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MULTIDIMENSIONAL NONHYPERBOLIC ATTRACTORS
MARCELO VIANA*

ABSTRACT

We construct smooth transformations and diffeomorphisms exhibiting nonuniformly hyperbolic attractors
with multidimensional sensitiveness on initial conditions: typical orbits in the basin of attraction have several
expanding directions. These systems also illustrate a new robust mechanism of sensitive dynamics: despite the
nonuniform character of the expansion, the attractor persists in a full neighbourhood of the initial map.

1. INTRODUCTION

Let 9 : M -> M be a smooth map on a manifold M, admitting some compact
invariant region U, that is, <p(U) C int(U). Here we say that <p has expanding behaviour
on U if typical points x e U have tangent vectors v whose iterates grow exponentially
fast: log [ I Dcp^A:) v 111771 has positive limit (or lim inf) as n -> + °°. In general, we call
Lyapunov exponents of 9 at x all values of this limit, for all nonzero tangent vectors v.

Clearly, Lyapunov exponents measure the asymptotic exponential rate at which
infinitesimally nearby points approach or move away from each other as time increases
to + OD- Hence, presence of positive exponents indicates sensitive dependence of trajec-
tories starting near x with respect to the corresponding initial point ((( chaotic " dynamics).

A classical example are the uniformly hyperbolic (or Axiom A, see [Sm]) diffeo-
morphisms with nonperiodic attractors. In this case the number of positive Lyapunov
exponents is constant on the basin of attraction U, and the dynamics of the attractor
is (structurally) stable. In particular, any nearby map also has a nonperiodic attractor,
close to the initial one and with the same number of positive exponents.

The mathematical study of nonuniform expanding behaviour is much more incom-
plete, in fact it has been mostly restricted to systems with a unique positive Lyapunov
exponent. A first important result was due to [Ja], who showed that many quadratic
maps of the interval admit an absolutely continuous invariant probability measure (A.
Then such maps have positive Lyapunov exponent at all {ji-generic points (a positive
Lebesgue measure set). Other proofs of this result were given e.g. by [CE], [BG1],
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In higher dimensions, [BG2] showed that many Henon diffeomorphisms of the
plane have strange attractors containing dense orbits on which the diffeomorphism
has a positive Lyapunov exponent. See [BY], [MV], [Vi] for further developments.
In all these cases, expanding behaviour exhibits a rather subtle form of persistence:
(< many " means positive Lebesgue measure in parameter space. On the other hand,
[Yo] constructed open sets of nonuniform hyperbolicity in a space of linear cocycles.

The purpose of this paper is to introduce the study of certain dynamical systems
exhibiting nonuniform multidimensional expansion. We construct smooth maps, both
invertible and noninvertible, having nonuniformly hyperbolic attractors with a high
dimensional character: the map has several expanding directions at Lebesgue almost every point x
in the basin. More precisely, one may write Tg M = E4' <9 E~ with

lim inf - log [ [ 'D^{x) V^- |[ ^ c > 0 > — c ^ lim sup - log |[ D^{x) v~ \\
n ->- + oo n n->•-{• co n

for all V^ e ̂ \{ 0 } (c independent of x or v^ and the number dim E4' of expanding
directions (or of positive Lyapunov exponents) is larger than 1.

The basic strategy is to couple nonuniform models, namely quadratic or H^non
maps, with convenient " fast" systems such as expanding maps or solenoid diffeo-
morphisms. The expanding behaviour observed in these multidimensional examples
originates from a different mechanism, of a statistical type, which makes them much
more robust than their low-dimensional counterparts: the expanding attractor persists in a
whole C^-neighbourhood of the initial map.

Although the main ingredients are quite general, we illustrate this strategy through
some concrete situations, in order to keep our presentation as transparent as possible.
Further extension of these methods is briefly discussed at the end of this Introduction.

1.1. Statement of results

First we consider the, simpler, noninvertible case. Let 9^ : S1 X R ->• S1 X R be
a G3 map given by <pa(^ •y) = {gW^W ~~ ^2)? where g : S1 -> S1 is an expanding
map of the circle S1 == R/Z, and a(Q) == OQ + 09(6). Here 9(6) is some Morse function
and OQ e (1, 2) is fixed such that x == 0 is a preperiodic point for the map h{x) = OQ — x2.
For the sake of definiteness, we take 9(6) = sin 27r6 and we also suppose g to be linear,
^(6) = dQ mod 1 for some d^- 2. It is easy to check that, since a^ < 2, there exists a
compact interval I^C (— 2, 2) such that 9^(S1 X Io) C int(S1 X Io) for any small a.

