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One of the most central questions in the theory of automorphic forms is that of
Langlands’ functoriality or the lifting of automorphic representations [20, 2]. One of
the most basic cases of functoriality would be the lifting of automorphic representations
from the split classical groups to an appropriate GLN. It is this question we address in
this paper.

Take G to be a split classical group over a number field k. So G is one of the
groups SO2n+1, SO2n, or Sp2n. The connected component LG0 of the Langlands dual
group is Sp2n(C), SO2n(C), or SO2n+1(C) respectively. In each case there is a natural
embedding of LG0 into GLN(C) = LGL0

N for N = 2n, 2n, or 2n + 1 respectively. The
philosophy of Langlands then says that associated to this map of dual groups there
should exist a lifting of automorphic forms on G(Ak) to GLN(Ak). This map on dual
groups also governs local liftings of irreducible admissible representations of G(kv) to
GLN(kv) and these local and global liftings should be compatible.

While there is at present no precise global conjecture on the nature of the lifting
in our situation, the local lifting is well understood in several cases and the global lifting
can be understood in terms of compatibility with the local lifts. If v is an archimedean
place of k then every irreducible admissible representation πv of G(kv) is given by an
admissible homomorphism of the local Weil group Wkv

into LG0 [23, 2]. Composing
with the map to LGL0

N we get a parameter for an irreducible admissible representation
Πv of GLN(kv). Πv is the local Langlands lift of πv. Similarly, if v is a non-archimedean
place and πv an unramified admissible representation then πv is determined by its Satake
parameter [tv] which is a semi-simple conjugacy class in LG0 [29, 2]. The image of
[tv] under the L-homomorphism determines a conjugacy class in LGL0

N and hence
Satake parameters for an unramified representation Πv of GLN(kv). Again, Πv is the
local Langlands lift of πv.

If we have an irreducible automorphic representation π = ⊗′ πv of G(Ak) then
for almost all places, namely the archimedean ones and the non-archimedean places
where πv is unramified, the local component πv of π has a local lift Πv. We will say
that a automorphic representation Π = ⊗′Πv of GLN(Ak) is a weak Langlands lift of π, or
simply a weak lift, if at the archimedean places and almost all non-archimedean places
where πv is unramified Πv is in fact the local lift of πv.
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In this paper we establish the existence of a weak lift in this sense of globally
generic cuspidal representations of SO2n+1(Ak) to GL2n(Ak).

There are currently three methods of establishing functoriality. Two of them
are trace formula methods: the usual trace formula of Arthur and the relative trace
formula of Jacquet. The third method is that of converse theorems [8]. It is this third
method which we have developed with this purpose in mind and which we use to
establish these lifts.

The converse theorem is a method of L-functions. There are currently two ways
to analyze the analytic properties of L-functions: through integral representations or
through the constant term and Fourier coefficients of Eisenstein series. This work is
a blending of these two methods. The converse theorem itself is from the theory of
integral representations, for in its essence it is the inversion of the integral representation
of L-functions for GLN. To effect the lift from a classical group G using the converse
theorem we must have relatively complete control of the analytic properties of the L-
functions for G. In this paper we do this almost entirely using the method of Eisenstein
series. The results we use which rely on this method are available for all split classical
groups. The one exception is the local “stability of γ” (Proposition 3.4) which lets us
finesse the local lifting at the ramified places. This is a result from the local theory of
integral representations and is currently only available for SO2n+1. Once this result is
established for SO2n or Sp2n, the lifting from these groups will follow.

The first section of the paper is devoted to the precise statement of the lifting
for the case of G = SO2n+1. The second section contains a discussion of the version of
the converse theorem we utilize. The third section is devoted to the analytic properties
of L-functions for SO2n+1. In the fourth section we discuss the local liftings at all
places and how the stability of γ lets us finesse the local lifting at the finite places
where πv is ramified. In the fifth section we effect the lifting. The sixth section is
devoted to consequences of the lift, including the existence of a local lift for the case
of supercuspidal representations.

We would like to thank our colleagues that have supported us in this project over
the years, most particularly Steve Gelbart, David Ginzburg, Steve Rallis, and David
Soudry. We also thank the Institute for Advanced Study for bringing us together as
part of their Special Year in the Theory of Automorphic Forms and L-functions, and
particularly the organizers of the special year E. Bombieri, H. Iwaniec, R. P. Langlands,
and P. Sarnak, for it was there that we finally brought all the pieces together.

1. Lifting from SO2n+1 to GL2n

Let k be a number field and let A = Ak be its ring of adeles. We fix a non-trivial
continuous additive character ψ of A which is trivial on the principal adeles k.

Let Gn = SO2n+1 be the split special orthogonal group in 2n + 1 variables
defined over k. For definiteness, we will take Gn as the isometry group of the form
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Φ =

( 1
. ..

1

)
. In this realization we can take the standard Borel subgroup of Gn

to be represented by upper triangular matrices. We will denote this Borel subgroup by
Bn and its unipotent radical by Un. The abelianization of Un is a direct sum of copies
of k and we may use ψ to define a non-degenerate character of Un(A) which is trivial
on Un(k). By abuse of notation we continue to call this character ψ.

The connected component of the Langlands dual group of Gn is LG0
n = Sp2n(C).

GL2n as an algebraic group over k has as the connected component of its dual group
LGL0

2n = GL2n(C). There is a natural embedding ι : LG0
n = Sp2n(C) ↪→ LGL0

2n = GL2n(C).
Let π = ⊗′ πv be an irreducible automorphic representation of SO2n+1(A).
For v a finite place of k where πv is unramified the representation πv of Gn(kv)

is completely determined by its Satake parameter, a semi-simple conjugacy class [tv]
in LG0

n [29, 2]. [tv] then determines a semi-simple conjugacy class [ι(tv) ] in LGL0
2n.

An unramified irreducible admissible representation Πv of GL2n(kv) is called the local

Langlands lift of πv if its associated semi-simple conjugacy class in LGL0
2n is [ι(tv) ], or

equivalently, L(s , Πv) = det(I− tvq
−s

v )−1 = L(s , πv).
If v is an archimedean place, then by the arithmetic Langlands classification πv

is determined by an admissible homomorphism ϕv : Wv −→ LG0
n where Wv is the

local Weil group of kv [23, 2]. The composition ι ◦ ϕv is an admissible homomorphism
of Wv into LGL0

2n and hence determines a representation Πv of GL2n(kv) such that
L(s , Πv) = L(s , πv). This is again the local lift of πv.

An irreducible automorphic representation Π = ⊗′ Πv of GL2n(A) is called a weak

Langlands lift of π, or for brevity simply a weak lift of π, if for every archimedean place
v and for almost all non-archimedean places v for which πv is unramified we have
that Πv is a local Langlands lift of πv. In particular this entails an equality of (partial)
Langlands L-functions LS(s , Π) =

∏
v∈/ S L(s , Πv) =

∏
v∈/ S L(s , πv) = LS(s , π).

Let π be an irreducible cuspidal representation of Gn(A). We say that π is globally

generic if there is a cusp form ϕ ∈ Vπ such that ϕ has a non-vanishing ψ-Fourier
coefficient along Un, i.e., such that∫

Un(k)\Un(A)
ϕ(ug)ψ−1(u) du |= 0.

Cuspidal automorphic representations of GLn are always globally generic in this sense.
For cuspidal automorphic representations of SO2n+1 this is a condition.

Theorem. — Let k be a number field and let π be an irreducible globally generic cuspidal

automorphic representation of the split SO2n+1(A). Then π has a weak lift to GL2n(A).

