Michel Métivier
 On Doleans-Föllmer's Measure for Quasi-Martingales and a Pellaumail's Extension Theorem

Publications des séminaires de mathématiques et informatique de Rennes, 1973, fascicule 3
«Séminaires de probabilité », , p. 23-46
http://www.numdam.org/item?id=PSMIR_1973__3_23_0
© Département de mathématiques et informatique, université de Rennes, 1973, tous droits réservés.

L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

On Doleans-Föllmer's measure for quasi-nartingales and a Pellaumail's extension theorem

by
Michel Metivier (x)
Laboratoire de Probabilités - ERA 250 C.N.R.S. - Rennes

Let $\left(\Omega,\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}^{+}}, P\right)$ be the usual setting for studyirig stochastic processes. The idea of associating with every adapted process $\left(X_{t}\right) t, \mathbb{R}^{+}$ a set function μ_{X}, defined on the algebra of subsets of $\mathbb{R}^{+} \times$s generated by the family $\left.] s, t] \times F ; 0<s \leq t, F \in \mathcal{F}_{s}\right\}$, through tho formula

$$
\left.\left.\mu_{X}(] s, t\right] \times F^{\prime}\right)=F\left[I_{F} \cdot\left(X_{t}-X_{s}\right)\right]
$$

soens to have been used by C. Doleans in [2] [or the first fimf. : ihr; proved that, if X is a supermartingale of local class D, then μ_{X} is σ-additive.

Recently Follmer [5] proved, under particular conditions on (3t) (which forbid the usual assumption of completeness on the $\tilde{J}_{t}^{\prime} s$ and are of topological character), that μ_{X} is always σ-additive as soon as X is a L^{I}-bounded quasi-martingale, and that the property for X to be of class D is equivalent to: every evanescent predictable subset of $\mathbb{R}^{+} \times \delta$ is of μ_{X} measure zero. Moreover, follmer notes that the previous decomposition theorem of quasi-martingales (F-processes in the work of (orty (10) J) as got by Orey, Fisk and Rao can be received as mere immediate consfquences of known decomposition theorems for measures.

〔(※) This seminar was written during the author's stay at University of Minnesota - Minneapolis during the fall 1973.

In this lecture we intend to take over follmer's treatment wiltroul, assuming topological properties for the σ-algebras \mathcal{F}_{t} 's, and with the usual assumptions of completeness. The results are slightly different: the measure μ_{X} is only simply-additive, and the property of o-additivitiy is in this case equivalent to the property of being of class D for X.

The first paragraphs (1 to 8) study the one to one correspondence $X \rightarrow \mu_{X}$ between quasi-martingales and a class of finitely additive-measures with bounded variation, which is an isomorphism of the order structiures defined by the positive cone of negative sub-martingales and the positive cone of positive measures respectively.

The $\delta 4$ and $\S 5$ study the σ-additivity or pure finitely additivity of μ in terms of the process X and states the corresponding decomposition theorem.

In $\S 6$ we have exposed the recent proof of the Doob. Meyers decomposition theorem for quasi-martingales, due to J. Pellaumail. It is simple and based upon the σ-additivity of the Dolean's measure, and has moreover the advantage of being immediately applicable to vector valued quasi-martingales.

1. Notations and definitions.
$\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}^{+}}$is an increasing family of sub-o-algebras of a $\sigma-a l g e b r a$ ξ of subsets of Ω.
 generated by $\left.\underset{t \in \mathbb{R}^{+}}{ }{ }^{\mathcal{F}} t\right)$ and

$$
n=\left\{F: F \in \mathcal{F}_{\infty}, P(F)=0\right\}
$$

We make the following:

Assumption: $\mathcal{F}_{t} \supset \backsim$ for any t, and $\left(\mathcal{F}_{t}\right) t \in \mathbb{R}^{+}$is rightcontinuous.

We define the following systems of subsets of $\overline{\mathbb{R}}^{+} \times \Omega$, (where $\left.\overline{I R}^{+}=[0, \infty]\right)$.

A predictable rectangle is a subset $] s, t] \times F$ of $\overline{\mathbb{R}}+\times \Omega$ such that $s<t$ and $F \in F_{s}$.

Let $a \in[0,+\infty]$. Wo call R_{α} the set of predictable rectangles in $J(1, a \mid$ 人f.
u_{α} is the algebra of subsets of $[0, a[x \Omega 2$ which are finite union of predictable rectangles.
\bar{u}_{α} is the algebra of subsets of $[0, a] \times s i$ which are finite union of predictable rectangles.
P_{a} : is the σ-ring generated by ψ_{α}.
\bar{p}_{α} : is the o-ring generated by ${\overrightarrow{v_{i}}}_{\alpha}$.
The elements of $P_{a}\left(\right.$ resp $\left.\bar{P}_{\alpha}\right)$ are called the predictable subsets of $[0, \alpha[\times \Omega \quad(\operatorname{resp}[0, \alpha] \times \Omega)$.

The subsets of $\overline{\mathbb{R}}^{+} \times \Omega$ included in some $[0, a] \times \Omega$ with $a<m$, will be said bounded.

For all the processes $X=\left(X_{t}\right)_{t \in \mathbb{R}^{+}}$which will be considered we will define $X_{\infty}=0 \quad\left(X_{\infty}\right.$ is to be distinguished from $X_{\infty}^{-}=\lim _{t \rightarrow \infty} X_{t}$ p.s. if such a limit exists).

We recall that ${ }_{\alpha}{ }_{\alpha}$ consists of those so-called "stochastic intervals" $] \sigma, \tau]=\{(\mathrm{u}, \mathrm{w}): \sigma(\mathrm{w})<\mathrm{u} \leq \tau(\mathrm{w})\}$ where σ and τ are two finitely valued stopping times.

