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IRRATIONAL ROTATIONS AND QUASI-ERGODIC MEASURES
par
M. KEANE

(Laboratoire de Probabilités - ERA CNRS n° 250)

INTRODUCTION
g o 2 S
Let ¢ be an irraticnal rotation of the space X of reals modulo one.

A probability measure on X 1s non singular if ¢ takes null sets to null sets
and quasiergodic if each ¢ = invariant set has measure zerc or ong Examples
of such measures are discrete measures carried on single § = orbits as well
as Lebesgue measure. In the following, we show the existence of many other
non singular quasiergodic measures by constructing for each 0 < p < l>a con=
tinuous probability measure u b which is non singular end quasiergodic,‘such

that up and uq ars orthogonal if p # q. The method of construction :

To a given irrational « we associate in §1 a modifidd contins'-_
fraction {nl, PR }. In § 2, we use the fraction to construct a space

Q_ of one - sided sequences w= /{Qk} of integers with 0 < - 1.

| ‘wk-:-nk
It is helpful to think of {wk} as the entries in an infinite register ; we
deflne an operation \fa consisting of adding one to the initial place in the
register with a ” lepsided " right cafry. For each point in‘ [O.l] we can

then define in § 3 an « -~ expansion " consisting of a sequence of Q,
Like the n - awmy expansions, the « = expansion is unique except at a coun-
table number of points. However, the « - expansion has the additional pro-
perty that rotation by « module 1 on X is reflected by the dperation *L on
the space Q_ . Using (Q_ ,\fc ) as a representation of rotation by « on X,

it is not difficult to construct in § 4 the desired measures p p,'which arise

from product measures on a subset of Q_.
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§ 1 - The modified continued fraction expansion. =
Let « & (0,1) and define
S (=) 1 =1- ()
«

N = 3] 1,
where [ ] and { } denote integral and fractional parts respectively. Then

s : 10,1} ———>10,1]

N 10,17 ——> N:2 = {2,3,4,...}
and for each = & ]0,1) we can dafine a sequence ka}in 18,1) and a sequence

{nk} in N, recursively by

2
Gl : = o
LY (k ¥ 1)
n T N («k)
We write

< = {nll an -n-}
and call {nk} the modified continued fraction of « .,

Proposition 1. -

a) If « = {nl,n sese }s :hen = = {nk, n eedl

2 k+1*

b) The map 10,13 ——— ? N, given by e 5 {ny )
is one - to -~ one and on to

c) Each =« ¢ 10,1} is the 1imit of the fractions

d) « € J0,1] is rational iff almost all nk = 2.

Proof
a) is obvious from the definitions
b) thinking of the seguence {nk} corrgsponding to « as an & - ary
fractional expansion of « , we note that the sets

L.

= 1 « @] = =—1 —r————
At ={e] N(e)=n}=Is, ——

n
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are disjoint and cover .J0,1] for n € Nz. MCreover, S maps each An ®0 (0,1)

by

S (x) =n -

1.1

=m~.(n‘l) (ﬂ‘x-lll

which is a linaar map from }%, ﬁ:%*J to 10,1) followed by the multiplication

;TF%TT‘ depending on n and varying from ~-&~T-—-at 0 to 1 at 1 menotoni-
1 ==

celly. To prove b} it is obwicusly sufficient t8 show that
p. t=sup | {=]|] N(x)=n,  forl<j<kl}|
k n> 2 N J - -
tends to zeré- as k goes to infinity, wherg |Il denotee the length of the
interval I. Now |An| attains its maximum value for n = 2 and the multipRica-

tive factor is always greater than or equal to 1 end decreases in n. This

implies that

= N (e« = < 3 . = - »
oy l{«lwtjl z2for 1< j<kb|=1-¢
C being the Ieft endpoint of the interval and satisfying
I
CK+1_2 c [K,:l)
K
-1 Lc L cC <1
2 =K k+1
Setting ¢ = lim C, ., we have
C:z-i
c

Or ¢c = 1. Thus Py — 0.

¢} Denote by Y= the fraction in c¢). Thz m. c. f. of «' is

Kk Kk
{nll nzj LI Ll nk-l’ nk'.'l' 2! 2' 8 a }
Therefore, | o« = *'kl < Pr=1 — 0 as k —3 =
d) If «={2,2,2,...} , then = =~——ui‘=; implics « = 1,
2 - «

Thus by c) any = whose m, c. f. ends in two is raticnal.

'
Conversely, if « = ﬁ is rational with p < g, then <5 = g has a denomina~

tion smaller than =, = = , By induction « =landn_=n 5 aeea = 23
1 q q g+l
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§ 2 - The dynamical systems (Q_ , Y ). =~
In this section « denotes a fixed irrational in I10,1) with m.c.f.