Theorem A. — Assume d to be large enough, d ̂  16 say. Then for every sufficiently small
a > 0 the map 9^ has two positive Lyapunov exponents at Lebesgue almost every point
(6, x) e S1 X Io. Moreover^ the same holds for every map 9 sufficiently close to 9^ in G^S1 X R).

Here C^S1 X R) denotes the space of all C3 maps from S1 X R to itself: in the
second part of the theorem 9 is not assumed to have a skew-product form. In our cons-
truction, the cylinder S1 X R may be replaced by other surfaces, e.g., the torus S1 X S1.
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Furthermore, examples of the same kind having any preassigned number of positive
Lyapunov exponents may be obtained replacing the factor map g by other hyperbolic
transformations, like expanding maps on the w-torus, m ̂  2. All our arguments extend
directly to these situations, cf. Section 2.5.

Now we describe a corresponding construction for diffeomorphisms. We take
<p^: T3 X R2 ̂  T3 x R2 given by 9a..(©, X) = (i (©),/,,,(0, X)), where
• T3 == S1 X B2 is the solid 3-torus, 0 == (6, T), and g : T^ -> T3 is a solenoid embedding

g(Q, T) == {dQ mod 1, G(8, T)), see [Sm];
•/a,b(©? X) == (a(6) — x2 + by, — bx), with X == {x,y) and a(6) defined in the same

way as before.

Clearly, 9^5 ls a diffeomorphism (onto its image) for every nonzero value of b.
In the same way as before, OQ < 2 ensures the existence of some compact interval
IoC (— 2, 2) such that (pa^Ts X I2) C mt(T^ X I2) for every small a and b.

Theorem B. — Assume d to be large enough. Then there exists an open set of (small positive)
values of (a, b) for which <pa, & has two positive Lyapunov exponents at Lebesgue almost every point
(©, X) eTg X I2. Moreover^ the same holds for every 9 close enough to 9^ in C^Tg X R2).

As in the previous case, all the arguments can be easily extended to yield similar
examples in compact manifolds without boundary and/or with any given number of
positive Lyapunov exponents. For the proof of Theorem B we take b to be larger than
1001 Vd, cf. Section 3. It is an interesting problem to decide whether such a lower bound
is indeed necessary, or just a requirement of our approach.

1.2. General comments

Let us briefly comment on main ideas in the proofs of the theorems we have stated,
as well as on relations between these and other results in the literature.

Classical examples of [Sh] and [Ma] show that certain topological features of
the dynamics, such as transitivity, may be persistent under perturbations even in the
absence of uniform hyperbolicity. Their systems are obtained by deformation of Anosov
diffeomorphisms and retain many uniform features of the initial map (continuous
invariant cone fields, invariant foliations), obstruction to Axiom A coming from the exis-
tence of saddle points with different stable indices. Recently, [BD] have given a new,
more general construction of such partially hyperbolic, persistently transitive systems.

The nonhyperbolicity of the maps in Theorems A and B results from a different
mechanism, which they inherit from the nonuniform models (quadratic maps, H^non
diffeomorphisms) involved in their construction. Indeed, a main feature here is coexistence
of hyperbolic dynamics (uniform expansion, resp. invariant stable and unstable cone
fields) in large portions of phase space, together with highly nonhyperbolic behaviour
(infinite contraction, resp. breakdown of the cone fields due to interchange of expanding
and contracting directions) in certain folding (or critical) regions of phase space. The
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presence of these critical regions is a major drawback for expanding behaviour, so let
us sketch how it is dealt with in the proof of our theorems.

In the context of real quadratic maps, expanding behaviour relies on a delicate
control of the recurrence of the critical orbit, more precisely, on appropriate lower
bounds for the distance between the critical point and its n-th iterate, n ̂  1. This
translates into a sequence of conditions on the parameter, which must then be proven
to hold for a positive measure set of parameter values, [Ja]. A similar approach, in a
more sophisticated form, is also central in the study ofH^non maps with small jacobian.
Actually, a main guideline in [BG2] is to try and view such maps as a kind of perturbation
of 1-dimensional maps, and the accuracy of this point of view itself depends on bounding
the recurrence of the <( critical set5?.