A function f on $\overline{\mathbb{R}}^{+} \times \Omega$ is said to be evanescent if $P\left(\left\{w: f(t, w)=0\right.\right.$ for $\left.\left.a l l \quad t \in \overline{\mathbb{R}}^{+}\right\}\right)=1$. A subset G of $\overline{\mathbb{R}}^{+} \times \Omega$ is called evanescent if its indicator function l_{A} is evanescent.

Two processes X and Y are said indistinguishable if $X-Y$ is evanescent.

2. Simply additive measures associated with quisi-martingales.

2.1 Definition

An adapted process X is said to be an T-process (Orey's definition) or a quasi-martingale on a compact interval $[0, a]$ if

$$
K_{a}=\sup _{0 \leq t_{1}<\ldots<t_{k} \leq a} \sum_{i=0}^{k-2}\left|X_{t_{i}}-E\left(X_{t_{i+1}} \mid \mathcal{F}_{t_{i}}\right)\right|<+\infty
$$

where the sup is to be taken on all the increasing finite sequences $t_{1}<\ldots<t_{k}$ in $[0, a]$.

Remark.
Such a process is clearly bounded in L^{1} on $[0, i]$.

2.2. Measures associated with a general adapted process.

We define the following functions m_{X}^{α} and μ_{X}^{α} (resp. \bar{m}_{X}^{α} and $\bar{\mu}_{X}^{\alpha}$) , $\boldsymbol{R}_{\alpha}\left(\right.$ resp. $\left.\overline{\boldsymbol{R}}_{\alpha}\right)$, for every adapted real process X such that $\forall t X_{t} \in L^{1}\left(, B_{t},\right)$

$$
\begin{align*}
& \left.\left.m_{X}^{\alpha}(] s, t\right] \times F\right)=I_{F} \cdot\left(X_{t}-X_{s}\right) \in L^{1} \quad\left(\operatorname{resp} \cdot \bar{m}_{X}^{\alpha} \ldots\right) \tag{2.2.1}\\
& \left.\left.\mu_{X}^{\alpha}(] s, t\right] \times F\right)=E I_{F} \cdot\left(X_{t}-X_{s}\right) \in \mathbb{R} \quad\left(\operatorname{resp} \cdot \bar{\mu}_{X}^{\alpha} \ldots\right) . \tag{2.2.2}
\end{align*}
$$

It is quite immediate that this function can be extended into simply additive measures on the algebra $\imath_{\alpha}\left(r e s p . \overline{I_{\alpha}}\right)$. It is clear that, if X
is a Banach valued process (in Banach space E), we can still define m_{x}^{α} and μ_{x}^{α} through formula (2.2.1) and (2.2.2). In this case m_{x}^{α} takes its values in $L_{E}^{1}\left(\Omega, \tilde{\pi}_{\alpha}, P\right)$ and $\quad \mu_{x}^{\alpha}$ takes its values in E.

The following proposition follows immediately from the definition

Proposition 1.
$\bar{\mu}_{x}^{\alpha}$ is positive (resp. negative, resp. zero) if and only if X is a submartingale (resp. a supermartingale, resp. a martingale), on $[0, \alpha]$. Same statement for μ_{x}^{α} and $[0, \alpha[$.

Remark.
From the convention $X_{\infty}=0$, it follows that $\bar{\mu}_{X}^{\infty}$ is positive. (resp. negative, resp. zero) if and only if X is a negative submartingale on $[0, \infty]$, (resp. a positive supermartingale, resp. a null-process).

Proposition 2.
For two finitely valued stopping time σ and $\tau, \sigma \leqslant \tau$ $\left.\left.\left.\left.\mu_{x}\right] \sigma, \tau\right]=E\left(X_{\tau}-X_{\sigma}\right) \quad m_{x}\right] \sigma, \tau\right]=x_{\tau}<x_{\sigma}$

Proof.
If $\left\{0=t_{o}<\ldots<t_{n}\right\}$ is a set including the values of σ and $\tau \quad, \quad \sigma$ and τ can be written.

$$
\sigma=\sum_{i=0}^{n-1}\left(t_{i+1}-t_{i}\right) 1 F_{i} \quad F_{i} \in \mathcal{F}_{t_{i}}
$$

Then

$$
\left.\left.J \sigma, \tau]=\bigcup_{i=1}^{n-1}\right] t_{i}, t_{i+1}\right] \times\left(G_{i}-F_{i}\right)
$$

and the formulas of the proposition follow immediatoly from life drinition of m_{X}, μ_{X} and the fact that

$$
x_{T}=\sum_{i=0}^{n-1}\left(x_{t_{i+1}}-x_{t_{i}}\right) l_{G_{i}}
$$

2.3. More on the correspondence $X \rightarrow \bar{\mu}_{X}^{\infty}$.

From the assumption $X_{\infty}=0$, and the relation

$$
\left.\left.\bar{\mu}_{X}^{\infty}(] t, s\right] \times F\right)=-\Gamma\left(1_{F} \cdot X_{t}\right)
$$

 absolutely continuous bounded measurs on \ddot{e}_{t}, ard processoe x sueh that $X_{t} \in L^{1}$ for all t (defined up to a modification).

2.3 Theorem 1.

$\bar{\mu}_{X}^{\alpha}$ of bounded variation on $\overline{2}_{\alpha} \Longleftrightarrow X$ is an F-process on $[0, \alpha]$. In this case $\left.\left.\left|\bar{\mu}_{X}^{\alpha}\right|(] 0, a\right] \times s\right)=K_{\alpha}$.

Proof.
My delinition, for every predictable $] s, t] \times$,

$$
\begin{equation*}
\left.\left.\left.\left|\vec{\mu}_{\mathrm{X}}^{a}\right|(] \mathrm{s}, \mathrm{t}\right] \times \mathrm{F}\right)=\sin \underset{i}{\sum \mid} \mid I_{\mathrm{F}} \cdot\left(Y_{t_{i}}-I_{s_{i}}\right)\right) \mid \tag{2.3.1}
\end{equation*}
$$

where (]$\left.\left.s_{i}, t_{i}\right] \times F_{i}\right)$ is any family of disjoint rectangles included ir] $n, t] \times F$.

