F. BREZZI

On the Existence, Uniqueness and Approximation of Saddle-Point Problems Arising from Lagrangian Multipliers

Publications des séminaires de mathématiques et informatique de Rennes, 1974, fascicule S4
«Journées éléments finis», , p. 1-26
http://www.numdam.org/item?id=PSMIR_1974___S4_A1_0
© Département de mathématiques et informatique, université de Rennes, 1974, tous droits réservés.

L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

F. ERREZZI
 (*)

ON THE EXISTENCE, UNIQUENESS AND APPROXIMATION
OF SADDLE-POINT FROBLEMS ARISING FROM LAGRANGIAN MUITIPLIERS.
(x) Universitả di Pavia e Laboratorio di Analisi Numericadel C.N.R

INTRODUCTION

The present paper has been suggested by the recent development of the so called "dual analysis" and in particular of the method of Lagrangian muitipliers in elasticity problems; we shall refer for now only to a few papers, and in particular to $[12]-[14],[24],[25],[28],[29]$, ando to the references contained in such papers; many other references, however, will be given in the following. Although the equilibrium, hybrid and mixed methods contained in the mentioned works are often quite satisfactory from a numerical point of view, a complete study of the convergence of these methocis and of the behaviour of the error has not been done until last years, ard however, only in some partictilar case (see e.g.[20]and especially [18].[19] fo the "mixed methods" and[5] for the "assumed stresses hybrid method"; cther references on this subject can be founded in[31]). The interest of these methocis, and in particular of hybrid methods has been increased by papers $[15],[27],[32]$, in which the theory of "non conforming" (or "delinquent") elements (see e.g.[30],i21], etc.) is presented as a "particular case" (in some sense) of hybrid methoàs. On the other hand, a careful analysis, Eor instance, of the work[11]on the Stoke's equations shows that the greatest difficulties in proving convergence and error bounds are connectec with the use of the method of Lagrangian multipliers itself, rather than with the physical meaning of the problem. In this sense, the "general strategy" employed in [11] and in [5], in order to have convergence and error bounas for discretizations of different problems is, in fact, quite similar.

These considerations have suggested the author to develop the present "abstract theory" about saddie-point problems. More generally the problem treated here is the following.
(P)

$$
\left\{\begin{array}{l}
\text { Find }(u, \psi) \text { in VreW such that: } \\
a(u, v)+b(v, \psi)=\langle f, v\rangle \forall v \in V, \\
b(u, \varphi)=\langle g, \varphi>\forall \varphi \in W,
\end{array}\right.
$$

where V, W are real Hilbert spaces, $a(u, v)$ and $b(v, \varphi)$ are continuous bilinear forms on $V X V$ and $V \times W$ respectivelly and f, g are given functionals in V^{\prime} and W^{\prime} resp.

In paragraph 1 we give necessary and sufficient conditions on $a(u, v)$ and $b(v, \varphi)$ in order to have existence and uniqueness of the solution of problem (P) for all given (f,g) in $V^{\prime} \times W^{\prime}$. In paragraph 2 we introduce the
"approximate problem":
$\left(P_{h}\right) \quad\left\{\begin{array}{l}\text { find }\left(u_{h}, \psi_{h}\right) \text { in } V_{h} \times W_{h} \text { such that: } \\ a\left(u_{h}, v_{h}\right)+b\left(v_{h}, \psi_{h}\right)=\left\langle f, v_{h}\right\rangle \quad \forall v_{h} \in V_{h}, \\ \left.b\left(u_{h}, \varphi_{h}\right)=<g, \varphi_{h}\right\rangle \forall \varphi_{h} \in W_{h_{h}},\end{array}\right.$
(where V_{h} and W_{h} are closed subspaces of V and W resp.), and we give, under suitable assumptions, an upper bound for the "error":

$$
E_{h}=\left|\left|u-u_{h}\right|\right|+\left|\left|\psi-\psi_{h}\right|\right|
$$

The third paragraph is dedicated to further considerations concerning "numerical integration" and "non conforming" approximation of W (that is $W_{r} f(W)$; this latest topic has been suggested by the papers[97],[32]ard can be applied for instance to the "strongly diffusive" elements (equilibrium models) by F. de Veubeke.

Of course, the theoretical results given here, do not answer any guestion related to the mentioned methods and in general to the problems in which the method of Lagrangian multipliers is employed. In some particu lar cases the greatest difficulty will often be the verification of the abstract hypotheses proposed here. It is reasonable, however, to thirk that tre knowledge of a "winning strategy" will be, in any case, useful.

Some of the results of this paper were also reported in a previous note (see [7]); I wish to thank Prof.J.L. Lions for presenting it to tre C.R. Acad. Sc.. Thanis are also due to Prof. P.A. Raviart for their help in useful personel conversations.

O.- PRELIMINARIES

 and $x \in X$ the value of x^{\prime} at the point x will be indicated by $\langle x$, $x>$. Tie scalar product and the norm in X will be indicated by (,) and||(resp.) or by (,) X and $\left|\mid \|_{\mathrm{X}}\right.$ whenever confusion may rise. We denote also by J_{X} Riesz's "representation operator" from X ' on to X, defined by

$$
\left(J_{X} x^{\prime}, x\right)=\left\langle x^{\prime}, x\right\rangle \quad \forall x \in X, x^{\prime} \in x^{\prime}
$$

It is well known that J_{X} is a norm preserving isomorphism from X^{\prime} on to X. Let now Y be another real Hilbert space and let T be a continuous linear operator from $D(T)$ into Y. The domain $D\left(T^{\prime}\right)$ of the dual operator is defined by:

$$
D\left(T^{\prime}\right)=\left\{Y^{\prime} \mid Y^{\prime} \in Y^{\prime}, X \rightarrow\left\langle Y^{\prime}, T x\right\rangle \text { is continuous on } X\right\} .
$$

Then the dual operator T^{\prime} from $D\left(T^{\prime}\right)$ into X^{\prime} is defined by:

$$
\left\langle T^{\prime} y^{\prime}, x\right\rangle=\left\langle Y^{\prime} T x\right\rangle \quad \forall x \in X, Y^{\prime} \in D\left(T^{\prime}\right) \text {. }
$$

We want now to prove a theorem that will be useful in the following.
Theorem 0.1.- Let X, Y be real Hilbert spaces; let $T(X, Y)$ be a contiruous bilinear form on $X \times Y$ and let T be the continuous linear operator from X into Y^{\prime} associated to $\mathcal{Y}(x, y)$, defined by:

$$
<T x, y>=\mathcal{G}_{(x, y)} \quad \forall x \in X, y \in Y .
$$

For all $k>0$ the three following statements are equivalent:
i) $\sup _{x \in X-\{0\}} \nmid x(x, y) \geqslant x| | y| | \quad \forall y \in Y$,
ii) $\quad\left|\left|T^{\prime} Y\right|\right| \geqslant K| | Y| | \quad \forall Y \in Y$,
iii) $\exists S \in \mathcal{L}\left(Y^{\prime}, X\right)^{(1)}$ such that $T S=I$ (identity) on Y^{\prime} and $\left||S| \leqslant K^{-i}\right.$.
(1) If H_{1} and H_{2} are Hilbert spaces, $\mathscr{L}\left(H_{1}, H_{2}\right)$ will be the space of all 1inear continuous operators from H_{2} into H_{2}, with the norm:

$$
||S||=\|S\| \underset{\mathcal{L}\left(H_{1}, H_{2}\right)}{ }=\sup _{x \in H_{1}-\{O\}} \frac{| | S x| |}{|x| \mid} .
$$

Proof.

i) \Leftrightarrow ii) follows obviously from:

$$
\sup _{x \in X-\{0\}} \frac{\mathscr{G}(x, y)}{\|x\|}=\sup _{x \in X-\{0\}} \frac{\left\langle T^{\prime} y, x\right\rangle}{\|x\|}=\left\|T^{\prime} y\right\|, \quad \forall y \in Y
$$

iii) \Rightarrow ii) follows obviously from the relations $(y \neq 0)$:

$$
\left\{\begin{array}{l}
\sup _{x \in X-\{0\}} \frac{\mathcal{G}_{(x, y)}\|x\|}{\| \frac{\mathcal{G}\left(S J_{y}^{-1} y, y\right)}{\left\|S J_{Y}^{-1} y\right\|}=\frac{\|y\|^{2}}{\left\|S J_{Y}^{1} y\right\|}} \\
\left\|S T_{Y}^{-1} y\right\| \leqslant k^{-1}\left\|J_{Y}^{-1} y\right\|=k^{-1}\|y\|
\end{array}\right.
$$

1i) \Rightarrow iii). Let $N=k e r(T)$ the kernel of T; setting

$$
\begin{aligned}
& N^{\perp}=\{x \mid x \in X, \quad(x, \xi)=0 \text { if } T \xi=0\}, \\
& T_{4}=\text { restriction of } T \text { to } N^{\perp},
\end{aligned}
$$

from ii) and the closed range theorem (cir. e.g. Yosida [33] pag 205), we have that T_{1} is an isomorphism from N^{\perp} onto Y^{\prime}. From i) we easily get that, for all y in Y ,

$$
\sup _{x \in N^{-}}\{0\} \underset{T(x, y)}{\|x\|} \geqslant k\|y\| .
$$

Then (see part $i) \Leftrightarrow$ ii) of this proof) $\left\|\left(T_{1}^{\prime}\right)^{-1}\right\| \leqslant k^{-1}$; hence $\left\|T_{1}^{-1}\right\| \leqslant k^{-1}$, and setting $S=T_{1}^{-1}$ the proof is completed.
Corollary 0.1.- Under the hypotheses of theorem 0.1 for all k and \bar{k} positive numbers the three following statements are equivalent:
I) $\sup _{x \leqslant x-\{0\}} \frac{\zeta(x, y)}{\prod x \|} \geqslant k\|y\| \forall y \in Y$ and $\sup _{y \in Y-\{0\}} \frac{\zeta(x, y)}{\prod y \mid} \geqslant F\|x\| \forall x \in X$;
II) $\quad||T x|| \geqslant \bar{k}| | x| | \forall x \in X \quad$ and $\left|\left|T^{\prime} y\right|\right| \geqslant k| | y| | \forall y \in Y$,
III) T is an isomorphism from X onto Y^{\prime}, with $\left\|T^{-1}\right\| \leqslant K^{-1}$ and $\left\|\left(T^{\prime}\right)^{-1}\right\| \leqslant \bar{K}^{-1}$. Proof.- It is sufficient to apply theorem 0.1 to the form $\mathscr{F}(x, y)$ and to the form $\zeta^{\prime}(y, x)=\zeta(x, y)$ (defined on $\left.Y X X\right)$.