It is not difficult to see that the nature of the critical regions renders such a strategy
of recurrence control hopeless for the present multidimensional systems. For instance,
in the setting of Theorem A, the critical region { det D<p == 0 } is a codimension-1 sub-
manifold and, hence, it is likely to intersect its iterates. Such intersections can not be
destroyed by small parameter variations, regardless of the number of parameters
involved, which means that critical points can not be prevented from hitting back the critical
region in finite time^ with the corresponding accumulation of nonhyperbolic effects.

Instead, our arguments are based on a statistical (large deviations type) analysis
of these returns to the vicinity of the critical region. Roughly, we prove that for most
trajectories the total nonhyperbolicity associated with returns is not strong enough to
annihilate the hyperbolicity acquired at iterates far from the critical region. Also, these
arguments must have an essentially high-dimensional character in the case of Theorem B:
necessity to allow for arbitrarily close returns implies that we must deal with tangent
vectors of unbounded slope right from early iterates, and so the situation is far from
being " nearly 1-dimensional ".

This analysis relies on the fact that the driving maps g are strongly mixing. On
the other hand, other properties of expanding maps and solenoids are used in apparently
less important ways. In view of this, we expect an extension of these arguments to apply
when such hyperbolic maps are replaced in our construction by more general systems
with fast decay of correlations. A natural example we have in mind is the coupling
of nonuniformly hyperbolic maps of the interval, e.g. 9(6, x) = (5(6), a(Q) — x2), g a
unimodal (or multimodal) map as in [Ja] or [BG1].

Similar methods to the ones we use here should also prove useful for understanding
other classes of higher dimensional attractors, including the partially hyperbolic systems
in [Sh], [Ma], [BD], whose ergodic properties are mostly unknown.

Acknowledgements. I am thankful to J.-C. Yoccoz, L.-S. Young and, specially,
L. Carleson, for fruitful conversations. Most of this work was done during visits to the
University of Paris-Sud, the Mittag-Leffler Institute, the UCLA, and Princeton Uni-
versity, whose hospitality and support are gratefully acknowledged.
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2. PROOF OF THEOREM A

First we assume that 9 : S1 X R —^ S1 X R has the form
(1) 9(6, x) == (^(6),/(6, x)), with V(6, x) = 0 if and only if x = 0

and we prove that the conclusion of the theorem holds as long as 9 is C2 and

(2) | |? -<Pa| lc2^ oc on S1 X Io.

Then, in Section 2.5, we explain how to remove assumption (1).
Our basic strategy goes as follows. We call ^ C S1 X Io an admissible curve if

X = graph(X), for some X : S1 -> Io satisfying
1. X is G2 except, possibly, for being discontinuous on the left at 6 = 60;
2. | X'(6) | < a and [ X"(6) | ̂  a at every 6 e S\

Here 60 denotes the fixed point of g close to 6 == 0 and we assume that S1 = R/Z
has the orientation induced by the usual order in R. Let XQ = graph (Xo) be any
admissible curve and denote ^,(6) = 9^(6, Xo(6)), f o r j ^ O and 6 e S1. Clearly,
|| D9n(5tl(6)) v || > const | (^"/(O) | grows exponentially fast, whenever v is a non-
vertical (meaning, non-colinear to ^/^) tangent vector. On the other hand, we prove
that there are positive constants c, C, and y such that for every sufficiently large n we have

(3) ^(X^e)) ̂  = n | 8,/(X,(6)) | > e^

except for a set E^ of values of 6 with Lebesgue measure w(EJ < C^"7^. We take
E = n^iU^nE^ and then

m{ U EJ^ S O-^^ const ̂ -Tv^ for all n,
k ̂  n k^n

implying w(E) = 0. Moreover, by construction, 9 has two positive Lyapunov exponents
at Xi(6) for every 6 e S^E. Since the admissible curve XoC S1 X Io is arbitrary, this
proves the theorem.

Now we come to a detailed exposition of the arguments leading to (3). Except
where otherwise stated, all constants to appear below are independent of a. Moreover,
our statements always assume a to be sufficiently? mall. For future reference, we remark
that these conditions on a never involve the value of d.

