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GENERIC IMMERSIONS OF CURVES, KNOTS,
MONODROMY AND GORDIAN NUMBER

by NORBERT A'GAMPO

Dedicated to Rob Kirby on his 60th birthday
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I* Introduction

A divide P is a generic relative immersion of a finite number of copies of the
unit interval (I, 91) in the unit disk (D, <9D). The image of each copy of the unit
interval is called a branch of the divide P. The link L(P) of a divide P is

L(P) := { (^ u) € T(P) | ||(^ u)\\ = 1 } C S(T(R2)) = S3,

where we use the following notation: For a tangent vector (x, u) e T(R2) (= R4) of R2

the point x C R2 represents its foot and the vector u C T^(R2) its linear part. The unit
sphere S(T(R2)) := { (x, u) G T(R2) | \\{x, u)\\ := x\ + ̂  + u\ + ̂  = 1 } should not be
confused with the tangent circle bundle of R2 and is homeomorphic to the 3-sphere
S3. Finally, T(P) C T(D) C T(R2) is the space of tangent vectors of the divide P, where
at a crossing point s by definition the space T^(P) is the union of the two 1-dimensional
subspaces of T^(D), which are the tangent spaces of the local branches of P passing
through s. The link L(P) is an embedding of a union of r circles in S3, where r is the
number of branches of the divide P. So, for a divide P consisting of one branch the
link L(P) is a classical knot.

A divide is called connected if the image of the immersion is a connected subset
of the disk. The following is the main theorem of this paper.

Theorem. — The link L(P) of a connected divide P is a jibered link

The monodromy of the fibered link L(P) of a connected divide is given by
Theorem 2 of Section 3 in terms of the combinatorics of the underlying divide. Since
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it is very easy to give examples of connected divides we obtain a huge class of links,
such that the complement admits a fibration over the circle and that the isotopy
class of the monodromy diffeomorphism is explicitly known. The links of plane curve
singularities belong to this class (see [AC1, AG2, ACS, G-Z]). In Section 5 we show
that the gordian number of the link of a divide equals the number of crossing points
of the divide. The figure eight knot does not belong to this class. Many knots of this
class are hyperbolic, as we will see in a forthcoming paper. Theorem 2 is used in the
proof of the main theorem of [AC 3].

I would like to thank Michel Boileau, Yasha Eliashberg, Rainer Kaenders,
Dieter Kotschick, Tom Mrowka and Bernard Perron for helpful discussions during
the preparation of this paper.

2. The fibration of the link of a divide

A regular isotopy of a divide in the space of generic immersions does not change
the isotopy type of its link. So, without loss of generality, we may choose a divide to
be linear and orthogonal near its crossing points. For a connected divide P C D, let
fp : D —> R be a generic C°° function, such that P is its 0-level and that each region
has exactly one non-degenerate maximum or minimum and that each region, which
meets the boundary, has exactly one non-degenerate maximum or minimum on the
intersection of the region with 9D. Such a function exists for a connected divide and is
well defined up to sign and isotopy. In particular, there are no critical points of saddle
type other than the crossing points of the divide. Moreover without loss of generality,
we may assume that the function^ is quadratic and euclidean in a neighborhood of
those of its critical points, that lie in the interior of D, i.e. for euclidean coordinates
(X, Y) with center at a critical point c of^/p, in a neighborhood of c we have the
expression ̂ p(X, Y) =^)+XY, if c is a saddle point, ̂ >(X, Y) =fp{c)-X2-Y2, if c is a
local maximum, or^/p(X, Y) =^/p(^) +X2 +Y2, if c is a local minimum. Further, we may
also assume, that the function fp is linear in a neighborhood of every relative critical
point on 9D, i.e. at a critical point c € <9D of the function fp we have the expression
fp{c + h) =^>(^)+ < A, c > or fp{c + K) ^f^(c)— < A, c >, where we denote by < , > the
scalar product of R2. Let %: D -^ [0, 1] be a positive C°° function which equals zero
outside of small neighborhoods where f^ is quadratic and equals 1 in some smaller
neighborhood U of the critical points of^/p. Moreover, we choose the function ^ to be
rotational symmetric around each critical point, i.e. we assume that locally near each
critical point the function % depends only on the distance to the critical point. For
r\ £ R, K} > 0 let 6p^ : S3 -> C be given by

Op,̂ , u) :=fp{x) + i TI dfp{x) {u) - JT^H )̂ (^ u).
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Observe that the Hessian Hyp is locally constant in the neighborhood of the critical
points ofjp where Jp is euclidean. Let Kp^ : S3 \ L(P) —>• S1 be defined by

Kp^{x, u) := Opĵ , u)/\Qy^{x, M)|.

Theorem 1. — Let P be a connected divide. For T| > 0 and sufficiently small, the map
Tip := Tip^ is a fibration of the complement o/'L(P) over S1.