The proof of this theorem will be given in Section 5 after we develop some
necessary preliminaries.
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2. The Converse Theorem for GLN

In order to effect the weak lifting from SO2n+1 to GL2n we will use the converse
theorem for GLN with N = 2n in the following form. The applicability of the theorem
in this form to the problem of lifting was outlined in [8].

Let us fix a finite set S of finite places of k.
For each integer r, let

AS(r) = {π : π is an irreducible generic automorphic representation of GLr(A)

such that the local component πv is unramified for all v ∈ S}.

Similarly, let A◦
S(r) be the cuspidal elements of AS(r). Let T (S) =

∐N−1
r = 1 A◦

S(r). If η is
a continuous character of k×\A×, let T (S; η) = T (S)⊗ η = {τ = τ′ ⊗ η : τ′ ∈ T (S)}.

Converse Theorem. — Let Π = ⊗′ Πv be an irreducible admissible representation of GLN(A)
whose central character ωΠ is invariant under k× and whose L-function L(s , Π) =

∏
v L(s , Πv) is

absolutely convergent in some right half plane. Let S be a finite set of finite places of k and let η be

a continuous character of k×\A×. Suppose that for every τ ∈ T (S; η) the L-function L(s , Π × τ)
satisfies

(1) L(s , Π× τ) and L(s , Π̃×~τ ) extend to entire functions of s ∈ C
(2) L(s , Π× τ) and L(s , Π̃×~τ ) are bounded in vertical strips

(3) L(s , Π× τ) satisfies the functional equation L(s , Π× τ) = ε(s , Π× τ)L(1− s , Π̃×~τ ).

Then there exists an automorphic representation Π′ of GLN(A) such that Πv ' Π′v for almost

all v. More precisely, Πv ' Π′v for all v ∈/ S.

In the statement of the theorem, the twisted L- and ε-factors are defined by the
products

L(s , Π× τ) =
∏

v

L(s , Πv × τv) ε(s , Π× τ) =
∏

v

ε(s , Πv × τv , ψv)

of local factors as in [4].

Proof. — This formulation of the converse theorem has not appeared in print. If
the character η is not present, i.e., it is stated in terms of the T (S) only, it is trivially a
consequence of Theorem 2 of [7], which has the same statement but with twists only
for 1 6 r 6 N − 2 (assuming N > 3). The proof of our current statement is simpler
than that of Theorem 2 of [7] and can be given along the lines of Theorem 1 of
[4]. We will sketch the necessary modifications to the proof of Theorem 1 of [4] for
the convenience of the reader. We will follow the notational conventions [4] without
comment. For the duration of this proof we let G = GLN. We follow the standard
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convention that for a set of places S we let GS =
∏

v∈S Gv and GS =
∏′

v∈/ S Gv with
similar conventions for representations, L-functions, etc.

We begin with Π = ⊗′ Πv as in the theorem. We assume that L(s , Π× τ) is nice,
that is, satisfies (1)-(3) of the theorem, for all τ ∈ T (S). For each place v, if Πv is not
generic we take an induced representation Ξv of Whittaker type such that Πv is the
unique Langlands quotient of Ξv. For those places where Πv is generic, Ξv = Πv. For
those places where Πv is unramified, we choose an unramified vector ξ◦v which projects
to the unique non-zero Kv-fixed vector in Πv with respect to which the restricted tensor
product is taken. We then form Ξ = ⊗′ Ξv, the restricted tensor product with respect
to this system {ξ◦v }. By the definition of the local L- and ε-factors [13, 17] we have
both L(s , Ξ× τ) = L(s , Π× τ) and ε(s , Ξ× τ) = ε(s , Π× τ) for all τ.

Since representations of Whittaker type have Whittaker models, for each
decomposable ξ ∈ VΞ, ξ = ⊗ ξv, we may form Wξ( g) =

∏
Wξv

( gv) and the functions

Uξ( g) =
∑

N(k)\P(k)

Wξ(pg) and Vξ( g) =
∑

N′(k)\Q(k)

Wξ(αqg)

where P = PN is the standard mirabolic subgroup fixing the row vector (0, ..., 0, 1), N is
the standard upper triangular maximal unipotent subgroup of GLN, Q is the transpose

of P, that is, the opposite mirabolic, α is the permutation matrix α =
(

1
IN−1

)
, and

N′ = α−1Nα. Since P(k) and Q(k) generate GLN(k) we see that an equality Uξ( g) = Vξ( g)
for all ξ would imply that the map ξ 7→ Uξ( g) would embed VΞ into the space of
automorphic forms on GLN(A).

Since we are only twisting by representations which are unramified at places in
S, we will only be able to prove this equality for a restricted set of ξ and only on a
subset of GLN(A). For every place v ∈ S we choose a vector ξ◦v such that ξ◦v is invariant

under some compact open subgroup K1(p
mv

v ) with mv > 0 (see Section 11 of [4]). This

vector will necessarily transform by the character ωΠv
under the action of K0(p

mv

v ). If
v happens to be an unramified place, we take ξ◦v to be the Kv-fixed vector as before.

Let ξ◦S = ⊗v∈S ξ◦v ∈ VΞS . Let K0 , S(n) =
∏

v∈S K0 , v(p
mv

v ) ⊂ GS where n =
∏

v∈S p
mv

v .
Let ξS be any vector in VΞS . Then as in Section 10 of [4] for ξ of the form

ξ = ξ◦S⊗ ξS the fact that the L-functions for L(s , Ξ× τ) are nice for all τ ∈ T (S) lets us
conclude that Uξ( g) = Vξ( g) for all g ∈ K0 , S(n)GS.

Let P0(n) = P(k) ∩ K0 , S(n)GS and Q0(n) = Q(k) ∩ K0 , S(n)GS. Then Proposition 9.1
of [4] is replaced by a simple matrix computation (as in Lemma 2 of Section 4
of [7]) which shows that P0(n) and Q0(n) generate the congruence type subgroup
Γ0(n) = GLN(k) ∩ K0 , S(n)GS of G′ = K0 , S(n)GS. Hence the mapping ξS 7→ Uξ◦S⊗ξS ( g)

embeds VΞS into the space of automorphic forms A (Γ0(n)\G′; ωΞ) as a representation
of G′. Since by approximation GLN(A) = GLN(k)G′ and Γ0(n) = GLN(k) ∩ G′ we see
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that A (GLN(k)\GLN(A); ωΞ) = A (Γ0(n)\G′; ωΞ) so that ΞS determines an automorphic
representation Ξ′ of GLN(A). Then, by construction, Ξ′v ' Ξv for all v ∈/ S.

For our Π′ of the theorem we now take any irreducible constituent of Ξ′ but with
the restriction that for v ∈/ S we take Π′v = Πv, which is possible by our construction.
This proves the result without the character η.

To incorporate the character η, the only thing to observe is that if τ ∈ T (S)
then L(s , Π × (τ ⊗ η)) = L(s , (Π ⊗ η) × τ) so that applying the converse theorem for Π
with twisting sets T (S; η) is equivalent to applying the converse theorem for Π ⊗ η
with the twisting sets T (S). Then by the above, Π⊗η is quasi-automorphic and hence
Π is as well. ¤

To apply this theorem to the problem of Langlands lifting form SO2n+1 to GL2n,
we begin with our globally generic cuspidal automorphic representation π = ⊗′ πv

of SO2n+1(A). For each place v we need to associate to πv an irreducible admissible
representation Πv of GL2n(kv) such that for every τ ∈ T (S; η) we have

L(s , πv × τv) = L(s , Πv × τv)

ε(s , πv × τv , ψv) = ε(s , Πv × τv , ψv).

