress deviatorics x and x. , re-
h h 
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spectively, and by assumption | x (x) | £ 1 + yn (x) for a.e. x C Q, 

we obtain that 

I ^ I t I I 1 + Y r , h l T ' 

which proves that ÏÏX £ P. Thus, TTX 6. K^(t) a n<3 the proof is 

complète. 

PROPOSITION 1. There is a solution (a, ,v. ) of (2.1) and a, 
n n n 

is uniquely determined. Moreover, there is a constant C, inde-

pendent of h and k such that, 

| |3a,| | < C. 
n £ Z(H) 

Proof. The resuit will follow, using the technique of proof of 

Theorem 1 in [5], if we can show that there exists X h(t)G K^ft) , 

t £ I, such that for some constants C and 5 independent of h, 

3 J x , 

H ^ j l L ^ x l £ C, j « 0,1,2, 

(i+ô)x h(t) G P, t e i . 

But if we take X^ = ^X/ where x ^ s given in Lemma 1, it follows 

by Lemmas 1 and 2 that x^ satisfies the desired requirements, and 

the resuit follows. 
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3. Convergence of the finite élément method 

We shall prove the following resuit: 

Theorem 1. Let (a,v) and (^h'^) ^e solutions of (1.3) and 

(2.1) , respectively. Then there is a constant C, independent of 

h and k, such that 

m a x | | | S n - 3?||| < C(a(h) +Vk) , 
n 

where 

a (h) = inf{| |v - w|| 9 : w ^ L 2(V, )}. 
ir (v) n 

Remark. By a density argument it follows that a (h) -> 0 as h + 0. 

Remark. In the proof of this resuit we shall use the fact that 

2 
v £ L (V). In the case of an elastic-perfectly plastic material 

2 3/2 3 
it is only known that v £ L (W), where W = [L (Q)) , see [3], 

[5]. 

Proof of Theorem L Let us first extend linearly to I. Since 

e P g n = 0,***,N, and P is convex, we then clearly have 

c^(t) £ P, t c I. Taking T = ^ ( t ) in (1.3), integrating over 

I = [t _^#t nl r and dividing by k, we find that 

r ~ ~n ~n, tT^T^s n n N [3a ,a h - a ] - (e(v ) ,a h - a ) 

(3.1) > i O [o ,o}| - a h ( t ) + a(t) - a
n]dt 

*n 

- | 5 (e(v(t)),a£ ~ a h(t) + a(t) - a
n)dt 

*n 

where 
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e(v n) = ~v5 e(v(t))dt. 
K I 

n 

^n _ A H 
Next, by Lemma 2 we have T, = ira c K, (t ) C P, so that we 

n n n h 

may take T = T£ = ( Th , nh^ ^ n ( 2 , 1 ) # Adding the so-obtained in-

equality to (3.1) , we get, writing e = a ~ and denoting by 

r n the right hand side at (3.1), 

+ [9a H,T H - o h] - (e(v h),t h - a h) 

(3.2) 
- - [9e n,e n] - [8<^,Ô n - î£] 

Since is the projection in H of a n onto H^, we have 

(3.3) [x,a n - TJJ] = 0 , T € H h , 

so that in particular [3a^,â n - T £ ] = 0. Also, since T£ £ Eh^ f cn^' 

we have 

(3.4) (e(w),x£ - ojj) = 0, w e V h . 

Therefore, it follows from (3.2) that 

[den,en] < |r n| - ( d / ) ,aj - o n) . 

2 

Now, using (3.3) and (3.4) again, we see that for w e L (V^) , 

(e(v n),a£ - a 1 1) = (e(v)faJJ - a
n)dt 

= (e(v) - e(w),x^ - a n)dt 

- | S (e(v) - e(w) ,T£ - a£)dt 

1 0 
= j^O (e(v) - e(w) ,a£ - a n)dt . 
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2 
Thus, for any w ^ L (V^) , we have for n = 1,2, ,N, 

(3.5) [8e n,e n] < r R + £ / | |e(v) - e (w) I I | |o£ - a n | |dt . 