Proof. — There exists a regular product tubular neighborhood N of L(P), such
that the map Tip^ for any 1 ̂  r| > 0 is on N\L(P) a fibration over S1, for which near
L(P) the fibers look like the pages of a book near its back. It is crucial to observe that
in the intersection of the link L(P) with the support of the function

(x, u) e s3 ̂  xW ^ R.
the kernel of the Hessian of 9p^ and the kernel of the differential of the map

(x, u) e S3 ^fp{x) e R

coincide. For any r| > 0, the map Tip^ is regular at each point of U' := { {x, u) €
S3 | x € U }. There exists r|o > 0 such that for any r|, 0 < r| < T|o, the map Tip^ is
regular on S3 \ (N U U'). Hence, due to the quadratic scaling, for T) sufficiently small
the map Tip^ is a submersion, so since already a fibration near L(P), it is a fibration
by a theorem of Ehresmann. D

3. The monodromy diffeomorphism

Let P be a connected divide and let Tip : S3 \ L(P) —> S1 be its fibration of
Theorem 1. We will show how to read off geometrically the fibers Tip (±1). Two
diffeomorphisms S^, S'.̂  between the fibers Tip^l) modified by half Dehn twists will
after a suitable composition give the monodromy. For our construction we orient the
disk D by one of the possible orientations, which we think of as an orthogonal complex
structure J : T(D) —> T(D). We start out with a description of the fiber Fi := Tip^l)
and at the same time of the fiber F_i := Tip (—1). Put

P+ := { x € D \ 9D |/p(x) > 0, df^x) ^ 0 }.

The level curves offp define a oriented foliadon F+ on P+, where a tangent vector u
to a level offp at x C P+ is oriented if dfp{x) (Ju) > 0. Put

and

p^+ := { (^ u) e s 3 1 x e P+, u e T(F+) }

P+,- := { (^, u) c S 3 1 x e P+, u e T(F_) },
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where F_ is the foliation with the opposite orientation. Put

FM := { (x,u) € S3 | x = M }

for a maximum M, and

Tm '= { (x, u) G S3 [ x = m}

for a minimum m offp. Put

F^ := { ( x , u ) e S3 I ^ = ^ Hyp(^, ^) < 0 }

and

F,,_ := { (^) e S3 | ̂  = ^ H^)(^ ^) > 0 }

for a crossing point s of P, which is also a saddle point offp. Observe that the angle
in between u, v C F^ or u, v C FM is a natural distance function on F^ or FM, which
allows us to identify F^ and FM with a circle. Finally, put

9D+ : = { ^ e a D \fp{x) >o}.
Let ^R : S3 -» D be the projection (x, u) ̂  x. The projection p^ maps each of the

sets P+,+ and P+,_ homeomorphicaUy onto P+. The sets F^ or FM are homeomorphic
to S , if M or m is a maximum or minimum off? respectively, and the sets F, ± are
homeomorphic to a disjoint union of two open intervals if s is a crossing point of P.
The set <9D+ is homeomorphic to a disjoint union of open intervals. We have that Fi
and F_i are disjoint unions of these sets:

Fi = P ^ U P + , _ U < 9 D + u j F ^ U |j FM,
sef MeP+

and accordingly, with the obvious changes of signs:

F_i = P_^ U P_,_ U BD_ U |j F,,_ U |j F^
J€P mCP-

In fact, for {x, u) C P+,+ U P+,_ we have 6p(^, u) G R>o since

6p^, u) :=fp{x) + ir\ dfp(x)(u) - ̂ (x)H^(x){u, u),

where fp{x) > 0, dfp(x)(u) = 0, x(^)H^(^, u) < 0. Hence, P^ U P+,_ is an open and
dense subset in Fi. Forming the closure of P+,+ U P+,_ in Fi leads to the following
combinatorial description of the above decomposition. First, we add to the open surface
Fi its boundary and get

Fi := Fi U L(P)
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Let R be a connected component ofP+. The inverse image ̂ (R^nF^ in F^ consists of
two disjoint open cells or cylinders R+ C P+,+ and R_ C P+,_ which are in fact subsets
of FI . The closure of R+ in F^ is a surface R+ with boundary and corners. The set FM
is a common boundary component without corners of R+ and R_ if M is a maximum
in R. If there is no maximum in R the closures R+ and R_ meet along the component
of <9D+ which lies in the closure of R. Let S, R be connected components of P+ such
that the closures of R and S have a crossing point s in common. The closures of R+
and S_ in Fi meet along one of the components of F^+ and the closures of R_ and
S+ in Fi meet along the other component of F^+. The closure of F^+ D R+ in R+
intersects L(P) in 2 corners, that are also corners of the closure of F^+ H S_ in S_ (see
Fig. 1). Notice that the foliation F+ on P+ does not lift to a foliation, which extends to
an oriented foliation on Fi.

FIG. - Gluing of the lifts of R with + and S with - foliation to FI

Now we will work out the fibers F^ := Kp (i) and F_, := Up (—i). First observe
that Fi and F_, are projected to a subset of P U supp(%) by J&R. Put

F,p := { {x,u) e S3 I x € P, xW = 0, dfp(x){u) > 0 }.

For a crossing point c of P we put

F,. := { (x, u) G S3 I ̂ (x) > 0, dfp(x) {u) > 0,
fpW-^^W){^u)=0}.
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In order to get nice sets it is necessary to choose a nice bump function %. The set
F^p U F^c is an open and dense subset in F^ and forming its closure in F^ := F,• U L(P)
leads to a combinatorial description of F^.