2 A. Admissible curves
We begin by introducing the Markov partitions ̂ , n ̂  1, of S1 defined by

• ^i = = { [^-i^) : 1 ̂ J ^ d}, where 60,ii, .. .,6^ ==6o are the pre-images of 60
under g (ordered according to the orientation of S1);

• ^+1 == { connected components of ^r"~l((o) : (x) e ̂  }, for each n ̂  1.
The following simple fact is to be used several times below. Given X = graph(X)

and o) C S1 we set ^ | <o == graph(X | o).
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Lemma 2.1. — If'X is an admissible curve and <x) e ̂  ̂ A^ 9"(X | co) ^ afco fl» admissible
curve.

Proof. — The first property in the definition is obvious. As for the second one,
it suffices to observe that it is preserved at each iteration. Define Y: S1 -> IQ by
Y(^(6)) ==/(6, X(6)), 6 e (o e^. Note that (2) implies (take a small)

|^'| ̂ - a^ 15; l ^ ' l ^ a$

I V I < |2^ | + a < 4; | Be/I < a | 9'| + a ^ 8a;

I ̂ J\ ̂  2 + a< 3$ [ aee/| < a | <p" | + a ̂  50a; | 8^f\ < a.

Then a direct calculation gives

Y' | = h (V+ ̂ /X') ^ - (8a + 4a) ^ a
U' 15

and, analogously,

Y" i == (i]2 (aee/ + 2 ̂ /X' + ̂ /(X')2 + ̂ fX" - Y' ̂ ") < a
V6 /

and the lemma follows. D

Lemma 2.2. — Let X = graph(X) &<? a^ admissible curve and set JC(6) === (6, X(6)),
1 = y(X) fl/^ Z(6) = y(X(6)) == (5(6), Z(6)). Then, given any interval 1C Io, ̂  Aaw

4 l i l /fTT
m({ 6 e S1 : Z(6) e S1 X I }) ^ —-2 + 2 /——.

a ^ oc

p^ — Let 1̂ == { 6 e S1: | sin 2^6 | ̂  1/3 } and ja^ == S^^. Note that each
ofe^/i and cfl^ has exacdy two connected components. Suppose first that 6 eja^- Then
[ cos 27c6 | > 11/12, which implies

. - .^ .... . . _. . 9a , . __ . /9a
^e/(X(e))|^a|<p'(e)|-a^ and so | Z'(6) | ̂  ̂  - 4a) - j.(4)

It follows that

m({ 6 e^ : Z(6) e I }) ^ 2 | I |/(a/2) = 4 | I |/a.

On the other hand, if 6 eja^ then | aee/(X(6)) | ̂  a | 9" (6) [ — a ^ lOa, implying
1 Z"(6) | ^ 4a. Hence,

m({ 6 e ̂  : Z(6) e I }) < 4 ̂ Tn^4^ = 2 V| I I/a,

which completes the proof, a
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Corollary 2.3. — There is C^ > 0 such that, given XQ = graph(Xo) an admissible curve
and I C IQ an interval with [ I [ < a we have

m{{ Q e S1 : X,(6) e S1 X I }) ^ C. /^ /^ ^rv j ^ 1.
V a

Proof. — Let <o e^-i (resp. co == S1 in case j = 1), X^ == 9^- l(Xo | <o) and
2^ = 9(^0). By the previous lemma, the measure of { 6 e S1: Z^(6) e S1 X I } is
bounded above by 4 | I ]/a + 2 V| I |/a ^ 6 V| I |/a. Now, X,(6) == ZJ^'-^e)) for
every 9 e co and so m{{ 6 e co : X,(6) e S1 x I }) ^ 6Q, \/([ I |/a) m(cx)) where C, is some
uniform bound for the metric distortion of iterates of g. D

2.2. Building expansion
Given (6, x) e S1 X Io and j^ 0 we let (63,^.) = ^{Q,x). We also introduce

positive constants 0 < T] ̂  1/3 and 0 < K < 1, whose value will be made precise below
(in terms of the map h {x) == OQ — x2 alone).

Lemma 2.4. — There are 8^> 0 and CT^ > 1 satisfying

a) For each small a > 0 there is N = N(a) ^ 1 such that IÎ Jo1 | ̂ /(6,, A:,) [ ^ ^io-^
whenever \ x \ < 2 Va.