{nk} . We set

[ ]

- L - -
Q= k=1 {Dulinunan 1 }n

k
Definition :

1) A block w4 Wypg o0e 5 with 1 > 0 and k > 1 will be called k - cri-
tical if
= - < i < -

wi+J ni+j 2 (1 <j <k 1)

“ieg T Mpek T 1
2) A block Wy Wypq wew Wy with i :_1 and k.f,I is non = admissible if

w, = n, =1

i i
mi+l wi+2 ...wi+K Kk = critical

3) .wef is called k - critical if w c ey is k - critical and

1%

non - critical if it is not k - critical for any k > 1.

4) weQ 1s admissible if it contains norn non - admissible blocks
Let & be the set of admissible points of 0 .

For w ¢ @_ define fm[w) = ' as

w, =u)1wl
w o, .
preey G2

if w is non - critical and as

= ' = = [
w4 wz . e wk 0
! . =
wk+l H wk+l + 1
)
PR (3 >k + 2)

if w is k - critical with k > 1,

For ease of expression we set

2 _ v ~N .
WS W) Wy ees with w, = 0 (i z_l)
w T Wy Wy e with wy = ni -2 (i > 1)
ANEERA ith & = 1
w 3 Wy Wy ews wi w = n1
A
w,
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Proposition 2

al 8_is a compact subset of Q..
i)
bl ¢§_1s one - to ~ one and ?G (Qm] =Q, - {w}
c) %; is continuous except at &
Proof :

ces W, is not nen - admissiblc

a) the set uf w for which w, w
i i+K

i+l

is a finite union of cylinders, anle(x is the intersection of all such sects.

b) Note first that wy + 1, Wy Wo e W is non - admissibde if k 2 2

and w w is k = ¢ritical., Therofore, if we{Qm is non = critical,

1 2 s s wk

Yo (w) € @_ . Next note that if w w, 1s k = critical and w ¢ 2, then

llll K

N is not j - criticel €or any j, because otherwiseg ®

Okel “kez  © ke

K...

wk+j would be non - admissible, ThereForu,thm] € if w is k = critical,

IF v e o, does not start with O, thers is obviously exactly one (non - cri-

T W, T eee =W, = 0 and

tical) point of Q whosu\r - image is w « If w ) "

@ 1

Wy > 0, then the unigue k = critical point w” with fG(cNW = Wis given
by

wg =Ny p (1 <i<k=1)

U)" — -

K ni 1

= W, (3 >k +2)

Thus only ¢ remains without a pre - imago.
c) If ¥ & then the property of  of being non - critical or k = critical
extends to a neighberhood of and~f)cc is continuous because it éhange ot
most the first k + 1 coordinates.

The trouble at § is that the point whose imagc sbould be @ is
missing. By inserting a backward orbit for ;' and modifying the topolegy
suitably,‘thié problem éan be rectified, andﬁi made into a homeomorphism,

We shall have no need for this in the following.
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§ 3 - .ol - expansioss,

Let X = P/z denote the reals modulo one and ¢, (x}) = x + = mod 1
rotation by « . We fix an irrational « ¢ (0,1) with the corresponding se-

guences {“K} and {nk} as in § 1, Defins

r

i = I, « (k > 1
and

o©
N (w):= Kgl w B (weQ )

3

Proposition 3. -

al m maps Q_onto [0,1] (and hence onto X)
b) 1w is one - to - one except at =z countable number
of peints where it is twc = to - one

c) g is continucus

d} = c%’m = Yo

Proof. -
Let "4 " denote the lexicorgraphical ordering in Q_ . With rus-
~ A
pect to this ordering, w is the smallest zlement, w is the largest glement,

and w .<-n with no point irm between them if and only if there exists k > ]

sush that
W = s 7
5 N (i < k)
we L=
._/\ -
Wyay = uﬁ (j 2 1)
rlk+j=0

We shall need some formulae :

1) 1lim Bk =0 :
Ko
Sinee infinitely many Nk are greater than 2, infinitely many x, are lesg

than or equal to % .

2) Let w, w

1 be the initial k - block of an admissible sequince.

) e (Dk
Then
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with equality if o, = wj (1 <Jj <K}
Here there are two cases it w, <n, - 2, then
K 1—="1 k
/
1-E w 2 > 1 =-(n, = 2) = - « R w , B
g1 0% P2 1 17 %1 g2 Y P
K
b /
= 7 « E- S - - S a
177172 1 j=2 “3 83
k /
z w, B,)
> (-0 "3
/
= B = x x vae <& i 2 i } = -
where we have set 3 5 %5 j (i > 2) and if wy =Ny 1, then
K K
: z ’
- w = - - [- S 4
1 71 j ﬁj 1 [n1 1) 1 1 je2 wj Bj
Kk
= [+ 4 - [« @< - Z !
1 1% 1 j=2 %5 By
’ I
. = = i > > hie
Setting Wy T oW, 1, wj wj (3 > 2}, we have then
K K , ,
- Z = & -— Z
Lo ogmr 9y By e m g wy By
4 ’
Now, if wl wz ...tok is admissible and wl = n1 - 1, then also mz .- mk

must be admissible. Therefore, we can use induction ; noting that

1 - (nl - ll)mﬁ = @ (1 -« }

k k+1

we arrive at the desired resuit,
3) T (X)) =0 and 7 (@) = 1 :

the first one is cbvious, and we have by 2) and 1)

B, B, = B [1 - “hel | p—

l -
1 J J Kk Kk —

[ ae Mv

i
4) If w < n, then m (w) &< 7 ( n) with eguality if and only if there is

no point of @ between w and n.