Our next goal is the description of the monodromy diffeomorphism. We will use
the integral curves of the distribution J(kernel(^p)), which pass through the crossing
points of the divide P. In a connected component R of D \ P, those integral curves of
J(kernel(<a%»)) meet at the critical point offp in the component R with distinct tangents
or go to distinct points of 9D.

FIG. 2. - Two tiles with the J(kernel(^p)) foliation

We denote by P' the union of the integral curves of J(kernel(<a^p)), which pass
through the crossing points of P. The complement in D of the union P' U P U 9D is
a disjoint union of tiles, which are homeomorphic to open squares or triangles. We
call a pair (A, B) of tiles opposite, if A 7^ B and the closures of A and B in D have a
segment of P in common. For an opposite pair of tiles (A, B) let A | B be the interior
in D of the union of the closures of A and B in D. The set is foliated by the levels
offp and also by the integral lines of the distribution J(kernel(^p)). Both foliations are
non-singular and meet in a J-orthogonal way (see Fig. 2).

Let R and S be the components of D \ (P U <9D), which contain A and B. Put

FI,A|B :== { (^ u) e Fi | ^ € A | B }
and

F-I,A|B ̂  { (^ u) € F_i | ^ € A | B } .

The sets F^A|B and F_I^A|B each have two connected components:

F±1,A|B = F±I^A|B U F±I^A|B
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where

FI,+,A|B := { {x,u) e Fi | x G A | B, dfp{Ju) > 0 },

F-I,+,A|B := { M € F_i I x e A I B, dfp(Ju) > 0 },

and

FI,-,A|B := { M € Fi | x € A I B, dMJu) < 0 },

F-I,-,A|B := { (^ u) C F_i | x € A | B, dfp(Ju) < 0 }.

The closures ofFi^A|B in F^ and ofF_i^A|B in F_^ are polygons with 6 edges:
letM, c, d be the vertices of the triangle A; the six edges of the closure H of FI^A|B
in Fi are { {x, u} C H | x = M }, { {x,u) € H | x (E [c, M] }, { {x,u) C H | x = c },
{ (^ u) € H | x G [c, <| }, { (x, u) € H | x = ^/ }, { (x,u} € H | ̂  € [^/, M] } where
[M, <;] and [M, ^] are segments included in P' and [c, d} is a segment in P.

We will define two diffeomorphisms:

Sz,A|B '" FI,A|B —^ F_I^A|B

and

S-z,A|B f' FI,A|B "^ F_I^A|B-

To do so it is convenient to choose the function ^/p : D —> R such that the maxima
are of value 1 and the minima of value — 1. Moreover, we modify the function fp at
the boundary <9D so that along each of the integral lines of the foliation given by the
distribution J(kernel(^p)) the function^ takes all values in an interval [—m,m] with
1 ^ m > 0. The latter modification of fp is useful if the tile A or B meets 9D. We
also need the rotations Je : T(D) —> T(D) about the angle 9 C [~n,n]. Remember
J '"J^- The u^P Sz acts as follows: for {x, u) G Fi with A : € A | B l e t j / e A | B b e
the point in the opposite tile on the integral line of the distribution J(kernel(<^p)) with
ffW = ~Mjy)''> now we move x to y along the integral curve Y^), t C [fp{x),fp{jy)]
which connects x andj/ with the parameterization ^>(y^(Q) = t; the vector u will be
moved along the path

C^). U^)) := (Y^), s{x, t){]^ ^(x) | ̂ )/2) + ^^))),

where (7^)5 ̂ (t)) e S3 is the continuous vector field along y^) such that u^(t)
stays in the kernel of dfp and u^{fp{x)) = V^{fp{x)) = u, where the rotation angle
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Q(x, t) at time t is given by Q(x, t) := ^i / / \ | ^d where the stretching factor
i j t\ i i

s{x, t) ̂  1 is chosen such that (y,:^), U^)) € S3 holds; define

S,((x, ^)) := ̂  ̂ (/p(^))) = (^ lU/p(jO)).

P 0 • 1 1 . . . • • . i

•^v^ ̂ ; •- ^3 ^ u ^ j } } } ~ u^ ^^UP^ >'>'> ' •

The definition of S_^ is analogous, but uses rotations in the sense of —J. The names
S, or S-i indicate that the flow lines (Y^), u{t)) pass through the fiber F, or F_,
respectively. The flow lines defining S^ or S-i are different. However, the maps S; and
S_, are equal. The system of paths (Y^(^), U^)) C S3 is local near the link L(P), i.e.
for every neighborhood N in S3 of a point (^, z/) C L(P) there exists a neighborhood
M of (^, z/) in S3 such that each path (Y^(^), U^(^)) with (^, %) G Fi n M stays in N.
It will follow that the flow lines of the monodromy vector field are meridians of the
link L(P) in its neighborhood.

The partially defined diffeomorphisms S^ and S-^

Sz5 S-i '' |j FI,A|B —> U F-1,A|B
A|B A|B

are obtained by gluing the maps S^A|B : FI,A|B —^ F-I,A|B and S-^A|B : FI,A|B —^ F-I,A|B
for all opposite pairs of tiles (A, B) with A C P+. The gluing poses no problem
since those unions are disjoint, but the diffeomorphisms S^ and S_^ do not extend
continuously to Fi. We will see that the discontinuities, which are the obstruction for
extending S, and S_,, can be compensated by a composition of right half Dehn twists.