Observing that for M = 1, 

2 ? [e11 - e n - \ e n ] = | | | e M | | | 2 + ? | | | e n - e 1 1" 11 | | 2 , 
n=l n=l 

we find multiplying (3.5) by k, summing over n and using 

2 

Cauchy's inequality that for w e L (V^), 

\ max|||en| | | 2 < E |r |k + C max| | |e n| | | | |e (v) - e(w) | | 
* n n=l n n IT (H) 

< E |r |k + | max|||e n||| 2 + C||e(v) - e( w ) | | 2 _ , 
n=l n L (H) 

where we also used the fact that by (1.1) , \ | aj^ - on\| £ C|||e n|||. 

^ 2 
Finally, using the facts that [ 18a, | | 0 < C and a 1 €. L (H), 

n IT(H) ~ 

it is easy to see that (cf. [4]), 

N . . 

E |r |k < Ck, 
n=l n 

which complètes the proof of the theorem. 
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4. An itérative method. 

To find the finite élément solution (a, ,v, ) we have to solve 
n h 

a finite dimensional saddle point problem at each time level t ; 

given a h we have to find ( ^ J J / V h } è P h X V h s a t i s f Y i n ( ? (2.1) , 

which is équivalent to finding a saddle point (^j|'vh) o f t h e 

convex-concave functional L : P

h

 x V h R, defined by 

L(T,W) = £ IT,T] - ^ I T , ^ " 1 ] - (e(w) #T) + (w,f n) . 

We shall consider the following itérative method (Uzawa's 

method, see e.g. [2 3) for solving this problem (here we drop the 

subscript h and write (a?,v?) instead of (a£ .,vfj .)): Find 

J J " / 3 " / 3 
^ j # v j J ' = i ' 2 ' ' " ' s u c h t h a t 

(4.1a) è ^ r 1 ^ " ^ 1 " ( ^ v J ^ Î . T - a ? ) > 0. x £ P H # 

(4.1b) (e(vî}),E(w)) = (e(v? + p((f n,w) - (e(w),o™)), w é v u , 
J J"1- 3 n 

where p is a positive constant and VQ is an initial guess, e.g., 

v|J = 0. Note that a? is determined by (4.1a) as the function 

which minimizes the convex functional L( -#Vj_^) over the convex 

set ? h . Furthermore, to find amounts to solving the linear 

elliptic problem (4.1b). This proves that (4.1) can be solved 

for j = 1,2,- — ,. 

Remark. Since the functions in P h are defined independently on 

each triangle T e , the minimization problem (4.1a) can be 

solved by solving a simple minimization problem in R 6 x R for 

each T e l , . . Let us also note that (4.1) is similar to an itera-
h 

tive method described in [6]. 

It is well-known that Uzawa's method will converge in a situa­

tion such as the présent one if p is sufficiently small (see e.g. 

[2]). For completeness we include a proof of convergence of the 

propo.'sed method. 
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Théorem 2. Let Sj/j = 1,2,---, be the séquence given by (4.1). 

Then if p < 2y/k (with y given in (1.1)), one has 

ii~n ~nii * 

' ' °h " ° j ' ' a S D ~* °°-

Proof. First, taking T = a1} in (2.1a) and T = aj^ in (4.1a) 

and adding, we obtain, 

(4.2) [3£ - a^Sg - 5 N ] - k(e(vj)- e t v ^ W o g - o1}) < 0. 

Next, multiplying (2.1b) by p r subtracting from (4.1b) and choos-

n n 
m g w = V j - v^, we get 

, , n n x , n n x x , , n n x , n n x x 

(e(Vj - v h * ' e * v j " v h ) } = * ( vj-l " v h * ' e * v j ~ V h ^ 

+ P(a£ " a*,e(v» - v£)). 

By Cauchy's inequality, it follows that 

||e(v* - v£)|| 2 < ||e(vn - v£) + p(a£ - o^)|| 2 

- i i £ ( v 5 - i - v h } m 2 + 2 ^ £ ( v j - i - v h } ' a h - ° ; > + p 2 i i ^ - « - M 2 -

Now, multiplying (4.2) by 2p/k and adding to the above inequality, 

we find that 

2pi « i^n ~n » » i2 , » i , n n x . i2 
k 1 1 1 k 3 h j 

< I |e(v h - v j - x ) I I + P ! | a h - a j | | , 

2 1 ^ 2 

But | |x| I £ —| | |x| I | and thus we obtain by summation, 

- 1 ' £ < V h " V Ô ' I I 2 ' K = l - 2 r " - . . 



15 

This shows that if p < 2y/k, then 

|||a£ - ÔN||| -> 0 as j - -

which proves the lemma. 
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