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SUMMARY 

The application of finite élément methods to second order 
mildly nonlinear elliptic boundary value problems is described, 
and an inequality involving the error in the finite élément 
solution is derived. This, together with well known results 
from piecewise polynomial interpolationr gives a theoretical 
bound on the finite élément error. When the solution of the 
mildly nonlinear problem is subjected to an additional con-
straint condition, a mildly nonlinear variational inequality 
is produced. The finite élément technique is applied to this 
and an inequality on the error, similar to that above, is 
derived. 
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1. Introduction 

This paper is concerned with the application of finite 

élément methods to mildly nonlinear elliptic boundary value 

problems. Theoretical error bounds for the finite élément 

solutions are derived. When the mildly nonlinear problem is 

subjected to an additional constraint condition, this leads 

to a variational inequality. A finite élément approximation 

to the solution of this is defined, and an inequality bound-

ing the finite élément error is derived. This resuit is an 

extension to the mildly nonlinear case of the similar results 

of Falk [5] for linear problems. 

We consider second order differential problems of the type 

- A [ U ( X ) ] = f(x,u(x)) , xefi , 
(1) 

u (x) = 0 , x e 3fi , 

9 

where ficR is a simply connected open bounded domain with 

boundary 3 fi and closure ïï = fi U 3fi , and f is a function 

both of x and the unknown u. It is assumed that f and 

the boundary 3fi satisfy smoothness conditions which ensure 

the existence and uniqueness of the solution u. 

The choice of the Laplacian operator in (1) is made for 

simplicity, as our main interest lies in the nonlinear right 

hand side. A more gênerai équation would contain a second 

order, linear, self-adjoint, coercive elliptic operator and 

it will be seen that the technique is suitable for this. The 

mildly nonlinear problems considered here have been treated 

in the more gênerai setting of monotone operators by Ciarlet, 

Schultz and Varga [3] and Varga (22j , where they appear as 

examples. However, it seems useful to exploit the spécial 

features of the less gênerai problems in the mildly nonlinear 

case. 
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Our approach to the differential problems is to consider 

in Sections 2 and 3 generalized formulations of thèse 

problems in the setting of larger spaces of functions than 

those containing the classical solutions. We thus start in 

a Hilbert space context with both an "energy" functional 

associated with the differential problem and the équivalent 

weak formulation. Thèse are first formulated in a gênerai 

manner, seemingly independent of the differential problem, in 

terms of a bilinear form, and are later specialized. The 

notation is now introduced. 

Let H be a real Hilbert space with dual H 1 and dénote 

the norms on thèse respectively by || • || and || • ||' . Further 

dénote by ( • , • ) the inner product on H and by < •,• > 

the pairing between H 1 and H . A bilinear form a(u,v) , 

defined on H, is 

coercive on H if there exists a constant p > 0 such that 

a(v,v) >_ p||v||2 , for ail v e H , (2) 

continuous on H if there exists a constant y > 0 such that 

|a(u,v) | <_ y||u|| H v H , for ail u,v e H . (3) 

An operator T : H •> H 1 is antimonotone on H if 

<Tu - Tv,u - v> 4 0, for ail u,v e H , (4) 

and is Lipschitz continuous on H if there exists a constant 

Y > 0 such that 

|| Tu - Tv|| 4 y || u - v||, for ail u,v e H . (5) 

2. Finite Elément Methods for Mildly Nonlinear Problems 

Starting with a variational problem we state the following 

theorem, the proof of which is given in Noor and Whiteman £l . 
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Theorem 1 Let a(u,v) be a continuous, coercive, symmetric 

bilinear form on H. If the Frêchet derivative F 1(v) of a 

nonlinear functional F(v) , defined on H, exists and is 

antimonotone, then the function u which minimizes 

l[v] = a(v,v) - 2F(v), for ail v e H, (6) 

is the function u e H such that 

a(u,v) = <F'(u),v> , for ail v e H. (7) 

The converse is also true. 

Note that in theorem 1 the functional F is nonlinear. 

When F is a linear functional, the resuit of theorem 1 is 

exactly that of Temam [21*] , Proposition 2, p. 9. 

The finite élément method can be applied to approximate 

the u of theorem 1. In order to do this, we choose a finite 
h h 

dimensional space S C H and seek u h e S which approximates ueH. 

The approximate forms of (6) and (7) are then respectively 

find u, e S solving min. (l[yul) (8) 
h v K e S

h h 

n 
and 

h 
find u, e S such that 

n 

a(u h,v h) =
 < F l ( u

h ) / v

h

> f o r a 1 1 v

h e S h. (9) 

Problem (8) is solved using the Ritz technique and (9) using 

the Galerkin technique; see e.g. Whiteman [23]. 

Our purpose is to bound the error j|u - u^J| . In the 

linear case the procédure is to restrict v, in the équivalent 
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form of (6), to be an élément of S and to subtract the 

équivalent form of (9) from the resticted (6), thus obtaining 

an orthogonality relation. For (6) and (9) as they stand here 

this can no longer be done because of the nonlinearity of F. 
~" h 

We therefore, as in [4] , define a norm projection u h e S 

of u e H by the orthogonality relation 

a(u - û.,w. ) = 0 for ail w, e S . (10) 
n n n 

A second theorem from [15] is now stated without proof. 