^ For ^A (9, A:) e S1 X Io with Va ̂  [ x \ < §1 there is p(x) ̂  N .wA ̂

H»(»)-! | Q f(C) y } \ > - ff^
3 = 0 I ^ x J ^ J ^ x ] ) I ^ a! •

iv

Proof. — Throughout the proof we use G to denote any large constant depending
only on the quadratic map A. Take / ^ 1 minimum such that q == h\0) is a periodic
point of A, let k ^ 1 be its period, and set p^ = | W(q) |. Note that one must have
p > 1, by [SiJ. We fix pi < p < p2 with pi > pj""7172 and then take §o > 0 small enough
so that

^ < n | ̂ /(^'(T.J/)) | < ̂  whenever |j/ - q \ < 8,
3 = 0

(and a is sufficiently small). Given (6, x) e S1 X Io we set d^ == | ^4.^ — q |, for i ̂  0.
We suppose §1 > 0 and a small so that | x \ < §1 implies ^o ̂  GA;2 + Ga < §o • Now let
(6, x) and i > 1 be such that | x \ < &i and d^ . .., rf,_i < V Then rf, < (p^ <^_i + Ca)
and so, by induction,

(5) d, ̂  (1 + ̂  + • • • + P^) Ca + ̂  d, < p^Ca + Cx2).

Suppose first [ x | < 2 Va : then (5) becomes ^ ̂  p^ Ca. We set N == N(a) ^ 1 to be
the minimum integer such that p^ Ca ^ §o an(! then define N = Z + ^N. The previous
argument implies that ^ < So for every 0 ̂  i < N — 1 and using

V i v(e,, x,) i = n11 v(e,, ̂ ,) i. V (V i ̂ /(e^^,, ̂ ^) i)
,=o ^'==0 <==o ^'=0
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we get
N-1 1 - 1 ~ 1H I ^ /7B y }\ > — \ Y\ ̂  > I r I ^(1 - ^/2) fcN > — I r I /y-1 + ^/2 > | y | <,-1 + T)

I ̂ J \ v 3 9 x 3 ) \ ^ 7 ^ \ x \ 9 l ^ T ^ \ x \ 9 2 ^ r^ I I a ^ I " a ?3 = o 0 Lt U

which proves the first part of the lemma. Suppose now that | x \ ^ A/a: then (5) gives
d, ̂  p^ Gy2. We let p { x ) ^ 1 be minimum such that p^^ G^2 ^ §0 and we define
p{x) == I 4- k'p{x). Then, in the same way as before,

P(X)-1 1 1 / Q ^^ 1 1
0 1 ^ /7A r "» I > I r I ^(a?) > I rl | > _ .(l/2-7i/2)^(a;) ^ ^P(a;)/4

[ ^7^35 A;^ I ^ — F Pi ^"^l"^ ^ ~~ P2 ^ - P ,
^0 G C\Vp2/ C K

where, for the last inequality, we use the fact that p { x ) > 1 (uniformly) as long as
81 <^ §o. We conclude the proof by taking a^ = p1^. D

Lemma 2.5. — There are a^> 1, Gg > 0 ̂  ̂  n^o I ^/(6^ ^) I ^ Gg A/a<^
/or ^/ (9, A;) e S1 X IQ with \ XQ |, . . ., [ ^_i | ̂  Va. If, in addition, | ̂  | < §1 ^A^ we
even have II^S [ ^/(6,, ^) | ̂  €3 ̂ .

Proo/*. — We fix §1 as above and keep the notation from the previous lemma. Since
h has negative schwarzian derivative, there are OQ > 1 and m ̂  1 such that | (^'(j/) | > CT^
whenever [j/ |, ..., | Aw- l(^) | ̂  §1, see e.g. [MS, Theorem III. 3.3]. Then, by conti-
nuity (suppose a small enough), a similar fact holds for Sy^f:

(6) ^ | a,/(T,,^) | ̂  ̂  whenever (r,jQ e S1 X \ has | j o l , . . . , l^-i I ^ 81 •

As a consequence, there is A > 0 such that
w-l

(7) n | ̂ /(r,,^) | ̂  A^ for all n ̂  1 and (r,j/) with \^ |, . .., |^_i | ̂  S^.
3 = 0