For archimedean places v and those non-archimedean v where πv is unramified, we
take Πv to be the local Langlands lift of πv. For those places v where πv is ramified,
we will take for Πv an essentially arbitrary irreducible admissible generic representation
of GL2n(kv) having trivial central character. However, we must choose our finite set of
places S of k such that S contains the places where πv is ramified and choose our
character η of k×\A× such that ηv is sufficiently highly ramified so that L(s , πv × ηv) ,
L(s , Πv × ηv) , ε(s , πv × ηv , ψv), and ε(s , Πv × ηv , ψv) are all standard (see Section 4).

Now consider Π = ⊗′ Πv. This is an irreducible representation of GL2n(A). With
the choices above we have

L(s , π× τ) = L(s , Π× τ)

ε(s , π× τ) = ε(s , Π× τ)

for Re(s) >> 0 and all τ ∈ T (S; η). In the next section we will show that the theory
of L-functions for SO2n+1 × GLr is developed far enough to guarantee that Π satisfies
the hypotheses of this converse theorem. Hence Π is quasi-automorphic and moreover
there exists an irreducible automorphic representation Π′ of GL2n(A) such that Πv ' Π′v
for all archimedean v and almost all finite v where πv is unramified. Hence Π′ is a
weak Langlands lift of π.



ON LIFTING FROM CLASSICAL GROUPS TO GLN 11

3. Analytic properties of L-functions SO2n+1 twisted by GLr

Let π be a globally generic cuspidal representation of Gn(A) = SO2n+1(A).
For τ a cuspidal representation of GLr(A) we will let L(s , π× τ) be the completed

L-function as defined in [31] via the theory of Eisenstein series. The local factors are
then defined via the arithmetic Langlands classification for archimedean places, through
the Satake parameters for finite unramified places, as the poles of the associated
γ-factor (or local coefficient) if πv and τv are tempered, by analytic extension if πv

and τv are quasi-tempered, and via the representation theoretic Langlands classification
otherwise.

Let S be a non-empty set of finite places of k such that πv is unramified for all
finite v ∈/ S. Let η be a continuous character of k×\A× which is highly ramified for all
v ∈ S.

Proposition 3.1. — Let η be a character of k×\A× such that, for some v ∈ S, both ηv and

η2
v are ramified. Then for all τ ∈ T (S; η) the L-function L(s , π× τ) is entire.

This follows from the results in [18, 19]. For the convenience of the reader, we
will sketch the proof here.

Let A× , 1 denote the group of ideles of norm 1. Fix a subgroup A+ ⊂ A× such
that A+ ' R×+ and A× = A× , 1×A+. It suffices to assume that τ is unitary and its central
character is a character of k×\A× which is trivial on A+. Any cuspidal representation
can be written as τ ' τ′ ⊗ |det|s′ , where τ′ is unitary with central character trivial on
A+, and then L(s , π× τ) = L(s + s′ , π× τ′). Note that if τ ∈ T (S; η), then so is τ′.

Let π be as above and τ a cuspidal representation of GLr(A) in T (S; η) also as
above. If we let M = GLr × Gn then M is a Levi subgroup of a standard maximal
parabolic subgroup P = Pr , n ⊂ Gr+n. Let m = r + n and let N = Nr , n be the unipotent
radical of P. In order to make the argument, we will consider both the case n |= 0, the
case of interest, and n = 0, for purposes of induction. We view σ =~τ ⊗ π as a unitary
cuspidal globally generic representation of M(A). As such, we can form the induced
representation

I(s , σ) =


Ind

Gm(A)
P(A) (|det|s~τ⊗ π) if n |= 0

Ind
Gm(A)
P(A) (|det|s/2~τ ) if n = 0

If α is the simple root associated to the maximal parabolic subgroup P and we let, as
usual, ~α = ρP/〈ρP , α〉 then as in [31]

I(s , σ) = Ind
Gm(A)
P(A) (e〈s ~α , HP〉σ).

We let V(s , σ) denote the space of functions on which I(s , σ) acts. We could represent
these representations as all realized on the same underlying space of functions on a
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suitable maximal compact subgroup K(A), namely the space V of

IndK(A)
K(A)∩P(A)(σ|K(A)∩M(A))

with the action varying with s. Each f ∈ V then determines a section fs ∈ V(s , σ).
Consider, for f ∈ V, the Eisenstein series

E( g , fs) =
∑

P(k)\Gm(k)

fs(γg).

This converges for Re(s) >> 0 and has a meromorphic continuation to all of C [21, 26].
Our condition on the central character of τ guarantees that the poles of the Eisenstein
series in the half plane Re(s) > 0 are all simple and lie on the real axis.

The first key observation is the following.

Lemma 3.1. — If τ is not self-contragredient then E( g, fs) has no poles in Re(s) > 0.

Proof. — This is Proposition 2.1 of [18]. It follows from Langlands’ inner product
formula for the residues of Eisenstein series [21, 26]. ¤

This will hold in our situation by the following lemma.

Lemma 3.2. — Let τ ∈ T (S; η) with η non-trivial and such that for some v ∈ S, η2
v is

ramified. Then τ cannot be self-contragredient.

Proof. — If τ ∈ T (S; η) then at a place v ∈ S we have that the local component
τv must be of the form

τv ' Ind
GLr(kv)
B′

r
(kv) (µ1 , v ⊗ ...⊗ µr , v)⊗ ηv ' Ind

GLr(kv)
B′

r
(kv) (µ1 , vηv ⊗ ...⊗ µr , vηv)

where B′r is the upper triangular Borel subgroup of GLr and the µi , v are unramified
characters. This follows from the fact that τv = τ′v ⊗ ηv with τ′v both unramified and
generic. Then

~τv ' Ind
GLr(kv)
B′

r
(kv) (µ−1

1 , vη
−1
v ⊗ ...⊗ µ−1

r , vη
−1
v ).

If ~τ ' τ then for this place ~τv ' τv and then for each i there will be a j such that
µi , vηv = µ−1

j , v η−1
v and hence η2

v = (µj , vµi , v)−1. But η2
v is non-trivial and ramified while

(µj , vµi , v)−1 is unramified. This is a contradiction. ¤

From this point on we will use simply that τ is not self-contragredient.

Let Σ denote the set of roots of Gm, Σ+ the set of positive roots associated to
Um, and ∆ denote the associated set of simple roots. Let θ be the subset of ∆ which
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generates M. Then ∆ = θ ∪ {α}. Let w be the unique element of the Weyl group
satisfying w(θ) ⊂ ∆ but w(α) ∈ Σ−, i.e., w(α) is negative. In our setting we have

w =

 sr

±I2n+1

sr


where sr is the r× r matrix

sr =

 1

. ..

