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On Doleans-Follmer1s measure for quasi-martingales 

and a Pellaumail 1s extension theorem 

by 

Michel Metivier (*] 

Laboratoire de Probabilités - ERA 250 C.N.R.S. - Rennes 

Let (0,(3^)^ k e the usual setting for studying stochastic 

processes. The idea of associating with every adapted process (X^) ̂  ( ^ + 

a set function p, , defined on the algebra of subsets of 1 x ft 

generated by the family {]s,t] x F ; 0 < s < t , F 6 3 } , through the formula 

M.x(]s,t] XF) = E [ 1 F .(X t-X g)] 

seems to have been used by C. Doleans in f 2] for the first Mme. 'Ihe 

proved that, if X is a supermartingale of local class D , then ^ is 

o-additive. 

Recently Ftfllmer [5 ] proved, under particular conditions on (¿5 ) 

(which forbid the usual assumption of completeness on the o ^ s and are 

of topological character), that JJL^ is always a-additive as soon as X is 

a I?"- bounded quasi-martingale, and that the property for X to be of 

class D is equivalent to: every evanescent predictable subset of IR +x ft 

is of p,̂  measure zero. Moreover, Ftfllmer notes that the previous decom

position theorem of quasi-martingale s (F-processes in the work of Ore;/ |ioJ) 

as got by Orey, Fisk and Rao can be received as mere immediate consequences 

of known decomposition theorems for measures. 

(X) This seminar was written during the author's stay at University 

of Minnesota - Minneapolis during the fall 1973. 
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In this lecture we intend to take over Ktfllmor's treatment wHhouf, 

assuming topological properties for the a-algebras 3, 1 s , and with the 

usual assumptions of completeness. The results are slightly different: 

the measure ^ is only simply-additive, and the property of a-additivity 

is in this case equivalent to the property of being of class D for X . 

The first paragraphs (1 to 8) study the one to one correspondence 

X -» jj,̂  between quasi-martingales and a class of finitely additive-measures 

with bounded variation, which is an isomorphism of the order structures 

defined by the positive cone of negative sub-martingales and the posiMve 

cone of positive measures respectively. 

The §4 and §5 study the a-additivity or pure finitely additivity of 

IJL in terms of the process X and states the corresponding decomposition 

theorem. 

In §6 we have exposed the recent proof of the Doob. Meyers decomposition 

theorem for quasi-martingales, due to J. Pellaumail. It is simple and 

based upon the a-additivity of the Dolean Ts measure, and has moreover the 

advantage of being immediately applicable to vector valued quasi-martingales. 

1. Notations and definitions. 

(¡3̂ ) ̂  is an increasing family of sub-a-algebras of a o-algebra 

3 of subsets of Q . 

(Q,3,P) is a complete probability space. We set 3 = V 3 (a-al^ebra 

generated by U 3 ) and 
t 6]R + t 

11 = {F :F 6 3 , P(F) =0} . 
L 00 
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We make the following: 

Assumption: ¡5. o u for any t , and (3.) . c TO+ is right-

t t t c In. 

continuous. 

We define the following systems of subsets of I ? " x 0 , (where 

IR+ = [0,co]) . 

A predictable rectangle is a subset ]s,t] x F of 1 + x fi such that 

s < t and F 6 5 . 
s 

Lot a 6 [0, +»] . Wo call the set of predictable rectangles in J0,a| /u . 

% is the algebra of subsets of [0 ta[ xil which are finite union of 
a 

predictable rectangles. 

ii^ is the algebra of subsets of [0,a] xii which are finite union of 

predictable rectangles. 

P^ : is the a-ring generated by 4^ • 

p^ : is the a-ring generated by # 

The elements of P^ (resp P^ ) are called the predictable subsets of 

[0,a[ XQ (resp [0,a] X Q) . 

The subsets of IR + x U included in some [0,a] x ^ with a <C m . will 

be said bounded. 