Let k be minimal with w k < Ny * Theg .

) =T W o=y =8 DB - j=§+l wy Byt j=f§+l 5 Bj
>p - j=k§1 w By 20

because of Z) with gquality everywhere 1if qj =0

for jyz kK« 1, qk Wy = 1, and w kel @ opan ottt Maximal.
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5) 7 is continuous,

if w.<neadow, = qj for 1 <<j <k, then 7 [Q] =7 (w) <

J
b N By <Pk * By 1)34is continuous.

j=k+l

©

8) Suppose that [U.l] -=n(Q_ ) #@ . Since m 1s continuous,m (2 ) is com-
pact and [B,1] = = (@_ ) is open in [b,l] . Thus there exists an interval

[a,b] witho<a<b<1,a bém (@), (ab) N (Q,) = B. Choosing w
maximal and n minimal with 7 (w) = a and 7 () = b, 4) yields a contradic-
tion.

7) Suppose w € Q is non - critical. Then

= < o«
L z

th"[wlj =« 4 w 2 K © (w1+1) Bl *

kel o W kB K= T [%; (w)).

If v is k - critical for some k > 1, then by 2)

(rlwd) = ; 5.8 .+ 8 + b
Yo (mlad) = g2y wy By * Byt g1 @3 By
L o 3 -
Sloe [Pl Bt oy By

-]

T
LB ® geker 5 %y

_ z w
T §=k+2 J

@

B.
J+ (w kel ¥ 1) Bk+l mod 1

” (f; (w)).

The proof is finished, because 4), 5), 6) and 7} imply a), bl, e) and d).
If x & Ehl] , then we call a sequence in =« -1 (x) an "« = gx-

pansion of x, Like decimal expansions, the « - expansion is unigue except

for a countable number of points.
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§ 4 - Quasi - ergodic measurcs. -

Suppose T is an invartible bimeasurable transformetion of the mee-
surable space (Y,"H. A probability measure ¢on (Y,§) is called
non singular if for any F € ‘4,
U (F) = 0 o p (T F) = 0,
guasiergodic if for any F € %% with T F = F,
p (F} = 0orl
These properties obviously depend cnly on the measurc class of u . If «=€(0,1)
is irrational, examples of non singular quasiergodic measure classes on
[X.'Ya) are given by the Lebesgue measurce class and by discrete measures whose
sets of positivity are single y " orbits. Until now, no other exampius have
been found.

Proposition 4, -

For any irrational « , there sxist mcasures Hp (0 < p < 1) cefindd
on X such that

a) cach Up is continuous

b]upluq if p # g

c) each “p 1s non singular and gquasi ergodic on (X,¥))

Moreover, the measures up can be giverm by a simple construction

on 2 .
Proof. -

For « = {”k} we set

feo]

[ - -
Q kgl {OJ as A E] nk 2}
Then, @ '< Q. and since infinitcly many n are greater than 2, Q' is really
an infinite product. For 0 < o < 1, let mp 50 the product measure on &'

obtained from the discrete measur<s {p, 1 = n} on {4,1} placed at those

components for which n, > 3.
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1) m'D is quesiergodic on (g_, ¥ ).
Suppose that £ & Q“ andaf“ £ = E, It follows from tne definition of\fL that
6 e O and n e G arc in the same q; - orpit, iff (i IwI # Qi} is finits.
But then E N Q' is moasurable with respect to the ¢ - algebra on Q' gencrao-
ted by the components groater than n, 1, e €1 Q" is in the tail field of
', By the zero one law, mD (E} = 0 or 1.

-

2) For constants c¢_ > 0 with ¢ =1, sect
n ned n

m'p:= n%l “n \?: mp'

Then the probability measure m'p is obvicusly non singular on [Qa.Ym) and
remains quegl - ergodic, since Y“(E] = £ and mp (E) = 1 $mply \P 2 mp LE) =
for each n,

3) We have m'p.L m'q for p #.Q.

For 0 < p <1 let

Sp : = { we 2. ! ro (w) = p and ry (w) =1=-p},

where
# of 1 among w3, «ee, up

r, (w) = lim e ., 1=0, 1,
n-—® n

Then mp (Sp) = 1 and becausc~f; applied to we &, changes only a finite num-
ber of coordinatss, we haveY (S ) = S , Thus m’_ (S } =1 and § NS =
- RO p PP SN ey 2

impligs m* L m' , if p # q.

p q
4) Setting u 0 =7 [m'p) , proposition 3 yizlds the desired result,.

Therc is also a proof of existence of nonsingular guasiergodic mea-
surce which are continuous end admit no finitoe invariant aguivalent measure.,

v

The proof works for any strictly ergodic system (X,y). (Bral communication
from W, KRIEGER).

¥ and uses a category argument.