1


and the sign on ±I2n+1 is chosen so that the determinant is 1. Note that w preserves
M and that if we define wσ(m) = σ(mw) then wσ ' τ⊗ π and w(e〈s ~α , HP〉σ) = e〈−s ~α , HP〉wσ.
We let A(s , σ , w) : V(s , σ) −→ V(−s , wσ) be the standard intertwining operator defined
for Re(s) >> 0 by

A(s , σ , w) fs( g) =
∫

N(A)
fs(wng) dn

and continued meromorphically (see [31] and the references therein). A(s , σ , w) factors
into a product of local intertwining operators A(s , σ , w) = ⊗v A(s , σv , w) with the
local operators given by the analogous local integrals. These local operators can be
normalized by writing

A(s , σv , w) = r(s , σv , w)N(s , σv , w)

where, if n |= 0,

r(s , σv , w) =
L(s , πv × τv)L(2s , τv , Sym2)

L(1 + s , πv × τv)ε(s , πv × τv , ψv)L(1 + 2s , τv , Sym2)ε(2s , τv , Sym2 , ψv)

while if n = 0,

r(s , σv , w) = r(s , τv , w) =
L(s , τv , Sym2)

L(1 + s , τv , Sym2)ε(s , τv , Sym2 , ψv)

are scalar functions. The N(s , σv , w) are then the normalized intertwining operators.
Note that if v is a non-archimedean place where I(s , σv) is unramified and we let

f ◦v , s denote the (normalized) Kv-fixed vector in V(s , σv) and similarly ~f ◦v , −s the Kv-

fixed vector of V(−s , wσv) then N(s , σv , w) f ◦v , s =~f ◦v , −s by the formula of Gindikin and
Karpelevich. Hence if we set N(s , σ , w) = ⊗v N(s , σv , w) then for any fs ∈ V(s , σ),
N(s , σ , w) fs is essentially a finite product.



14 J. W. COGDELL, H. H. KIM, I. I. PIATETSKI-SHAPIRO, F. SHAHIDI

Lemma 3.3. — Each normalized local intertwining operator N(s , σv , w) is holomorphic and

non-zero (as an operator) for Re(s) >
1
2

. Consequently the same is true for the global operator

N(s , σ , w).

Proof. — This is Proposition 3.4 of [19]. ¤

Now let r(s , σ , w) =
∏

v r(s , σv , w). The Euler products converges for Re(s) >> 0.
If we compute the constant term of the Eisenstein series along the unipotent radical
N of P we have

EN( g , fs) =
∫

N(k)\N(A)
E(ng , fs) dn = fs( g) + A(s , σ , w) fs( g).

By Lemma 3.1 and 3.2, the Eisenstein series is holomorphic for Re(s) > 0, and hence
the same is true of A(s , σ , w). So if we write

A(s , σ , w) = r(s , σ , w)N(s , σ , w)

then by Lemma 3.3 we may conclude that r(s , σ , w) is holomorphic for Re(s) >
1
2

, of

course for τ non-self-contragredient.
From this we need to sift out our information on L(s , π × τ). Let us write

r(s , σ , w) = p(s , σ , w)/q(s , σ , w) where

p(s , σ , w) =
{

L(s , π× τ)L(2s , τ , Sym2) if n |= 0
L(s , τ , Sym2) if n = 0

and

q(s , σ , w) =
{

L(1 + s , π× τ)ε(s , π× τ)L(1 + 2s , τ , Sym2)ε(2s , τ , Sym2) if n |= 0
L(s , τ , Sym2)ε(s , τ , Sym2) if n = 0

with similar conventions in the local situation.

If we compute a non-trivial Fourier coefficient of our Eisenstein series we find,
as in Proposition 5.2 of [10],

Eψ(e , fs) =
∫

Um(k)\Um(A)
E(u , fs)ψ−1(u) du = qT(s , σ , w)−1

∏
v∈T

Wv , s(e)

where Um is the standard maximal unipotent subgroup of Gm, ψ our non-trivial additive
character of k\A defining a non-degenerate character of Um(k)\Um(A) which we again
denote by ψ, T the finite set of places, T ⊃ S ∪ S∞, such that σ and ψ are both
unramified for v ∈/ T, qT(s , σ , w) =

∏
v∈/ T q(s , σv , w), and W

v , s
( g) simply local Whittaker

functions for I(s , σv). Recall that for any given s there is a choice of function so that
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W
v , s

(e) |= 0, as in Lemma 5.3 of [10]. As a consequence of this formula and the fact

that E( g , fs) is holomorphic for Re(s) > 0 we see that qT(s , σ , w)−1 is holomorphic
for Re(s) > 0 and hence qT(s , σ , w) is meromorphic and non-vanishing for Re(s) > 0.
Since the local L-factors are always meromorphic and non-vanishing, we have that in
fact q(s , σ , w) is meromorphic and non-vanishing for Re(s) > 0. In particular, if n = 0
this gives the meromorphy and non-vanishing of L(1 + s , τ , Sym2) for Re(s) > 0, or of
L(s , τ , Sym2) for Re(s) > 1.

Consider now the case n = 0 so that σ =~τ. We know that

A(s , σ , w) = r(s , σ , w)N(s , σ , w).

A(s , σ , w) is holomorphic for Re(s) > 0 and N(s , σ , w) is holomorphic and non-

vanishing for Re(s) >
1
2

. Hence r(s , σ , w) is holomorphic for Re(s) >
1
2

. By the definition

of r(s , σ , w) we have

L(s , τ , Sym2) = r(s , σ , w)L(1 + s , τ , Sym2)ε(s , τ , Sym2).

We know that the L(s , τ , Sym2) is absolutely convergent, and hence holomorphic, in
some half plane, say Re(s) > a. On the other hand, if L(s , τ , Sym2) is holomorphic in
Re(s) > b for some b, then L(1 + s , τ , Sym2) is holomorphic for Re(s) > b− 1 and hence

so is r(s , τ , w)L(1 + s , τ , Sym2)ε(s , τ , Sym2) as long as Re(s) >
1
2

. So L(s , τ , Sym2) is then

also holomorphic for Re(s) > b−1 as long as Re(s) >
1
2

. In this way we may inductively

shift the half plane of holomorphy for L(s , τ , Sym2) to Re(s) >
1
2

.

Now let n |= 0. We proceed in essentially the same manner. From A(s , σ , w)

= r(s , σ , w)N(s , σ , w) we may conclude that r(s , σ , w) is holomorphic for Re(s) >
1
2

.

Utilizing the definition of r(s , σ , w) we may write

L(s , π× τ) = R(s)L(1 + s , π× τ)

where we have written

R(s) = r(s , σ , w)ε(s , π× τ)L(1 + 2s , τ , Sym2)ε(2s , τ , Sym2)L(2s , τ , Sym2)−1.

Note that from our previous analysis of the n = 0 case we know that L(1 + 2s , τ , Sym2)

is holomorphic for Re(s) > 0 and L(2s , τ , Sym2)−1 is holomorphic for Re(s) >
1
2

. Hence

R(s) is holomorphic for Re(s) >
1
2

. Hence we can shift as above to obtain L(s , π × τ)
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is holomorphic for Re(s) >
1
2

. We now utilize the functional equation (see Proposition

3.3 below) to guarantee L(s , π× τ) is entire. This proves Proposition 3.1.

We will also need the following two results on the analytic properties of these
L-functions.

Proposition 3.2. — For any cuspidal representation τ of GLr(A), 1 6 r < 2n, the L-function

L(s , π× τ) is bounded in vertical strips.

Proof. — This is Corollary 4.5 of [10]. ¤

Proposition 3.3. — For any cuspidal representation τ of GLr(A), 1 6 r < 2n, we have the

functional equation

L(s , π× τ) = ε(s , π× τ)L(1− s , ~π×~τ).