FIG. 3. - The discontinuity at F^[
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At a maximum M G D offp each vector (M, u) € S3 belongs to Fp Let a and
b be the integral curves of J(kernel(^p)) with one endpoint at M and orthogonal to
u. We assume that neither a nor b passes through a crossing point of P (see Fig. 3)
and that a and b belong to different pairs of opposite tiles. A continuous extension of
the maps S, or S_, has to map the vector (M, u) to two vectors based at the other
endpoint of a and b. Since these endpoints differ in general, a continuous extension is
impossible.

In order to allow a continuous extension at the common endpoint of a and b
we make a new surface ¥\ by cutting Fi along the cycles FM, where M runs through
all the maxima of fp and by gluing back after a rotation of angle n of each of the
cycles FM. In the analogous manner, we make the surface F_^ in doing the half twist
along F^, where m runs through the minima of^>. The subsets F^A|B do not meet the
support of the half twists, so they are canonically again subsets ofF'i, which we denote
by F^AlB- Analogously, we have subsets F'_i ̂  in F'_p A crucial observation is that
the partially defined diffeomorphisms

s^ ^-i: U^AlB -^ U^-I^IB
A|B A|B

have less discontinuities, which are the obstruction for a continuous extension. We
denote by a! and b' the arcs on F'i, which correspond to the arcs a and b on Fi.
Indeed, the continuous extension at the end points of a! and b' is now possible.

Let s be a crossing point of P and let I^+ be the segment of P', which passes
through s and lies in P+. The inverse image of Z^ := p^Ic,+^f\ is not a cycle, except
if both endpoints of I^+ lie on <9D. If a maximum M offp is an endpoint of I^+, the
inverse image p^(M) H Fi consists of two points on FM, which are antipodal. On the
new surface F\ the inverse image j&p1 (!,,+) HF'.i is a cycle. An extension of S^ and S^
will be discontinuous along this cycle (see Fig. 4). We now observe that the partially
defined diffeomorphisms S^ and S .̂ have discontinuities along the cycle ̂ (I^nF'.i,
which can be compensated by half twists along the inverse images ̂ (I^nF^i, where
s runs through the crossing points of P. Note that for a crossing point s of P the curve
^,-1 := PR~^{^S,-) nF'_^ is in fact a simply closed curve on F'_p

For a crossing point s of the divide P we now define a simply closed curve on
Fi, by putting

Z,:=Z;U U ^M,
Me<9i, +

where for an endpoint M of I^+, which is a maximum offp, the set F,,M is the simple
arc of FM, which connects the two points of Z^ n FM and contains an inward tangent
vector of I^+ at M. As we already have noticed the set Z^ n FM has only one element
if M C 9D, so we define F^M := 0 in that case.
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...-x

\^

FIG. 4. - The discontinuity along Zs

We have the inclusion F^ C F_i. We now define the cycle Z^ C Fi. Define for
a minimum m ofjp the region

Bw ;= (J F-I,A|B-
A|B,meB

Let B^g be the level curve

B.,£:={(^)eBj/p(^)=-e}.

For a small e the set

(sr^nljF^AlB)
A|B

is a union of copies of an open interval and is not a cycle but nearly a cycle. The
unions closes up to a cycle by adding small segments which project to the integral
lines through the crossing points of P. We denote this cycle by Z^ C Fi.

We are now able to state the main theorem.

Theorem 2. — Let P in D be a connected divide. Let Kp : S3 \ L(P) -^ S1 be thefibration
of Theorem 1. The counter clockwise monodromy of the fibration Tip is the composition of right Dehn
twists T := T_ o T o T+ : FI —> Fi, where T_ is the product of the right twists along Z^, m
running through the minima offp, T is the product of the right Dehn twists along the cycles Z^ s
running through the crossing points of P, and T+ is the product of the right twists along FM, M
running through the maxima offp.

Before giving the proof, we will define positive and negative half Dehn twists.
Let X be an oriented surface and let ^ be a simply closed curve on X. Let X' be the
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surface obtained from the surface X by cutting X along ^ and by gluing back with a
diffeomorphism of degree one. The surfaces X and X' are of course diffeomorphic. A
minimal positive pair of Dehn twists from X to X' is a pair of diffeomorphisms (p^ q)
from X to X' such that the following holds:

a) The composition q~^ o p : X —> X is a right Dehn twist with respect to the
orientation of X having the curve ^ as core. In addition p{^) = q(^) = ̂  holds.

b) There exists a regular bicollar neighbourhood N of ^ in X such that both p
and q are the identity outside N.

c) For some volume form co on N, which we think of as a symplectic structure,
we have j&*co = y*(co) = co, and the sum of the Hofer distances ([H-Z], see Chap. 5,) to
the identity of the restrictions of p and q to N \ ^ is minimal.

Minimal positive pairs of Dehn twists exist and are well defined up to isotopy.
For a minimal positive pair (p, q) of Dehn twists, the member p is called positive or
right and the member q is called negative or left.