Remark 0.1.- The results contained in theorem 0.1 and in corollary 0.1 are of classical type and might not be new. For instance part I) \Rightarrow III) of corollary 0.1 was used by Babuskia [3].

1.- EXISTENCE AND UNIQUENESS

Let now V and W be real Hilbert spaces, and let $a(u, v)$ and $b(v, \varphi)$ be continuous bilinear forms on $V \times V$ and $V \times W$ respectively. For any giver pair (f, g) in $V ' \times W$ ' we consider the problem:

$$
\left\{\begin{array}{l}
\text { find }(u, \psi) \text { in } V \times W \text { such that: } \tag{1.1}\\
a(u, v)+b(v, \psi)=\langle f, v\rangle \forall v \in V, \\
b(u, \varphi)=\langle g, \varphi\rangle . \forall \varphi \in W .
\end{array}\right.
$$

We remark that, if, for instance, $a(u, v)$ is symmetric and v-elliptic, in the sense that there exists a positive constant δ such that

$$
a(v, v) \geqslant \delta| | v \|^{2} \forall v \in V,
$$

then problem 1.1 is equivalent to the research of the saddie point on $V \times W$ of the functional

$$
\mathcal{L}(v, \varphi)=\frac{1}{2} a(v, v)+b(v, \varphi)-\langle f, v\rangle-\langle g, \varphi\rangle .
$$

We look now for (necessary and) sufficient conditions in order that for each (f, g) in $V ' \times W$ ' problem (1.1) has a unique solution. In other words, if $A \in \mathscr{L}\left(V, V^{\prime}\right)$ and $B \in \mathscr{Z}\left(V, W^{\prime}\right)$ are the operators associated to $a(u, v)$ and $b(v, p)$ resp., we search for (necessary and) sufficient conditions in order that the operator $\mathrm{A}: \mathrm{V} \times \mathrm{W} \rightarrow \mathrm{V}^{\prime} \times \mathrm{W}^{\prime}$, defined by

$$
\begin{equation*}
A(v, \varphi)=\left(A v+B^{\prime} \varphi, B v\right), \tag{1.2}
\end{equation*}
$$

results an isomorphism.
For this, first of all we introduce the space:

$$
\begin{equation*}
z=\operatorname{Ker}(B)=\{v \mid v \in V, b(v, \varphi)=0 \quad \forall \varphi \in W\}, \tag{1.3}
\end{equation*}
$$

whioh is a closed subspace of ${ }^{\prime} V$. Let Z^{\prime} be the dual space of $Z ; Z^{\prime}$ can be identified with a closed subspace of V^{\prime}, consisting of all $f \in V^{\prime}$ such that (1.4) $\langle f, v\rangle=0$ if $(v, w)=0 \quad \forall w \in Z$.

Let us denote by $\pi: V^{\prime}+2$ the orthogonal projection from V^{\prime} onto Z^{\prime}. The closed subspace of V^{\prime} consisting of all $f \in V^{\prime}$ such that $\pi f=0$ (polar set of 2) will be indicated by z°.
We can now prove the following theorem.

THEOREM 1.1.- The operator Λ defined in (1.2) is an isomorphism from VXW orto V'xW' iff the two following conditions are satisfied:
(1.5) $\quad \pi A$ is an isomorphism from 2 onto 2 ', (1.6) $\exists k>0$ such that $\left\|B^{\prime} \varphi\right\| \geqslant k\|\varphi\| \forall \varphi \in W$.

Proof.- Suppose that Λ is an isomorphism. Let us define, for all g in w, Sg as the first element of the pair $\Lambda^{-1}(0, g)$, that is:

$$
\begin{equation*}
w=S g \Leftrightarrow \exists x \in W, \quad \Lambda(w, x)=(0, g) . \tag{1.7}
\end{equation*}
$$

We have from (1.2) and (1.7) that $B S=I$; since A is an isomorphism, $S \in \mathscr{L}\left(W^{\prime}, V\right)$ and therefore, by theorem 0.1 , (1.6) holds. We define now, for all feZ', Qf as the first element of the pair $\Lambda^{-1}(f, 0)$, that is:

$$
\begin{equation*}
w=Q f \Leftrightarrow \exists x \in W, \Lambda(w, x)=(f, 0) . \tag{1.8}
\end{equation*}
$$

Since, by the closed range theorem and (1.6), $\pi B^{\prime} \varphi=0 \quad \forall \varphi \in W$, we get from (1.8) and (1.2) that $\pi A Q f=\pi f=f$. So $\pi A Q=I$ and then πA is surjective. Suppose now that $z \in Z$ and $\pi A z=0$; then $A z \in Z^{\circ}$ and by (1.6) and by the closed range theorem there exists $a x$ in W such that $B^{\prime} x=-A z$. So $\Lambda(x, z)=(0,0)$ and then $z=0$. Therefore πA is also injective and, obviously, continuous; hence (1.5) holds. Suppose now, conversely, that (1.5) and (1.6) hold. From (1.6) and theorem 0.1 the problem

$$
\begin{equation*}
\Lambda(u, \psi)=(f, g) \tag{1.9}
\end{equation*}
$$

is equivalent the problem

$$
\begin{equation*}
\Lambda(w, \psi)=(f-A \bar{u}, 0) \tag{1.10}
\end{equation*}
$$

with $u=w+\bar{u}$ and $B \bar{u}=g$. Hence Λ is an isomorphism from $V \times W$ onto $V^{\prime} \times W^{\prime}$ if H_{0}, restriction of A to $2 \times W$, is an isomorphism from $2 \times W$ onto V 'x\{Oj. Let now be $f \in V^{\prime}$, and let $w \in Z$ be the unique solution of $\pi A w=\pi f$, which existence follows from (1.5). Since $\pi(f-A W)=0$ we have $f-A W \in Z^{\circ}$ and then from (1.6) there exists a unique ψ in W such that $B^{\prime} \psi=-A w+f$; we have proved in this way that for each $f \in V^{\prime}$ there exists a unique $(w, \psi) \in Z \times W$ such that $\Lambda_{0}(w, \psi)=(f, 0)$. Then Λ_{0} is a continuous one to one mapping and therefore an isomorphism. The following proposition expresses the norm of Λ^{-1} and $\left(A^{\prime}\right)^{-i}$ as function of the constants related to A and B in theorem 1.1.

[^0]Proposition 1.1.- Suppose that A and B are such that (1.5) and (1.6) are satisfied. Let us define
(1.11)

$$
\gamma=\operatorname{Sup}_{u \in Z-\{0\}} \frac{\perp \pi A u \mid \perp}{|u| \mid}, \gamma^{\prime}=\operatorname{Sup}_{u \in Z-\{0\}} \frac{\left|\pi A^{\prime} u\right|}{|u| \mid},
$$

$$
\alpha=||A||=\left|\left|A^{\prime}\right|\right|, \quad B=||B||=\left|\left|B^{\prime}\right|\right|
$$

Then, setting
(1.12) $M(\alpha, \gamma, k)=\max \left\{\left(\gamma^{-1}+k^{-1}\left(1+\alpha \gamma^{-1}\right)\right),\left(k^{-1}+\alpha k^{-2}\right)\left(1+\alpha \gamma^{-1}\right)\right\}$,
we have:
(1.13)

$$
\left|\left|\Lambda^{-1}\right|\right| \leqslant M(\alpha, \gamma, k)
$$

(1.14)

$$
\left|\left|\left(\Lambda^{\prime}\right)^{-1}\right|\right| \leqslant M\left(\alpha, \gamma^{\prime}, k\right)
$$

Proof.- Let $(f, g) \in V^{\prime} \times W^{\prime}$ and let $(u, \psi)=\Lambda^{-1}(f, g)$, that is:

$$
\left\{\begin{array}{l}
A u+B^{\prime} \psi=f \tag{1.15}\\
B u=g
\end{array}\right.
$$

From (1.6) and theorem 0.1 there exists a w in V such that $B w=g$ and

$$
\begin{equation*}
||w|| \leqslant k^{-1}| | s| | \tag{1.16}
\end{equation*}
$$

Setting now v=u-w we get, from (1.15),
(1.17)

$$
\pi A v=\pi f-\pi A W,
$$

and from (1.11);

$$
\begin{equation*}
|v| \mid \leqslant \gamma^{-1}(| | f| |+\alpha| | w| |) ; \tag{1.18}
\end{equation*}
$$

so we have:
(1.19) $\quad|u|\left|\leqslant||v||+\left||w| \leqslant \gamma^{-1}\right|\right| f\left|\left|+k^{-1}\left(\gamma^{-1} \alpha+1\right)\right|\right| g|\mid$.

