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ON TiHE CONVERCTRCE OF VILSOI'S PON-CORTORNUILG

DLELLNE FOR SCGINTAG UHYE ELASYIO ViROBLEN

Picrre LESALNG

ABSTRACT . A mon-conferring finite clement, Wilson's elenment, fer solving
the elastic problem is wathematically studied, Tuils clement passes the

Patchi-Test, The errors on tha streares and displzccments ave shoyn to be
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1IPRODUEYT LGN

Couforming and nou~confovizing finjte clenent wethods Lor the $lai

4

b

bending problen have been exteusively studiod @ sco CILUIET [1/, CIARLUY and
RAVIARD ]}/, TASCAUN and Lu)AT:T.A}/ Nrrsery J4/, In the conforming case,
lements of clzss € arce nceded, such es the vell-known 2i-degrecs
of freedon triangle of ARGYRIS /53/, "Variatioual crimes' may also be cou-
mitted (IRONS /6/, SIRALG /7/) by using elements which are not of clacs CF
and in some .cates not even of class CG, and thus defining a ﬁonwcouforﬁin;

WeCnod,

Ir the same way, we can sclve thc elactic problem elther by confor-
ming methods, using clements of class C such as the 3-nodes o the G-naies

triangle, or by non-conforming methods, constructed with eleacnts wvnich are

not of class C

The purpose of this paper is to present and analysc mathematicaily
one of these non-conforning e;crents, Wilson's element /8/, which ic pra-
b

tically used by the engineers to solve the elastic problem in tue (or threc)

dinmaensious,

To cbtain the error estimates corresponding to non-conforming
nathods, the keystone is the Patch-Test of IRCHS /€/. Yc has heeu zlrcady
shewn (IROX /6/, STRANG /7/) that Wilson's eloment passes the Patch-Tect,

In this paper, ve give a mathematical prooi of convergence for this clement
and we show thai the errors on the stresses an” displacewents are asyroto
tically of order h end hz, respectively, wuere h is the suvremunm of the
elewents'side lengths, One ol the main difficulties consists in shoring

that the stiffness matrix of the problea is sositive defiulie, independently
of I (53) Tor the cake of simplicity, the results ave presented f£for pio-

blens in two dimensious, but they arc also truc in three diuensions,

An outline of the paper is as follows., In 1 we recall the varia-

tional formulation of an olastic problem, In §2 we define general non-

conforming mevhods, give the corzesponding crror estimates and introduce the
Patch-Test, The results of §2 are then applied to Vilcoa's clement which is

deseribed and studied in §3,



I. ELASTIC PROBLEM

Let  be a bounded open subsct of tlie plain x~y, with a
Lipschitz-continuouvs ({9]) boundary I'. We shall denote by s 2 curvilinear
3 3

abscissa along I'y by Ty the derivative along the outer normal on T and -

the tangential derivative along I'.

For a given integer m > 0, we let

i}

. 1y 1
-1 bl o= C % L% @ Il o= (3 W2 %,
m, § 0 m, 2 0.9
|al=m L=0 ?
where ¢ is a multiindex such that o = (0;,0z2), o, > O,lul = o) +02 and

A% = cfg_\al. c_§~)a2

; are respectivel
X1 9%, Q p y

. The applications i'|m Q and ||:”m
s iy

2 seminorm and a novm gver the Sobolev Space Hm(Q)

In what follows, we shall be interested in the space

d

(1-2) V‘= {v=(v9 € (Hl(Q))2 ;v o= 0 on g, igi€ 2}, whereT, is a

measurable subset of the boundary [.
The following .inclusions hnld
(-3} @@ e ve@i@)”
zud the subsct V of (H'(R))? is closed in (R'(Q))2.