By taking a finer partition if necessary, one may assume that the partitior on the right-hand side of (2.3.1) is of the following form

$$
\begin{equation*}
\left.\left.[] t_{k}, t_{k+1}\right] \times F_{k, \ell}, \quad s \leq t_{0}<\ldots<t_{n} \leq t, \quad \ell=1 \ldots m_{k}\right\} . \tag{2.3.2}
\end{equation*}
$$

lat us then denowt.

$$
\Lambda_{k}=\left[E\left(X_{t_{k+1}} \mid \mathcal{F}_{t_{k}}\right)-X_{t_{k}}>0 \mid\right.
$$

It is cloar, from $F_{k, \ell} \in{ }^{F_{t}}{ }_{k}$, that
(2.3.3)

The two last inequalities imply the theorem.
Theorem 1.
If X is Banach valued, the same conclusions as in Theorem 1 holn Por the Banach valued finite additive-measure $\bar{\mu}_{\bar{X}}^{q}$.

Irool.
With the: same notations as in the prool of Theorem]
where the sup is taken over all the partitions of the form (2.3.2).
Tnequality (2.3.3) is proven exactly the same way.
For every ε, there exists a step function

$$
\varphi_{k}=\sum_{\ell} I_{\mathrm{F}_{\mathrm{k}, \ell}} \cdot \mathrm{x}_{\mathrm{k}, \ell}^{\prime} \quad, \quad \mathrm{x}_{\mathrm{k}, \ell}^{\prime} \in \mathrm{E}^{\prime} \quad\left\|\varphi_{\mathrm{k}}\right\|_{\infty} \leq 1
$$

such that

$$
\begin{aligned}
\left|E\left(X_{t_{k+1}}-X_{t_{k}} \mid \tilde{\sigma}_{t_{k}}\right)\right| & \left.\left.\geq\left\langle\varphi_{k}, E\left(x_{t_{k+1}}-X_{t_{k}}\right)\right| \tilde{z}_{t_{k}}\right)\right\rangle \\
& \geq\left|E\left(x_{1_{k+1}}-x_{t_{k}} \mid \tilde{\sigma}_{t_{k}}\right)\right|-\frac{\varepsilon}{n} .
\end{aligned}
$$

Hrom here it is rasily seen that for every ϵ

$$
\left.\left.\left.\bar{\mu}_{X}^{a}(] s, t\right] \times F\right) \geq \sum_{k-1}^{n}\left|F_{t_{k}+1}-X_{t_{k}}\right| F_{t_{k}}\right) \mid-\epsilon
$$

And then

$$
\left.\left.\bar{\mu}_{X}^{a}(] s, t\right] \times F\right) \leq K_{\alpha}
$$

3. Bounded variation of μ_{x} and regularity of trajectories of X.

 Theorem 2. (Orey).Let X be a separable real quasi-martingale on $[0, a]$. Almost surely the trajectories have left and right limits.
lrool.
The prool goos as the traditional prool for martingales dur i, luot. (cl . [11| p.). Tet a and b br: two real numbers $a<b$. Ir;t $S=\left\{s_{1}<s_{2}<\ldots<s_{2 n}\right\} \subset[0, a]$. We define the timos of up crossings arıj down crossings over $[a, b]$, as follows:

$$
\begin{aligned}
& \sigma_{1}=s_{1} \quad \sigma_{2 k}=\left\{\begin{array}{l}
\inf \left\{s: s \in S, s>\sigma_{2 k-1}, X(s) \leq a\right\} \text { if }\{ \} \neq x \\
\sigma_{2 k-1} \text { if }\{ \}=\phi
\end{array}\right. \\
& \sigma_{2 k+1}=\left\{\begin{array}{l}
\inf \left\{s: s \in S, s>\sigma_{2 k}, X(s) \geq b\right\} \text { if }\{\forall \neq \phi \\
\sigma_{2 k} \text { if }\{ \}=\phi,
\end{array}\right.
\end{aligned}
$$

The condition oj bounded variation on μ_{X}^{a} implise

$$
\left.\left.\left.K_{a}=\left|\mu{ }_{X}^{a}\right|\right] 0, a\right] \times \Omega\right) \geq \sum_{k=1}^{n-1}\left|E\left(X_{O_{2 k+1}}-X_{\sigma_{2 k}}\right)\right|
$$

Bocause ol the positivity of $X_{\sigma_{2 k+1}}-X_{\sigma_{2 k}}$:

$$
\begin{aligned}
K_{a} & \geq \sum_{k=1}^{n-1} E\left|X_{\sigma_{2 k+1}}-X_{\sigma_{2 k}}\right| \\
& \geq \sum_{k=1}^{n-1} j \cdot(b-a) P\left(F_{S, j}^{(a, b)}\right)
\end{aligned}
$$

where

$$
\mathrm{F}_{\mathrm{S}, \mathrm{j}}^{(\mathrm{a}, \mathrm{~b})}=\left\{\mathrm{w}: j \text { among the } X_{\sigma_{2 k+1}}-X_{O_{2 k}} \text { on }>0 ;\right.
$$

Wo may then consider a dense denumerable set S in $[0, i]$, and in: increasing scquence $\left(S_{n}\right)$ of finite subsets of S such thati $\because \cdot U_{n}$, and the corresponding sets ${ }_{F_{S}}(a, b)$. From

$$
P\left(F_{S_{n}, j}^{(a, b)}\right) \leq \frac{K_{a}}{j \cdot(b-a)}
$$

we deduce that the set s_{∞} of trajectories having infinitely mary crossings over $[a, b]$, on the set S, has probability 0 .

The property of the theorem is doduced from there, by the usual argurat.

