PUBLICATIONS MATHÉMATIQUES DE L'I.H.É.S.

NICOLAS RESSAYRE

Appendix: An example of thick wall

Publications mathématiques de l'I.H.É.S., tome 87 (1998), p. 53-56

http://www.numdam.org/item?id=PMIHES_1998__87__53_0

© Publications mathématiques de l'I.H.É.S., 1998, tous droits réservés.

L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http://www.ihes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

APPENDIX: AN EXAMPLE OF A THICK WALL

by Nicolas RESSAYRE

Among quotients associated to distinct G-linearized line bundles, those corresponding to chambers have a very good property: the fibers are orbits. Theorem 4.2.7 shows that between two relevant chambers the quotient is changed by a transformation similar to a Mori flip. Moreover, if G is a torus, then two quotients corresponding to chambers are linked by a finite sequence of such transformations. In this appendix, we show by an example that this can fail for arbitrary reductive group G. For this, we produce a linear action of G on a projective space, which admits a proper wall of codimension zero.

Let us fix some notation. We consider the connected reductive group $G = \mathbb{C}^* \times SL(2, \mathbb{C})$. Let χ_0 be the character of G defined by $\chi_0(t, g) = t$. Then χ_0 generates the character group of G. If T_1 is the maximal torus of $SL(2, \mathbb{C})$ consisting in diagonal matrices, then $T = \mathbb{C}^* \times T_1$ is a maximal torus of G. Its character group is freely generated by χ_0 , and χ_1 defined by the following formula:

$$\chi_1\left(t,\begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix}\right) = u, \quad t, u \in \mathbf{C}^*.$$

Let $W = \mathbb{C}^2$, $V = \mathbb{C}^8$. Let us choose an isomorphism $V \simeq \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{W} \oplus \mathbb{W} \oplus \mathbb{W}$. An element of V is thus represented by a 5-tuple $(x_-, x_0, v_-, v_0, v_+)$ where $x_-, x_0 \in \mathbb{C}$ and $v_-, v_0, v_+ \in \mathbb{W}$. We define an action of G on V by the following formula:

$$(1) (t,g) \star (x_-, x_0, v_-, v_0, v_+) = (t^{-2} x_-, x_0, t^{-8} g \cdot v_-, g \cdot v_0, t^2 g \cdot v_+),$$

where \cdot is the canonical action of $SL(2, \mathbb{C})$ on W. From now on, we use the notation of Section 1.1.5.

We represent the set of weights of the action of T on V by Figure 1. The coordinates in the basis (χ_0, χ_1) of these weights are denoted by (a, b) in the figure. In addition, the convex hulls of some parts of st(V) are drawn with thick lines.

Fig. 1. — State of V

Formula (1) defines an action of G on $X = \mathbf{P}(V)$ and a G-linearization on $\mathcal{O}_X(1)$ as well; we denote by \mathscr{L} this G-linearized line bundle. According to Section 1.1.5, for \mathscr{L} , a point $x \in X$ is:

- semi-stable if and only if for all $g \in G$, the origin belongs to the set $Conv(st_v(g \cdot x))$;
- stable if and only if for all $g \in G$, the origin belongs to the interior of $Conv(st_v(g \cdot x))$;
- unstable if and only if there exists $g \in G$ such that the origin does not belong to $Conv(st_v(g \cdot x))$.

Now we want to vary the ample G-linearized line bundle on X. We also denote by χ_0 the trivial line bundle over X where G acts on the fibers by χ_0 . Since the group NS(X) is isomorphic to \mathbb{Z} , by [KKV] each G-linearized line bundle on X is isomorphic to $\mathcal{L}^{\otimes n} \otimes m\chi_0$ for some $(m, n) \in \mathbb{Z}^2$. It follows that the group NS^G(X) is isomorphic to \mathbb{Z}^2 . From now on, we identify NS^G(X) with \mathbb{Z}^2 , and so NS^G(X)_R with \mathbb{R}^2 . Note that the line bundle corresponding to $(m, n) \in \mathbb{Z}^2$ is ample if and only if n is positive. Since two ample G-linearized line bundles on the same half-line from the origin are GIT-equivalent, we can restrict our study to the points of NS^G(X)_R of the form (r, 1) with $r \in \mathbb{R}$. We call the set of these points the horizontal line and r the abscissa of the point (r, 1). We use these conventions in Figure 2.

