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IRRATIQNAL ROTATIONS AND QUASI-ERGODIC NEASURES 

par 

M. KEANE 

(Laboratoire de Probabilités - ERA CNRS n° 250] 

INTRODUCTION 

Let be an irrational rotation of the space X of reals modulo one a 

A probability measure on X is non singular if ij; takes null sets to null sets 

and quasiergodic if each ^ - invariant set has measure zéro or pne Examples 

of such measures are discrète measures carried on single — orbits as well 

as Lebesgue measure. In the folloving, we show the existence of many other 

non singular quasiergodic measures by constructing for each 0 £ p < l a con-

tinuous probability measure y which is non singular and quasiergodic, such 
that vi and y are orthogonal if p / q. The method of construction : p q 

To a given irrational Œ we associate in îl a modifiëd contins-

fraction {n^, n̂ # ... }. In j 2, we use the fraction to construct a space 

Çl of one - sided séquences w s } of integers with 0 < .ai. < n. - 1. 
a K w »~ k K 

It is helpful to think of {câ } as the entries in an infinité register j we 

define an opération ^ a consisting of adding one to the initial place in the 

register with a " lopsided " right carry. For each point in [o#l] we can 

then define in $ 3 an " « - expansion " consisting of a séquence of Q f 

oc 

Like the n - aYfy expansions, the « - expansion is unique except at a coun-

table number of points. However, the <x - expansion has the additional pro-

perty that rotation by Œ modula 1 on X is reflected by the opération on 

the space Çl , Using [Çl , ^ ) as a représentation of rotation by « on X, 
oc oc { oc 

it is not difficult to construct in î 4 the desired measures p . / which arise 

from product measures on a subset of Q^. 
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5 1 - The modified continuod fraction expansion. -

Let = d (0,1) and define 

s («) i - 1 - {i } 
oc 

N («) i - [il + 1 , 
oc 

where [ | and { } dénote intégral and fractions 1 parts respectively. Then 

S : 10,13 - > I 0 , H 

N : 20,11 > N 2 = {2,3,4,...} 

and for each « £ 10,1] we can define a séquence {,o)̂ }in 15,1] and a séquence 

{n. } in l\L recursively by 

« x , - -

K 1 & I k j 1) 
n k : = N (-k) 

We write 

* = i nl' n 2 J * * *} 

and call {n^} the modified continued fraction of « . 

Proposition 1. -

a) If « » {n 1 #n }, then = { n^,
 n

K + 1 * ••«} 

b) The map 10,1] + II N 2 given by « ^ {n^} 

is one - to - one and on to 

c) Each « £ 10,1] is the limit of the fractions 

1 

1 
n _ 

n K 

d) « 10,1] is rational iff almost ail n^ = 2. 

Proof : 

a) is obvious from the définitions 

b) t&inking of the séquence {n^} corresponding to « as an - ary 

fractional expansion of « , we note that the sets 

A„ « - { « | N (-) - n } - li . ^ 3 
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are disjoint and coverj0,l3 for n £ fl\L. MCreover, S maps each A to (0,1) 
z n 

by 

S (a) = n - - = —ri-r-r . (n -1) (n « - 1], 

which is a linaar map from to ]0,1] followed by the multiplication 

œ (f^ij depending on n and varyinç from —-A ,^«m at 0 to 1 at ,1 monotoni-

cally. To prove b) it is obviously sufficient to show that 
p ; = sup | { Œ | N («.) = n. for 1 < j < k } | 

K n > 2 J J «~ ~ 

tends to zéro as K goes to infinity, wherG |l| dénotée the length of the 

interval I. Now JA^j attains its maximum value for n = 2 and the multiplica­

tive factor is always greater than or equal to 1 end decreases in n. This 

implies that 

P K = | { «| N (« ) = 2 for 1 < j < K} | = 1 — c K, 

c^ being the left endpoint of the interval and satisfying 

n = 2 - - L ^ ' ( K > 1 ) 
K+l c, -

K 

1 < c. < c, . < 1 
2 — K K+l _ 

Setting c = lim c^, we have 

c - 2 - i 
c 

Or c = 1. Thus p^ > •. 

dî Dénote by )«* the fraction in c). The m. c. f. of <*' is 
K K 

Therefore, | « - # ' K I <̂  p > • .as K > » 

d) If Œ = {2,2,2, •..} , then c = JL^I implies * = 1. 
2 - « 

Thus by c) any whose m. c. f, ends in two is rational. 