Moreover, there is a constant 0 < K < 1 such that, reducing §1 > 0 and GQ > 1 if
necessary, | (^'(j/) | > KCT^ whenever \y [, ..., | A1""1^) | ̂  81 > | ^(jQ | ^ this follows
from [No], together with (6) and a continuity argument. Then we restrict to K. m
and invoke continuity once more to conclude a similar statement for S^f. Combining
this with (6) we get

n—l

(8) n | ̂ /(T,,^,) I ^ KO? whenever |̂  |, ..., |^_, | ̂  S, > |̂  |.
3 = 0

Now let (6, x) be as in the statement and let j\ < ... < j\ be the values of
j e { 0, ..., k — 1 } for which | Xj \ < §1. Clearly, we may suppose s > 0 for otherwise
the lemma follows immediately from (7), (8). When | x^ \ < §1 we also set js+t == k.
On the other hand, we write p^ = p(,Xj.), i == 1, ...,.?, and then Lemma 2.4 gives

(9) n̂ ^./(e,,^)!^1^
3 == 3'i K
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for all i < s. Moreover, (9) holds also for i = s ifj, + p^ k; note that this is necessarily
the case if | ^ | < S^, as our definition ofp{x) implies j\ + A < ̂ +1 for all ;, see above.
On the other hand, by (8),

(10) ^ I ^/(e,. ^-) I > KO^I and ^n | a,/(6,, x,) \ ̂  K^-^.-".,

for all i < s and, again, the second inequality remains valid for i = s when | A-J < S^.
At this point we take ^ = min{ (TO, <?i} and get

n^ | a,/(6,, ̂ ,) | ̂  K<^ n (0? (T^-^-".) ^ K(T?

whenever | ^ | < 8^. This proves the second part of the lemma. As for the first one,
it follows from a similar calculation and the remark that in general (that is, even if (9),
(10) are not valid for i = s)

^ | a,/(6,, x,) | > (2 - a) | ̂  | AoS-^-i ̂  A Vaog-^-1,

as a consequence of (7). D

2.3. A technical lemma

We are now in a position to explicit our choice of •»): having in mind the proof
of Lemma 2.6 below we take Y) = log <T2/(4 log 32). On the other hand, we introduce
M == M(a) to be the maximum integer such that 32" a < 1; note that M < N, since
p < sup | h' |<4 , recall also the proof of Lemma 2.4. Finally, for r ^ O we set
J(r) ==\x£R:\x\<Vxe-T}.

Lemma 2.6. — There are Cy > 0 and p > 0 such that, given any admissible curve

Yo = graph(Yo) and any r > (^ - 2Y)|log-,
\2 ; a

m({ 6 e S1 : YM(O) e S1 X J(r - 2) }) < €3 e-^.

Before proving this lemma let us state and prove the following auxiliary
result. We take X == graph (X) to be an admissible curve and for l ^ j ^ d we
set Z, = 9(X | [e',_i,9',)) = graph(Z,).

Lemma 2.7. — There are Hi, HgC { 1, ..., d} with ttL.ffH^ [rf/16] such that
| Z,J6) - 7,^(6) [ ^ a/100 for all 6 e S1, ̂  e IL, W j\ e H^

Prw/. - Let Z(6) = (^(6), Z(6)) = y(X(6)) and %i < ̂  be the two critical points
ofZ, recall the proof of Lemma 2.2. We set / = [rf/16] and define ^ by /, e [^..i,^.),
t = 1, 2. If neither of^i, ^2 belongs to [1/4, 3/4] then we take H^ = { ̂  + 1, .. ..'̂  + '/ }
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and Hg = { ̂  - /, ..., k^ - 1 }. Observe that 0^, < - + —!— < . - -1 arcsin -1

1 1 i 4 a — o c 2 27T 3
and, analogously, 6^_; > . + ,7- arcsin -. Moreover, Z is monotone decreasing on