Let $r \in \mathbf{Q}$. There exists a power, say $\mathscr{L}^{\otimes n} \otimes m\chi_0$ (with $m = nr \in \mathbf{Z}$), of $\mathscr{L} \otimes r\chi_0$ which is the restriction (as a G-line bundle) of $\mathscr{O}(1)$ for an embedding of X into a G-module. The sets $\operatorname{st}(x)$ corresponding to this embedding are obtained from $\operatorname{st}_{\mathbf{V}}(x)$ by applying a dilation of factor n followed by a translation of vector (m, 0). So to study the stability for $\mathscr{L} \otimes r\chi_0$, we can move the origin along the horizontal line in Figure 1 by -r and keep the weights of the action of V. Finally the stability for $\mathscr{L} \otimes r\chi_0$ of a point $x \in X$ depends on the relative position of the point (-r, 0) and the convex hulls in $\mathscr{L}(T) \otimes \mathbf{R}$ of the sets $\operatorname{st}_{\mathbf{V}}(g,x)$ with $g \in G$.

From now on, we denote by (e_1, e_2) the canonical basis of W. Let $x \in X$ and let $\widetilde{x} = (x_-, x_0, v_-, v_0, v_+)$ be a representative of x in V. There exists $g \in SL(2, \mathbb{C})$ such that $g \cdot v_-$ is proportional to e_1 . But now, if r > 4 the point (-r, 0) does not belong to the convex hull of $st(g \cdot x)$ and x is not semi-stable for $\mathscr{L} \otimes r\chi_0$. So if r > 4, $X^{ss}(\mathscr{L} \otimes r\chi_0)$ is empty. Analogously, we prove that if r < -1 then $\mathscr{L} \otimes r\chi_0$ is not effective.

Moreover, the "origins" of the form (-r, 0) in Figure 1 which correspond to the intersection of the horizontal line and a wall belong to the boundary of a set conv(st(x)) for some $x \in X$. So the abscissa of the intersection of a wall and the horizontal line is r = 4, r = 3, r = 2, r = 0, r = -1 or the segment $0 \le r \le 2$.

Let $x = [0:0:e_1:e_2:0]$. There are seven distinct sets of the form $st(g \cdot x)$: two segments, four triangles and one rectangle. The point (-4,0) is either on the boundary or in the interior of these convex sets. So, r = 4 is the abscissa of the wall H(x). In the same way, we show that r = 3 is the wall $H([0:0:e_1:0:e_2])$ and r = -1 is the wall $H([0:0:0:e_1:e_2])$.

Obviously, the walls H([1:0:0:0:0]) and H([0:1:0:0:0]) have r=2 and r=0 as their abscissa. Moreover, the intersection of the horizontal line and the wall H([1:1:0:0:0]) is the interval $0 \le r \le 2$.

So we obtain six walls, three chambers and six cells in the G-ample cone (see Figure 2). The cone $\mathscr{C}^{G}(X)$ is partitioned into nine GIT-classes.

Fig. 2. — The G-ample cone

Theorem 4.2.7 compares quotients corresponding to two chambers C^+ and C^- relevant to a cell F. The starting point is that the set $X^{ss}(F)$ contains both $X^{s}(C^+)$ and $X^{s}(C^-)$, and so defines two morphisms:

$$X^{ss}(\mathbf{C}^+)/\!/G \, \stackrel{\textit{f}_+}{\longrightarrow} \, X^{ss}(F)/\!/G \, \stackrel{\textit{f}_-}{\longleftarrow} \, X^{ss}(\mathbf{C}^-)/\!/G.$$

In the G-ample cone, the property $X^{ss}(F) \supset X^{ss}(C)$ means that F intersects the closure of C. Moreover, if we want to have $X^s(F) = X^s(C^+) \cap X^s(C^-)$ it is natural to assume that C^+ and C^- are relevant to F. This explains why Theorem 4.2.7 concerns two relevant chambers to a face.

On the other hand, if there is no codimension zero wall, then any two chambers can be joined by a chain of relevant chambers. So quotients corresponding to two

arbitrary chambers are related by a sequence of birational transformations corresponding to relevant chambers.

Back to the example, if we want to relate the quotients associated to C^1 and C^2 , we must look at the sequence of transformations

and so, we obtain $X^{ss}(\mathcal{L}\otimes\chi_0)/\!/G$ as a natural intervening quotient between $X^{ss}(C^1)/\!/G$ and $X^{ss}(C^2)/\!/G$.

N. R.,
Université de Grenoble I,
Institut Fourier,
UMR 5582 CNRS-UJF
UFR de Mathématiques,
BP 74,
38402 Saint-Martin-d'Hères Cedex (France)
e-mail:ressayre@ujf.ujf-grenoble.fr.

Manuscrit reçu le 21 janvier 1998.