: 1
For any v = (vl, vz) € V, the expressions ([vxt Q +!V2E p)/"and
’ b R

k

. 1 .
(Hvdt;ﬂ +!!V2H;J? will still be denoted by Ivlm’Q and |lv|!m,Q'

One can show chat if the measure of I'y is strictly posicive,

ther the application : vE€ V + ivii is a norm over the space V, equivalent
]

o |l 1 g

2

We want to calculate the displacements relative to an equilibrium

state of an homogcnecous and isotrop elastic continuum 2, under the action of
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distributed body forces £ = (fy, £2) per unit volume and external loading
g = (g1, g2) per unit arca, the displaccments being specified and equal to

zero along the subset Ty of T,

For any v : (vi, v2) € V, we let

. Bvi 'c‘vi
(1-4) Eij(v) =‘é (Ezf.+'§;f) , 1 €1, 3€ 2,
j i

%

(1-5) .S’ij(v) A(div v) Gij + 2u Ei.j(v) » 1 g1, <2,

where the coustants A 3 0 and B > 0 appearing in the relationship {1-5)

between the stresses Ui. and the strains sij are the coefficients of lLame of
0 for 1 4]

the continuum and where Gij =

1 for i =]

"We let the bilinear form a(., .) be defined on V x V by

2
(1-6)  a(e,v) = é > o5 (v) Eij(v) dx dy =
b ,5=1
2
= A J div u. div v dxdy + 2y S 2: €,.(u). €..(v) dx dy,
Q Q. 1) 13
1,]=

and the linear form v -+ (f,v) defined on V by
(1-7) (E.v) =/ (w + fv2) dx dy +J (gv + gv,) ds, for
Q r
£, € L2, g €13(ly), i=1, 2, vhere iy =T - Ty.
The 2lastic problem described above can be formulated .as foll-ws [Hf
To find the displacements u = (u;, »,) € V such that :

(1-8) a(u,v) = (f,v), for all v = (v;, v,) € V,

Using Korn inequality, which can be written as follows

2
1
=9 i)l g < c( 3 Ileij<v>llj,9+llv.Hj,Q>’2 for all v € (ulQ)?,
| i,j=1

where the constant ¢ > 0 depends only on the domain @, one can show (l}}, [9]3
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that if the mecasure of I'y is strictly positive, then the application
2 ) 5&
1-10 TV —- e..v° -
(1-10) v € C 2 ey ymlf? o)

i,j=1

is a normover the space Vycquivalent to the norm ”'“ Q"
1

As a consequcnce, we get, for a constant c-> 0 depending only on Q@

2
ol v <" 2 2 :
(-1 atv v) > 20 2 e, 5 (v)ll‘“Q > c”v”l,g , for all v € V.

i»j=]
Cn the other hand, we have
(1-12) au,v) < clulhs2 |Vl,,Q for all u,v € V.

Inequalities (1-3),(1-11) and (i=12) impiy (by Lax-Milgram Lenrna}
that prcblem (1-8) has a unique solution u € V. %

We have the following Green's formula [1 0] :

-2 2
- ] R . .
(1-13)  a(u,v) = -‘,2 > 5;3— °ij(“) v, d_+ { > Gij(u) ny v; ds,
i,j=1 i,j=1

-'
where n = (n1, n2) denotes the cuter normal oun I.

When the solution u of problem (1-8) is smooth enough, then one

e
=
(¢

can show, using Green's formula (1-13) that u is also solutica of

prcblam

2 . .
(1-14) - z }_za'_ Oij(u) = fi inQ, 1 g1 g2,

(1-15) ui=0 onlg . 1 &1 52,

: 2
(1-16) z Uij(u) nj = g; on M, 1£1g2.
j=1


http://th.it
http://on.fi

-5 -

2, NON CONFORHMING METLODS

Definition 2.,1. Given an integer k 3> 0, we let P and Qk denot.e

k

the  spaces of polynomials in x and y definecd by

1 - " . ) ’E/ i
(2-1) P = {r; P~ )y O ¥ },
L4m<k
2
(2-2) q_ ={qg;a= % By ¥y
fm<k

Given a triangulation T of @ in finite elements K, with boundary
3K, such that U K = 2, we let
KeTh

= diam (K) for all X € T, .

h = max hk’ with h h

KET

k
h

Over each element K, we are given a finite dimensional enace ¥, of shape
, J X 2

functions such that the following inclusions hold :~

(2-3) ?K c ey |, Py ® P1 , for all K € Ty

vhich implies that a first practical necessary conditior of convergence is

satisficd (Zienkiewicz [Jl, page 28] ). We are also given on each K 6‘Th

a set of degrees of freedom allowing to define a basis of the space PK'

In what follows, we assume that the fini.e clements (K, Zy, rK)

are of the same typz, for all X €'th.