Since from (1.15) we get
(1.20)

$$
\left|\left|B^{\prime} \psi\right|\right| \leqslant||f||+||A u|| \leqslant||f||+\alpha| | u| |,
$$

from (1.6) we obtain
(1.21) $\quad||\psi|| \leqslant k^{-1}| | f| |+k^{-1} \alpha| | u| |$,
and from (1.19) and (1.21) we have (1.13); the proof of (1.14) can be performed in a similar manner.

Remark 1.1.- It can be easily verified that Λ is the operator associated to the form

$$
\begin{equation*}
\zeta((u, \psi),(v, \varphi))=a(u, v)+b(u, \varphi)+b(v, \psi) . \tag{1.22}
\end{equation*}
$$

So by corollary 0.1 with $X=Y=V \times W, \Lambda$ is an isomorphism iff there exists $\tau, \bar{\tau}>0$ such that

On the other hand it can be shown that condition (1.23) holds iff (1.5) and (1.6) hold. Then, this can de another way, which extends and generalizes the idea of Babuska [4], in order to prove theorem 1.1.

The following corollary will be useful in the applications.
Corollary 1.1.- If $a(u, v)$ is $Z-e l l i p t i c$ and (1.6) holds, then Λ is an isomorphism.
The proof is immediate.
Remark 1.2.- In many applications (see e.g. Raviart-Thomas [87] and Thomas [32]) we are led to the problem (1.1) by the following procedure. Let V_{0} and V be real Hilbert spaces, with V_{o} closed subspace of V, and let $a(u, v)$ be a continuous bilinear form on $V \times V$ which is $V_{0}-e l l i p t i c ; ~ w e ~ w a n t ~ t o ~ s o l v e ~ t h e ~ p r o-~$ blem:

$$
\left\{\begin{array}{l}
\text { find } u \text { in } V_{0} \text { such that } \tag{1.24}\\
a(u, v)=\langle f, v\rangle \quad \forall v \in V_{0}
\end{array}\right.
$$

where f is a given element in V^{\prime}. For this we consider the space $W=V_{0}^{0}$ (polar space of V_{0}) which is a closed subspace of V^{\prime}; problem (1.24) is now equivalent to:

$$
\left\{\begin{array}{l}
\text { find }(u, \psi) \text { in } V W \text { such that: } \tag{1.25}\\
a(u, v)+\langle\psi, v\rangle=\langle f, v\rangle \quad \forall v \in V, \\
\langle\varphi, u\rangle=0 \quad \forall \varphi \in W,
\end{array}\right.
$$

and setting

$$
\begin{equation*}
b(v, \varphi)=\langle\varphi, v\rangle \quad, \quad v \in V, \varphi \in W \subseteq V^{\prime} \tag{1.26}
\end{equation*}
$$

problem (1.25) is of the form (1.1). We note also that from (1.26) we have, in this case, $B^{\prime}=I$ (identity), so (1.6) is automatically satisfied; moreover we have obviously
(1.27)

$$
2=\operatorname{ker}(B)=v_{0}
$$

and then, since $a(u, v)$ is V_{0}-elliptic, corollary 1.1 is immediatelly applicable.

Exemples.- We shall report here only a few exemples, related to the applications of the hybrid methods by Pian and Tong to plate bending problem (Dirichlet problem for the biharmonic operator Δ^{2}). The field of application of the theory $\frac{\text { hoverer }}{\text { is }}$ Guite large; for further examples of applicatiors and for all the details we shall refer to others papers (i.e. Piar-Tong $\left.{ }_{[} 5\right]$, Brez$z i$ [5], [6], F. de Veubeke [15], Raviart-Thomas [27], Thomas 5í , Brezzi-Karini [8_{1}^{7}, etc.) which have suggested the abstract theory which is presented here.

Example 1.1.- Let us consider the problem:

$$
\left\{\begin{array}{l}
\Delta^{2} w=p \text { in } \Omega, \tag{1.28}\\
w=\frac{\partial w}{\partial n}=0 \text { on } r=\partial \Omega,
\end{array}\right.
$$

where Ω is a convex polygon, $p(x, y)$ an element of $L^{2}(\Omega)$ and n is the ou:ward normal direction to $\partial \Omega$. We apply to this problem the first hytria method ("assumed stresses hybrid method") by Pian and Tong $\mathbf{2 5}$. For this let us consider, for any given decomposition of Ω into polygonal subacmains Ω_{i} ($i=1, \ldots, N$), the spaces

$$
\begin{equation*}
F=\left\{v \in\left(L^{2}(\Omega)\right)^{3} ; v_{1, X x}+2 v_{2, X Y}+v_{3, Y y} \in L^{2}\left(\Omega_{i}\right) \quad(i=1, \ldots, N)\right\} \tag{1.29}
\end{equation*}
$$

(1.30) $V=\left\{v \in F ; v_{1, x x}+2 v_{2, x y}+v_{3, y y}=0\right.$ in $\left.\Omega_{i} \quad(i=1, \ldots, N)\right\}$,

$$
\begin{equation*}
W=\left\{\varphi \in H_{0}^{2}(\Omega) ; \quad \Delta^{2} \varphi=0 \quad \text { in } \quad \Omega_{i}(i=1, \ldots, N)\right\}, \tag{1.31}
\end{equation*}
$$

and let f be an element of F such that:

$$
\begin{equation*}
f_{1, x x}+2 f_{2, x y}+f_{3, y y}=p \text { in } \Omega_{i} \quad(i=1, \ldots, N) . \tag{1.32}
\end{equation*}
$$

Finally we consider the bilinear form $b(v, \varphi)$ defined on $v \times W$ Ey:
(1.33)

$$
b(v, \varphi)=\sum_{i=1}^{N}\left\{\int_{\Omega_{i}}\left(v_{1} \varphi, x x+2 v_{2} \varphi, x y+v_{3} \varphi, y y\right) d x d y-\int_{\Omega_{i}}\left(v_{i}, x x+2 v_{2, x y}+v_{3}, y y\right) \varphi d x d y\right.
$$

Setting now, for every u, v in F,

$$
\begin{equation*}
\left.[u, v]=\int_{\Omega} u_{1} v_{1}+2 u_{2} v_{2}+u_{3} v_{3}\right) d x d y, \tag{1.34}
\end{equation*}
$$

we define
(1.35) $\quad \begin{cases}a(u, v)=[u, v], & u, v \in V, \\ L(v)=-[f, v], & v \in V, \\ T(\varphi)=-b(f, \varphi), & \varphi \in W,\end{cases}$
and we introduce the norms:

$$
\begin{equation*}
\|v\|_{V}^{2}=[v, v], \quad v \in V, \tag{1.36}
\end{equation*}
$$

$$
\begin{equation*}
\|\varphi\|_{\mathrm{W}}^{2}=|\varphi|_{2, \Omega}^{2}=\|\varphi, x \mathrm{x}\|_{L^{2}(\Omega)}^{2}+2\|\varphi, x y\|_{L^{2}(\Omega)}^{2}+| | \varphi, Y y \|_{I^{2}(\Omega)}^{2}, \varphi \in W \tag{1.37}
\end{equation*}
$$

Then by corollary 1.1 the problem
$(1.38)\left\{\begin{aligned} & \text { find }(u, \psi) \text { in } V \times W \text { such that: } \\ & a(u, v)+b(v, \psi)=L(v) \quad \forall v \in V, \\ & b(u, \varphi)=T(\varphi) \quad \forall \varphi \in W,\end{aligned}\right.$
has a unique solution. It can be shown (see Brezzi-Marini [8]) that the solution (u, ψ) of (1.38) is related to the solution w of (1.28) by:

$$
\begin{align*}
& \left(w, x_{x}^{\prime} w_{x y}^{\prime} w_{y y}\right)=u+f \text { in } \Omega \tag{1.39}\\
& \left(w, w_{\prime_{x}}, w_{y}\right)=\left(\psi, \psi \prime_{x}, \psi y_{y}\right) \quad \text { on } \sum=\bigcup_{i=1}^{N} \partial \Omega_{i} . \tag{1.40}
\end{align*}
$$

Example 1.2.- We want to apply now to problem (1.28) the second hybrid method ("assumed displacements hybrid method") by Pian and Tong [95; for this we consider, for any given decomposition of Ω into polygonal subdomains $\Omega_{i}(i=1, \ldots, N)$, the spaces:

$$
\begin{equation*}
V=\left\{v \mid v \prod_{i=1}^{N} H^{2}\left(\Omega_{i}\right), \quad v=\frac{\partial v}{\partial n}=0 \text { on } \partial \Omega\right\}, \tag{1.41}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{W}=\left\{M \mid M \in\left(L^{2}(\Omega)\right)^{3}, M_{i, x x}+i M_{i, x y}+M_{3, y y}=0 \text { in } \Omega_{i} \quad(i=1, \ldots, N)\right\}, \tag{1.42}
\end{equation*}
$$