4 47T 0

[Qfci^jfc,-!)- Hence, using also | Z' [ j .̂ | ̂  -, we get^Ojfcg-i). Hence, using also | Z' [ ja^ | ̂  -, we get

infZ | [e^_i,6^) - sup Z | [O^,^,) ^ -c- arcsin , ̂  a/100

for every j\ eH^, j^ eHg. Clearly, this proves the lemma in this case. On the other
hand, if^ ^ 1/4 (resp. ̂  ̂  3/4), we take H^ = { ̂  -/,... , ̂  - 1 }, Hg = { 1, . . . , / }
(resp. Hi = { rf — / + 1, . . ., d }, Hg = { ̂  + 1, . . ., Ag + / }) and then similar estimates
yield the same conclusion as in the previous case. D

Proof of Lemma 2.6. — Let us begin by giving a brief sketch of the proof. By
Lemma 2.1, Y^ is the union of d^ admissible curves. We fix a constant Yi > 0 and
organize the set of these admissible curves into subsets, each of which containing ^Yl r

elements, in such a way that curves belonging to a same subset are spread along the
^-direction: at most (d — [^16])^r of them are within | J ( r — 2 ) | « const^Va
from each other. We obtain this by combining the previous result with the expansion
given by Lemma 2.5. Then at most that many curves intersect each { 9 } x J ( r — 2), hence
m({ 6 : YM(O) ej(r - 2) }) ^ const((fi( - [rf/lG])/^1', from which the lemma follows.

Now we come to the details. Let Y,(6) = (p^O, Yo(6)) = (^(6), Y,(6)). We also
use C to represent any large positive constant depending only on h. Note first that
osc(Yo) ^ a and osc(Y,) ^ 4osc(Y,_J + 2a, where osc(Y,) = sup Y^ — infY,. As a
consequence, osc(Y,) ^ 2a43^ 2(32-M43), OSC(YM) ^ 2a375 < Va. Clearly, we may
suppose that | Y^r) [ < A/a at some T e S1 (otherwise the conclusion of the lemma
is obvious) and then

( 1 1 ) | Y^(6) | ̂  2 Va (< 81) for every 6 e S1.

Let us denote by (9 the set {h\0) : i ̂  1 } and set 8,(6) == dist(Y^O), 0). The same
argument as in (5) yields, for all 0 e S1, 0 ̂  j^ M — 1, and 1 ̂  z ^ M —j,

(12) S.^O^G^a+IY^e)]2) .

We claim that [ Y,(6) | ̂  -V/a for every 6 e S1 and O ^ j ^ M — 1 . Indeed, if it were
not so then 8^(6) < C^-j y.^ G4Ma< G Va for some 6 e S1. Up to assuming a
sufficiently small, this would contradict (11) (recall that 0 is a finite set not containing
zero) and so our claim is justified. Note that this argument proves somewhat more:
(taking C ^> l/dist(0, ffl))

(13) 4M-5 |Y,(e) |2^ 1 for all 6 e S1 and 0<^ M- 1.u



MULTIDIMENSIONAL NONHYPERBOLIC ATTRACTORS 73

Now we derive a uniform bound for the distortion of 9, /on iterates ofYo. Note that
by (1), (2), we may write a,/(9, x) = x^(9, x) with | ̂  + 2 | < a at every point. Then
given O ^ j ^ M - 1 , (6,, x,), (T,,̂ ,) eY,, and 1 < i< M - j , we have

(14) ^/•(e,, ̂ )
^A ,̂)

j+»-i== n ^^jj + i - 1. n
'•̂  IJmF "̂  |+(^,jrJ

Our previous estimates imply, recall (13),

< 004" < Vac and +(6,»,0
^m^m)

- 1 <
2a

2 -a <Va.

Hence, (14) is bounded by (l + \/a)2* < e2"^ ̂  2 (we use M » log 1- and also assume
\ \ a

a small enough 1. Altogether, this proves that, given any 0 < j < M — 1 and 1 < i < M — j,

^^J < 2 for every (6,, ̂ ), (r̂ ) et,.

Wefixanarbitraryj? eYoandletX, = | ̂ ^-•''(y^J?)) [. Lemma2.5, together with (11),
gives X, > 0; c^1-1 for 0 < j < M — 1. On the other hand, the previous inequality gives

(15) l -xi- ̂  | ̂ /•(O,, x,) I < 2 ^ for all (6,, ̂ ) 6 Y,.
~ ^i+i \+i

We fix K == 400e2 and consider t^< t^< ... < M given by t^ = 1 and

f,+i = min { s : ti < s ̂  M and \ ̂  2KX. } (if it exists).