We let the subspace X of L2(Q) be the space of functicas

Jdefined by their degrees of freedom on the elements K of T, , and continuous

. k
for these degrees of frecdom along each face common to two adjacent elements,
and whose restriction to each K belongs to PK'
The finite dimcnsional space Vh in which we look for an

approximate solution u will be the subspace of (Xh)2 of functions
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vhose degrees of frecedom along the boundary I'y satisfy boundary conditions

(1-15). A seccond practiecal necessarv condition for convergence

(Zienkicwicz [11, page 29]) would imply that the inclusion
Vh c V 1 Cc°({l) holds. On the contrary, wec shall consider finite elements
for which the -preceding inclusion does not necessarily hold. Such eclements,

and also the corresponding finite element method, are-called ron conforming

([e], [1zD.

Since the functions of Vh are smooth on =2ach K € Ty according
to inciusions (2-3), it is then natural to define a new bilinear form

a (., .)onV_ xV by:

n: h h
2
- = \ =
(2-4) 3, (u,v) = & d 2 o55u) £y dx dy
2

= 3 ()\ ﬁ‘(div W div vh)dx dy + 2u l{. 2 eij (uh) Eij (vh)dxdy>

KeT, . ii=1

The discrete. problem will. then bec defined as. fallows -

To find Uy € Vh such that

(2—;)_ah(uh,vh) = (f,vh) for all Vo € Vh.

We let the applications ”‘l‘h and ”['”!h from VH into R be
defined by :

\,
_ " - 2 2
2-6) {lv |l ( 2. lvhll,x> ,

and we make the following hypotheses :

is a norm on the space Vh’

There exists a constant ¢ > 0 independent of h such that

(2-9) “v”h < c”lvh]”h, for all v, €V, .
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1i hypothesis (2-0) holds, then problem (2-5) has a unique solution u ' \'h.

=a
O

We shall now derive as in [3}, Ll;} , ['-7.], some gencral

estimites for the crrors done on the stresses and strains (measured by

the norm h).and on the displacements (measured by the nornm H'Ho Q)'
o§
Those estimates will lead to a practical condition of convergence for

non-conforming clements, called Pateh Test ([6]).

Theorem 2.1, Assume that hypotheses (2-8) and {2-9) hold.

Let W = (uh’l , uh’z) & Vh be the solution of prolblem (2-5) and u €V be

the solution of problem (}1-8). We have the estimate :

Cuy ”l ” H Eh(U,W)
(2-10) ]]]u—uh h < c<inf u-vily + sup -_[.Iw_l.[__) ,
vevh WGVh ' n

where the constant ¢ > 0 is independent of n, and where

. 2 | 2

r9-1: Yy = o~ r

(2-11) Eh(u,w) z <;K Z Cij (u)nj’Kwids> + £ 2. giwids,
KET, i,j=1 1i=

the nj z S j=1,2 being the components of the outer normzal on 3K,
~—— T,k

‘Proof. We let F_ be defined by F

h h = ah(uh—v, LLh“V) s, for all v=(v;, va)€ Vh' We have

roy 2 o -vliZ > e o -vli2
Fh = (f, uh-v) - ah(v,uh-v) = ah(u—v, uh-v)-F (f,uh-v) - ah(u,uh—v).
Cn the other hand, we have

(£,u9-v) - ah(u,uh-V) =
\

e

.
i
/

LW
1

) {9 _ . \ 2
=) 1,( . }% T Gij (u) (uh,i ri) + Oij(u) . Eij(nh-v)/uxr.y + £ < > g
KET, $,j=10 P hi=

Applying Green's formula (1-13) on each element K ¢ T,, we get

h

2 2
.(f,uh-v) - ah(u,uh-v) = .afK (—- 2. Yij'(u)nj'l((uh,i—viads + [ 2 g;v;ds.
KET

h i,j=1 rli=l

Combining the last relations with the triangular

inequality, we get estimate (2-10).
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The first part of the right hand side of incquality (2-10) is

the same as the term of error obtained in the case of a conforming method

-e

and can be estimated by using results in approximation theory ([2],{13])
‘the sccond part containc only terms arising from the non continuity of the
fupctions of Vh at the interfaces between the elcmeﬁts, and shoﬁld converac
to zecro as h approaches zero, i.e. ;

(2-12) 1lim E
h-o

h(u,w) =0 for all u € V and wvéth.