For all the processes X = ( X , ) , ^ ^ ± . which will be considered we will 

"G "D t lit 
define X =0 (X is to be distinguished from X" = lim X, p.s. if such 

CO 00 00 u 
t -* 00 

a limit exists) . 
by_ 

% will be the algebra generated^ # and the sets {{cojxF; F £ U d J . 
t £ ]R + 

We recall that & consists of those so-called "stochastic intervals" 
a 

] Q , T ] = {(u,w) : a(w) < U < T ( W ) } where a and T are two finitely valued 

stopping times. 
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A function f on I R + x ft is said to be evanescent if 

P({w : f (t,w) =0 for all t € 1R+}) = 1 . A subset G of ]R + x ft is 

called evanescent if its indicator function 1^ is evanescent. 

Two processes X and Y are said indistinguishable if X - Y is 

evanescent. 

2. Simply additive measures associated with quasl-martin^alrjs. 

2.1 Definition 

An adapted process X is said to be an F-process (Orey 1s definition) 

or a quasi-martingale on a compact interval [0,a] if 

Tc-2 
K = sup £ E IX -E(X. |^+ ) I < + -

a 0 < t 1 < . . . < t k < a i=0 \ i+l' t i 

where the sup is to be taken on all the increasing finite sequences 

< ... < t^ in [0,a] . 

Remark, 

Such a process is clearly bounded in on [0,a] . 

2.2. Measures associated with a general adapted process. 

We define the following functions and p,̂  (resp. m^ and p^ ) <>»v. 

• J ^ (resp. TR^) , for every adapted real process X such that Vt X^ 6 , 

(2.2.1) mJ(]s,t]xF) = 1 F - ( X - X ) 6 L 1 (resp. m£ ... ) 

(2.2.2) ^(]s,t]xF) = E 1 F • ( X t - X g ) €]R (resp. p*. . . ) . 

It is quite immediate that this function can be extended into simply 

additive measures on the algebra i. (resp. 2.1 ) • It is clear that, if X 
ct (X 
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is a Banach valued process (in Banach space E) , we can still define m£ 

and y a through formula (2.2.1) and ( 2 . 2 . 2 ) . In this case takes x x 
its values in ( , 3^ ,P) and y a takes its values in E . 

E a x 

The following proposition follows immediately from the definition 

Proposition 1. 

y^ is positive (resp. negative, resp. zero) if and only if 

X is a submartingale (resp. a supermartingale, resp. a martingale) , 

on [o>a] • Same statement for y^ and 
Remark. 

00 

From the convention X M = 0 , it follows that y^ is positive, 

(resp. negative, resp. zero) if and only if X is a negative submartin

gale on [p,00^] , (resp. a positive supermartingale, resp. a null-process). 

Proposition 2. 

For two finitely valued stopping time a and T , a ^ T 

^ x = E(xT - X a ) m

x ] a > T 3 = X T 4 x a 

Proof. 

If {o = t
0

< * - * < t
n } is a set including the values of o and 

T , a and T can be written. 

° - [la

 ( t i + l " V 1 F. Fi e K . i-o 1 1 

T = l ! Q
 ( t i + l - V U. G i £ 3 ^ t . and G. o F. 

1 = 0 1 1 1 1 

Then 

= nu ]t , t i + 1 i * (6. - r.) 
1=1 
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^LTKL tho formulas of the proposition follow immediately from l.he d ' - f i n i U o n 

o f m^, ^ and the fact that 

n-1 
= S (X, -X. ) l p . 

T . n t.._ t. G. 
1=0 i+1 I l 

2.3. More on tho correspondence X -» ̂  . 
A 

From the assumption X =0 , and the relation 

^ ( ] t , s ] x F ) = -R(l F'X t) 

j f, is clear that < > X is a one-to-one correspondence b'-l/woen f j n i f,e1;/ 
A 

addiLivo measures §JL on 21̂  such that for every t , I'' ••» f j/]'v"| x i') *r: a M 

absolutely continuous bounded measure1 on J > and processes X s<eh 

that X 6 L̂ " for all t (defined up to a modification) . 

2.3 Theorem 1. 

JJ,^ of bounded variation on & < = > X is an F-process on [0,a] . 

In this case (] 0, a] Xii) = . 

Proof. 

By definition, for every predictable ] s,t] x I'' j 

(2.3 . D |^|(]s,t] XF) = S u p 2|E(1 F. (X - X e ))| 
i i i "i 

where (] s^,t^] XF^) is any family of disjoint rectangles included in 

]r.,t] XF . 