(1.43) $\quad \tilde{W}_{0}=\left\{M \mid M \in \tilde{W}, M_{1}=\varphi_{1 x x}, M_{2}=\varphi_{x y}, M_{3}=\varphi_{\text {yy }}\right.$. in each $\left.\Omega_{i}, \varphi \in V\right\}$ We define the bilinear form $b(v, M)$ on $V \times W$ by

$$
\begin{equation*}
b(v, M)=\sum_{i=1}^{N} \int_{\Omega_{i}}\left(v_{\prime_{x x}} M_{1}+2 v_{\prime_{x y}} M_{2}+v_{\prime_{y y}} M_{3}\right) d x d y \tag{1.44}
\end{equation*}
$$

and then we define:

$$
\begin{equation*}
W=\left\{M \mid M \in \tilde{W}_{0}, \quad b(v, M)=0 \quad \forall v \in H_{0}^{2}(\Omega)\right\} . \tag{1.45}
\end{equation*}
$$

Using Southwell stress functions U, V, defined by

$$
\begin{equation*}
M_{1}=v,_{y}, \quad M_{2}=-\frac{1}{2}\left(v_{\prime_{x}}+v_{y}\right), \quad M_{3}=v_{x}, \tag{1.46}
\end{equation*}
$$

(cfr. F. de Veubeke-zienkiewicz [16]), W can be characterized as the set of M in \tilde{W}_{0} such that $U_{n}=U v_{x}+V v_{y}$ and $U_{t}=-v v_{x}+U v_{y}\left(v_{x}=\operatorname{cosn_{i}} x, v_{y}=\cos n_{i} y\right)$ are "continuous" across the interelement boundaries $\partial \Omega_{i}$.

In fact setting (see e.g.Fide veubeke [15]).

$$
\begin{equation*}
M_{n}=\frac{\partial U_{t}}{\partial S}, \quad M_{n t}=-\omega-\frac{\partial U_{n}}{\partial S}, \quad Q_{n}=\frac{\partial \omega}{\partial s}, \quad \omega=\frac{1}{2}\left(V_{r_{x}}-U, y_{y}\right), \tag{1.47}
\end{equation*}
$$

$\mathrm{b}(\mathrm{v}, \mathrm{M}) \mathrm{can}$ be written formally as:

$$
\begin{align*}
b(v, M) & =\sum_{i=1}^{N} \int_{\partial \Omega_{i}}\left(M_{n} \frac{\partial v}{\partial n}+M_{n t} \frac{\partial v}{\partial s}-Q_{n} v\right) d \sigma_{i}= \tag{1.48}\\
& =\sum_{i=1}^{N} \int_{\partial \Omega_{i}}\left(M_{n} \frac{\partial v}{\partial n}-\frac{\partial U_{n}}{\partial s} \frac{\partial v}{\partial s}\right) d \sigma_{i}
\end{align*}
$$

and formula (1.48) canbe justified from a mathematical point of view as a pairing between spaces of the type $H^{1 / 2}\left(\partial \Omega_{i}\right)$ (${ }^{(1)}$ (for $\frac{\partial V}{\partial n}$ and $\frac{\partial V}{\partial s}$), and their duals.
Let finally $f \in\left(L^{2}(\Omega)\right)^{3}$ be such that

$$
\begin{equation*}
f_{1, x x}+2 f_{2, X Y}+f_{3, Y y}=p \text { in each } \Omega_{i}, \tag{1.49}
\end{equation*}
$$

$\left({ }^{2}\right)$ For the definitions and the properties of Sobolew spaces $H^{s}(\Omega)$ and $H^{S}(\Gamma)$ we refer to Lions-Magenes [20].
and let, for all v in v,
(1.50)

$$
F(v)=\sum_{i=1}^{N} \int_{\Omega_{i}}\left(v_{X X} f_{i}+2 v_{,_{X Y}} f_{2}+v_{\prime_{Y}} f_{j}\right) d x d y
$$

we define
(1.51)

If V and W are equipped with the norms

$$
\begin{equation*}
\|u\|_{V}^{2}=\sum_{i=1}^{N}\|v\|_{2, \Omega_{i}}^{\left(^{3}\right)}, \quad\|M\|_{W}^{2}=\sum_{i=1}^{N}\|M\|_{\left(L^{2}\left(\Omega_{i}\right)\right)^{3}}^{2} \tag{1.52}
\end{equation*}
$$

it is easily proved that the conditions of corollary 1.1 are satisfied. Then the problem
(1.53) $\left\{\begin{array}{l}\text { find }(u, \bar{M}) \in V \times W \text { such that: } \\ a(u, v)+b(v, \bar{M})=F(v) \quad \forall v \in V, \\ b(u, M)=0 \quad \forall M \in W,\end{array}\right.$
has a unique solution. It can also be verified that, if w is the solution of (1.28) and (u, \bar{M}) is the solution of (1.53), then:
(1.54)
$\mathrm{w}=\mathrm{u}$,
(1.55)

$$
\left(w_{X x}, w_{X Y}, w_{y y}\right)=-\bar{M}+f .
$$

[^1]Let now V_{h} and W_{h} be closed subspaces of V and W respectively. We substi tute to problem (1.1) the "approximated problem":

$$
\left\{\begin{array}{l}
\text { Eind }\left(u_{h}, \psi_{h}\right) \text { in } v_{h} \times W_{h} \text { such that: } \tag{2.1}\\
a\left(u_{h}, v_{h}\right)+b\left(v_{h}, \psi_{h}\right)=<E, v_{h}>\forall v_{h} \in V_{h}^{\prime} \\
b\left(u_{h}, \varphi_{h}\right)=<g, \varphi_{h}>\forall \varphi_{h} \in W_{h}
\end{array}\right.
$$

We want now, at first, to find sufficient conditions on V_{h} and W_{h} in order that (2.1) has a unique solution, and, after that, to evaluate the distance between the "approximate solution" (u_{h}, ψ_{h}) of (2.1) and the "exact solution" (u, ψ) of (1.1).

First of all we suppose that the following hypothesis is satisfied.
H1. - There exists a positive constant k_{h} such that:
(2.2)

$$
\sup _{v_{h} \in V_{h}-\{0\}:\left|\left|\dot{v}_{h}\right|\right|} \frac{b\left(v_{h} \cdot \varphi_{h}\right)}{} \geqslant k_{h}| | \varphi_{h}| | \forall \varphi_{h} \in W_{h}
$$

We define now:

$$
\begin{equation*}
z_{h}=\left\{v_{h} \mid v_{h} \in v_{h}, b\left(v_{h}, \varphi_{h}\right)=0 \forall \varphi_{h} \in W_{h}\right\} \tag{2.3}
\end{equation*}
$$

and we remark that, in general, $z_{h} \nsubseteq \mathrm{Z}$. Therefore we need also the following hypothesis.
H2. - There exist two positive constants γ_{h} and γ_{h}^{\prime} such that :

$$
\begin{equation*}
\sup _{u_{h} \in Z_{h}-\{0\}} \frac{a\left(u_{h}, v_{h}\right)}{| | u_{h}| |} \geqslant \gamma_{h}^{\prime}| | v_{h}| | \forall v_{h} \in Z_{h} \prime \tag{2.4}
\end{equation*}
$$

$$
\sup _{v_{h} \in z_{h}-\{0\}} \frac{a\left(u_{h}, v_{h}\right)}{| | v_{h}| |} \geqslant v_{h}| | u_{h}| | \forall u_{h} \in z_{h}
$$

Let ρ_{h} be the projection operator from $V \times W$ onto $V_{h} \times W_{h}$; identifying $V_{h}^{\prime} \times W_{h}^{\prime}$ with a closed subspace of $V^{\prime} \times W^{\prime}$ we can define the projection operator ph from $V^{\prime} \times W^{\prime}$ onto $V_{h}^{\prime} \times W_{h}^{\prime}$. Let now $\Lambda_{h}: V_{h} \times W_{h} \rightarrow V_{h}^{\prime} \times W_{h}^{\prime}$ be defined by:

$$
\begin{equation*}
\Lambda_{h}\left(v_{h}, \varphi_{h}\right)=0 h_{h}^{\prime} \Lambda\left(v_{h}, \varphi_{h}\right) \quad \forall v_{h} \in v_{h}, \varphi_{h} \in W_{h} \tag{2.6}
\end{equation*}
$$

It is clear that the solution $\left(u_{h}, \psi_{h}\right)$ of (2.1) (if it exists) is such that

$$
\begin{equation*}
\Lambda_{h}\left(u_{h}, \psi_{h}\right)=\rho_{h}^{\prime}(f, g) \tag{2.7}
\end{equation*}
$$

Therefore the following proposition gives an answer to our first question about existence and uniqueness of the solution of (2.1).