Condition of convergence (2-12) is repiaced in practice by the

"Patch Test'", which consists in sheying that ([6]) L7]) :

(2-13) E, (u,w) =0 fur all u € P, w € V. and all h > 0.
L ' h

It can be chown on most examples (Lﬂ and § 3) that the Patch Test combined
with continuity requirements at the nodes common to two (or more) ciements

implies convergence.

Consider now the following smoothness hypothesis for the system of

elasticity.
( For all g = (g;, g2) € (L2()2, the system

2
9 -
- Z Eoij(f') = gi’ I

£1i g2
i=1

(2-14) p; =0 onTo, 1 i g2
¢

: oij(T) nj =0onTl;, 1 g1 €2
i=1

has a unique solutiomn Y= (1, ¥2) € (HZ(Q))2 N V and w2 have

| Tl < el

We can slow the following results, the proof ¢f which can alrezdy be fou.d

in [3]. [4].
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Theorem 2.2, Assume * that the hypothosuse (2~-8), (2-9) and

- 1 R =
(2-14) hold. Let U, (uh,x ,uh’

and u € V ke the solution of problem (1-8). We then have :

T, (ll, U, (P s (.p )
215 luull, g < © sup 2<inf W Y h)
3 .
pC(HTUDI" Ve eV ”?”2,9

Y € Vh be the solution of probloem (2-5)
2 .

, Wwith

(2-16) E(u,u, 0, Py) = ah(u-uh.(f’*s"h) - Eh(u, tph) + Eh(sa, uh),

vhere the constant ¢ > 0 is indecpendent of h,

Iroof. We use the following clascical duality argument (£l':—}, [1c,])

l(u-uh, g) |
D b

llumu I| o = su
uh.mﬂ- g€ (L2 () )2 l‘gno,ﬂ

For some g = (g1, g2)€ (L2(Q))? , we let ¢= (y1,p2) € V be the soluticn
of the system of elasticity. According to hypothesis (2-14}, we
have xfE(nz(Q))Z N v and li?llz,g < é[]g]lg,Q , so that =

(u-uh,g)

(2-17) _{u-u gy

I . ¢ syp ————
h'', 1122
0 ‘P"H'(Q) “S"’HZ’Q

On the other hand, using Green's formula, we may write, as in (i~-13)
(2-18) (u-u., g) = a, (u=y»p) + E (p,u-u), and
(2-19) 0 = ah(u-un, ph) + Eh(u,tfh), for all Ph € Vh

Since we have Eb(tp,u) = 0, for all ¢,u € V, we get inequality (2-15) from
inequality (2-17) and equalities (2-18) and (2-19).
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3. WILSON'S ELEMLNT

Assume now that the dowmain 2 is the square ]O,l[ X }O,i[.
Tor the sake of simplicity, we consider a triangulation of © in cqual
squares with sides equal to L = —1—, ior some integer I, but the following
results are stil! valid vhen the elements are non—equal reociaugles. We let

%, = k h, y£=g_}1, Ak.Q = (Xk’yﬁ)’ for 0 k, £ €1,
- . l ] y - - . \q " < o g | P~
Gk;, - ((k + -5)11,(2. + 'é')})) , l\kl = [xk’“kH] x [XZ’}‘.QH]’ for 0 € k, 2 € i1

For 0 €k, £ £ I-1, we let Fkl€ (P1)% be the affine transformation mapping
the reference square K = [-l,+1] X [—1,+1] or. the square K with

kg’
Fgt BmE XK = (x5} €K o

(3-—1\ x:-.!ig_x +._!.:_.X
’ © 2 Tk 2 “k

_ A+ 1-n
G2y =Sy, + 0y,

Definition 3.1. Wilson's "Brick" [Sj can be defined on the

reference square K as foliows (figure 1) :