Proof of Theorem 2. — We need to introduce one more surface. Let F^ be the
surface obtained from the surface F'_i by cutting F'_i along the cycles Z ^ _ i and by
gluing back after a half twist along each Z ^ _ ^ , s running through the crossing points
of P. We still have partially defined diffeomorphisms

S^^U^AIB-U^AlB
A|B A|B

since the cutting was done in the complement of UA|B F'. By a direct inspection we
see that the diffeomorphisms extend continuously to

S^S'^F'i -^i.

Let

(^.^Fi^F'i
( p ^ q ) : ¥ ^ - ^ ¥ f _ ,
(^^F^F.i

be minimal positive pairs of Dehn twists. A direct inspection shows that the composition

{q- o ^ o S .̂ o q+)~1 op_ o p ^ o S\ o p+ : Fi —^ Fi

is the monodromy of the fibration Tip. This composition evaluates to

T _ o T oT+ :Fi -^Fi. D

Remark 1. — We list special properties of the monodromy of links and knots of
divides. The number of Dehn twists of the above decomposition of the monodromy
equals the first betti number [i = 28 — r + 1 of the fiber, and the total number of
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intersection points among the core curves of the involved Dehn twists is less then 58.
This means that the complexity of the monodromy is bounded by a function of n.
For instance, the coefficients of the Alexander polynomial of the link of a divide are
bounded by a quantity, which depends only on the degree of the Alexander polynomial.
This observation suggests the following definition for the complexity C of an element
of the mapping class group (|) of a surface: the minimum of the quantity L + I over
all decompositions as product of Dehn twists of (|), where L is the number of factors
and I is the number of mutual intersections of the core curves. We do not know
properties of this exhaustion of the mapping class group. Notice, that the function
(<|), \y) ^—> C(\y~1 o ())) 6 N defines a left invariant distance on the mapping class group.

A crossing point of P is "a quatre vents5?, if the 4 sectors of the complement of
P in D meet the boundary of D. If there are no crossing points a quatre vents, then
none of the core curves of the twists involved in the decomposition of the monodromy
does separate the fiber, so the twists of the decomposition are all conjugated in the
orientation-preserving mapping class group of the fiber.

It is easily seen that for any link of a divide the monodromy diffeomorphism
and its inverse are conjugate by an orientation reversing element in the mapping class
group. In our previous notation this conjugacy is given by the map (^, u) G Fi i—>
(^, — u) C Fi, which moreover realizes geometrically the symmetry of G. Torres [To]
t^(\/t} = (-l)^(^) for the Alexander polynomial ^(t) of knots.

Remark 2. — In fact the proof of Theorem 2 shows that the fibration of the link
of a connected divide P can be filled with a singular fibration in the 4-ball, which has
three singular fibers with only quadratic singularities, as in the case of a divide of the
singularity of a complex plane curve. The filling has only two singular fibers if the
function ̂ /p has no maxima or no minima. By this construction from a connected divide
we obtain a contractible 4-dimensional piece with a Lefschetz pencil. It is sometimes
possible to glue these local pieces and to get 4-manifolds with a Lefschetz pencil.

4. Examples, symplectic and contact properties

The figure eight is not the knot of a divide. The figure eight knot's complement
fibers over the circle with as fiber the punctured torus and as monodromy the isotopy
class of the linear diffeomorphism given by a matrix in SL(2, Z) of trace 3. Such a
matrix M is not the product of two unipotent matrices, which are conjugate in SL(2, Z)
and the matrices M and M~1 are not conjugate by an integral matrix of determinant
— 1. So according to the remarks of Section 3, the figure eight cannot be the knot of
a divide. A third argument to rule out the figure eight as the knot of a divide goes as
follows. The first betti number of the fiber of the figure eight knot is 2. But only two
connected divides have fibers with betti number 2 and these two have monodromies
with trace equal to 1 or 2.
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The connected sum of two divides (Di, Pi) and (D2, P2) is done by making a
boundary connected sum of Di and D2 such that a boundary point of Pi matches
with a boundary point of P2. For divides with one branch we have the formula:

L(Pi#P2) = L(Pi)#L(P2)

The Theorems 1 and 2 remain true for generic immersions of disjoint unions of
intervals and circles in the 2-disk. It is also possible to start with a generic immersion
of a 1-manifold I in an oriented compact connected surface with boundary S. The
pair (S, I) defines a link L(S, I) in the 3-manifold Ms ^ rT+{S)/zip, where T^S)
is the space of oriented tangent directions of the surface S and where zip is the
identification relation, which identifies (x, u), [ y , v) € T^S) if and only if x = jy G 9S
or if (x, u) = { y , v). In order to get a fibered link, the topological pair (R, R D 9S)
has to be contractible for each connected component R of S \ I and moreover, the
complement S \ I has to allow a chess board coloring in positive and negative regions.
The proofs do not need any modification.

A relative immersion z : I — ^ D o f a copy of [0, 1] in D, such that at selftangencies
the velocities are with opposite orientations, defines an embedded and oriented arc I'
in S3 by putting

I / : = { ( ^ ^ ) G S 3 | ^ e ^ ( I ) , ( ^ - l ) ^ ) ^ o } .