Proposition 2.1.- Under the hypotheses $H 1$ and $H 2$ the operator $\Lambda_{h}=p_{h}^{\prime} A^{\prime}$ is an isomorphism between $V_{h} \times W_{h}$ and $V_{h}^{\prime} \times W_{h}^{\prime}$; moreover we have:
(2.8)

$$
\left\|\Lambda_{h}^{-1}\right\| \leqslant M\left(\alpha, \gamma_{h}, k_{h}\right)
$$

(2.9)

$$
\left\|\left(\Lambda_{h}^{\prime}\right)^{-1}\right\| \leqslant M\left(\alpha, \gamma_{h}^{\prime}, k_{h}\right)
$$

where $M\left(\alpha, \gamma_{h}, k_{h}\right)$ is always expressed by (1.12).
The proof is immediate by theorem 1.1 and proposition 1.1.
We can now prove the following theorem.
Theorem 2.1.- Under the hypotheses $H 1$ and $H 2$, for every pair (f, g) in $V^{\prime} \times W^{\prime}$ let
(2.10) $\quad(u, \psi)=\Lambda^{-1}(f, g)$,

$$
\begin{equation*}
\left(u_{h}, \psi_{h}\right)=\Lambda_{h}^{-1} \rho_{h}^{\prime}(f, g) . \tag{2.11}
\end{equation*}
$$

Then we have:
(2.12) $\left.\quad\left|\left|u-u_{h}\right|\right|+\left|\left|\psi-\psi_{h}\right|\right| \leqslant \sigma_{h} \underset{v_{h} \in V_{h}}{\operatorname{Inf}}| | u-v_{h}| |+\operatorname{Inf}_{h} \in W_{h}| | \psi-\varphi_{h}| |\right)$,
where

$$
\begin{equation*}
\sigma_{h}=M\left(\alpha, \gamma_{h}^{\prime}, k_{h}\right)(\alpha+\beta)+1 . \tag{2.13}
\end{equation*}
$$

Proof.- First of all, we remark that, from (2.6), (2.10), (2.11), we have for every ($w_{h} \times x_{h}$) in $v_{h} \times w_{h}$:
(2.14) $\left\langle\Lambda_{h}\left(u_{h}, \psi_{h}\right),\left(w_{h}, x_{h}\right)\right\rangle=\left\langle f, w_{h}\right\rangle+\left\langle g, x_{h}\right\rangle=\left\langle\Lambda(u, \psi),\left(w_{h}, x_{h}\right)\right\rangle$ 。

So if $\left(v_{h}, \varphi_{h}\right)$ is any other pair in $v_{h} \times W_{h}$ we have:
(2.15)

$$
\left\langle\Lambda_{h}\left(u_{h}-v_{h}, \psi_{h}-\varphi_{h}\right),\left(w_{h}, x_{h}\right)\right\rangle=\left\langle\Lambda\left(u-v_{h}, \psi-\varphi_{h}\right),\left(w_{h}, x_{h}\right)\right\rangle
$$

Then by (2.9) and corollary $0: 1$ (part III) $\Rightarrow I$)) we have
(2.16)

$$
\left\|u_{h}-v_{n}\right\|+\left\|\psi_{h}-\varphi_{h}\right\| \leqslant c| | \Lambda \| \mid\left(\left|\left|u-v_{h}\left\|+| | \psi-\varphi_{h}\right\|\right)\right.\right.
$$

with $c=\|\left(\Lambda_{h}^{\prime}\right)^{-1}| | \leqslant M\left(\alpha, Y_{h}^{\prime}, k_{h}\right)$. On the other hand it is immediate to verify that
(2.17) $\quad||\Lambda|| \leqslant \alpha+\beta$;
hence from (2.16), (2.17) we get
(2.18)

$$
\left|\left|u-u_{h}\right|\right|+\left|\left|\psi-\psi_{h}\right|\right|<[c(\alpha+\beta)+1]\left(| | u-v_{h}| |+\left|\left|\psi-\varphi_{h}\right|\right|\right)
$$

for every $\left(v_{h}, \varphi_{h}\right)$ in $V_{h} \times h_{h}$, and the result follows immediatelly.
Corollary 2.1.- Suppose that $H 1$ holds and that there exists a constant $\hat{o}_{\mathrm{h}}>0$ such that

$$
\begin{equation*}
a\left(v_{h}, v_{h}\right) \geqslant \delta_{h}\left\|v_{h}\right\|^{2} \quad \forall v_{h} \in z_{h} ; \tag{2.19}
\end{equation*}
$$

 if $(u, \dot{\psi})=A^{-1}(f, g)$ and $\left(u_{h}, \psi_{h}\right)=\Lambda_{h}^{-1} \rho_{h}^{\prime}(f, g)$, then:
(2.20)

$$
\left|\left|u-u_{h}\right|\right|+\left|\left|\psi-\psi_{h}\right|\right| \leqslant \bar{\sigma}_{h}\left(\operatorname{Inf}_{v_{h} \in V_{h}}| | u-v_{h}| |+\operatorname{Inf}_{\varphi_{h} \in W_{h}}| | \psi-\varphi_{h}| |\right),
$$

with $\bar{\sigma}_{h}=M\left(\alpha, \delta_{h}, k_{h}\right)(\alpha+\beta)+1$.
The proof is immediate.
Remark 2.1.- Suppose for instance that $a(u, v)$ is 2 -elliptic and that, for sim plicity, $g=0$.
Then the first element u of the solution of (1.1) can be characterized as the solution of:

$$
\left\{\begin{array}{l}
a(u, v)=\langle f, v\rangle \forall v \in Z, \tag{2:21}\\
u \in Z .
\end{array}\right.
$$

Suppose now that V_{h} and W_{h} are closed subspaces of V and W, such that $H 1$ is verified, and let again Z_{h} be the space

$$
z_{h}=\left\{v_{h} \mid v_{h} \in v_{h}, b\left(v_{h}, \varphi_{h}\right)=0 \quad \forall \varphi_{h} \in W_{h}\right\}
$$

If $a(u, v)$ is Z_{h} elliptic then the first element u_{h} of the solution of (2.1) can be presented as the solution of:
(2.22)

$$
\left\{\begin{array}{l}
a\left(u_{h}, v_{h}\right)=\left\langle f, v_{h}\right\rangle \forall v_{h} \in Z_{h}, \\
u_{h} \in Z_{h} .
\end{array}\right.
$$

Since $z_{h} \neq 2$, (2.22) can be regiarded as an approximation of (2.21) by "non-con forming elements" (see e.g. [17] [[01], [30$],[31]$); therefore given $Z \subseteq V, a(u, v)$ and $f \in V^{\prime}$, and given a closed subspace $z_{h} \subset V$, the existence of $W, W_{h}, b(v, \varphi)$ such that the hypotheses of corollary 1.1 are satisfied, constitutes some kind of "abstract patch-test" for the elements of z_{h} (see also, in the case of the elasticity and plate bending problems, fide Veubeke [15]; also important in this contest are the papers by Raviart-Thomas $[27]$ and Thomas [39]).

Example 2.1.- We return to the situation of the example 1.1, and we suppose, for sake of simplicity, that Ω is the square $] 0, \ell[x] 0, \ell\left[\right.$ and that Ω_{i} are also squares of lenght $h=\ell N^{-1 / 2}$. Let \hat{K} be the unit square $\left.] 0,1[x] 0,1\right]^{i}$ and let \hat{p}_{v} be a finite dimensional space of smooth vectors functions $\left(\hat{v}_{1}, \hat{v}_{2}, \hat{v}_{3}\right)$ defined on K and self-equilibrating, in the sense that

$$
\hat{v}_{1, x x}+2 \hat{v}_{2, x y}+\hat{v}_{3, y y}=0 \quad \text { on } \hat{K} ;
$$

let $\hat{\mathrm{P}}_{\mathrm{W}}$ be a finite dimensional space of smooth functions $\hat{\varphi}$ defined on \hat{K} and such that $\Delta^{2} \hat{\varphi}=0$ in \hat{K}. For each Ω_{i} let F_{i} be the "affine"inversible tran sformation that maps \hat{K} on Ω_{i} and let $P_{V, i},{ }_{P}^{P_{W, i}}$ the images of \hat{P}_{V} and \hat{P}_{W} (resp.) through F_{i}. We consider now the spaces

$$
\begin{array}{lll}
v_{h}=\left\{v_{h} \mid v_{h} \in V,\right. & v_{h} \mid \Omega_{i} \in P_{V, i} & (i=1, \ldots, N)\} \\
w_{h}=\left\{\varphi_{h} \mid \varphi_{h} \in W,\right. & \left.\varphi_{h}{\mid \Omega_{i} \in P_{W, i}} \quad(i=1, \ldots, N)\right\}
\end{array}
$$

It can be verified (cfr. Brezzi [5], Brezzi-Marini [8]) that if \hat{P}_{V} and $\hat{\mathrm{P}}_{\mathrm{W}}$ verify the following hypothesis:

人 $\quad\left\{\begin{array}{l}\sup _{v \in \hat{P}_{V}\left(\hat{v}_{1} \hat{\varphi}_{x x}+2 \hat{v}_{2} \hat{\varphi}_{x y}+\hat{v}_{3} \hat{\varphi}_{y y} d x d y\right)| | \hat{v} \|_{\left(L^{2}(\hat{K})\right)^{-1} \geqslant \hat{\lambda}|\hat{\varphi}|_{2, k}}}^{\text {for all } \hat{\varphi}_{\text {in }} \hat{P}_{W^{\prime}} \text { with } \hat{\lambda}>0,}\end{array}\right.$
then V_{h} and W_{h} satisfy hypothesis $H 1$ with constant $k_{h}>\lambda>0, \lambda$ independent of h. Since, obviously, in this case

$$
\alpha=\gamma_{h}^{\prime}=1
$$

for every decomposition, then the constant σ_{h} which appears in (2.12), is in fact independent of h. We remark that in practice, since the value of $\hat{\gamma}$ in \hat{K} is deperding only on the values of $\hat{\varphi}$ and $\frac{\partial \hat{\varphi}}{\partial n}$ on $\hat{\partial} \hat{K}, \hat{p}_{W}$ will be chosen as a space of biharmonic functions such that $\hat{\varphi}$ and $\frac{\partial \hat{h}}{\partial n}$ are polynomials of assigned degree on $\partial \hat{K}$. Of course we ignore the value of $\hat{\varphi}$ at the interior of \hat{K}, but this is not a difficulty since we can use sistematically, for the computations, Green's formula

$$
\int_{\hat{k}}\left(\hat{v}_{1} \hat{\varphi}_{x x}+2 \hat{v}_{2} \hat{\varphi}_{x y}+\hat{v}_{3} \varphi_{y y}\right) d x d y=\int_{\partial \hat{k}}\left(\hat{M}_{n} \frac{\partial \hat{\varphi}}{\partial n}+\hat{M}_{n t} \frac{\partial \hat{\varphi}}{\partial s}-\hat{Q}_{n} \hat{\varphi}\right) d \sigma
$$

where

$$
\left\{\begin{array}{l}
\hat{M}_{n}=\hat{v}_{1} v_{x}^{2}+2 \hat{v}_{2} v_{x} v_{y}+\hat{v}_{3} v_{y^{\prime}}^{2} \\
\hat{M}_{n t}=\hat{v}_{1} \nu_{x} \dot{v}_{y}+\left(v_{y}^{2}-v_{x}^{2}\right) \hat{v}_{2}-\hat{v}_{3} v_{x} v_{y}^{\prime} \\
\Omega_{n}=\left(\hat{v}_{1, x}+\hat{v}_{2, y}\right) v_{x}+\left(\hat{v}_{2, x}+\hat{v}_{3, y}\right) v_{y^{\prime}} \\
v_{x}=\cos n x, \quad v_{y}=\cos n y
\end{array}\right.
$$

valid whenevever \hat{v} is sufficiently smooth and $\hat{v}_{1, x x}+2 \hat{v}_{2, x y}+\hat{v}_{3, y y}=0$ on \hat{k}. For further details we refer to Brezzi [5] and Brezzi-Marini [8].

Example 2.2.- We return now to the situation of the example 1.2, and we suppose again that Ω and all the Ω_{i} are squares, as in example 2.1. Let \hat{k} be the unit square and let $\hat{\mathrm{P}}_{\mathrm{V}}$ be a finite dimensional linear space of smooth functions and \hat{P}_{W} a finite dimensional linear space of smooth self equilibrating vectors of the type $\hat{M}=\left(\hat{\varphi}_{\prime_{X X}}, \hat{\varphi}_{X_{Y}}, \hat{\varphi}_{Y_{Y Y}}\right)$. We define, for each i $(i=1, \ldots, N) P_{V, i}$ and $P_{W, i}$ as the images of \hat{P}_{V} and \hat{P}_{W} through the "affine" inversible transformation F_{i} which maps \hat{K} on Ω_{i}. We consider the spaces:

$$
\begin{aligned}
& v_{h}=\left\{v \mid v \in V, \quad v_{\left.\|_{i} \in P_{v, i} \quad(i=1, \ldots, N)\right\},}\right. \\
& W_{h}=\left\{M \mid M \in W, \quad M_{\Omega_{i} \in P_{W, i}} \quad(i=1, \ldots, N)\right\} .
\end{aligned}
$$

Suppose that P_{V} and P_{W} verify hypothesis

Then we can prove that $H 1$ is satisfied with constant $\chi_{h}>\lambda>0, \lambda$ irdependent of h. The chiefest difficulty is now, in the particular cases, to prove that $a(u, v)$ defined by (1.51), is Z_{h}-elliptic (where Z_{h} is always defineã by (2.3)) with constant δ_{h} independent of h. If this is the case, then we get that the constant $\bar{\sigma}_{h}$ which appears in (2.20) is in fact independent of h. The verification of \hat{H} can, also in this case, be easily performed using -(1.44); (1.47), (1.48), if we know the value of \hat{U} and \hat{V} on $\partial \hat{K}$. F. de veubeke has shown (cfr. [15]) that in this case Z_{h} is in fact a space of non conforming approximations of $H_{0}^{2}(\Omega)$ and that we can find in this way all the classical non conforming elements for the biharmonic problem (see [30], [31], [21]); for further details we refer to F. de Veubeke [15]; in a forthcoming paper we shall treat this case from a mathematical point of view.

3.- FURTHER CONSIDERATIONS

In many applications, the exact computation of $a\left(u_{h}, v_{h}\right), b\left(v_{h}, \psi_{h}\right)$, $\left.\left\langle f, v_{h}\right\rangle,<g, \varphi_{h}\right\rangle$ which appear in the approximated problem (2.1) is rather difficult or, in some case, impossible. Therefore some kind of numerical integration (see e.g. Strang-Fix [3], Ciarlet-Raviart[10]) is neeaed in order to solve numerically problem (2.1). We shall shown that the classical results about the use of numerical integration for. variational problems and for variational inequalities can be easily extended: to our case. For this, let $a_{h}\left(u_{h}, v_{h}\right)$ and $b_{h}\left(v_{h}, \varphi_{h}\right)$ be (continuous) bilinear forms on $V_{h} \times V_{h}$ and on $V_{h} \times W_{h}$ respectively; suppose moreover that f_{h} ard g_{h} are (continuous) linear functionals on V_{h} and W_{h} resp., and consider the problem:

$$
\left\{\begin{array}{l}
\text { find }\left(u_{h}^{*}, \psi_{h}^{*}\right) \text { in } v_{h}<w_{h} \text { such that: } \tag{3.1}\\
\left.a_{h}\left(u_{h}^{*}, v_{h}\right)+b_{h}\left(v_{h}, \psi_{h}^{*}\right)=\left\langle f_{h}, v_{h}\right\rangle \quad \forall v_{h} \in v_{h}\right) \\
b_{h}\left(u_{h}^{*}, \varphi_{h}\right)=\left\langle g_{h}, \varphi_{h}\right\rangle \quad \forall \varphi_{h} \in W_{h}
\end{array}\right.
$$

We suppose that the following hypotheses are satisfied:
$H 1^{*}$) There exists a positive constant k_{h}^{*} such that:

$$
\sup _{v_{h} \epsilon_{h}-\{0\}}\left\|v_{h}\right\|^{-1} b_{h}\left(v_{h}, \varphi_{h}\right) \geqslant k_{h}^{*}\left\|\varphi_{h}\right\| \forall \varphi_{h} \in W_{h} .
$$

$H 2^{*}$) There exist two positive constants γ_{h}^{*} and $\bar{\gamma}_{h}^{*}$ such that:

$$
\begin{aligned}
& \sup _{u_{h} \in Z_{h}-\{0\}}| | u_{h}| |^{-1} a_{h}\left(u_{h}, v_{h}\right) \geqslant \bar{\gamma}_{h}^{*}| | v_{h}| | \forall v_{h} \in Z_{h}^{*}, \\
& \sup _{v_{h} \in z_{h}-\{0\}}| | v_{h}| |^{-1} a_{h}\left(u_{h}, v_{h}\right\rangle \geqslant \gamma_{h}^{*}| | u_{h}| | \forall u_{h} \in Z_{h}^{*},
\end{aligned}
$$

where, of course, Z_{h}^{*} is defined by:
(3.2)

$$
z_{h}^{*}=\left\{v_{h} \mid v_{h} e v_{h}, b_{h}\left(v_{h}, \varphi_{h}\right)=0 \forall \varphi_{h} \in W_{h}\right\}
$$

Then, always from theorem 1.1 we get
Proposition 3.1.- Under the hypotheses $H 1^{*}$ and $H 2^{*}$, for all (f_{h}, g_{h}) in $V_{h}^{\prime} \times W_{h}^{\prime}$, problem (3.1) has a unique solution. We want now to evaluate the distance between $\left(u_{h}^{*}, \psi_{h}^{*}\right), \operatorname{solution}$ of (3.1), and
(u, \mathbf{u}), solution of (1.1). For this we define at first the operator $\Lambda_{h}^{*}: V_{h} \times W_{h} \rightarrow V_{h}^{\prime} \times W_{h}^{\prime}$ by:
(3.3) $\left\{\begin{array}{l}\left\langle\Lambda_{h}^{*}\left(v_{h}, \varphi_{h}\right),\left(w_{h}, x_{h}\right)\right\rangle=a_{h}\left(v_{h}, w_{h}\right)+b_{h}\left(w_{h}, \varphi_{h}\right)+b_{h}\left(v_{h}, x_{h}\right), \\ \text { for all }\left(v_{h}, \varphi_{h}\right) \text { and }\left(w_{h}, x_{h}\right) \text { in } v_{h} \times w_{h} .\end{array}\right.$

Let now $\left(u_{h}, \psi_{h}\right)$ be the solution of (2.1) and let

$$
\begin{equation*}
\alpha^{*}=\sup _{u_{h}, v_{h} \in v_{h}-(0\}}| | u_{h}\left\|^{-1}\right\| v_{h} \|^{-1} a_{h}\left(u_{h}, v_{h}\right) \tag{3.4}
\end{equation*}
$$

From proposition 1.1 we get that there exists a $\left(v_{h}, \varphi_{h}\right) \in V_{h} \times W_{h}$ such that:

$$
\begin{align*}
& \quad\left|\left|u_{h}-u_{h}^{*}\right|\right|+\left|\left|\psi_{h}-\psi_{h}^{*}\right|\right|< \tag{3.5}\\
& \leqslant M\left(\alpha^{*}, \bar{\gamma}_{h}^{*}, k_{h}^{*}\right)<\Lambda_{h}^{*}\left(u_{h}-u_{h}^{*}, \psi_{h}-\psi_{h}^{*}\right),\left(v_{h}, \varphi_{h}\right)>\left(\left|\left|v_{h}\right|\right|+\left|\left|\varphi_{h}\right|\right|\right)^{-1} .
\end{align*}
$$