4. Decomposition theorems.

We recall that an additive function μ on an algebra \mathfrak{U} of sets is the difference of two positive additive functions μ^{+}and μ^{-}if and only if μ is of bounded variation on any set A of \mathscr{U}, i.e.: if $\forall \quad A \in i \cdot|\mu|(A)=\sup \left\{\sum_{i} \mu\left(A_{i}\right):\left(A_{i}\right)\right.$, any finite partition of $\left.A, A_{i} \in i\right\}<\infty$, one has

$$
|\mu|(A)=\mu^{+}(A)+\mu^{-}(A)
$$

Gur may view this as a Fitesz deomposition in the orderen space (complratray reticulatod: set Bourbaki Integration 1 3I) of rolatively kounded lincar i sum on the anace of step functions on 4 . livery simply addit,ive lurcelior μ, ailk bcimmat variation, is isomorphically (linearly and for the order) associated with a linear form $\tilde{\mu}$ by

$$
\left\langle\tilde{\mu},\left.\sum_{i} A_{i}\right|_{s_{i}}\right\rangle=\sum_{i} a_{i} \tilde{\mu}\left(s_{i}\right)
$$

We recall too, that the σ-additive-functions on i are easily seen to astitute a Riesz Band (cf. Bourbaki, Ref. above).

The band of the simply additive functions, which are orthogonal ("étrangeres") t.e all o-additive-functions is formed from all the so called "purely finitely additive functions," which may be characterized in the following way:

$$
\begin{aligned}
& \mu \text { is purely finitely additive, if }(0 \leq \nu \leq|\mu| \text { and } \nu \\
& \text { o-additive }) \Rightarrow \nu=0 .
\end{aligned}
$$

Every finitely additive measures with bounded variation is the sum $\mu_{\sigma}+\mu_{s}$ of a o-additive measure and a purely finitely additive one. The decomposition is unique.

These decomposition theorems give us immediately the following
4.1. Theorem 3.

Every quasi-martingale X on $[0, a]$ is the difference of two positive L^{l}-bounded supermartingales X^{+}and $X^{-}: X_{t}=X^{-}-X_{t}^{+}$. The decomposition is unique if we assume $X_{\alpha}=0$ and impose $X^{+}(\alpha)=X^{-}(\alpha)=0$ and: for every $\varepsilon>0$ there exists a sequence $\tau_{1}<\ldots<\tau_{n}$ of finitely valued stopping times with values in $[0, a]$ and two subsequences $\left(\tau_{i}^{\prime}\right),\left(\tau_{j}^{\prime \prime}\right)$ whose union is $\left(\tau_{i}\right)$ such that

$$
\begin{equation*}
\sum_{i} E\left(X_{\tau_{i}^{\prime}}^{+}-X_{\tau_{i+1}^{\prime}}^{+}\right)+\sum_{j} E\left(X_{\tau_{j}^{\prime \prime}}^{-}-X_{\tau_{j+1}^{\prime \prime}}^{-}\right) \leq \varepsilon \tag{4.1.2}
\end{equation*}
$$

Proof.
Decompose $\mu_{X}^{a}=\mu_{X}^{a+}-\mu_{X}^{a-}$, and take

$$
\begin{array}{cl}
X_{t}^{+}=\left(\frac{d \nu_{t}^{+}}{d P}\right)_{J_{t}}, & X_{t}^{-}=\left(\frac{d \nu_{t}^{-}}{d P}\right)_{\sigma_{t}}: \text { Radon-Nikodym derivatives of } \\
\text { the measures } & \nu_{t}^{+} \text {and } \nu_{t}^{-} \text {defined on } \gamma_{t} \text { by } \\
& \left.\left.\nu_{t}^{+}(F)=\mu_{X}^{u,+}(] t, a\right] \times F\right)
\end{array}
$$

and

$$
\left.\left.\nu_{t}^{+}(F)=\mu_{X}^{a,-}(] t, a\right] \times l^{\prime}\right) .
$$

The decomposition $X_{t}=X_{t}^{-}-X_{t}^{+}$follows from

$$
\left.\left.\mu_{X}^{a}(] t, a\right] \times F\right)=-E\left(I_{F} \cdot X_{t}\right)=-E\left(I_{F} \cdot X_{t}^{+}\right)+E\left(I_{F} \cdot X_{t}^{-}\right)
$$

as to the unicity condition of the theorem, it expresses only that
$\inf \left(\mu_{X}^{a,+}, \mu_{X}^{a,-}\right)=0$.
4.2. Pxtension of $\tilde{m}_{\lambda}^{\infty}$

Let us suppose that X is a F -process on $[0, \infty]$ (with the corvention: here made that $X_{\infty}=0$). It follows immediately from the dreomposition theorem 3 that $\forall F \in \underset{t \in \mathbb{R}^{+}}{ }{ }^{T} t$

$$
\lim _{t \rightarrow \infty} \frac{\mu_{X}^{\infty}}{(] t, \infty] \times F)=}-\lim _{t \rightarrow \infty} E\left(I_{F} \cdot X_{t}\right) \quad \text { exists. }
$$

It is then clear that if we set

$$
\left.\left.\bar{\mu}_{X}(\{\infty\} \times F)=\lim _{t \rightarrow \infty} \bar{\mu}_{X}^{\infty}(] t, \infty\right] \times F\right)
$$

and

$$
\left.\left.\left.\left.\bar{\mu}_{X}(] s, t\right] \times F\right)=\bar{\mu}_{X}^{\infty}(] s, t\right] \times F\right) \text { whenever } s<t, \in[0,+\infty],
$$

we define an additive extension $\bar{\mu}_{\mathrm{X}}$ of $\bar{\mu}_{\mathrm{X}}^{\infty}$ to the algebra called $\overline{\mathrm{I}}_{\mathrm{I}}$ abovi.

It is evident that $\bar{\mu}_{X}$ is the difference of the extentions $\bar{\mu}_{X}^{+}$and $\bar{\mu}_{X}^{-}$of $\bar{\mu}_{X}^{\infty},+$ and $\bar{\mu}_{X}^{\infty},-$. As those extensions are such that inf $\left(\bar{\mu}_{X}^{+}, \bar{\mu}_{X}^{-}\right) \cdots 0$, they are respectively the positive part and negative part of $\bar{\mu}_{X}$.