By taking a finer partition if necessary, one may assume that the partition 

on the right-hand side of (2.3.1) is of the following form 

(2.3.2) H V W ^ X \ l 9 - < t
n < t > 1 = 1 ... \] . 
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I .el, us then d e n o t e 

\ = [ E ( \ + 1 ' V - \ > n | • 
k+l lc k 

It is clear, from V. fc 3 , that 
k,*, t k 

(2.3.3) 2 |E(X - x ) • IF j 3 n i':|iv .'•:(*, - ', ; 
k,l \+l \ k,l k t k, f. 'k+l k k 

< 2 K | i ' : ( x - x i;.-, ) | . 
k "kfl 'k' 'k 

Qn tho other hand it is trivial that i'or ear-h division p - I,, ' t. 

k k k+l k k k k+l k 

Tho two last inequalities imply the theorem. 

Theorem l( 

If X is Banach valued, the same conclusions as in Theorem 1 hold 

Tor the Banach valued finite additive-measure ^ . 

Proo ('« 

With the same notations as in the proof of Theorem 1 

I4|(]s,t] x f ) - sup s K ( i f • K(xf - x f | ; V F ) ) 
k,i k,l 'k+l 'k Jk 

where the sup is taken over all the partitions of the form (2.3.2). 

Inequality (2.3-3) is proven exactly the same way. 

For every e , there exists a step function 
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such that 

From here it is easily seen that for every e 

_ n 
M$(]s,t] xF) > S |F(Xf ->:t |;?t ) | - e . 

k~-l 'k+1 'k 'k 

And then 

^ ( > , t ] XF) < K q 

3. Bounded variation of JJ, and regularity of trajectories of X . 

Theorem 2. (Orey) . 

Let X be a separable real quasi-martingale on [0,a] . Almost 

surely the trajectories have left and right limits. 

Proof. 

The proof goes as the traditional proof for martingales due- f,o h^ob. 

(cf. [11] p. ) . Let a and b be two real numbers a < b . Let 

S - [s-^<S2<-.. < $2n} C t-0,a-l * W e define the times of up crossings ane 

down crossings over [a,b] , as follows: 

Anf{s:s € S, s > A 2 K _ 1 , X(s) <a] if { 

finf{s : s 6 S, s > o 2 k , X(s) >b] if { 
Q2k+1 = \ .« r , , 
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The condition of bounded variation on ^ implies 
A 

n-1 
K =|nj|]0,a] XU) > 2 |K(X -X ) | . 

a 1 X l
 k=l °2k+l °2k 

Because of the positivity of X - X : 
°2k+l "2k 

n-1 
K > 2 E|X - X I 

a " k=l ' a2k+l °2k' 

> ^ j - (b-a)P(F^ a'. b )) 
k=l b ' J 

where 

j,,(a, b) _ ̂ w . j gjjjong t h e v _ j on > 0 ] . 
b ' J °2k+l °2k 

We may then consider a dense denumerable set G in [0,aj , and •a: 

increasing sequence (S ) of finite subsets of S such that ?>' U f! , 

(a b) n 

and the corresponding sets Fi ' . . From 
n' J 

P ( \ , j } " j • (b-a) 

we deduce that the set il^ of trajectories having infinitely many crossings 

over [a,b] , on the set S , has probability 0 . 

The property of the theorem is deduced from there, by the usual argument. 

4-. Decomposition theorems. 

We recall that an additive function JJ, on an algebra % of sets is 

the difference of two positive additive functions \^ and p, if and only 

if |JL is of bounded variation on any set A of 51 , i.e.: if 

V A (A) =sup{2 ^(k±) : ( A ^ , any finite partition of A , A ^ 6 i t ) <<*> , 

one has 

|UL | (a ) - ^ + ( A ) + M T ( A ) • 
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One may view M i l s as a Riosz decomposition in the ordered space (completely 

reticulated: see Bourbaki Integration I §1) of relatively bounded linear 

i ) nu on t h e : :pace of step functions on ii . Every simply additive tunc M o n 

p, , ,,i th bounded variation, is isomorphically (linearly and for the order) 

associated with a linear form ¡1 by 

i i i 

We recall too, that the a-additive-functions on are easily seen to 

constitute a Riesz Band (cf. Bourbaki, Ref. above). 