Moreover we have

$$
\begin{align*}
& \left\langle\Lambda_{h}^{*}\left(u_{h}-u_{h}^{*}, \psi_{h}-\psi_{h}^{*}\right),\left(v_{h}, \varphi_{h}\right)>=<\left(\Lambda_{h}^{*}-\Lambda_{h}\right)\left(u_{h}, \psi_{h}\right),\left(v_{h}, \varphi_{h} j>+\right.\right. \tag{3.6}\\
& +<f-f_{h}, v_{h}>+<g-g_{h}, \varphi_{h}>,
\end{align*}
$$

and also :

$$
\begin{align*}
& \left|<\left(\Lambda_{h}^{*}-\Lambda_{h}\right)\left(u_{h}, \psi_{h}\right),\left(v_{h}, \varphi_{h}\right)\right\rangle\left|\leqslant\left|a_{h}\left(u_{h}, v_{h}\right)-a\left(u_{h}, v_{h}\right)\right|+\right. \tag{3.7}\\
& +\left|b_{h}\left(v_{h}, \psi_{h}\right)-b\left(v_{h}, \psi_{h}\right)\right|+\left|b_{h}\left(u_{h}, \varphi_{h}\right)-b\left(u_{h}, \varphi_{h}\right)\right| .
\end{align*}
$$

Setting now:

$$
\begin{aligned}
& \mathcal{Y}=\sup _{v_{h} \in V_{h}-\{0\}}| | v_{h}| |^{-1}\left|<f-f_{h}, v_{h}\right\rangle \mid \\
& G=\sup _{\varphi_{h} \in W_{h}-\{0\}}| | \varphi_{h}| |^{-1}\left|<g-g_{h}, \varphi_{h}\right\rangle \mid \\
& \mathcal{G}\left(u_{h}\right)=\sup _{v_{h} \in V_{h}-\{0\}}| | v_{h} \|^{-1}\left|a\left(u_{h}, v_{h}\right)-a_{h}\left(u_{h}, v_{h}\right)\right|, \\
& B\left(u_{h}\right)=\sup _{\varphi_{h} \in W_{h}-\{0\}}| | \varphi_{h} \|^{-1}\left|b\left(u_{h}, \varphi_{h}\right)-b_{h}\left(u_{h}, \varphi_{h}\right)\right|,
\end{aligned}
$$

we have from (3.5), (3.6), (3.7), that:

$$
\begin{equation*}
\left|\left|u_{h}-u_{h}^{*}\right|\right|+\left|\left|\psi_{h}-\psi_{h}^{*}\right|\right| \leqslant M\left(\alpha^{*}, \bar{\gamma}_{h}^{*}, k_{h}^{*}\right)\left(\gamma_{+}+G+\hat{t}\left(u_{h}\right)+B\left(u_{h}\right)+\mathcal{B}^{\top}\left(\psi_{h}\right)\right) \tag{3.8}
\end{equation*}
$$

Therefore we can conclude with the following theorem.
Theorem 3.1.- If hypotheses $H 1^{*}$, $\mathrm{H} 2^{*}$ are satisfied ana if (u_{h}^{*}, ψ_{h}^{*}) and (u, ψ) are the solutions of (3.1) and (1.1) respectively, we have:

$$
\begin{aligned}
& \left|\left|u-u_{h}^{*}\right|\right|+\left|\left|\psi-\psi_{h}^{*}\right|\right| \leqslant\left|\left|u-u_{h}\right|\right|+\left|\left|\psi-\psi_{h}\right|\right|+ \\
& +M\left(\alpha^{*}, \bar{v}_{h}^{*}, k_{h}\right)\left(\frac{q^{2}}{}+\xi_{g}+\left(\Omega+\beta+B_{3}^{\top}\right)\left(| | u_{h}| |+\left|\left|\psi_{h}\right|\right|\right)\right),
\end{aligned}
$$

where $\left(u_{h}, \psi_{h}\right)$ is the solution of (2.1) and where $\mathcal{A}, \beta, \beta^{\top}$ are defined by :

$$
\begin{aligned}
& A=\sup _{w_{h} \in V_{h}-\{0\}} O\left(w_{h}\right)\left\|w_{h}\right\|^{-1}, \\
& B=\sup _{w_{h} \in V_{h}-\{0\}} B\left(w_{h}\right)\left\|w_{h}\right\|^{-1},
\end{aligned}
$$

$$
B^{\top}=\sup _{\varphi_{h} \in W_{h}-\{0\}} B^{\top}\left(\varphi_{h}\right)| | \varphi_{h} \|^{-1} .
$$

The proof follows immediately from (3.8) and the triangular inequality.
Remark 3.1.- As in corollary 2.1, hypothesis $H 2^{*}$ an be substituted, in the applications, by the 2_{h}-ellipticity, ie. there exists a positive constant δ_{i}^{*} such that

$$
a_{h}\left(v_{h}, v_{h}\right) \geqslant \delta_{h}^{*}\left\|v_{h}\right\|^{2} \quad \forall v_{h} \in v_{h} .
$$

Remark 3.2.- In the applications the fact that $Z_{h} \neq \mathrm{Z}$ is sometimes a difficulty. Then, it can happens that a choice of a "greater" W_{h} is needed, in order to have $Z_{h} \subseteq z$. This cannot, in general, be obtained unless $W_{h} \neq W$; therefore it is of some interest to consider the case of an "external approximation" of W.
We shall give, in the following, some idea of the general case, but we refer for more precise results, in a large class of examples, to the papers by Raviart--Thomas [27$]$ and Thomas [32] which contain the best treatement of the question from a mathematical point of view. On the other hand, from a numerical point

Of view, it is recommended to refer the the works by Fie Veubeke and his associated (cfr.e.e. $[12][13],[14],[28],[29])$ who have developed the theory of strongly diffusive" elements, which is the most important case of application of the abstract situation described above.

We suppose then that another real Hilbert space, H, is given, such that

$$
\begin{equation*}
W \subseteq H \tag{3.9}
\end{equation*}
$$

with continuous injection. We suppose that W is dense in H and so we can den tify H^{\prime} with a dense subspace of W^{\prime}. Let now V_{h} be a closed subspace of V and W_{h} a closed subspace of H, such that
(3.10)

$$
B\left(V_{h}\right) \subseteq H^{\prime},
$$

and that, for all v_{h} in v_{h}, if

$$
\left.H^{\left\langle B v_{h}\right.}, \varphi_{h}\right\rangle_{H}=0 \forall \varphi_{h} \in W_{h}
$$

then:

$$
H^{\prime}\left\langle B v_{h}, \varphi\right\rangle_{H}=0 \quad \forall \varphi \in W
$$

We consider now the following approximation of problem (1.1).

$$
\left\{\begin{array}{l}
\text { Find }\left(\bar{u}_{h}, \bar{\psi}_{h}\right) \text { in } v_{h} \times W_{h} \text { such that: } \tag{3.11}\\
a\left(\bar{u}_{h}, v_{h}\right)+\left\langle B v_{h}, \bar{\psi}_{h}>:=<f, v_{h}>\forall v_{h} \in V_{h} \prime\right. \\
\left\langle B \bar{u}_{h}, l_{h}>=<g, \varphi_{h}\right\rangle \forall \varphi_{h} \in W_{h},
\end{array}\right.
$$

where, of course, g is supposed to belong to H^{\prime}. We always suppose that byprothesis H 2 is satisfied and we substitute H 1 with the following condition. $\overrightarrow{H 1})$ There exists a positive constant \bar{k}_{h} such that: (3.12) $\sup _{v_{h} \in V_{h}-\{0\}}\left\|v_{h}\right\|^{-1}<B v_{h}, \varphi_{h}>\bar{k}_{h}\left\|\varphi_{h}\right\| \|_{H} \forall \varphi_{h} \in W_{h}$.

Then by $\overline{\mathrm{H} 1}, \mathrm{H} 2$ and theorem 1.1 we get immediately that problem (3.11) has a unique solution. In order to evaluate the distance between (u, ψ) and ($\bar{u}_{h}, \bar{\psi}_{h}$) we define at first the space V in , the following way:
(3.13) $\quad V=\left\{v \mid v \in V, \quad B v \in H^{\prime}\right\}$,
and we reamrk that $V_{h} \subseteq V$ from (3.10), and also $u \in V$, since g is supposed in H^{\prime} and (u, ψ) is the solution of (1.1). We define then $\bar{\Lambda}_{h}: V_{x} W \rightarrow V_{h}^{\prime} \times w_{h}^{\prime}$ by:
(4) In this case, of course, we will use $\bar{Z}_{h}=\left\{v_{h} \mid v_{h} e V_{h}, B v_{h}=0\right\} \leqslant Z$; we remark therefore that, if $a(u, v)$ is Z-elliptic, then $H 2$ is automatically satisfied.
(3.14) $\left\{\begin{array}{l}\left\langle\bar{A}_{h}(v, \varphi),\left(w_{h}, x_{h}\right)\right\rangle=a\left(v, w_{h}\right)+b\left(w_{h}, \varphi\right)+\left\langle B v, x_{h}\right\rangle \\ \text { for all }(v, \varphi) \text { in } V \times W \text { and }\left(w_{h}, x_{h}\right) \text { in } v_{h} \times w_{h} .\end{array}\right.$