Conversely, if </ = ̂  is rational with p < q, then « = «3 has a denomina-
q 2 . p 

tion smaller than oc = ce . By induction « = 1 and n = n * . « . . = 2j 
1 * q q q+1 
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$ 2 - The dynamical Systems (Q^ ' H ^ * ~ 

In this section « dénotes a fixed irrational in 10,13 with m.cf . 

{n,} . We set 

Çl - {.0,li...,nk - 1 }. 

Définition : 

1) A block a).., a). « . .\ a). , with i > 0 and k > 1 will be called k - cri-
î+l 1+2 i+k — —' — 

tical if 

V a = V k " 1 

2) A block a>. u>. , ••• a>. . with i > 1 and k > 1 is non - admissible if 
i i +1 i+K V "~— — -

a). = n. - 1 
i i 

"i+l wi.2 , M V k K " c r i t l c a l 

3) . *o)£ft is called k - critical if u)̂  u>2 . . • is k - critical and 

non - critical if it is not k - critical for any k > 1. 

4) u>£Œ is admissible if it contains non non - admissible blocks 

Let Çl^ be the set of admissible points of Çl . 

For a) £ Çl define v£ (u) = ^9 as 

ce I oc 

S = o J 1 1 

Wj : = wj (.1 > 2) 

if ai is non - critical and as 
9 

u) 1 = W2 = " * ' = C°k = Cl 

"k+i ! = V i + 1 

W' : = a). (j > k + 2) 

if a) is k - critical with k > 1. 

For ease of expression we set 

m : = a£> ... with S! = 0 (i 1) 

(JD : = ôT̂  cï̂  .. • with = T K - 2 (i > 1) 

A . A -A . A 

0) : = 03^ (1*2 • • • with o)̂  = n^ - 1 

= n i " 2 ( i > 2 3 
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Proposition 2 : 

a) â^is a compact subset of Çl. . 

b) ^ is one - to •- one and vp (Q ) = Q - {Zï 

i oc I ce ce a 

c) is continuous except at 5 

Proof ; 
a) the set of w for which 03. 03 . , . . . 03 . , is not non - admissible 

i î+l î+K 
is a finite union of cylinders, and is the intersection of ail such sots. 

b) Note first that + 1, o)2 ^ 3 • • • \ i s n o n " admissibàe if K > 2 

and 0 )^ u 2 .,, ^ is k - critical. Thorofore, if w £ ̂ Œ is non - critical, 

^ (w) C fia . Next note that if <D ... cô  is K - critical ànd 03 £ Çl& then 

^K+l (i>:k+2 w k+j i s n 0 t ^ " critical for any j, bocause otherwise .. 

a). . would be non - admissible. Theref ora, y) ( 03 ) £ Î] if m is k - critical. 
K + J (ce ce 

IF 03 £ çi docs not start with 0, there is obviously exaetly one (non - cri-
oc 

tical) point of Çl whosu w3 - image is u . If 03 , = 03o = ... =u), = 0 and 
oc 1 ce 1 2 k 

^k+l > Q j then the unique k - critical point 03" with ^J. 0 3 " ) = is giveh 

by 

o>̂  = fk - 2 ( 1 < i < k - 1) 

k 1 

o)j = 03i (j > k + 2) 

Thus only ô7 remains without a pre - imaga. 

c) If 03 ^ 03* then the property of ^ of being non — critical or k — critical 

extenés to a neighborhood of w and is continuous because it changes at 
« ce 

most tha first k + 1 coordinates. 