-~
(1) The space of shape fuuctions is P = P,,
A ~
(ii) The degrees of treedom I are the values of the functicns p at the
‘w2A 22
four vertices of thc square and the values of -g—gg and %r"jzl on the square R.
1

~n . a2§ 2
- ’ R == =~ < [p ——— 2 ——
(3-3) p\al) Pl; 118 ¢, aE2 pg& en Pn

can be written as follows

ey p = B (00O, (DG, (600

+g €D pp g P gy
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The finite elements (K, X, P)k 3 will be the images by the
3

A ~ A« -
transformations FP . of the elcment of reference(, ¥, P), with
L, h

N -1 A D
(3-5) P ® {p=9Do Fm VP cPl . 0 <LKk, & < J-1.
, .

The finite dimensional subspace Xh of L2(®) will be the space

of functions defined by their values at the vertices of the elementa Koo

. . . ] :
amd by the values of theilr second devivatives 553-.and 533 on each

element Kk“ and whose restriction to each element Kkl belongs to’
Ay N

F 0 <k, 2 £ I-1. In the general case, the inclusion Xh c ¢ docs

kg’
not hold.

We shall also neced the space Yh of continuous functions defined
by their values at the vertices >f the elements and whose restrictiou to
each element Kﬁl’ 0< k, £ £ 1I-1, is a polynomial of Q;. The following
inclusion holds :

c E () 0 c"’(?z').

(3-6) Yy

Definition 3.2. For any function ?tsz(ﬁ), its interpolate Iy

~
1

will be the unique function of P, equal to ¢ at the wvertices of K and

such that
é ez - lly) d&dn = é T (v~ 1f) dkdn = 0 .

The following equality is then satisfied:
(3-7) ¢-TN¢=0 1or all ¢ €P,.
Now for ail u = (uj, uz) £ H2(9§2 , we let its (Xh)zjiﬂgggpolato
. . / ..
Hhu be the unique function of (Xh)2 whuse rescriction to each element K of

T, has its components respectively equal to Tu; and Iu,.

We shall need the following hypothesis on the triangulation Th.

{ Assume that T'. = U I' ., where the ' .'s are
) oy ,i 0,1

i I€1<1

(3-8) subsets of T, then the end points of Fo i ISiSio,

’

arc nodes of the triangulation,


http://imap.es
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The space V. will be the subspace of (Xh)2 of functions equal

h
to zero at the vertices belonging to I'p. In the same way, we define the

space W, as the subspace of (Yh)? of functions equal to zero at the

h

vertices belonging to I'g. We then have

(3-9) w, <V ncl@.

For any v, = (Vh,l’ vh,z) c (Xh)z, we let
2,3” .
vi,x(le) = h (§§E, vlyl) (sz) , 1 =1, 2,
2,92 .
vi,y(Gk;Q,) =h.(5-§7 ‘11,13 (Gu) ,1=1,2, 0<%k, ¢<31-1

For any Vh = (vh 10 Yy 2) £ (Xh)z, we let

1 Vh,
Vii (A, ) , i=1,2 , 0<k, %<1,
2 . . . -
G-10) B, (V)=Z (e vy T <Vk+1 P “(";§1,2+f'vi,zﬁ)&‘(Vi+1,£‘vi,2’2
i=1
(3-11) D, (Vh) = (vk 9+1” lzc,z) + (Vk+l 1 1i+1,~)2+ (V ’£+1—-‘v11(’2+1)2+ (an 11,’)

2 2 2 2 41 ,1 oyl 1 N2
((Vkﬂ,'ﬁ Vk+1,£+1’vk,‘z’vk,£+1) + ("k+1,9,+1*‘k’9.+1 vk+1,£"’k,p_)) ,

We shall siow that hypothesese (2-8) and (2-9) are satistied.