From these definitions, follows immediately:

Proposition 3.

$\left(X_{t}\right)_{t \in \mathbb{R}^{+}}$is a martingale if and only if $\bar{\mu}_{X}([0, \infty] \times \Omega)=0$. $\left(K_{t}\right)_{t}, \mathbb{R}^{+}$ is a potential (i.e. a positive supermartingale such that $\lim E\left(K_{t}\right)-i$;) if and only if $\bar{\mu}_{X} \leq 0$ and $\bar{\mu}_{X}\{\infty\} \times \Omega=0$.

Eivery quasi-martingale X can be written uniquely as

$$
X=M+V^{-}-V^{+}
$$

where V^{-}and V^{+}are potentials verifying the condition (4.1.2) (${ }^{+}$and X^{-}being replaced by V^{+}and V^{-}in the statement of this conditiorı), arrl M is a martingale.

4.3. Theorem 4. (Orey)

Let $\left(\mathcal{F}_{n}\right)$ be a decreasing sequence of σ algebras with $\mathcal{F}=i_{n} \mathcal{J}_{n}$. If the variables X_{n} verify

$$
\sum E\left|E\left(X_{n}-X_{n+1} \mid z_{n+1}\right)\right|<\infty,
$$

Then they are uniformly integrable.

Proof.
We refer to |lo\} for the proof, or the preceding theorem may br: applied, and we can then use uniform integrability properties of supermartingales.

5. Characterization of σ-additive and purely finitely additive parts.

5.1. σ-additivity on σ_{∞}.

We consider here the case when X being a quasi-martingale on every bounded interval $[0, a], \bar{\mu}_{X}^{\infty}$ is of bounded varlation orily or the algebr: \therefore generater by bounded predictable rectangles. So we take only its restriction μ_{X} to $:_{\infty}$ into consideration.

Belinition.
We recall that a process X on $[0, \infty[$ is said to be of class if $1 f$. the set $\left\{X_{T}: T\right.$ ary finite-stopping time $\}$ is uniformly integrable. It Is said to be locally of class D if for every $\alpha<\infty$, the set $\left\{X_{T}: T\right.$ any stopping time $\left.\leq a\right\}$ is uniformly integrable.

Proposition 4 .

T: - is σ additive on $\bar{S}_{\alpha}, \alpha \in \overline{\mathbb{R}}^{+}$, ard if X is a.s. right, continuous, then for every stochastic interval]T, a]

$$
\left.\left.\bar{\mu} \frac{a}{X}(] T, a\right]\right)=E\left(X_{\alpha}\right)-E\left(X_{T}\right)
$$

1 BL .
This proposition is trivially true for finitely valued stoppiny 1,iur T.
 $\left(i_{i}\right)$, of finitely valued stopping time T, we have then, from the ()-additivity,

$$
\left.\left.\bar{\mu}_{X}^{\alpha}(] T, a\right]\right)=\lim _{n}\left[E\left(X_{a}\right)-E\left(X_{T_{n}}\right)\right] .
$$

But as

$$
\lim _{\mathrm{n}} X_{T_{n}}=X_{T} \quad \text { a.s. }
$$

applying Theorem 4 to the variable $X_{T_{n}}$ and σ-algebras \mathcal{F}_{T} wt pr:t, the convergence of $X_{T_{n}}$ towards X_{T} in L^{1}, and from ther the proposition 4 . Theorem 5 .

Let X be a real process, right continuous in L^{1}, which is a quasimartinerale on overy bounded interval $[0, a]$.

Then μ_{X}^{∞} is o-additive if and only if X is locally of class if Prooi'.

Hecessity.
Let $a<\infty$ and $\bar{\mu}_{\mathrm{X}}^{a}$ the restriction of $\mu_{\mathrm{X}}^{\infty}$ to $\overline{3}_{a}=n^{\infty} \quad[0, \alpha] x$. If
$\bar{\mu}_{X}^{Q}$ is σ-additive, its positive and negative parts are σ-additive too. Let us consider the positive part associated with the positive supermaringale X^{-}. From the o-additivity of $\mu_{X}^{+} \lim _{t} \mathbb{E}_{\mathrm{S}}\left(\mathrm{X}_{\mathrm{t}}^{-}-\mathrm{X}_{\mathrm{s}}^{-}\right)=0$. Then thert f:xists a right-continuous version of X^{-}.

We define the stopping times

$$
R_{n}=\operatorname{lnf}\left\{t: X_{t}^{-}>n\right\} .
$$

For $u<a$

$$
\left.\underset{n}{P(i)}\left[R_{n} \wedge u, u\right]\right)=0
$$

From the σ-additivity and proposition 4 we deduce

$$
\lim _{n} E\left(X_{u}-X_{R_{n} \wedge u}\right)=0 .
$$

Using the same argument as in Meyer [9], p. 13?, we will prove thet, this implies the uniform improbability of $\left\{X_{T}: T \leq u\right\}$.

Let us define

$$
\begin{array}{ll}
T^{\prime}(w)=T(w) & \text { if } \quad X_{T(w)} \geq r \\
T^{\prime}(w)=u \quad & \text { if } \quad X_{T(w)}<n
\end{array}
$$

One has

$$
R_{n} \wedge u \leq T^{\prime}
$$

and then

$$
\begin{aligned}
& E\left(X_{R_{n}}^{-} \wedge u^{\prime}\right) \geq \int X_{T^{\prime}}^{-} d P \\
& \geq j_{\left[X_{T}^{-} \geq n\right]} X_{T}^{-} d P+\int_{\left[X_{T}^{-}<n\right]^{-}} X_{U P}^{-} .
\end{aligned}
$$

Then

$$
\int_{\left[u<R_{n}\right]} X_{u}^{-} d P+\int_{\left[u \geq R_{n}\right]} X_{R_{r 1}}^{-} d P-\int_{\left[X_{T}^{-}<n\right]} X_{u}^{-} d P \geq \int_{\left[X_{T}^{-} \geq n\right]}^{X_{T}^{-}}
$$

as $\left[u<R_{n}\right] \subset\left[X_{T}^{-}<n\right]$ then the positivity of X^{-}implies

$$
\int_{\left[u \geq R_{n}\right]} X_{R_{n}^{-}} d P^{\prime} \geq \int_{\left[X_{T}^{-} \geq n\right]} X_{T}^{-} d P
$$

which proves the uniform integrability property. We do the same refoning for X_{T}^{-}.