Let now (v_{h}, φ_{h}) be a pair in $V_{h} \times W_{h}$; from $\overline{H 1}, H 2$ and the proposition 1.1 wo get that there exists a $\left(w_{h} \times x_{h}\right)$ in $V_{h} \times W_{h}$ such that:

$$
\begin{align*}
& \left\langle\bar{\Lambda}_{h}\left(\bar{u}_{h}-v_{h}, \bar{\psi}_{h}-\varphi_{h}\right),\left(w_{h}, x_{h}\right)\right\rangle \geqslant \\
& \geqslant M\left(\alpha, \gamma_{h}^{\prime}, \bar{x}_{h}\right)^{-1} \cdot\left(| | w_{h}| |+\left|\left|x_{h}\right|\right|_{H}\right) \cdot\left(\left|\bar{u}_{h}-v_{h}\right||+| \bar{\psi}_{h}-\varphi_{h} \|_{H}\right) \tag{3.15}
\end{align*}
$$

On the other hand we have:
(3.16) $\left\langle\bar{\Lambda}_{h}\left(\bar{u}_{h}-v_{h}, \bar{\psi}_{h}-\varphi_{h}\right),\left(w_{h}, x_{h}\right)\right\rangle=\left\langle\bar{\Lambda}_{h}\left(u-v_{h}, \psi-\psi_{h}\right),\left(w_{h}, x_{h}\right)\right\rangle \quad \forall\left(v_{h}, \varphi_{h}\right),\left(w_{h}, x_{h}\right) \in V_{h} \times W_{h}$. Observing now that
:3.17)

$$
\frac{\left|\left\langle\bar{\Lambda}_{h}(v, \varphi),\left(w_{h} \cdot x_{h}\right)\right\rangle\right| \leqslant \alpha| | v\|\cdot\| w_{h} \|+}{\left(+\bar{B}\left\|w_{h}\right\| \cdot\|\varphi\|_{H}+\bar{\beta}| | v\|\cdot\| x_{h} \|_{H}\right.}
$$

where

$$
\begin{align*}
& \bar{\beta}=\sup _{V \in V-\{0\}}| | v \|\left.^{-1}| | \varphi\right|^{-1}\langle B v, \varphi\rangle, \tag{3.18}\\
& \\
& \varphi \in W \cup W_{h}-\{0\}
\end{align*}
$$

we get from (3.15), (3.16), (3.17), that:

$$
\begin{aligned}
& \left\|u-\bar{u}_{h}| |+\right\| \psi-\bar{\psi}_{h}\left\|_{H} \leqslant\left((\alpha+\bar{\beta}) M\left(\alpha, \gamma_{h}, \bar{x}_{h}\right)+1\right) \underset{v_{h} \in V_{h}}{(\operatorname{Inf}}\right\| u-v_{h} \|+ \\
& \left.\quad+\operatorname{Inf}_{\varphi_{h} \in W_{h}}\left\|\psi-\varphi_{h}\right\|_{H}\right) .
\end{aligned}
$$

We can conclude with the following theorem.
Theorem 3.2.- Under the hypotheses of corollary 1.1, if (3.9), (3.10) and H1 are satisfied, for every (f, g) in $V^{\prime} \times W^{\prime}$ we have that, if (u, ψ) and (\bar{u}_{h}, \bar{w}_{h}) are the solutions of (1.1) and (3.11) respectivelly, then: $\left|\left|u-\bar{u}_{h}\right|\right|+| | \psi-\bar{\psi}_{h} \|_{H} \leq\left((\alpha+\bar{B}) M\left(\alpha, \gamma_{h}^{\prime}, \bar{k}_{h}\right)+1\right)\left(\underset{V_{h} \in V_{h}}{\operatorname{Inf}}\left\|u-v_{h}\right\|+\operatorname{Inf}_{\varphi_{h} \in W_{h}}\left\|\psi-\varphi_{h}\right\|_{H}\right)$. where $\vec{\beta}$ is given by (3.18).

REFERENCES

[1] J.P. AUBIN - "Approximation of elliptic boundary-value problems". Wiley-New York, (1972).
[2] J.P. AUBIN - "Cours d'optimisation" - Université de Paris IX Dauphine (1973-74).
[3] I. BABUSKA - "Error bound for the finite element method" - Num. Math. 16, 322-333 (1971).
[4] I. BABUSKA - "The finite element method with Lagrangian multipliers" Num. Math. 20, 179-192 (1973).
[5] F. BREZZI - "Sur la méthode des élément finis hybrides pour le probleme biharmonique" (submittend to Num. Math.)
[6] F. BREZZI - "Sur une méthode hybride pour 1'approximacion du pro blème de la torsion d'une barre elastique " (to appear on Ist. Lombardo Accad. Sci. Lett. Rend. A).
[7] F. BREZZI - "Sur 1'existence, unicité et approximation numerique de problèmes de point de selle"
C.R. Acad. Sc. Paris, Serie A, 278 (18 mars 1974), 839-842, (1974)
[8] F. BREZZI-L.D. MARINI - "On the numerical solution of plate bending problems by hybrid methods" (to appear on "Pubblicazioni del Laboratorio di Analí si Numericat del C.N.R., Pavia).
[9] P.G. CIARLET-P.A. RAVIART - "General Lagrange and Hermite interpolation in R^{n} with applications to finite element methods" Arch. Rat. Mech. Anal., 46, 177-199 (1972).
[10] P.G. CIARLET-P.A. RAVIART - "The combined effect of curved boundaries and numerical integration in isoparametric fini te element methods". The Math. Found. of the F.E.M. (ed. by A, K, AZIZ). Academic Press, 1972.
[11]M. CROUZEIX -P.A. RAVIART - "Conforming and Nonconforming Finite Element methods for Solving the Stationary Stokes Equations. I (to appear)
[12]
B. FRAEIJS de VEUBERE - "Upper and lower bounds in matrix structural analysis" AGARDograph 72, Pergamon, 1964.
B. FRAEIJS de VEUBEKE - "Displacements and equilibrium models in the finite element method" - Stress Analysis (ed. by oc. zienkiewicz and G.S. Holister) ch. 9 - Wiley, 1964.
B. FRAEIJS de VEUBEKE - "Bending and Stretching of plates". proc. Cont. Matrix Method in Structural Mech., Air Force Technical Report AFF DL-TR-66-80, NOV. 1966.
B. FRAEIJS de VEUBEKE - "Variational principles and the patch-test" (to appear or. Int. J. for Numerical Meth. in Eng.)
[16] B. FRAEIJS de VEUBEKE-O.C. ZIENKIEWICZ - "Strain energy bounds in finite-element analysis by slab analogy". Journal of Strain Analysis 2,4, 265-271 (1967).
[17] B.M. IRONS-A. RAZZAQUE - "Experience with patch-test for convergence of finite elements". The Math. Found of the F.E.M. (ea. by A.K. AZIZ). Academic Press 1972.
[18] C. JOHNSON -"On the convergence of a Mixed Finite Element Method for Plate Bending Problems"- Nam. Math. 21, 43-62 (1973).
[19] C. JOHNSON -" Convergence of another mixed finite-element method for plate bending problems" - Chalmers Institute of Techno logy No. 1972-27.
[20] F. KIKUCI-Y. ANDO - "On the convergence of a mixed finite element sch me for plate bending" - Nucl. Eng. and Design, 24,357--373 (1973).
[21] LASCAUX -P. SESAINT - (to appear).
[22] J.I. LIONS-E. MAGENES - "NOn homogeneous boundary value problems and applications" vol.1.2 - Grundlehren B. 181,182 - Springer: 1971.
[23] B. MERCIER - Numerical solution of the biharmonic problem by mixed tinite elements of class $C^{\circ " 1}$ (to appear in Boll. U.M.I. 11974
[24] T.H.H. PIAN-P. TONG - "A variational principle and the convergence of a finite-element method based on assumed stresses distribution"- Inst. J. Solid Structures, 5, 463-472 (1969).
[25] T.H.H. PIAN-P. TONG - "Basis of finite element methods for solid continua" Int. J. for Numerical Meth. in Eng. 1, 3-28 (1969).
[26] P.A. RAVIART - "Méthode des éléments finis" Cours 1972-73 à l'Universite de Paris VI.
[27] P.A. RAVIART-J.M. THOMAS - (to appear)
[28] G. SANDER - "Application of the dual analysis principle" - proceedings of IUTAM - Liëge Aug. 1970
[29] G. SANDER - "Application de la méthode des éléments finis à la flexion des plaques" - Coll. Publ. Fac. Sc. Appl. Univ. " Liège n. 15 (1969).
[30] G. STRANG - "Variationalcimes in the finite element methods" -The Math. Found. of the F.E.M. (ed. by A.K. AZIZ) Academic Press (1972).
[31] G. STRANG - FIX - "An analysis of the finite elements method" prentice Hall-New York, 1973.
[32] J.M. THOMAS (to appear)
[33] K. YOSIDA - "Functional Analysis" Grundlehren B. 123 - Springer, 1965.
[34] O.C. ZIENKIEWICZ - "The finite element methods in engineering science" Mc Graw-Hill (1971).

[^0]: (1) For sufficient conditions in order that A be an isomorphism, in a much more general case, see [2]

[^1]: $\left.\mathbf{(}^{3}\right)$ Such notations are classical; see e.g. Ciarlet-Raviart [9]. [10], Strang-Fix [31].