Theorem 2 If the hypothesis of theorem 1 is satisfied and 

F 1(v) is Lipschitz continuous on H, so that there exists a 

constant y > 0 such that 

||F'(v) - F'(w)|| £ Y | |V-W[| for ail v,w e H , 

then 

H û h - u h | | < l | | u - ûh\\ , (11) 

where p is the constant in (2). 

Application of the triangle inequality and (11) leads 

immediately to 

II* - u h | | < d + J ) | |u - û h | | . (12) 

When use is made of the coercivity and continuity of the 

bilinear form a(u,v) and of the orthogonality relation (10), 

we find that 

llu - u h|| < J d + J ) | | u - w h|| for ail w h e S h . (13) 

In particular (13) holds when w, is taken as u^ e S h, 

where u^ is an interpolant to u. 
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The effect of the nonlinearity in F has been to introduce 

into the right hand side of (13) the extra factor (1 + ^ ) 
P 

over that found in the similar inequality of the form 

llu - u h | | < J H U - wh|| (14) 

relevant to the case of linear F. 

The above analysis is now applied to the mildly nonlinear 

differential problem ( 1 ) . We take H as the Sobolev space 

^(ft) a n d assume that f (x,u(x)) e C(fi) is Lipschitz 

continuous and antimonotone on fi. The weak formulation of 
O A 

( 1 ) , derived by multiplying by a test function v e Wî:(fi) 

and integrating, is that of finding u e W*(fi) such that 

a(u,v) = / f(x,u (x))v (x)dx 

fi 

E < F'(u),v > for ail v e w | ( f i ) , (15) 

which has the form of (7), where F' (w) is the Frêchet 

derivative of the nonlinear functional F(w) defined on 

W*(fi) by 

w 
F(w) = / { / f(x,ç)dç }dx , 

fi o 
and 

a(u,v) = / Vu Vv dx , u,v e W*(fi) . 

fi Z 

It is shown in [ 1 5 ] that the right hand side of (15) is a 

well defined pairing and that F'(u) is antimonotone and 

Lipschitz continuous. Thus the inequality (13) is applicable 

to problem ( 1 ) , where of course u e W*(fi) is the weak 

solution. The constants p and y of (2) and (3) respectively 

may be taken equal to unity so that we have the inequality 

i ' u ~ u h ^ i ( Q ) i ( 1 + y ) " u - Khi(si)' ( 1 6 ) 
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where e S is an interpolant to u and y is the 

Lipschitz constant associated with F. 

Many bounds of the form O(h^) have been derived for 

piecewise polynomial interpolants to functions defined on 

partitions of triangular and rectangular éléments, each 

having gêneric length h; see e.g. Ciarlet and Raviart [2] 

and the références contained therein. Thèse in turn can be 

used to bound (16) and so provide an 0(h 6) bound on the 

finite élément error to problem (1). 

An example of a problem of type (1) occurs in reactor 

physics where the function f (x,u) = e u ^ and the solution 

u is subjected to a boundeness condition in order that the 

Lipschitz condition may satisfied. In this case u is the 

fuel distribution of a homogenised reactor. 

The above analysis and error bounds have ail been in the 

w | - norm. It would clearly be désirable to have bounds in 

the L sensé. In this respect we mention here the results 
00 

for linear problems of Natterer [10] , Nitsche D 2 ] ~ D 4 3 a n d 

Scott [17] . 

The finite dimensional spaces S of the finite élément 

method are constructed using piecewise polynomial basis 

functions having local support. The application to (9) leads 

to a System of nonlinear équations of the form 

Au, + a (uu) = 0 , (17) 
—n —n 

where A is the global stiffness matrix, u^ is the vector 

of values of the unknown u h (together possibly with values 

of some derivatives of u^) at the nodal points and a is 

a nonlinear function of u h- The matrix A is exactly the 

matrix of coefficients in the linear System derived from a 

problem of type (1) with linear right hand side. This spécial 
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form of the nonlinear équations (17) can be exploited and 

facilitâtes their solution. 

3. Mildly Nonlinear Variational Inequalities 

An inequality of the type (13) which is applicable to a 

class of constrained mildly nonlinear problems is now derived. 

Such problems arise when the solution u of (1) is required 

to satisfy an additional constraint condition u ^ i|;, where 

is a given function. The approach to the finite élément method 

is again to consider équivalent (constrained) variational 

and weak problems and then to associate thèse with the differ-

ential problem. In this case the weak formulation is a 

variational inequality. 

The notation remains as in the previous sections, so that 

H is a Hilbert space with dual H 1. Let K C H be a convex 

subset defined by 

K = (. v Î v e H ; v > <i } . 

In a manner similar to Section 2 we consider a functional as 

in (6) but, because of the constraint on u, the functional 

must be minimized over K rather than over the whole of H. 

Such problems have been studied in an abstract setting by 

Lions and Stampacchia [7], Sibony [18] and Stampacchia [19} . 