Proof. — This is a consequence of Theorem 7.7 of [31]. ¤

As a technical result for effecting the lifting, we will need to use the stability of the
γ-factor for local generic representations of SO2n+1 twisted by sufficiently highly ramified
characters as in [6]. In the context of the local L-functions defined via Eisenstein series,
the existence of the local γ-factors at all places v is given in Theorem 3.5 of [31] and
is related to the local L- and ε-factors by

(3.1) γ (s , πv × τv , ψv) =
L(1− s , ~πv ×~τv)ε(s , πv × τv , ψv)

L(s , πv × τv)
.

Proposition 3.4. — (Stability of γ) Let v be a non-archimedean place of k and let π1 , v and

π2 , v be generic representations of Gn(kv). Then for every sufficiently highly ramified character ηv of

k×v we have

γ (s , π1 , v × ηv , ψv) = γ (s , π2 , v × ηv , ψv)

i.e, after a sufficiently highly ramified twist all γ-factors become stable.

Proof. — This result was proven in [6] in the context of γ-factors as defined
via the integral representations of L-functions for SO2n+1 as developed by Gelbart and
Piatetski-Shapiro [9], Ginzburg [11], and Soudry [34-36]. However, by Corollary 2 of
[35] we know that the two definitions of the γ-factor agree, at least up to a constant
of absolute value one which, in our case, depends only on the character. Hence the
result transfers to the case under consideration. ¤
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To determine this stable form, it suffices to take πv to be a full induced
representation from characters µ1 , v , ... , µn , v of k×v . Then, since the γ-factors are
inductive, again by Theorem 3.5 of [31], we see that for sufficiently highly ramified
ηv we have

(3.2) γ (s , πv × ηv , ψv) =
n∏

j = 1

γ (s , µj , vηv , ψv) γ (s , µ−1
j , v ηv , ψv).

For our purposes it will be better to have the corresponding statement in terms of the
L-factors and ε-factors. We begin with L.

Lemma 3.4. — Let v be a non-archimedean place of k and let πv be a generic representation

of Gn(kv). Then for every sufficiently highly ramified character ηv of k×v we have L(s , πv×ηv) ≡ 1.

Proof. — This follows from the Main Lemma 1 of [33]. ¤

If we combine the stable form of the γ-factor in (3.2), the relation of the γ-factor
to the L-factor and the ε-factor in (3.1), and this Lemma, we arrive at the following
corollary of Proposition 3.4.

Corollary. — Let v be a non-archimedean place of k and let πv be a generic representation of

Gn(kv). Let µ1 , v , ... , µn , v be n characters of k×v . Then for every sufficiently highly ramified character

ηv of k×v we have

ε(s , πv × ηv , ψv) =
n∏

j = 1

ε(s , µj , vηv , ψv)ε(s , µ−1
j , v ηv , ψv)

and

L(s , πv × ηv) ≡ 1.

4. The Local Liftings

In this section we describe the local liftings in more detail. There are three
distinct cases. Let π = ⊗′ πv be a globally generic irreducible cuspidal automorphic
representation of SO2n+1(A).

(i) The non-archimedean unramified lifting

Let v be a place where πv is unramified. Then, by the Satake isomorphism
[29, 2], πv is determined by a semi-simple conjugacy class [tv] in Sp2n(C) and the local
Langlands L-function is defined by

L(s , πv) = det(1− tvq
−s

v )−1
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where qv is the order of the residue field of kv. Under the natural embedding
ι : Sp2n(C) ↪→ GL2n(C), [tv] determines a semi-simple conjugacy class [ι(tv)] in GL2n(C)
and this has associated to it an unramified representation Πv of GL2n(kv). Πv is the local
Langlands lift of πv to GL2n(kv).

Proposition 4.1. — Let kv be a non-archimedean local field. Then the local Langlands lift

Πv of an irreducible generic unramified unitary representation πv of SO2n+1(kv) to GL2n(kv) is again

irreducible, generic, unramified, and self-contragredient.

Proof. — The lift Πv is unramified and irreducible by construction.

That the lift is self-contragredient is a simple argument on Satake parameters.
Suppose that πv is the unramified constituent of the unramified principal series

Ind
Gn(kv)
Bn(kv) (µ1 , v⊗ ...⊗µn , v) with the µi , v unramified characters. Then the Satake parameter

of πv is represented by the diagonal element

tv = diag(µ1 , v($v) , ... , µ
n , v

($v) , µn , v($v)−1 , ... , µ1 , v($v)−1).

in Sp2n(C), where $v is a uniformizing parameter for kv. Under the embedding
ι : Sp2n(C) ↪→ GL2n(C) we have ι(tv) = tv and Πv is the unramified representation
of GL2n(kv) associated to [tv] ⊂ GL2n(C). The contragredient representation Π̃v is
then the unramified representation associated to the semi-simple conjugacy class
[t−1

v ] ⊂ GL2n(C). In GL2n(C) we have that tv and t
−1
v are conjugate by the long

Weyl element. Hence Π̃v ' Πv as claimed.
It remains to show that Πv is generic. We will give two proofs of this fact, in the

hope that one might eventually extend to other classical groups.
The first is based on the Kazhdan-Lusztig parameterization of representations

having an Iwahori fixed vector [25] and is independent of the unitarity assumption.
If G is any split reductive group over kv with connected center, such as our SO2n+1(kv)
or GL2n(kv), then by an independent result of Barbasch-Moy [1], Li [24], or Reeder
[28] any irreducible generic unramified representation ρ must be a full unramified
principal series induced off the Borel subgroup. If ρ corresponds to a semi-simple
conjugacy class [s] in LG0 then the associated induced representation from the Borel
reduces into constituents ρ(s , u , χ) parameterized by the unipotent elements u of LG0

such that Ad(s)u = uqv and certain irreducible representations χ of the component group
A(s , u) = Cent(s , u)/Cent(s , u)0 LZ where Cent(s , u) is the centralizer in LG0 of s and u

and LZ is the center of LG. The associated induced representation is irreducible iff
s supports no non-trivial unipotents in this sense (see [1, 25]). In fact, the proof of
Barbasch and Moy cited above shows that if ρ is both generic and unramified it must
correspond to a conjugacy class [s] which does not support a non-trivial unipotent and
is hence irreducible.
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Now assume that πv corresponds to the semi-simple conjugacy class [tv] in Sp2n(C)
as above. Since πv is generic and unramified, tv cannot support a non-trivial unipotent
in Sp2n(C). Under the embedding ι : Sp2n(C) ↪→ GL2n(C), ι(tv) = tv. Since the image of
Sp2n(C) in GL2n(C) is “big”, if tv cannot support a non-trivial unipotent in Sp2n(C) it
cannot support one in GL2n(C) either since the relevant roots of GL2n already lie in
Sp2n. Hence Πv must also be a full induced from the Borel and hence generic.

The second proof is based on our knowledge of the unitary dual of SO2n+1(kv).
By the result of Barbasch-Moy, Li, or Reeder cited above we still have that πv is a full
unramified principal series. If we write this in Langlands form, then by the work of
Yoshida [38] we know that since in addition πv is unitary, it must be of the form

πv ' Ind
Gn(kv)
Bn(kv) (µ

◦
1 , vν

a1 ⊗ ...⊗ µ◦n , vν
an )

with the µ◦i , v unramified unitary, ν(x) = |x|v, and
1
2

> a1 > ... > an > 0. Then the local

lift Πv is simply

(4.1) Πv ' Ind
GL2n(kv)
B′2n

(kv) (µ◦1 , vν
a1 ⊗ ...⊗ µ◦n , vν

an ⊗ (µ◦n , v)
−1ν−an ⊗ ...⊗ (µ◦1 , v)

−1ν−a1 )

where B′2n is the standard Borel subgroup of GL2n. This is then irreducible by [39].
Hence Πv is generic. ¤

We will need to control the twists of these L-functions by arbitrary generic
representations τv of GLr(kv) with r < 2n.