Gu'iciency.

We prove that for every decreasing sequenced (\|n) of er: as from it : ch that "11! wa

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{A \in \in_{a}}\left|\bar{\mu}_{X}^{a}\right|(\Lambda) \tag{5.1.1}
\end{equation*}
$$

Wo start with a finite partition $\left(C_{k}\right)$ of $\left.] 0,1\right] \times$ such that

$$
|\Sigma| \bar{u}_{X}^{a}\left(c_{k}\right)\left|-\left|\bar{\mu}_{X}^{a}\right|[0, a] \times u\right| \leq \varepsilon,
$$

which implies

$$
\begin{equation*}
\epsilon_{k}+\left|\bar{\mu}_{X}^{\alpha}\left(C_{k}\right)\right| \geq\left|\bar{\mu}_{X}^{\alpha}\right|\left(C_{k}\right) \mid \text { with } \quad \Gamma \varepsilon_{k} \leq \varepsilon . \tag{5.1.2}
\end{equation*}
$$

We will be finished if we can prove that for a suitable r_{1}

$$
\begin{equation*}
\left.\left.\bar{M}_{a} \ni \Lambda \subset C_{k}^{i}\right] O, \alpha\right] \times H_{n} \Longrightarrow\left|H_{i}^{-1}\right|(\Lambda)-\therefore \epsilon_{k} . \tag{5.7.3}
\end{equation*}
$$

from (5.1 .2) it follows easily that

$$
\begin{equation*}
\forall \quad A \in \bar{S}_{\alpha}, \quad A \subset C_{k}, \quad \varepsilon_{k}+\left|\bar{\mu}_{X}^{a}(A)\right| \geq\left|\mu_{y}^{\prime \prime}\right|(A) . \tag{5.1.14}
\end{equation*}
$$

W. Kn find]o, τ] where 0 and τ are finitely when stoppi:u li: Cunt: that $\left.\left.A \subset] \sigma, \tau] \subset C_{k}, 1\right] 0, \alpha\right] \times H_{n}$. Then, from (5.1. 4)

$$
\begin{aligned}
\left.\left|\bar{\mu}_{X}^{a}\right|(A)=\left|\bar{\mu}_{X}^{\alpha}\right| \sigma, \tau\right] & \left.\left.\leq \varepsilon_{k}+\mid \mu_{X}^{\alpha}(] J, \tau\right]\right) \mid \\
& \leq \varepsilon_{k}+\left|\int_{H_{n}}\left(X_{\tau}-Z_{\sigma}\right) d\right| .
\end{aligned}
$$

Won the uniform integrability of the X_{T} it is then possible to [ind such that (5.1.3) holds. The theorem then follows from the lemma.

Lemma (Pellaumail).
Inct λ be a finitely additive measure on $\overline{4}$, wilh i.f inllowimer propartiss: it, js or finito variation amd
(1) V File $j_{s}, s<t$

$$
\left.\left.\lim _{t \downarrow s} \mid \lambda(] s, t\right] \times F\right) \mid=0
$$

(ii) for every decreasing sequence $\left(F_{n}\right)$ extracteril from \tilde{s}_{a}, such that ${ }_{n} F_{n}=\phi$

$$
\lim _{n \rightarrow \infty} \sup _{A \in \overline{\mathscr{Q}}_{\alpha}}|\lambda(A)|=0 .
$$

Then λ is σ-additive.

Prool'.
We have to prove that for every decreasing sequence

$$
\begin{equation*}
\left(A_{n}\right), \quad A_{n} \in \overline{\mathfrak{a}}_{\alpha} \text { and } \operatorname{iin}_{n} A_{n}=\varnothing, \lim _{n} \lambda\left(\Lambda_{n}\right)-0 \tag{5.1.5}
\end{equation*}
$$

Suppose that for some class ${ }^{c}$ of subsets of $[0, x]$, a irrine stitale with respect to finite unions and intersections, we have the property - $A \in \bar{M}_{a}, \forall \varepsilon, \quad C \in \mathcal{E}$ and $A^{\prime} \in \bar{M}_{a}$ such that

$$
A^{\prime} \subset C \subset A, \quad\left|\lambda\left(A-A^{\prime}\right)\right| \leq \varepsilon .
$$

Then if for every decreasing sequence $\left(C_{n}\right)$ such that $C_{n} \in O$ and C_{n}, we have

$$
(5.1 .6)
$$

$$
\begin{aligned}
& \lim _{n} \sup _{A} \in \overline{\mathfrak{A}}_{n}|\lambda(A)|=0 . \\
& A \subset C_{n}
\end{aligned}
$$

 $\left|\mu\left(A_{n}-A_{n}\right)\right| \leq \frac{\varepsilon}{2^{n}}$. Then if we set

$$
C_{n}^{\prime}=\cap_{k \leq n} C_{k}, \quad B_{n}=\prod_{k \leq n 1} A_{k}^{\prime} \in \overline{\mathbb{Q}}_{\alpha}
$$

W: eft a decreasing sequence $\left(C_{n}^{\prime}\right)$, extracted from o with voirl intersection ath sueri that,

$$
\nabla_{n}\left|\mu\left(A_{n}-B_{n}\right)\right| \leq \varepsilon .
$$

l'rom (5.1.6) it is clear that $\lim _{\mathrm{n}} \lambda\left(\mathrm{B}_{\mathrm{n}}\right)=0$ and ther $\lim _{\mathrm{n}} \sup \left|\lambda\left(n_{\mathrm{n}}\right)\right| \leq \varepsilon$ for all e.