The band of the simply additive functions, which are orthogonal ("étrangères") 

t o all o-additive-functions is formed from all the so called "purely finitely 

additive functions," which may be characterized in the following way: 

|JL is purely finitely additive, if (0 < v < |JJ,| and v 

o-additive)=> v = 0 . 

Every finitely additive measures with bounded variation is the sum M-Q

 + 

a o-additive measure and a purely finitely additive one. The decomposition 

is unique. 

These decomposition theorems give us immediately the following 

4.1. Theorem 3. 

Every quasi-martingale X on [0,a] is the difference of two positive 

L'^-bounded supermartingales X* and X :X = X - X* . The decomposition is 

unique if we assume ^ a ~ ^ impose X +(a) = X (a) =0 and: for every 

e>0 there exists a sequence T ] _ ^ • • * ̂  T

n °^ finitely valued stopping 

times with values in [0,a] and two subsequences ( T | ) , ( T V ) whose union 

is (T\) such that 

(4.1.2) S E(X +

f -X* ) + 2 E(X~ f f-X~ f l ) < € . 

i T i Ti+1 j T j Tj+1 " 
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Proof. 

Decompose = ^ + - JJ,^ , and take 

+ fat\ - fai) 

X t V ~dP/ ' X t \~dP/ 2 R ad° n-Nikodym derivatives of 

the measures and defined on <}• ̂  by 

V t ( F )
 XF) 

and 
v t ( F ) " r ^ x , " ( ] t , a ] X v ) ' 

The decomposition X, ̂ X ^ - X * follows from 

t, a] x F) = -E(1 F • X t) = -E(l p • X+) + E(l p • X~) 

as to the unicity condition of the theorem, it expresses only that 

i n f ( ^ ' + , N £ ' - ) = o . 

J+..2. Extension of 
À 

Let us suppose that X is a F-process on [0,a>] (with the conventioe 

here made that X =0 ) . It follows immediately from the decomposition 
CO 

theorem 3 that V F t U 3. 

t em+ t 

lijn jjL^(]t,oo] x F) = - lim EClp- X ) exists. 

It is then clear that if we set 

j! x(H X F ) = lim ^(]t,oo] x F ) 

t -» oo 
and 

jlx(] s, t] X F) s, t] x F) whenever s < t £ [ 0 , +«>] , 

we define an additive extension jj,̂  of ^ to the algebra called ^ above'. 
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It is evident that is the difference of the extentions u,* and 

°^ ^X* + a n (^ 0 ^ S "^ose extensions are such that inf(p*, ~0 , 

they are respectively the positive part and negative part of u, . 
A. 

From these definitions, follows immediately: 

Proposition 3. 

( X t ) t e ] R + is a martingale if and only if ^ ( [ 0 , a>] x Q) = 0 . C^f) t L m+ 

is a potential (i.e. a positive supermartingale such that lim E(X ) ~ 0 ) 

_ t -> CD 

if and only if [I-£<0 and ^ ( œ ) x Q = 0 . 

Every quasi-martingale X can be written uniquely as 

X = M + V ~ - V + 

where V and V + are potentials verifying the condition (^.1.2) (X + and 

X being replaced by V* and V in the statement of this condition), and 

M is a martingale. 
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4.3 . Theorem 4. (Orey) 

Let (5 ) be a decreasing sequence of a algebras with J - : i J 
n 

If the variables X verify n J 

S E | E ( X n - X n + 1 | 3 n + 1 ) | < m , 
n 

Then they are uniformly integrable. 

Proof. 

We refer to | 10 J for the proof, or the preceding theorem may be 

applied, and we can then use uniform integrability properties of supermartingales. 

5* Characterization of q-additlve and purely finitely additive parts. 

5.1. o-additivlty on i= . 
00 

We consider here the case when X being a quasi-martingale on every 

bounded interval [0,a] , JJL^ is of bounded variation only on the algebra 

."> generated by bounded predictable rectangles. wSo we take only its 

restriction i*,.,- to into consideration. 