The trouble at âj is that the point whose image sbould be S is 

missing. By inserting a backward orbit for 2"and modifying the topology 

suitably, this problem can be rectified, ^nd^. made into a homeomorpbism, 

We shall have no naed for this in the following. 
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S 3 - ~ol - expansioBs. 

Let X = IR/-, dénote the ruais modulo one and vf (x) = x + a mod 1 
g_ ' oc 

rotation by a . We fix an irrational c ^(0,1) with the corresponding sé­

quences {*̂ } and {n^} as in $ 1. Dtifine 

and co 

n (03):= k| x a) k $ ft ( a . e n j 

Proposition 3. -

a) IT maps fi onto [p,l] (nnd hence onto X) 

b) ÏÏ is one - to - one except et a countabla number 

of points where it is twe - to - one 

c) TT is continuous 

Proof. -

Let "^ M dénote the lexicorgraphical ordering in Q.^ . With r u s -

pect to this ordering, w is the smallest élément, to is the largest élément, 

and a) .<• with no point in between them if and only if there existe k > ] 

sueh that 

w, = n, Ci < k) 

\ + 1 = 1K 

\ + j
 = 0 

We shall need some formulae : 
1) lim g = 0 : 

k->« K 

Sinee infinitely many are greater than 2, infinitely many are less 

than or equal to ^ . 

2) Let u)̂  co 2 ... be the initial k - block of an admissible séquence. 

Then 
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with equality if to^ = to\ (1 < j <̂  k) 

Hère there are two cases : if d < n. - 2, then 
k 1 ~ 1 k 

1 - a>. fi. > 1 - (n. - 23 « - « £ to . B . 
3 = 1 J ; J - 1 1 1 J = 2 j j 

k 
- ? ce - oc ! ocec - oc /,\ g 

' 1 1 2 1 j=2 "j " j 

where we have set 6 = ,.. ( j .> ? ) and if cô  = n^ - 1, then 

k K 

1 - £ to. = i - ( n . i) « - « ^ a ) < g' 
J*l J J 1 1 1 J = 2 j j 

k 
y f 

= « - oc oc - oc 0) . S . 
1 1 2 1 j=2 j j 

Setting u)? = to + 1, w . = to. (j ̂  3), we have then 

k k 
1 - . Z

n co. p. = « (1 - * to! g!). 
J = l J J 1 J = 2 j J 

(Mow, if w, oo_ . is admissible and u>. = n- - 1, then also co_ .. , 'o, 1 z k 1 1 z k 

must be admissible. Therefore, we can use induction ; noting that 

1 " ( n l " 1 5>*K = « k ( 1 ' ° W 

we arrive at the desired resuit, 

3) TT (2) = • and TT (to) = 1 : 

the first one is obvious, and we have by 2) and 1) 

4) If ai < i\# then TT (to) -C. TT ( r\) with equality if and only if there is 

no point of Q between OJ and n_. 

Let k be minimal with co , < n. . Then 

00 

k 
because of 2) with equality everywhere if r̂ . = 0 

for j > k * 1, r\ - co , = 1, and 00 , , to . n ... Maximal. 



- 24 -

5) ÏÏ is continuous. 

if a). < q_and a) j = for 1 < k, then ÏÏ ir^) - ÏÏ (go) < 

^ n-? 8* < 8k • D y lhîr i s continuous. 
j = k+l u ^ J w ™ 

6) Suppose that [o,l] - ÏÏ W 0 . Since ÏÏ is continuous,ÏÏ (Œa) is com­

pact and [6, l] - ÏÏ (Qœ ) is open in [b, l] . Thus there exists an interval 

[a,b] with • <_ a < b M , a, b Ê ir (Œ a), Ca,b) .O ÏÏ (fia) = 0. Choosing 

maximal and rj_ minimal with ÏÏ (oj) = a and ÏÏ (r̂ ) = b, 4) yields a contradic­

tion. 

7) Suppose a) £ Q is non - critical. Then 
00 00 

Y a U U ) » - - * k ^ u k f k - ( V l ) B l • kl2 u) kP h- ir (^ C)). 