We only have to prove (5.1.6) for a suitable class . We takr for C the class of finite unions of rectangles of the typr $\mid s, t] \times F, F \in F_{s}$. from property (i) it is clear that for every set $\Lambda=[\mathrm{s}, \mathrm{t}]$ y ir (arm thrit
 and $A^{\prime}=\left[s^{\prime}, t\right] \times F$ such that $\left.\left.\left|\lambda\left(A-A^{\prime}\right)\right|=\mid \lambda(] s, s^{\prime}\right] \times F\right) \mid \leq \epsilon$.

Let us take a decreasing family $\left(C_{n}\right)$ of sets in (${ }^{\prime}$ such thint,
ii $C_{11}-\phi$. As, for every w, the sot $C_{n}(w)=\left\{11:(1, w) \in C_{r}\right\}$ is compesil, in $\overline{11}$:

$$
\cup_{k}\left\{w: \operatorname{li}_{n \leq k} C_{n}(w)=\phi\right\}=0 .
$$

As $\left\{w: \cap_{n \geq k} C_{n}(w)=\phi\right\}=F_{n} \in F_{a}$

$$
\operatorname{li}_{n \leq k} C_{n} \subset[0, \alpha] \times F_{r_{1}}
$$

lroperty (ii) then implies (5.1.6).

5.2. J-additivity on \bar{j}_{∞}.

The following theorems are mere corollaries of: Theorem 5.

Theorem 5^{\prime}.

Let X be a right continuous quasi-martingale on $[0, \infty]$. Ther $\bar{\mu}_{X}^{\infty}$ is σ-additive if and only if X is of class D. Theorem 5".

Let X be a right continuous process which is a quasi-martingals on every $[0, a], a<\infty$. Let T be a stopping time such that $\left\{X_{\sigma}: \sigma \leq T\right.$, σ stopping time? is uniformly integrable. Then $\bar{\mu}_{X}^{m}$ restrictrad to $[0, T] \Gamma_{1} \bar{\rho}_{x}$ is σ-additive. Remark. The theorom $5^{\prime \prime}$ can be applied, in particular if $T=i n f\left\{t: \AA_{t} \geq r\right\}$.

5.3. Pure simple additivity of $\bar{\mu}_{X}$

Theorem 6.
Lot X be a right continuous quasi-martingale on $[0, \infty]$. $\overline{\mu_{r}}$ is purely singly additive if and only if X is a local martingale, surh that $\lim _{t \rightarrow \infty} x_{t}=0$ a.s.
$t \rightarrow \infty$
Iroof.
Let $I_{n}=\inf \left\{t:\left|X_{t}\right|>n\right\}$, and $Y_{t}^{n}=X_{t \wedge R_{n}}$. As $\left(Y_{t}^{n}\right)_{t \in I^{t}}$ is trivially a quasi-martingale of class D, and as

$$
\left|\bar{\mu}_{\mathrm{Y}^{\mathrm{n}}}^{\alpha}\right| \leq\left|\bar{\mu}_{\mathrm{X}}^{a}\right|
$$

$\bar{\mu}_{Y^{n}}^{\alpha}=0$ if $\bar{\mu}_{X}^{\infty}$ is purely simply additive, which means in particular that,
Y^{n} is a martingale, and then X is a local martingale.

Let $X=M+V^{+}-V^{-}$be the decomposition of X as the sum of a martingale, and the difference of two potentials. It is know॥ (and may to check) that the σ-additive (and then in this case P-absolut, ig contimuous) part of $\bar{\mu}_{M}$ is $\bar{\mu}_{M^{\infty}}$, where $\left(M_{t}^{\infty}\right)_{t \in \mathbb{R}^{+}}$is the iniformay integrable martingale

$$
M_{t}^{\infty}=E\left(\lim _{t \rightarrow \infty} M_{t} \mid \tilde{v}_{t}\right)
$$

As

$$
\lim _{t \rightarrow \infty} X_{t}=\lim _{t \rightarrow \infty} M_{t} \text { P. a.s. }
$$

we see that if $\bar{\mu}_{X}$ is purely simply additive, then $\lim _{t \rightarrow \infty} X_{t}=0$
Conversely, from what precedes, to prove that, for a lonal narlinemil X such that $\lim _{t \rightarrow \infty} X_{t}=0$ a.s., $\vec{\mu}_{X}$ is purely simply additive, it, sire to prove that a potential V, which is a local martingal.e, is such that, $\bar{\mu}_{V}$ is purely simply additive. But noticing that every process Y such that $0 \leq \bar{\mu}_{Y} \leq \bar{\mu}_{V}$ and which is o-additive, has to be a potential which is a local martingale of class D, then a uniformly integrable marinimal, is zero.
6. Pellaunail's proof of the Doob-Meyer's Decomposition theorem.

Theorem 7 (cf. [11]).
Let a be a positive finite measure on i_{r}, sidch thet $\left(A \in P_{\infty}, A\right.$ evanescen $\left.t\right) \Rightarrow \alpha(A)=0$.

Then, there exists an increasing process (c.t.r.), unique up to indistinguishability, such that $V \mathrm{~s}<\mathrm{t}, \mathrm{V} \quad \mathrm{E} \mathrm{F}_{\mathrm{t}}$

$$
\begin{equation*}
E\left[I_{F} \cdot\left(V_{t}-V_{s}\right)\right]=\int_{] s, t] x} \Gamma\left(I_{\mathrm{F}} \mid V_{0}\right) d \tag{6.1.1}
\end{equation*}
$$

denoting by $E\left(I_{F} \mid F_{u^{-}}\right)$a left continuous (then predictable) version of the martingale $\left(E\left(I_{F} \mid F_{u}\right)\right)_{u \leq t}$.

The process V thus defined is natural in thr: Mryer's serisr (of. '/ 7 Chap. VIII).