A oo 

Poflnition. 

We recall that a process X on [0,oo[ is said to be of class D if 

the set {X^ : T any finite-stopping time] is uniformly integrable. It 

is said to be locally of class D if for every a < oo , the set 

{X T : T any stopping time < a} is uniformly integrable. 
Proposition 4* 

Tf Z'l is o additive on £ , a € ]R +, and if X is a.s. right 
a 

continuous, then for every stochastic interval ]T,a] 

if(]T,a]) =E(X a) -E(X T) . 
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This proposition is trivially true for finitely valuer] stopping time T . 

Jsiu*r lor a stopping time T , an upper decreasing approximating s e q u e n c e 

(T ) , of finitely valued stopping time T , we have then, from the 

o-additivity, 

M$(]T fa]) = lim [E(X ) - E(X )] . 
n n 

But as 

lim X^ = X^ a. s. 
n n 

applying Theorem 4 to the variable X^ and o-algebras 3 ^ we get the 
n n 

convergence of X^ towards X^ in , and from there the proposition /,. 
n 

Theorem 5. 

Let X be a real process, right continuous in L̂ " , which is a quasi-

martingale on every bounded interval [0,a] . 

Then ^ is o-additive if and only if X is locally of class h . 

Proof. 

Necessity. 

Let a<°° and ^ the restriction of ^ to =o°° [0, aj x . T f 

is o-additive, its positive and negative parts are o-additive too. 

Let us consider the positive part associated with the positive supermartingale 

X " . From the o-additivity of ^ lim E(X~-X~) =0 . Then there 
t s 

exists a right-continuous version of X"" . 

We define the stopping times 

R =inf{t :XT>n] . n 1 t 
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For u < a 

P(ll [R n Au, u]) = 0 . 
n 

From the o-additivity and proposition U we deduce 

11m E(X - X D A ) = 0 . 
v u R A i r n n 

Using the same argument as in Meyer [9 ] , p. 13^, we will prove f,hat this 

implies the uniform improbability of {X^ : T < u ] . 

Let us define 

T'(v) =T(w) if X T ( w ) > n 

T-(w) =u if X T ( w ) <n . 

One has 

R Au < T 1 

n — 
and then 

n 

J [ X " > n ] J[X"<n] u 

Then 

f X" dP + f XT dP - P X" dP > P X" d!! 

J [ u < R n ] U J [ u > R n ] ^ -[X-<n] U ~^[X->n] 

as [ u < R n ] c [X~<n] then the positivity of X~ implies 

f XT dP > f XI dP 
• [ u > R n ] ^ ^[X">n] 

which proves the uniform integrability property. We do the same reasoning 

for X" . 
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fiui'i'icioncy. 

We prove that for every decreasing sequence (11̂ ) of s'.-l.s from ;i" 

M c h l . l i a i . 1 1 II ~</ 11 n 

(5.1.1) lim sup l^|(A) 0 
n - oo A €S 

a 
A c [ 0 , a ] X H n 

Wo start with a finite partition ( C ^ ) of ]0 , a ] x ' s i - ' c h t h a t 

!|2|^(C k) | - | ^ | [0, a ] x . i _ , 

which implies 

(5.1.2) e k + | ^ a ( c k ) | > | ^ | ( C k ) | with >Z e R < e . 

We will be finished if we can prove that for a suitable n 

<'>.1.3) nn 3 A c : C k n ] 0 , a ] X H n | ^ ' | ( A ) < ?.ek -

l''rom (t).1.2) it follows easily that 

W" c'iii find ] o , T ] where o and T are finitely v a l u e d s t o p p i n g f < 

?:•••}• t h a t A C ] q , T ] C G1 ii ] 0, a ] x H . Then, from (5.1./+) 
J£ n 

| ^ | ( A ) c | - a | a , T ] < e k + | ~ J ( ] a , T ] ) | 

* E K + l r
 W , H I • 

p'rom the uniform integrability of the X it is t h e n possible' t o Cinr] -. 
T 

such that (5.1.3) holds. The theorem then follows from the lemma . 
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Lemma (Pellaumail). 