Letj : I —> D be a relative immersion with only transversal crossings and opposite
selftangencies, such that the endpoints of i and j are tangent with opposite orientations
and that all tangencies of i and j are generic and have opposite orientations. The
union V Uj' is the oriented knot of the pair (iyj). A divide P defines pairs (ipyjp) of
relative immersions with opposite orientations by taking both orientations. Those pairs
(zp,jp) have a special 2-fold symmetry. For instance the complex conjugation realizes
this 2-fold symmetry for a divide, which arises as a real deformation of a real plane
curve singularity. It is interesting to observe that this symmetry acts on Fi with as
fixed point set the intersection D ft Fi, which is a collection of r disjointly embedded
arcs in Fp The quotient of Fi by the symmetry is an orbifold surface with exactly 2r
boundary j-singularities. Any link of singularity of a plane curve can be obtained as
the link of a divide (see [AC 3]). It is an interesting problem to characterize links of
singularities among links of divides.

We finish this section with some symplectic and contact properties. The link
of a divide is transversal to the standard contact structure in the 3-sphere. This can
be seen explicitly by the following computation, where we use the multiplication of
quaternions. Let P be a divide in the unit disk. We assume that the part of P, which
lies in the collar of9D with inner radius —7=, consists of radial line segments. We think

V2

of the branches of P as parametrized curves 7^) == (a(t^ b(t})^ — A ^ t ̂  A, where the
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parameter speed is adjusted so that a2 + b2 + ^2 + b2 = 1. To the branch y correspond
two arcs ^+ and r~ on the sphere of quaternions of unit length:

^+(t) := a{t) - d(t)i^b(t}j+ b{t)k,

r~(t) := a{-t) + d{-t)i+ b{t]j- b(-t)k.

The left invariant speed of ^+ at time t is

^-r^r'^r^).

We have

v = a a + 6? a + & & + ^ 6 + [—^ a + ^2 — & & + &2]?' + %/ + ̂ A:.

The coefficient ^o ^= ^ ^ + d d ^ - b b + b b vanishes, since -^(t) is perpendicular to r(^),
and hence we can rewrite the coefficient vi of i in y as

v,= -a'd-^- d2 - b b + b2 =<{a+ d,b^ b) \ { d , b) > .

Outside of the collar neighborhood of <9D we have ^ > 0, since a2 + b2 < 1/2 <

d2 + A2 . In the collar we also have ^ > 0 by a direct computation. Since the left
invariant contact structure on the unit sphere in the skew field of the quaternions is
given by the span of the tangent vectors j and k at the point 1, we conclude that
^+ with its orientation is in the positive sense transversal to the left invariant contact
structure S3.

For the link of a divide we now will construct a polynomial, hence a symplectic,
spanning surface in the 4-ball. For ^ G R, ^ > 0 put

B^-^+^ec^^eR2,^!!^-2!!^!}.
We have B^ D R2 = D and B^ is a strictly holomorphically convex domain

with smooth boundary in C2. The map (p, u) i—> {(p, u / K ) identifies <9B^ with the unit
3-sphere of C2.

Theorem 3. — Let P be a connected divide in the disc D with § double points and r
branches. There exist "k > Q, T| > 0 and there exists a polynomial junction F : B^ —> C with the
following properties:

a) the function F is real, ie. ¥(p + ui) = F(p + ui),
b) the set Po := { p € D | ¥(p) = 0 } is a divide, which is C1 close to the divide V, and

hence the divides P and Po are combinatorial^ equivalent,
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c) the function F has only non degenerate singularities, which are all real,
d) for all t € C, \t\ < T| the intersection K{ := {(p + iu) e B^ | F(p + iu) == t } H <9B^ ^

transversal and by a small isotopy equivalent to the link L(P)̂
e) for the link K^ the surface { (p + m) e B^ | f(p + m) = T| } is a connected smooth

symplectic spanning surface of genus 8 — r + 1 in the 4- ball.

Proof. — Let the divide P be given by smooth parametrized curves y/ '- [~ 1 ? 1] —>

R2, 1 ^ / ^ r. Using the Weierstrass Approximation Theorem, we can construct
polynomial approximations y/^o : [—1,1] —» R2 being C2 close to y/ and henceforth
give a divide Po with the combinatorics of the divide P. We may choose y/o such
that y^o(^) ^ D, |.y| > 1. Let F : C2 —> C be a real polynomial map such F = 0
is a regular equation for the union of the images of y/^o. Let S^ be the sphere
S[ := { p + iu € C2 I \\p\\2 + ^IHI2 = 1 }. For a sufficiently small X > 0 we
have that the 0-level of F on S[ is a model for the link L(P). For t C C, t ^ 0, and
t sufficiently small, say \t\ ^ T|, the surface X^ := { p + iu e B^ | F(^ + ^) = ^ } is
connected and smooth of genus § — r + 1, and has a polynomial equation, hence is a
symplectic surface in the 4-ball B^ equipped with the standard symplectic structure of
C2. The intersection Kn := Xn Fl <9B^ is also a model for the link L(P) and has hence
a symplectic filling with the required properties. D

Remark. — Unfortunately, it is not the case that the restriction of F to B^ is
a fibration with only quadratic singularities, such that for some T| > 1 the fibers

JQ (t), t E C, \t\ < T), are transversal to the boundary of B^. So, we do not know, as it
is the case for divides coming from plane curve singularities, if it is possible to fill in
with a Picard-Lefschetz fibration, which is compatible with the contact and symplectic
structure.