Proof.
Tho unicity, up to indistinguishability, is quite trivial, y_{t}, hinif necossarily such that (6.1.2) $\quad \forall \quad F \in F_{t} \quad E\left(I_{F} \cdot V_{t}\right)=\int_{(0, t] \times \Omega} F\left(I_{F}!\Gamma_{u^{-}}\right) d \alpha$. We consider the following function on F_{t}

$$
a_{t}: F \rightarrow \int_{(0, t] \times s} E\left(l_{F} \mid F\right) d \alpha .
$$

Using the martingale inequality and the Borel Cantelli lema, wrow it a standard way, that from any decreasing sequence $\left(g_{n}\right)$ of F_{t}-masurable functions, such that

$$
\lim _{\mathrm{n}} \mathrm{~g}_{\mathrm{n}}=0 \quad \text { p.s. }
$$

w. can extract a subsequence $\left(g_{n_{k}}\right)$ such that, if

$$
Y_{k(n)}=E\left(g_{n_{k}} \mid F_{u^{u}}\right),
$$

we have
a.s. $\lim _{k \rightarrow \infty} \sup _{0 \leq u \leq t}\left|Y_{k}(1, \omega)\right|=0$.

The 0-additivity of a_{t} follows from this, and, denoting by \AA_{t} an "xpression of the Radon-Nikodym derivative $\left[\frac{d \alpha_{t}}{d P}\right]_{y_{t}}$ one grats carily rollowin:

$$
\begin{aligned}
& \forall f \in \underbrace{1}\left(s, \tilde{F}_{t}, p\right), s<t \\
& E\left(f \cdot\left(\tilde{A}_{t}-\widetilde{A}_{s}\right)\right)=E\left(f \cdot \tilde{A}_{t}\right)-E\left(\mathbb{E}\left(\Gamma \mid \tilde{F}_{s}\right) \cdot \tilde{A}_{s}\right) \\
& =\int_{[s, t] \times s .} \mathbb{E}\left(f \mid F_{u^{-}}\right) d a .
\end{aligned}
$$

One then gets easily a modification V of \widetilde{A} having all the requirid propertis.

Using the relation

$$
E\left(Y_{t} \cdot V_{t}\right)=E \int_{0}^{t} Y_{s} \cdot d V_{s}
$$

for a positive martingale Y and an increasing process V (cf. [7], Chap. VIII), one gets immediately

$$
\begin{aligned}
\int_{(0, t] \times s i} Y_{s}-d a & =\int_{(0, t] \times \Omega} E\left(Y_{t} \mid Y_{s}\right) d a \\
& =\mathbb{E}\left(Y_{t} \cdot V_{t}\right)-\mathbb{U} \int_{0}^{t} Y_{s} \cdot d V_{s}
\end{aligned}
$$

which proves the "naturality" of the process V in the sense of P.A. Mryr (cf. [7], Chap. VIII).

Corollary. Doob-Meyer's Decomposition Theorem.
If X is a L^{1}-bounded process which is a quasi-martingale on every finite interval $[0, \alpha] \subset \mathbb{R}$, and is locally of class D, there is a unique (up to indistinguishability) decomposition

$$
\mathrm{y}=\mathrm{M}+\mathrm{V}
$$

where M is a martingale, and V a process which is the difirrone: wh two increasing natural processes, vanishing at 0 . Proot'.

We take the foloans measure a associated with X arid apply the preceding theorem to get V. As the Doleans measure associated with $X-V$ is zero, $X-V=M$ has to be a martingale.

7. Extension to the case of vector valued processes.

We have already noticed theorem l' $^{\prime}$ that some of the provions results could bu restated without, any change for Banach vilurd process. But in this case, the notion of decomposing μ_{X} into a positive int ramel,i\% part is meaningloss.

The sufficient part of the proof of Theoren 5 can be applied withot, change to the vector situation. This is not the case for the necessity part, of the proof.

As done in [6] and [11] the decomposition theorem of 6 externe withoit, change to the case of a quasi-martingale X taking its values in thre separable dual of a Banach space.
[1] Bourbaki. Integration, Chap. T, §1. Actualites Sciontiriques :i, Industririlos. Hermann.
[2] Dolmas, C. Mxistonce du processus croissant naturel assucis ant potenlisil de la classo (D). 7. Wahrsche:inlichkuilsthrorir: verw. (ioh. $9,309-311_{4}$ (1963).
$13 \mid$ Fisk, D.L. Quasi-inartingales. Truns. Ari. Math. Goc. 120 (359-39,).
|4] Fölliner, H. The exit measure of a supermartingale. Z. Wahrscheinlichkeitstheorie Ver. Geb. 21, 154-166 (1972).
[5] Follmer, H. On the representation of semimartinpalrs. To apprat irn Trans. An. Math. Soc.
|n| Mutivior, M. Intograle stochastique par repporl, à dee procesone à valours dans un ospace do Banach rólrixil'. 'T'u apprar in 'hrooria veroyatnostie, 1973.
[7] Meyer, I.A. Probabilités et potentiels. Hernarn, I'aris,]966.
[3] Meycr, F.A. Integrales stochastiques, Sem. Prob. T, Trocinur: Hotrs Math. 39, 72-183, (1967).
[9] Mcyer, P.A. La mesure de H. Föllmer on théorei des surmartingalrs, Sem. Prob. VI Lecture Notes, Springer Verlag (1972).
[10] Orey, S. F-processes, Proc. Fifth Berkeley symposium, II - 1, 301-31.3 (10677).
[11] Prllamail, J. The nouvells construction de l'intigral. shorbastiqu. These Remmes 1972. To appoar in "Astorisque", VTT. Fublication ir: Jit société Malifomatique de France 1973.
|L2| Ir,llaumil, J. Lecturs Notes. Séminaire de lrob. VTIT, 1973.
[13] Rao, R.M. Quasi-martingales. Math. Scand. 24, 79-92 (1969).