Proposition 4.2. — Let πv be an irreducible unramified generic representation of Gn(kv) and

τv be an irreducible generic representation of GLr(kv) with r < 2n. Then

L(s , πv × τv) = L(s , Πv × τv)

and

ε(s , πv × τv , ψv) = ε(s , Πv × τv , ψv).

Proof. — As in the proof of Proposition 4.1 we may write

πv ' Ind
Gn(kv)
Bn(kv) (µ1 , v ⊗ ...⊗ µn , v)

and

Πv ' Ind
GL2n(kv)
B′2n

(kv) (µ1 , v
⊗ ...⊗ µn , v ⊗ µ−1

n , v ⊗ ...⊗ µ−1

1 , v
).



20 J. W. COGDELL, H. H. KIM, I. I. PIATETSKI-SHAPIRO, F. SHAHIDI

By Theorem 3.1 of [13] we know that

γ (s , Πv × τv , ψv) =
n∏

i = 1

γ (s , τv ⊗ µi , v , ψv)γ (s , τv ⊗ µ−1
i , v , ψv)

and by Theorem 9.5 of the same paper that

L(s , Πv × τv) =
n∏

i = 1

L(s , τv ⊗ µi , v)L(s , τv ⊗ µ−1
i , v ).

Since Theorem 9.5 applies equally well to the contragredients, then together these
statements give also

ε(s , Πv × τv , ψv) =
n∏

i = 1

ε(s , τv ⊗ µi , v , ψv)ε(s , τv ⊗ µ−1
i , v , ψv).

For the representation πv of Gn(kv) the same results can be extracted from the
results of [31, 32]. First, by either the inductivity of γ from Theorem 3.5 of [31] or
Section 4 of [32] we know

γ (s , πv × τv , ψv) =
n∏

i = 1

γ (s , τv ⊗ µi , v , ψv)γ (s , τv ⊗ µ−1
i , v , ψv).

To obtain the factorization of the L-factors, first note that since both πv and τv are
generic, they are both full induced from generic tempered representations in Langlands
order, i.e.,

πv ' Ind
Gn(kv)
Q(kv) (π′1 , vν

a1 ⊗ ...⊗ π′m , vν
am ⊗ π′′v )

with each π′i , v tempered on some GLni
(kv), ν the character ν( g) = |det( g)|v for g ∈ GLni

(kv),
π′′v tempered on Gl(kv), a1 > ... > am, and Q the standard parabolic with Levi of the
form GLn1

× ... × GLnm
× Gl. Note that under our assumptions, each π′i , v and π′′v are

full induced from unitary characters. Similarly

τv ' Ind
GLr(kv)
Q′(kv) (τ′1 , vν

b1 ⊗ ...⊗ τ′t , vν
bt )

with each τ′j , v tempered on some GLrj
(kv) and Q′ the standard parabolic with Levi

GLr1
× ... × GLrt

. For Gn(kv) this is the work of Muić [27] and for GLr(kv) that of
Jacquet and Shalika [16] or Zelevinsky [39]. For such representations, the L-function
is defined via this parameterization in Section 7 of [31] as

L(s , πv×τv) =
∏
i , j

L(s+ai+bj , π′i , v×τ′j , v)L(s−ai+bj , ~π′i , v×τ′j , v)
∏

j

L(s+bj , π′′v×τ′j , v).
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Consider one of the factors on the right, say L(s + ai + bj , π′i , v× τ′j , v). Since as we noted
π′i , v is a full induced from unitary characters, say π′i , v ' Ind(µi

1 , v ⊗ ...⊗ µi

ni , v), and the
fact that τ′

j , v
is tempered, then either by the result of Jacquet, Piatetski-Shapiro and

Shalika quoted above or Theorem 5.2 of [32] we have

L(s + ai + bj , π′i , v × τ′j , v) =
∏
`

L(s + ai + bj , µi

` , v ⊗ τ′j , v).

Note again that the Conjecture 5.1, which is a hypothesis of Theorem 5.2 of [32],
is known in our case by Theorem 4.1 of [3]. The result of [32] applies equally well
to the factor L(s + bj , π′′v × τ′j , v) and hence we may factor πv all the way down to its
inducing characters µ1 , v , ... , µn , v. If we now reconstruct these decompositions we arrive
at

L(s , πv × τv) =
n∏

i = 1

L(s , τv ⊗ µi , v)L(s , τv ⊗ µ−1
i , v )

and hence, as above,

ε(s , πv × τv , ψv) =
n∏

i = 1

ε(s , τv ⊗ µi , v , ψv)ε(s , τv ⊗ µ−1
i , v , ψv).

Comparing these factorizations then gives the statements of the Proposition. ¤

(ii) The archimedean lift

Let v|∞ denote an archimedean place. By the arithmetic Langlands classification
[23, 2], πv is parameterized by an admissible homomorphism ϕv : Wv → Sp2n(C)
where Wv is the Weil group of kv. By composing with ι : Sp2n(C) ↪→ GL2n(C) we have
an admissible homomorphism ι ◦ ϕv : Wv −→ GL2n(C) and this defines an irreducible
admissible representation Πv of GL2n(kv). We take Πv as the local lift of πv.

The local archimedean L- and ε-factors defined via the theory of Eisenstein
series we are using are the same as the Artin factors defined through the arithmetic
Langlands classification [30]. Since the embedding ι : Sp2n(C) ↪→ GL2n(C) is the
standard representation of the L-group of SO2n+1(kv) then by the definition of the
local L- and ε-factors given in [2] we have

L(s , πv) = L(s , ι ◦ ϕv) = L(s , Πv)

and

ε(s , πv , ψv) = ε(s , ι ◦ ϕv , ψv) = ε(s , Πv , ψv)

where in both instances the middle factor is the local Artin-Weil L- and ε-factor
attached to representations of the Weil group as in [37].

If τv is an irreducible admissible representation of GLr(kv) then it is in turn
parameterized by an admissible homomorphism ϕ′v : Wv −→ GLr(C). Then the tensor
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product (ι ◦ ϕv)⊗ ϕ′v : Wv −→ GL2nr(C) is admissible and again we have by definition

L(s , πv × τv) = L(s , (ι ◦ ϕv)⊗ ϕ′v) = L(s , Πv × τv)

and

ε(s , πv × τv , ψv) = ε(s , (ι ◦ ϕv)⊗ ϕ′v , ψv) = ε(s , Πv × τv , ψv).

Hence at the archimedean places we also have the analogue of Proposition 4.2.

Proposition 4.3. — Let πv be an irreducible admissible generic representation of Gn(kv), Πv its

local lift to GL2n(kv), and τv an irreducible admissible generic representation of GLr(kv) with r < 2n.

Then

L(s , πv × τv) = L(s , Πv × τv)

and

ε(s , πv × τv , ψv) = ε(s , Πv × τv , ψv).

(iii) The ramified non-archimedean local lift

If v is a non-archimedean place where πv is ramified, we will take for Πv any irreducible
admissible representation of GL2n(kv) which has trivial central character. If we like we
may take Πv unramified, generic, self-contragredient...

Proposition 4.4. — Let v ∈ S and let τv be a local component of a cuspidal representation τ
in T (S; η). Then as long as ηv is sufficiently ramified at v, with the necessary degree of ramification

depending only on πv and Πv, we have

L(s , πv × τv) = L(s , Πv × τv)

and

ε(s , πv × τv , ψv) = ε(s , Πv × τv , ψv).