Lemma 3.1. Assuwe that hypochesis 3-8 bolds. Then there exist two

ccastants ¢ and C, with o < ¢ < £, independent of h. such that

2 N v :
(3-12) <5 | €5 fv Y ij2 D) + 2. ((v (G.9)? (v (Gr;t)y)
i,5=1 LKy i=1

c ¢ 5 leopl?

i,5=1

0K’

22

N

(o]
1

» 2 -
for all vy = (Vh,l’vh,z) E(kh) and for o < k,
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e
Proof. On the squarce of reference K, we let

?(E,ﬂ) = Vh’l(x’Y) ’ Q’(&gﬂ) = Vh,z(x,}r) ’

with (x,y) = Fk,ﬁ (E,n). We have

2 ,
! 2 2
5 ? - LTSI IO (Ef 3 ) e
=13 % e g0l ‘f\\(ag)* (an) ¥ an“'ag) dedn
. . o, K
i,3=1 L

According to equality (3-4), we may write :

%%.= %‘(?1 - Py -3 rPy) + 2‘(?1 -yt Yy =Py) ¥ fe

oo
She
I

Wi+ %2 = WsmW) +F G- ¥ £ Y = W)+

N

gl
+
2l

=7‘:(§°1 i P8t PR R R TR I IR O A

A R R TR TR ST R AR A Y PP
If the expression (3-13) is equal to zero, we then have :

2p 3y _ 3y, 3 _ : R
T an+ 5E 0, for all &,n € K,

and then

Pr-F2 =¥ ~Qu =W -V =2~ Uy sy =Y

UAM
=
"
o
-

(P1 +92 =3 = o) + (P = Y2 = Y3 + Pu) =0,

so that there exists two constants ¢ and C, with o < ¢ < C, depending orl
A
on X such that

2

2 , PN
c 2 llei‘(vh)” o< (- P2)% + (s —ud? 4 (- W) F (e - )R+
i,5=1 Rer

. _
(?g)z *(p) (¢£)2 + <wn)2 Pt —0y mpy t U = Y2 - Py + )R
2
N 2
= 2‘ .”Eij i) HO’KkSL’
ic3=5

wvhich is exactly inequality (3-12).
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In the same way, one can casily show

Lemna 3.2, Assume that hypothesis 3-8 holds. Then there exicst

two constants ¢ and C, with o ¢ ¢ ¢ C, independent of h, such that :

2
2 2
_ s ({., "N , \> \
(3-14) c[v |1 € Bkg(vh) + ‘“(K‘i,x(ckk)) 4 (vi,y(ckﬁ’ },g Clvh[]’Kk ,

k% i=1 g
or 1 = = { 2 for s -1,
For all vy, (vh,l’ Vh’z) 4 \Xh) and foer 0 g &, £ g T
Collorary 3.i. The application H 'lh (xesp. l” |H ) is_a nnrm

“on the subspace of functions of (Xh\ equal to zero at one (1eup. two) vertices

belonging to I'. The applications ||- l'h and Hl I] are then norms on the

space Vh.

We have the following result

p 2nd i HI on V, are uniformlv

equivalent with respect to h, that is to say, there exist two constants

Lemma 3.3. The two norms ” I

c and C, with o < ¢ < C, independent of h, such that

3-18) el I, < M iy < clivylly, for all v, €V, .

h
Proof. The proof of inequzlity [jjv 'hx Clhh[hl straightforward..
We chall show the other one. For any vh =2(vh’1 h 2) 'y Vh. we let
3 = a 3 W . o b
Yo (wh.x’ wh,z) be the function of (Yh) » taking LHe same wvaluasg as Vo

at the vertices of the elements. We then have

w, €V L c'®.

h

Usirg inequalities (1-10) and (1-{1) (Korn inequality) wc may write :

2 |
el o € et 2 e GadllR o
i, 3=1

where the constant ¢' > 0 is independent of h.

Now, applying Lemmas 3.1. and 3.2. toc the functions ¥ £ (Xh)2
such that wi,x (le) = wi,y(le) =0, 0 k, 2 g I-1, i =1,2, we have :

= ~ 2
Bkl(vh) Bkl(wh) $ Llwhl

’ka-’
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2

ORI < D (w) = <k, &g I-

c 2 ”‘13'(“11)110,1(1,,, Peg () = Dg(vy) 5 0k, 2 < 1m0
i,j=1 -

Combining the last three inequalities, we get
(3-16) )y B ,(v.) £ C 5 D ,(v,)

.l e 32 ’

0<k, f.¢I-1 kETTh Ok, <1~ KL

where the constant C > 0 is independent of h.
Inequality (3-15) is then a consequence of inequality (3-16) and Lemmas (3.1)
and (3.2),

Je let V = {vh € Vh 3 v, =0onT}.

h,o h

Lemma 3.4. Patch Test. Assume that hypothesis (3-b) holds and

that g; = 0, i = 1,2. Then :

-17 = N 2
(3-17) Eh(u, Vh) 0 for all u € (P;)° , Vi, € Vh .