If a) is k - critical for some k > 1, then by 2) 
k 00 

00 

= l - 8 . f l - < * , J +8 , + A -, o.>, flf. 
k l k+l J p k j = k+l j ~j 

00 

" 1 + e k+l + J-k.l M j 6 j 
00 

• j-K.2 " j ^ + U k + 1 + 1 3 6 k + i
m ° d 1 

= ÏÏ (vfŒ (w)). 

The proof is finished, because 4), 5), 6) and 7) imply a), b), c) and d). 

If x £ [P'*3 * then we call a séquence in ÏÏ * (x) an "« — ex­

pansion of x. Like décimal expansions, the « - expansion is unique except 

for a countable number of points. 
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* ^ " ^ u a s i " ergodic measures. -

Suppose T is an invertible bisieasurable transformation of the- mea-

surablo space (Y,^0. A prbbability measure y on (Y/^) is called 

non singular if for any F e v^ , 

y (F) = G < • • > y (T F) = G, 

quasiergodic if for any F £ ̂  with T F = F, 

(F) = 0 or 1 

Thèse properties obviously dépend only on the measure class of y . If ^ £(0,1) 

is irrational, examples of non singular quasiergodic measure classes on 

(X, Y ) are given by the Lebesgue measure class and by discrète measures whose 

sets of positivity are single ^ ^ orbits. Until now, no other examples have 

been found. 

Proposition 4. -

For any irrational 9 there exist measures y p (Q .< p < 1) defindd 

on X such that 

a) each y is continuous 
P 

b) y 1 y q if p / q 

c) each y^ is non singular and quasi ergodic on CX,^} 

Noreover, the measures y^ can be given by a simple construction 

on a . 

oc 

Proof, -
For « = {n } we set 

K 
oo 

Q ' = kn {0, ... , n K - 2} 

Then, Q f £ and since infinitely many n^ are greater than 2, Q' is really 

an infinité product. For G < p < 1, let m^ b..: the product measure on fi f 

obtained from the discrète measures {p, 1 - p} on {U,l} placed at thoso 

components for which n^ _> 3. 
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1) mp is quesiergodic on $$• 

Suppose that E $$ and $$. It follows from tne définition of ̂  that 

03 £ Çl and n G & are in the same LP - orbit, iff fi luv / n.} is finite. 

^- ce oc j oc ' I l 

But then E C\ Q' is measurable with respect to ths a - algebra on ft* gencra-

ted by the components groatar than n, i, e, E O Q9 is in the tail field of 

Q f. By the zéro one law, m^ (E) = 0 or 1. 
2) For constants c > 0 with u ̂  c = 1 , set 

n H É £ n 
. . ^ „ n m . = c vp m . p n£Z n T « p 

Then the probability measure m'^ is obviously non singular on (fi^Ycc^ a n c * 

remains queqi - ergodic, since ̂ a(E) = E and rry (E) = 1 âmply ^ £ m p = 1 

for each n. 

3) We have m* 1 m' for p /,q. 
P q 

For 0 < p <1 let 

S : = { oj ^ Q i r 0 (co) = p and r. (OJ) = 1 - p }, p i 

where 
ĵt of i among fc^, • w n 

r. (CJ) = lim -~» ——-, — •• ~,—, ; , i = 1, 
1

 n - > o o n 

Then m (S ) = 1 and because applied to co e fi changes only a finite num-p p Tôt r r
 ce - -> 

ber of coordinates, we have W> (S ) = S . Thus m' (S ) - 3 and 5 H s = a 
T o c p p P p p q r 

impliés m' 1 m' , if p ¥ q. 
P q 

4) Setting u = TT tm'^) , proposition 3 yialds the desired resuit. 

There is also a proof of existence of nonsingular «sjuasiergodic mea­

sure s which are continuous and admit no finite invariant aquivalent measure. 

Tbe proof works for any strictly ergodic System (X,^p). (Qral communicotion 

from W. KRIEGER). 

V and uses a category argument. 