Proof. — The proof of this Proposition is essentially the same as that of
Proposition 4.2. In this case, by the definition of T (S; η) we know that τ can be
written as

τ ' Ind
GLr(kv)
B′

r
(kv) (χ1 , v ⊗ ...⊗ χr , v)⊗ ηv

with each χi , v unramified. If we let χi , v(x) = |x|bi

v and let ν(x) = |x|v then we may write
this as

τ ' Ind
GLr(kv)
B′

r
(kv) (ηvνb1 ⊗ ...⊗ ηvνbr ).
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Arguing as in the proof of Proposition 4.2, but now factoring τ according to its
characters, we find

L(s , πv × τv) =
r∏

i = 1

L(s + bi , πv × ηv)

and

ε(s , πv × τv , ψv) =
r∏

i = 1

ε(s + bi , πv × ηv , ψv).

By the Corollary to Proposition 3.4, we have that for ηv sufficiently ramified (depending
on πv) L(s , πv × τv) = 1 and that each ε-factor becomes standard as stated there.

On the other hand, by the same results of [13] as used in Proposition 4.2, we
have

L(s , Πv × τv) =
r∏

i = 1

L(s + bi , Πv × ηv)

and

ε(s , Πv × τv , ψv) =
r∏

i = 1

ε(s + bi , Πv × ηv , ψv).

Now, by the results of Jacquet and Shalika on the stability of L- and ε-factors for
GLn [16] we have that for sufficiently ramified ηv (depending on Πv) L(s , Πv × τv) = 1
and each ε-factor becomes standard as stated in Proposition 2.2 of [16]. Since the
central character of Πv is trivial, we see that the stable forms in Proposition 2.2 of
[16] and in the Corollary to Proposition 3.4 above agree. This gives the statement of
the Proposition. ¤

5. The Global Lift

In this section we prove the Theorem stated in Section 1.

Proof. — We begin with π = ⊗′ πv an irreducible globally generic cuspidal
automorphic representation of SO2n+1(A). To each local component πv we have
associated a local lift Πv on GL2n(kv) in Section 4. Let Π = ⊗′ Πv. Then Π is an
irreducible admissible representation of GL2n(A) with trivial central character. Let S
be a non-empty finite set of finite places so that πv is unramified for all finite v ∈/ S.
Then by Propositions 4.2 and 4.3 we have LS(s , π) = LS(s , Π) so that the completed
L-function L(s , Π) is absolutely convergent in some right half plane.
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Take η = ⊗ ηv a unitary character of k×\A× such that for v ∈ S the local
component ηv is sufficiently ramified so that Proposition 4.4 holds and such that at
one place η2

v is still ramified.
Let τ ∈ T (S; η). Then by Propositions 4.2-4.4 we have

L(s , Πv × τv) = L(s , πv × τv)

ε(s , Πv × τv , ψv) = ε(s , πv × τv , ψv)

for all places v of k and hence globally

L(s , Π× τ) = L(s , π× τ)

ε(s , Π× τ) = ε(s , π× τ).

We of course have the analogous statements for the contragredients.
By Propositions 3.1 and 3.2 we know that, for our choice of η, L(s , Π × τ) is

entire and bounded in vertical strips. Furthermore, from Proposition 3.3 we have the
functional equation

L(s , π× τ) = ε(s , π× τ)L(1− s , ~π×~τ)

and hence

L(s , Π× τ) = ε(s , Π× τ)L(1− s , Π̃×~τ).

Our representation Π now satisfies the hypotheses of the Converse Theorem
of Section 2. Hence there is an irreducible automorphic representation Π′ such that
Π′v ' Πv for all v ∈/ S. In particular, at almost all places v where πv is unramified (we
must exclude any such places in the finite set S) and all archimedean places v|∞ we
have Π′v ' Πv is the local Langlands lift of πv. Hence Π′ is a weak global Langlands
lift of π. This proves the Theorem. ¤

6. Complements

In this section we would like to give some consequences of our main theorem.
Our first three corollaries are global and deal with the questions of uniqueness, self-
contragredience, and genericity of our lifts. The second two are local in nature
and show the existence of a unique generic local lift of any generic supercuspidal
representation of SO2n+1(kv).

Let π be a globally generic cuspidal representation of SO2n+1(A). Let Π be any
weak lift of π to GL2n(A). By a result of Langlands [22] we know that there is a
partition n = (n1 , ... , nt) of 2n and cuspidal representations σi of GLni

(A) such that Π is

a constituent of Ξ = Ind
GL2n(A)
Pn(A) (σ1⊗ ...⊗σt), where Pn is the standard parabolic subgroup

of GL2n with Levi subgroup GLn1
× ... × GLnt

. (As all our inductions in this section
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will be of this form, from a standard parabolic associated to a partition of 2n, which
will be clear from the context, to GL2n, we will henceforth omit the groups from the
notation for induction.) For those finite places v where Πv is unramified we have that
Πv is the unique unramified constituent of Ξv = Ind(σ1 , v ⊗ ...⊗ σt , v).

Now suppose that Π′ is another weak lift of π. Then to Π′ we also have associated
a partition (n′1 , ... , n′t′ ) of 2n and cuspidal representations σ′i of GLn′

i
(A) such that Π′ is a

constituent of Ξ′ = Ind(σ′1⊗ ...⊗σ′t′ ) and for those finite places v where Π′v is unramified
we have that Π′v is the unique unramified constituent of Ξ′v = Ind(σ′1 , v ⊗ ...⊗ σ′t′ , v).

By construction, for almost all finite places where πv is unramified Πv ' Π′v is the
local lift of πv. Thus by the classification result of Jacquet and Shalika (Theorem 4.4 of
[14]) we have that t = t′ and up to permutation ni = n′i and σi ' σ′i for i = 1, ... , t. So π
completely determines the partition (n1 , ... , nt) of 2n and cuspidal representations σi of
GLni

(A) as above such that every weak lift of π is a constituent of Ξ = Ind(σ1⊗ ...⊗σt).

For definiteness, let us write σi = σ◦i νsi where σ◦i is unitary cuspidal and si ∈ R and
assume that we have numbered the σi so that s1 > ... > st.

Recall from Proposition 4.1 that at the finite places where πv is unramified the
local lift Πv is unramified and self-contragredient. Hence if we consider Ξ̃ = Ind(~σ1 ⊗
· · · ⊗ ~σt) we see that for almost all v such that Ξ̃v is unramified the unramified
constituent will be Π̃v. Since Πv ' Π̃v then again applying the classification theorem
of Jacquet and Shalika there is a permutation p of {1, ... , t} such that ~σi ' σp(i), that
is, as a multiset {σ1 , ... , σt} is self-contragredient. Hence Ξ and Ξ̃ will have the same
constituents.

We say that two irreducible automorphic representations Π and Π′ of GL2n(A)
are nearly equivalent if there is a finite set T of places of k such that Πv ' Π′v for all
v ∈/ T. So if Π and Π′ are two weak lifts of π then they are nearly equivalent. Moreover
we see that any constituent of Ξ is nearly equivalent to any weak lift Π of π and that
in fact the constituents of Ξ make up the full near equivalence class of any weak lift of
π. We will call an irreducible automorphic representation Π nearly self-contragredient if Π
is nearly equivalent to its contragredient Π̃. Since Ξ̃ and Ξ have the same constituents,
we see that any weak lift of π is nearly self-contragredient.