PY - = | £ otl
Proof. For any vy (vh,1’ Jh,z) €'Vh’o, wve let Vi be the function

of (‘:h)2 equal to v, at the vertices of the elements. The function v belongs

/ —
to the space (Eﬂ»(ﬂ))z N kCo(Q))z and we have
(3-18) Eh(u, v, ) = Eh(u, v T wh).

We let, for any K€ T

2
- ] - == 3 ey -— : ‘ > 3 = i
(3-19) Ej’K(J, Vi wh) gy ( E: oij(u)nj,K “h,i wh,i)) ds , 3 i,2
“\; =
P(€:n> = Vh’-!'(x)}') = Qh,l(g’n) ’
4 = = v
v (€, vh’z(x,y) vh’z_(E,n) ,

with u,y = FK(é,n).

We then have

B _ 1 _
h,y  “h,, 2 (g De *+3 (n? Df s

21 - 1 -
—wy o omm (B2 - D) xp€+2(n2 DY,
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If u ¢ (Px)z, then Oij(u) is a coustant for 1 ¢ 1, j ¢ 2 and we may vrite :

h 2 +1
: ) = o O =0 )LM=, .6 (- 1
Lj,K(u,vh w) =3 2. oij(u) {| ((vh’i wh’])\l,n) (vh,1 wh,l)( 1,n)> dn
i=1 )
. ~ ~ _ 1 2 N - A - -
Since (vh,_1 - vh’l)(l,n) =5 (n Dy = (Vh,1 wh’l)(-l,n) ,
~ A 1 2 A A
A == (" - Dy = - =1,1)
(\haZ ‘h,Z)(],n) 2 (n ])")n (Vth wh92)( l,l]' :

we get

Ej K(u, vh—wh) =0, 1<5j<2.
3

Sunming up on all the elements K € 1, leads us to equality (3-i7) .

h

Rumark 3.1. Equality (3-17) is not true for all v, € Vh’ because

h
of the boundary conditions. To derive the estimates, we shall in fact use
2
the equalities : E:Oij(u) nj = 8i» for 1 = 1,2, on 'y , and equality (3-183)
i=1

is then still wvalid.

We shall need the following genarzlization of Erawhle and Hilbert Lemma .[uﬁ

to. bilincar forms [f] :

Lemma 3.5. Let Q be an open bounded subset of R? with z sufficientlv

smooth boundary, let r and m be two integers and let W be a space of functions

. . . . . . M+l o e .
satisfying tne inclusious Pm S W & H () : the space W is considered

. . ' . 1
as being egquipped with the ncrm h-!l Finally, let A : T ) x y—R

‘mt1 Q°
be a continuous bilinear form such that

(3-20) A(u,v) O for all u € P_, v € W,

(3-21) A(u,v) 0 for all u € Hr*l(Q), v ¢ Pm.

Then there exists a constant C = C(R) such that

(3-22) |ACu,v)| < ¢ ||All for' all u € BTV (Q), v € W.

lulr“';,QlV'm'*'l’Q
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The classical inverse incquality holds -

Lerma 3.6. For all vﬁ(Xl‘)? » we have

-1
(3-23) IV_h‘mH,K < ch Ivhlm,}{ y 0gm g1,

for all K € 1, the coustant ¢ > 0 being indepcndent of h.

h’

Using cquality (3 7) and results in approximation theory [I,J,

ve get Lemma 3.7. Let s be an integer with 2g¢s g 3, let u € n° )N v,
h hehl % < ——t

and Hhu < Vh’ the Vh interpolate of u. We have

(3-24) Iu—Hhu € ¢ h Iu‘. , Vg mgs,

lm,K

for all u € H(Q), all K € 1

h? the coustant ¢ > 0 being independent of h.

We are now able to show the following fundamental result.