Lot X be a finitely additive measure o n °( , with the l"o 1.1 o w l n / r 

a 

properties : U In of finite variation and 

(i) V F<~ 3 , s < t 

lim | \ ( ] s , t ] x F ) | =0 
t * s 

(ii) for every decreasing sequence ( F ^ ) e x t r a c t e d f r o m ,7 , s u c h 

that I) F -0 n n 

lim sup_ I X(A)J = 0 . 
n - oo A es i a 

Ac]0,a] x F n 

Then A is a-additive. 

Proof, 

Wo have to prove that for every decreasing sequence 

(5.1.5) (A ) , A € SI and i i A ~(f> , lim X (A ) ~0 . / n ' n a n ' 7 ' n n n 

Suppose that for some class C of subsets of [0, a] , C L e - i n g 

stable with respect to finite unions and intersections, we h a v e - t h e p r o p e r t y 

v A <z¥l , V e , k C (EC and A* €91 such that 

A f c C c A , | x(A-A») | < e . 

Then if for every decreasing sequence (C ) such that C € 0 and , 0 - <h 9 

h 
we have 

(5-1.6) lim sup_ |X(A)| = o . 
n A 6 SI 

fx 
A c G 

n 
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W - sr.,. immediately that (^.l^i is Lru. •: Laic:.' A ? C 0 c A wi th 
n fi 11 

I L L ( A ~ A ? ) I < — . Then if we set 

n , . k ' n , . K a k<n k<n 

we get a decreasing sequence (Ĉ ) , extracted from 0 with void intersection 

and such that 

V n | . ( A n - B n ) | < e . 

from (5.1.6) it is clear that lim X (B ) =0 and then lira sup |/,(A ) I <e 
n n n n 

tor all e . 

We only have to prove (5.1.6) for a suitable class 0 . We take for 

C the class of finite unions of rectangles of tho type | s,t] x F , F (-": 3 . 

From property (i) it is clear that for every set A ~ [ s , f ] y F (and then 

i'or ovary finite- union of such sets), it is possible to find G = r s ! , t | x F (- A 

and A 1 - [ s 1, t] x F such that |\(A - A") j = \X (]s,s!] X F) | < e . 

Lot us take a decreasing family (C^) of sets in f such that 

fi G -0 . As, for every w , the set C (w) ~ [u : (u,w) £ 0 ] i s compact 
n 
in It : 

U {w : i"i C (w) =0 } = Q . 
k n<k n 

As [w : fl G (w) =0} = F 6 3 1
 x l n v 7 ^ J n a n>k 

,i C c f O , a ] x F . n n n<k 

Property (ii) then implies (5.1*6). 
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r).2. o-additivity on P . 

The following theorems are mere corollaries of Theorem 5. 

Theorem 5 1 * 

Let X be a right continuous quasi-martingale on [0,e»] , Then 

jî  is a-additive if and only if X is of class D . 

Theorem 5". 

Let X be a right continuous process which is a quasi-martingale on 

every [0, a], a < a> . Let T be a stopping time such that {X : a < T , 

o stopping time} is uniformly integrable. Then ^™ restrict/id to 

[0,Tl H P is a-additive. 

Remark. The theorem 5 , ! can be applied, in particular if T~inf{t : X > n} . 

5.3. Pure simple additivity of J J ^ 

Theorem 6. 

Let X be a right continuous quasi-martingale on [0,a>] . ^ is 

purely singly additive if and only if X is a local martingale, such that 

lim X =0 a. s. 
t - « t 

Proof. 

Let E N = inf(t : J X J >n] , and = X T ^ . A s 0 $ t e t f is 

trivially a quasi-martingale of class D , and as 

l^„i <- i s 

j j , a = 0 if is purely simply additive, which means in particular that 
Y n 

Y n is a martingale, and then X is a local martingale. 
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Let X = M + V + - V be the decomposition of X as Une sum of a 

martingale, and the difference of two potentials. It is known (and easy 

to check) that the o-additive (and then in this case P - absolutely 

continuous) part of ^ is p,^ , where (M^ ) ̂  ̂  is the uniformly 

integrable martingale 

M T = E (

+

L I J N W -

t —* 00 

As 

lim X_£_ = lim P. a.s. 