Thus we have established the following Corollary to our Theorem.

Corollary 1. — Let π be a globally generic cuspidal representation of SO2n+1(A). Then π
completely determines a partition (n1 , ... , nt) of 2n and a self-contragredient multiset {σ1 , ... , σt}
of cuspidal representations of GLni

(A) as above such that every weak lift of π is a constituent of

Ξ = Ind(σ1 ⊗ ...⊗ σt). Moreover any weak lift Π is nearly self-contragredient.

In our case, we know by Proposition 4.1 that the unramified constituents of
Ξv are generic. At any place v we have Ξv = Ind(σ1 , v ⊗ ... ⊗ σt , v) and since each σi , v

is generic each Ξv will have a unique generic constituent. Hence there is a unique
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irreducible generic automorphic representation Σ of GL2n(A) which is nearly equivalent
to any weak lift Π of π. The representation Σ itself may not be a weak lift, because
it may not have the requisite component at the archimedean places. However, if πv

is say tempered at all archimedean places, then the local lift Πv of πv will still be
tempered [23, 2] and hence generic [39]. In this case, Σv will be the local lift of πv at
archimedean v and hence Σ will be a weak lift of π. We gather these facts together in
the following Corollary.

Corollary 2. — Let π be a globally generic cuspidal representation of SO2n+1(A). Then there

is a unique generic automorphic representation Σ of GL2n(A) such that Σ is nearly equivalent to any

weak lift of π. If π is tempered at all archimedean places, then Σ will be a weak lift of π.

Note that if we had a way of determining that Ξ was irreducible, for example
if we had a cuspidal weak lift, then there would be a unique lift Π of π and this lift
would be self-contragredient and generic. One way of obtaining this is to place extra
conditions on π. Recall from [5] that a cuspidal representation π of SO2n+1(A) is called
weakly Ramanujan if for every ε > 0 there is a constant cε > 0 and an infinite sequence
of places {vm} with the property that each πvm

is unramified and its Satake parameters

tvm
= diag(µ1 , vm

, ... , µn , vm
, µ−1

n , vm
, ... , µ−1

1 , vm
)

satisfy c−1
ε q−ε

vm
< |µi , vm

| < cεq
ε
vm

. If π has one tempered unramified component or if π
is weakly Ramanujan, then by Theorem 1 or Theorem 1′ of [5] we see that the
exponents occurring in Ξ are all zero, i.e., s1 = ... = st = 0, so that σi = σ◦i is unitary
cuspidal and Ξ = Ind(σ◦1 ⊗ ...⊗ σ◦t ). Then Ξ is irreducible.

Corollary 3. — If π has one tempered unramified component or is weakly Ramanujan, then

π has a unique lift Π = Ξ and the lift is generic and self-contragredient.

Now let us turn to some local consequences of the existence of a weak lift. The
local lift at archimedean places is well understood, as explained above, so let us fix
a non-archimedean place v. If πv is an unramified generic representation of SO2n+1(kv)
with local lift Πv, then by Proposition 4.2 we know that for every supercuspidal
representation τv of GLr(kv) we have

γ (s , πv × τv , ψv) = γ (s , Πv × τv , ψv).

This relationship persists for any local component of a weak lift.

Corollary 4. — Let πv be a local component of a globally generic cuspidal representation π of

SO2n+1(A) and let Π be any weak lift of π to GL2n(A). Then for every supercuspidal representation

τv of GLr(kv) with 1 6 r < 2n we have

γ (s , πv × τv , ψv) = γ (s , Πv × τv , ψv).
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Proof. — Let τv be as in the statement of the Corollary. Then by Proposition
5.1 of [31] there is a cuspidal representation τ′ of GLr(A) such that at the place v the
local component of τ′ is the given τv and at all other finite places w |= v we have τ′w is
unramified. Let S be a finite set of finite places such that πw is unramified for v ∈/ S
and let S′ = S − {v}. Let η be a idele class character such that ηv is trivial and ηw is
sufficiently highly ramified at w ∈ S′ so that

(6.1) γ (s , πw × (τ′w ⊗ ηw) , ψw) = γ (s , Πw × (τ′w ⊗ ηw) , ψw)

as in the proof of Proposition 4.4.
Let τ = τ′ ⊗ η. Note that since ηv is trivial the local component of τ at v is still

our given τv. We have the global functional equations

L(s , π× τ) = ε(s , π× τ)L(1− s , ~π×~τ)

and

L(s , Π× τ) = ε(s , Π× τ)L(1− s , Π̃×~τ)

which we can write in the form

γ (s , πv×τv , ψv) =

∏
w∈S′

γ (s , πw × τw , ψw)−1

 LS(s , π× τ)

εS(s , π× τ , ψ)LS(1− s , ~π×~τ)

and

γ (s , Πv×τv , ψv) =

∏
w∈S′

γ (s , Πw × τw , ψw)−1

 LS(s , Π× τ)

εS(s , Π× τ , ψ)LS(1− s , Π̃×~τ)
.

By Propositions 4.2 and 4.3 we have that

LS(s , π× τ)

εS(s , π× τ , ψ)LS(1− s , ~π×~τ)
=

LS(s , Π× τ)

εS(s , Π× τ , ψ)LS(1− s , Π̃×~τ)
,

while for w ∈ S′ we have γ (s , πw × τw , ψw) = γ (s , Πw × τw , ψw) by (6.1). Hence

γ (s , πv × τv , ψv) = γ (s , Πv × τv , ψv).

This establishes the Corollary. ¤

If we push this line of argument a bit further we find the following.

Corollary 5. — Let v be a non-archimedean place of k and let πv be an irreducible admissible

generic representation of SO2n+1(kv) which appears as a local component of some globally generic
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cuspidal representation. Then there exists a unique generic representation Πv of GL2n(kv) such that for

every supercuspidal representation τv of GLr(kv) with 1 6 r < 2n we have

γ (s , πv × τv , ψv) = γ (s , Πv × τv , ψv).

In particular, this is true for any irreducible generic supercuspidal representation πv. Moreover, if πv

is the component at v of a globally generic cuspidal representation π and Π′ is any weak lift of π
such that Π′v is generic, then Π′v ' Πv, i.e., there is a unique generic local lift of πv.

Proof. — Take πv as the local component at v of the globally generic cuspidal
representation π. We first show the existence of one such Πv. If πv is unramified,
then the statement follows from Proposition 4.1 and Proposition 4.2. In general, by
Corollary 1 every weak lift Π′ of π is a constituent of Ξ. If v is finite and πv is
ramified, then we may choose the local component Πv of our weak lift Π to be the
generic component of Ξv without effecting the fact that we have a weak lift. Then the
statement about the equality of γ-factors follows from Corollary 4.

This shows the existence of such Πv. The uniqueness follows from the “local
converse theorem”, that is, a generic admissible irreducible representation of GL2n(kv)
is uniquely determined by its γ-factor with twists by supercuspidal representations
of all smaller rank general linear groups, as in the Remark after the Corollary of
Theorem 1.1 of Henniart [12].

If πv is a generic supercuspidal representation of SO2n+1(kv) then by Proposi-
tion 5.1 of [31] it occurs as the local component of a globally generic cuspidal repre-
sentation of SO2n+1(A), hence the above reasoning applies.

The final statement of the Corollary has in fact been shown in the beginning
part of the proof since we took for π an arbitrary global cuspidal representation of
SO2n+1(A) with local component πv and arrived at the uniquely defined local generic
lift Πv. ¤
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