Lemma 3.8. Assume that hypothesis (3--€) holds, then we have

» -~y ) 1’/
(3-25) Eh(u’ Vh) £c hzlulz,n<‘(z Ivh ;,K) 2
.. é'l'l';’:

(3-26) B (w, v) < hful ol .

For all u € V, and vy, € V‘l, the constant ¢ > 0 being independent of h .

gzgqf «Consider expressicns (3-18) and (3-19). We may write

2
+|
’ h ‘ < - T~ /\
Ejz"g'_‘“’vrf”h) =3 -f‘ 2. {( 5 R D) m- (o, (U)\v --w DG
Toi=]
=R EG., 9. -0), withg. =@G.., 8 .)
2 i’ h h’ 94 137 “237°

The mapping : (8., ¥. ) > E (8 R vh h) is linear and continuous from

{Hz(f())z X (H (k)) 1nto R and we have
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’: 5 -0 o .. a - ) 2 8 2 ’E 2
B (Gj, \1x"h) 0 for all ¢ ; c (Pg)°, Vi, € <}1 (}))
N A A A . e 1,48 \2 ’ ?
L (6., -4 ) =0 for all cg € (), e Q)

A consccuence of Lewmma 3.5 is then

|E (Sj, Oh”Oh)l < ¢ |8,

J 1,1/Z Ivh‘z,i

Using the inverse of the transformation FK’ we get

L

: A3 A : 2 . . .
j’K‘u’ N “h)l £Ch I“lZ,K ‘vhiz,K » for all K€ 1.

Summing up on all the elements K€ T, and on the indices j = 1,2, wec get

h
inequality (3-25). Tneqyuality (3-26) is a direct consequence of inequalities

{(3-25) and (3-23).
We have the error estimates

Theorem 3.1, Let u € (HZ(Q))2 N V be the soluticn of problem {i-8)

and u € V.n be the solution of problem (2-5), the ace V. being constiucted

h
) holds. Then we have :

sp
by using Wilson's brick. Assumc that hypothesis (3-€

(3-27) ”u~uh”h $ ¢h Iulz,p ,

where the constant ¢ > 0 is independent of h.

Moreoﬁcr, if hypothcsis (2-15) holds, then we have :

{3-28) ]iu—uhHo,Q

Proof. Since hypothesez (2-8) and (2-9) are satisfied, for the
space Vh constructed ahove, we can appiy theorem 2.1 cnd we. have

|Eh(u ,W)—i_

IIu*uhl‘ g c (llu*ﬁh ulhl+ ,Sup —_— > ,

ol

where the function Hh u is the Vh - interpolate of u.
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According to jemmas 3.7 and 3.8, we have respectively the cstimates

Eh(u, w) £ ¢c h lulz,Sz lehx ,

“u—HhuHh € ¢ h :UI, Q-

L)

- - . . . .
The last threo inequalities lead to estimate (3-27), and 2lso to the followiug

forguality

”Uh ~ilh ul] € ¢ lula,Q .

Using L.emzas 3.6 and 3.7, we get

(3-29) ¥ Il €% (l“h“'”h“lz,x + |m ulz,K) <e ful? o

K€Th KCTh

Assuae now that hypothesis {2-15) holds ; then we may apply .Theorem 2.Z2. :

| . lEﬁ(u,uh,?,Hhv)l
!‘u~uh|k’g < ¢ sup .

pelu @) llell, g

Lemna 3.7 and inequality (3-27) iwmply that
vje— - I fa— - e 2 1' .
ah(d U}\sl)o nh?-' £ ¢ l'u uh“h ”T n‘hTHn < ch lle,Q holz,Q

According to Lemma 3.8 and inequality (3-29), we get
1

h
Eh(f’ uh) K < h2 l'f{z,Q ( z IL’hIi,R) < ¢ h2 !U!Z,ih l(f’lng
KETh

Finally, with lemmas 2.7 and 3.8 w2 can write

\/ 21!
B (w,Thyp) € e b® Ju] o ( DI Yli,;<> <enflul g Iﬂg,ﬂ .

'Ks'rh

Estimate (3-28) is a consequence of ttc last four inequalities.
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Figure 1. Wilson's element
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