t —> o° t —» oo 

we see that if JJL-^ is purely simply additive, then lim X -Q 

t —• cn 

Conversely, from what precedes, to prove that, for a local marf/Lngale 

X such that lim X. =0 a.s., p,v is purely simply additive, it suffices 

, t A 

U —* oo 

to prove that a potential V , which is a local martingale, is such fhaf 

is purely simply additive. But noticing that every process Y such 

that O X ^ y I ^ y and which is a-additive, has to be a potential which ;] o 

a local martingale of class D , then a uniformly integrable m a r t Í . n ^ A L ' , 

is zero. 

6. Pellaumail!s proof of the Doob-Meyer's Decomposition theorem. 

Theorem 7 (cf. [11]). 

Let a be a positive finite measure on ? , such that 

(A d p ,A evanescent) = > a (A) =0 . 
oo 

Then, there exists an increasing process (c.t.r.), unique up to 

indistinguishability, such that ¥ s < t , V F tF 

( 6.1.1) E [ 1 F- ( V t - V s ) ] =J E(lv\Vtr)<l* 

] S , T ] X Li 
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denoting by E(l |F^_) a left continuous (then predictable) version, of 

the martingale (E(l F|F u)) u < t . 

The process V thus defined is natural in tho Meyer's sense (cf. !7| 

Chap. VIII). 

Proof. 

The unicity, up to indistinguishability, is quite trivial, he-inr 

necessarily such that 

(6.1.2) V F € F t E ( V V t ) = J K ( l F ! V D A ' 

(0,tj xii 

We consider the following function on F^ 

(0,t] xii 

Using tho martingale inequality and the Borel Cantelli lemma, we prove in 

a standard way, that from any decreasing sequence (g R) of F^_ - measurable 

functions, such that 

lim g^ = 0 p . s . 
n 

we can extract a subsequence (g ) such that, if 

v f N = E(g If _ ) , 

k(n) n k u 

we have 

a.s. lim sup |Y,(u,u) | =0 . 
k - 0 < u < t 

Tho o-additivity of a, follows from this, and, denoting by ft an 
da t 

expression of t h e Radon-Nikodym derivative [~TFr]_ one gets easily Uv 
ue ^ 

following: 
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* J(0,t.j 

V f e /(fj,3 t , r ) , s < t 

E(f • (\-A s)) = E(f • Â t) -E(E(flï s) • lg) 

= J* E(f|ï u-)da . 

[ s, t] X L 

One thon gets easily a modification V of A having all the required 

properties. 

Using the relation 

E(Y t . V t) = E £ Y s • dV^ 

for a positive martingale Y and an increasing process V (cf. [7], 

Chap. VIII), one gets immediately 

f Y -da = f E(Y. |3 -)da 
J(0,t] X L S J(0,t] XQ " 

t 

~- K(Y + • V 4) ~ K f Y • dV 

L -o k' 

which proves the "naturalityir of the process V in the sense of P. A. Meyer 

(cf. [7], Chap. VIII). 

Corollary. Doob-Meyer Ts Decomposition Theorem. 

If X is a L^-bounded process which is a quasi-martingale on every 

finite interval [0,a] c TR, and is locally of class D , there is a 

unique (up to indistinguishability) decomposition 

X =M + v 
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where M is a martingale, and V a process which is the d i l T e r e n c e el* 

two increasing natural processes, vanishing at 0 . 

Proof. 

We take the Dolcans measure a associated with X and apply the 

preceding theorem to get V . As the Doleans measure associated with 

X - V is zero, X - V = M has to be a martingale. 

7. Extension to the case of vector valued processes. 

We have already noticed theorem 1 ! that some' of the previous 

results could be restated without any change for Banach valued p r o c e s s e s . 

But in this case1, the notion of decomposing ^ into a positive and n e g a t j v -

part is meaningless. 

The sufficient part of the proof of Theorem 5 can be applied without 

change to the vector situation. This is not the case for the necessity part 

of the proof. 

As done in [6] and [11] the decomposition theorem of ;*0 extends without 

change to the case of a quasi-martingale X taking its values in the 

separable dual of a Banach space. 
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