5. The gordian number of the link of a divide

The 8-invariant of a plane curve singularity S is the number of local double
points in C2, that occur in the union of its branches after a small generic deformation
of the parametrizations of the branches. The 8-invariant is also the dimension as C
vector space of the quotient of the normalisation of the local ring of S by the local
ring of S. The Uberschneidungszahl or gordian number J(L) of a link L in S3 is the
smallest number of cutovers, see Fig. 5, by which the link can be made trivial [W].

J. Milnor proposed the term unknotting number and conjectured for plane curve
singularities, that the unknotting number of the link of the singularity equals the 8-
invariant of the singularity [M]. This conjecture has been proved by P. Kronheimer
and T. Mrowka (see [Kl, K2, K3, K-M1, K-M2, K-M3, K-M4, K-M5]). Local links
of plane curve singularities are special among links of divides and the 8-invariant of
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X:/
FIG. 5. — The move cutover

a plane curve singularity, which has only real branches, equals the number of double
points of a divide for the singularity The following theorem extends the computation
of the gordian number to links of divides in general. The 4-ball genus of a link L in
S3 is the minimal genus of a smooth embedded oriented surface in B4 bounded by L.

Theorem 4. — Let P be a divide with one branch. The gordian number and the 4-ball genus
of the knot L(P) equal the number of double points of the divide P.

The proof will be given at the end of this section. For the proof of Theorem 4,
we can work in the ball B^ and use the arguments of Kronheimer and Mrowka as
in their work on the Thorn conjecture, together with their extension to the relative
case [K-M3] of a theorem of Taubes [Ta]. In the proof below we will use the global
curve given by the polynomial equation { F = t } of Theorem 3 together with its
completion in P^C) and apply the affirmative answer of Kronheimer and Mrowka to
the Thorn conjecture [M-K2]. It is also possible to compute the Thurston-Bennequin
number directly from the combinatorial data of the divide using a global displacement
in the direction of the left invariant vector field given by j on S3 and to conclude
with an inequality of D. Bennequin [E] (see [G]), that the number of crossing points
of the divide is a lower bound for the gordian number of its link. The point is
that here luckily, in view of the inequality of Bennequin and the lemma below, the
linking number of L(P) with j'.L(P) is maximal among the displacements X.L(P) given
by global non-vanishing vector fields X, which are tangent to the left invariant contact
distribution spanned by [k,j], and therefore yields the Thurston-Bennequin number.

Proof of Theorem 4. — Let P have 8 double points. Let X C P^C) be the pro-
jective curve given by the equation { F = 0 } of Theorem 3. The curve X intersects
<9B^ transversally and has 8 transversal double points in B^. Let Y : = { F = ^ } b e a
non-singular approximation of X. Since the genus of Y is minimal among all smooth
surfaces in P^C) representing [Y] by the work of Kronheimer and Mrowka on the
Thorn conjecture, the genus of Y D B^ is minimal among all smooth spanning sur-
faces in B^ of the link Y D <9B^ and the 4-ball genus of the link Y n <9B^ equals 8.
Since the links Y n <9B^ and L(P) are equivalent, we conclude that the 4-ball genus
of the link L(P) equals 8. At this point it follows that the gordian number of the link
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L(P) equals or exceeds 8 since the 4-ball genus of a link is a lower bound of its gordian
number. It is consequence of the following lemma that the gordian number of L(P)
equals 5. D

Lemma. — Let P be a divide with 6 double points. The gordian number of the link L(P)
does not exceed S.

Proof. — We will produce an isotopy from the link L(P) to the trivial link which
has exactly § cutovers. First we need to choose a co-orientation of the branches of the
divide. Next, at each point p of P, we consider the normal vector Up in the direction of
the choosen co-orientation such that for its length we have the rule \\p\\2 + ||^||2 = 1-
For G G [0,7C/2) we define L(P, a) to be the link, possibly with transversal self-crossings,

L(P, G) := { (x, cos(G)z/+sin(G)^) € T(D) | (x, u) € L(P) } C S(T(R2)) = S3.

The link L(P, c) will have a singularity above the crossing point c of the divide P
if G = —n—c- where o^ is the angle between the two normals to P at c. The link

L(P, Go) is trivial if n/2 > GO > —9—£ for all crossing points of P, since L(P, Go) is

spanned by the union of embedded disks U /. L(P, t) C S3. Indeed, observe that
the above formula defines a curve L(P, Tl/2) which is a disjoint union of embedded
arcs in S3 and that U / L(P, t) is a disjoint union of smoothly embedded 2-disks

in S3. The family L(P, t), t G [0, Go], connects the link L(P) with the trivial link and
has 8 cutovers.

Example. — The knot of the divide hart (Fig. 6) with 2 double points is the
knot with 10 crossings 10145 (see the table El of [Ka] page 261). From Theorem 4 it
follows that the 4-ball genus and the gordian number of the knot 10145 are 2, which
allows us to complete entries of table F.3 of [Ka]. As I learned from Toshifumi Tanaka
he has determined by an other method the gordian number of the knot 10145 [T].
The gordian numbers of the knots 10139 and 10153 are proved to be 4 by Tomomi
Kawamura [Kaw] and she deduced from ^(lOisg) == 4 the gordian number ^(lOiei) = 3.