More practical situations are considered by Fremond [6] and 

Strang [20] . 

We consider first constrained linear problems, where the 

function f does not involve u, and state a well known 

resuit as a theorem. 

Theorem 3 Let a(v,w) be a symmetric, coercive, continuous 

bilinear form on H, and K be a closed convex subset of H. 

If f(x) e H 1, then the function u e K minimizes the 
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functional 

l[v] = a(v,v) - 2 < f,v > (18) 

if and only if u e K satisfies 

a(u,v-u) ^ < f,v-u >, for ail v e K . (19) 

The expression (19) is the variational inequality and 
theorem 3 demonstrates its équivalence to the constrained 
minimization problem in the linear case. It has been shown 
by Lions and Stampacchia [7] that there exists a unique 
solution u e K of (19). 

We are interested here in the use of the finite élément 
method for the approximation of the solution u over a finite 
dimensional convex set K C H, and of bounding the resulting 
error. The normal approach is to obtain a numerical solution 
to (18) using mathematical programming and to use (19) to 
dérive error bounds. We proceed with the error bounds. 

The finite dimensional form of (19) is set up by choosing 
a finite dimensional subspace S O H, and then taking a 
closed convex subset K C S • The problem is thus that of 

h h 
finding u e K such that 

a ( u h ' V h " Uh* = < f ' V h " u h > f f o r 8 ( 1 1 v h e *20* 

We remark that it is not required that K C K ; unlike 
the situations considered by Natterer [11J and Nitsche Ql 4] 
where K h = K n S h . 

Bounds for the error ||u - uh|| for the linear case have 
recently been derived by Falk [5] and Mosco and Strang [9]. 
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If a(u,v) is as in theorem 3, and the mapping L : H •+ H 1 

is defined for u e H by a(u,v) E < L U , V > , for ail v e H, 

then for u the solution of (19) and u h the solution of 

(20) Falk dérives an inequality of the form 

H u - %W * {h H» - v h | j 2 + f | | f - Lu||' (||u - v h | | + H i ^ - v||) } 1/ 2 , 

for ail v e K and v he K*1 , (21) 

where p and y are respectively the constants of (2) and (3) 

and || • U1 is again the norm on the dual space H 1. On account 

of the obstacle condition Lu is unequal to f in part of H 1 . 

Removal of the obstacle condition renders Lu = f throughout H 1 

so that the second term on the right and side of (21) drops out, 
h h 

K becomes S , and we again have inequality (14). It has been 

shown for a Poisson problem in [5] and [9] that, under certain 

conditions of smoothness on 3fi and with particular choices of 

éléments and trial functions in the finite élément method, the 

right hand side of (21) can be bounded in an 0(h) manner. Thèse 

proofs make use of a regularity condition on the solution u of 

the linear problem due to Brezis and Stampacchia [l]. 

It is natural to try to produce an inequality similar to (21) 

for variational inequalities of the form (19) in which the right 

hand side contains a nonlinear function f(x,u(x)), and then to 

try to dérive 0(h ) error bounds for thèse. We thus consider 

the variational inequality, corresponding to (19), in which 

u e K satisfies 

a(u,v-u) ^ <F' (u) , v - u> , for ail v e K , (22) 

where F 1(u) is the Frêchet derivative of the nonlinear functional 

F(v) as in (7). The finite dimensional problem approximating (22) 

is that of finding u^ e K such that 

i_ 

a ( u h ' v h ~ "h* = < F ' ̂ h* ' V h " "h* ' f o r a 1 1 v h e K * ( 2 3 ) 
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For u and as in (22) and (23) respectively Noor and 

Whiteman [16] have proved the following theorem: 

Theorem 4 Let u e K and u^ e K be respectively the solution 

of (22) and (23). The mapping L : H + H' is defined for u e H 

by 

a(u,v) = <Lu,v> , for ail v e H , 

where a(u,v) is a coercive continuous symmetric bilinear form 

on H. If the Frêchet derivative F 1 is Lipschitz continuous 

on H, then 

ll« - \W L ̂  llu - v j p + ^ ! , | v - % f + lZ „ V h . v , p 
p P P 

+ \ ||P' (u)-La|r ||u - v h | | + ||| F' V ^ H ' H - v | I > 1 / 2 , «24) 

for ail v e K and v^ e K , where y is the Lipschitz constant 

for F'. 

Clearly, for the problem (1) subject to the constraint 

condition u ^ and with F 1(u) defined as in (15) , theorem 4 

can be applied so that the inequality (24) bounds the finite 

élément error. However, unlike the linear problem considered 

earlier, we have been unable to obtain an 0(h ) bound for the 

right hand side of (24). This is because we know of no regularity 

condition on u similar to that of [l] for the nonlinear case. 

Whiteman is pleased to acknowledge the support of the Deutsche 
Forschungsgemeienschaft for part of this work through the award 
of a Richard Merton Professorship at the Westfalische Wilhelms-
Universitât, Munster for the year September 1975-August 1976. He 
is also most grateful to Brunei University for granting him leave 
of absence for this period. 
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