Remark. — Let P be a divide with two branches Pi and PS. The homological
linking number of the two oriented knots L(Pi) and L(Ps) equals the number of
intersection points of Pi and PS. The minimal number of cutovers needed to separate
by a smooth 2-sphere the components of the link L(P) equals also the number of
intersection points of Pi and PS. It follows with Theorem 4 that the gordian number
of the link of a divide equals the number of double points of the divide.
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FIG. 6. - The divide hart and its knot 10145

Remark. — H. Pinkham proved that for links of singularities of plane curves the
gordian number does not exceed the 5-invariant of the singularity. Since the 8-invariant
of a singularity is also the number of double points of a divide of a singularity of the
same topological type, we have reproved the result of Pinkham.

REFERENCES

[AC1] Norbert A'GAMPO, Le Groupe de Monodromie du Deploiement des Singularites Isolees de Courbes
Planes I, Math. Ann. 213 (1975), 1, 1-32.

[AC2] Norbert A'CAMPO, Le Groupe de Monodromie du Deploiement des Singularites Isolees de Courbes
Planes II, Actes du Congres International des Mathematiciens, tome 1, 395-404, Vancouver, 1974.

[AC 3] Norbert A'GAMPO, Real deformations and complex topology of plane curve singularities, Annales de la
Faculte des Sciences de Toulouse, 8 (1999), 1, 5-23.

[E] Y. EUASHBERG, Legendrian and transversal knots in tight contact 3-manifolds, Topological methods in Modern
Mathematics - Proc. of a Symposium in honor of John Milnor's 60th Birthday, L. R. Goldberg & A
V Philips (Eds), 171-194, Publish or Perish, 1993.

[G] Emmanuel GIROUX, Topologie de contact en dimension 3, Seminaire Bourbaki, exposee 72° 7 60 Asterisque
216, Soc. Math. de France, 1992.

[G-Z] S. M. GUSEIN-ZADE, Matrices d'intersections pour certaines singularites de fonctions de 2 variables,
Funkcional. Anal. i Prilo^en 8 (1974), 11-15.

[H-Z] Helmut HOFER, Eduard ZEHNDER, Symplectic invariants and Hamiltonian dynamics, Birkhauser Advanced Texts
Basel, 1994.

[Kaw] Tomomi KAWAMURA, The unknotting numbers of 10i3Q and 10i52 are 4, Osaka J. Math. 35 (1998), 3,
539-546.

[Ka] Akio KAWAUCHI, A Survey of Knot Theory, Birkhauser, Basel, 1996.
[Kl] Peter. B. KRONHEIMER, Embedded surfaces in 4-manifolds, Proceedings of the International Congress of

Mathematicians, tome 1, 529-539, Kyoto, 1990.
[K2] P. B. KRONHEIMER, The genus-minimizing property of algebraic curves, Bull. Amer. Math. Soc. 29 (1993)

1, 63-69.
[K-M1] P. B. KRONHEIMER, T. S. MROWKA, Gauge theory for embedded surfaces. I, Topology 32 (1993) 4773-826. ^ r ^ \ h .



GENERIC IMMERSIONS OF CURVES, KNOTS, MONODROMY AND GORDIAN NUMBER 169

[K-M2] P. B. KRONHEIMER, T. S. MROWKA, The genus of embedded surfaces in the projective plane, Math. Res.
Lett. 1 (1994), 6, 797-808.

[K-M3] P. B. KRONHEIMER, T. S. MROWKA, Gauge theory for embedded surfaces. II, Topology 34 (1995), 1,
37-97.

[K-M4] P. B. KRONHEIMER, T. S. MROWKA, Embedded surfaces and the structure of Donaldson's polynomial
invariants, J. Differential Geom. 41 (1995), 3, 573-734.

[K-M5] P. B. KRONHEIMER, T. S. MROWKA, Monopoles and contact structures, Invent. Math. 130 (1997), 2,
209-255.

[K3] P. B. KRONHEIMER, Embedded surfaces and gauge theory in three and four dimensions,
ftp://www.math.harvard.edu/Kronheimer, Harvard University, 1997.

[M] J. MILNOR, Singular Points on Complex Hypersurfaces, Ann. of Math. Studies 61, Princeton University Press,
Princeton, 1968.

[P] H. PINKHAM, On the Uberschneidungs^ahl of algebraic knots. Preprint, 1974.
[T] T. TANAKA, Unknotting numbers of quasipositive knots, Topology and its Applications, 88 (1998), 3, 239-246.

[Ta] Clifford Henry TAUBES, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994),
6, 809-822.

[To] Guillermo TORRES, On the Alexander polynomial, Ann. of Math. 57 (1953), 1, 57-89.
[W] H. WENDT, Die gordische Auflosung von Knoten, Math. ^. 42 (1937), 680-696.

Mathematisches Institut der Universitat Basel
Rheinsprung 21
GH 4051 Basel

Manuscrit refu Ie 28 juillet 1998.