Moreover, given r ̂  ̂  — 2v)j log - we set k = A;(r) == max { i: \^ > 2K<•-r/V/a | and

then we claim that k(r) > YI r for ^me constant yi > 0- Indeed, we have
\< 2K\,^_i< 8K\.̂  for all i and so \^ > Cg (^-^SK)-*. Also, by definition,
^'t+i ^ 2K^~ '/Va. Putdng these two inequalities together we get (recall also the
definition of T) and M)

k log(8K) > r + M log og - ̂  log - + G ^ r — (- — 4i)l log 1- + C4 a \2 f a,

-(1-^)———
which proves our claim.

10
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For each J == (/i, . . . , / M ) e { 1? • • • ^ ^ ^ w(^ denote by (x)(J) the only element
CD e^ satisfying ^"^(co) C [6^_i,e^.), z == 1, ..., M. Given l ^ j ^ M we let
Y,(/~) = graph(Y,(/)) == (^(YO | (o(/~)). We call / and m incompatible if

I ̂ (^ 9) - YM(^ 6) | ̂  4^-r Va for all 6 6 S1 :

observe that this implies that Y^) and Y^(w) can not both intersect a same vertical
segment { 6 } x J(r — 2). By Lemma 2.7 there are H^, H^' C { 1, ..., d} with
$H;, #Hi' ^ [rf/16] such that given any l[ e H[ and ^' e H^'

I Y ,̂, ̂  ..., l^ 6) - W, l^ ..., l^ 6) | ̂  ——
1UU

for all 6 e^o^, ̂ , ..., ^)) = ̂ (o)^', /„.. . , /„)) and ^, ..., ̂ . Then, by (15),

I Wz, ̂  ..., ̂  9) - Y^', ̂ , ..., 4,, 6) | ̂  ^ ̂

^4^a- rV /a for O e S 1

(because 1 < ^(r)), that is ( ^ , 4 » - - - » ^ M ) ^d (^'5 ^2> • • • ? ^i) are incompatible for
every l^ ..., l^. In fact, we claim that all pairs (l[, /g, ..., ^ i, / ( , . . . , ^i),
(/i', l^, . . . , /( _i , /i', ..., /u) are incompatible. Observe that,

I Y,^, /„..., ̂ , 6) - Y^(^', /„ ..., ̂ , 6) | > ̂ - ̂  > 4.2 a,

as a consequence of (15) and the definition of ^. On the other hand,

|Y^ /„... ,^-i,^,...^) (6) -Y^,^,...,^_,,^,...,^)(6)|

^ osc(9(Y^_,(/i, ^, ..., ^-i))) < 8a

for all 6 eS1, and a similar fact holds for Y^(^\ . . .) . Therefore,

I YM^I? "2? • • - 9 " ( a — l 3 l2^ ' ' ' 5 M3 / ^M^l 5 ^23 • • - 9 "<2-1 5 < 2 5 • • • ? 'M 9 u) I

^ l^(4^- 16) a ^ 4^-'^

(because 2< ^(y))? proving our claim. Now we just repeat this argument for each of
the successive ^ : at the i-th step and for each fixed L» == (/i, . . . , ^._i), we find H,', H^'
with #H', #H^ ^ [rf/16] such that, given any l^ e H,' and l^efl^, all pairs
(Li.^.,^.^.1, . . . ,^)5 (L;, l'^ ^.4.1, • • • 5 ^ ) are incompatible and, in fact, the same
is true for every pair (L,, .̂, /^i, ..., /^-i, ̂ , ..., Q, (L,, ^, ^.+1, ...,
^. _ i» l\'. , .. .3 l^a.) as long as i + 1 ̂  k(r). In this way we conclude that each
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segment { 6 } x J(r - 2) intersects at most d^-^.^d - [dl\6])^ admissible curves •Y(J).

Using also | (^M)' | ̂  (d - a)" ̂  const dK (because M < constlog 1}, we conclude
\ a/

-(( 6 = Y,(6) e S' x J(. - 2) }) < ̂ -WW^ ^ /99^
(^ - a)" \100/

and the lemma follows by taking B == Yl log f-°°i n8 ' 5 ° \99/

2.4. Large deviations

Now we use the previous lemmas to complete the proof of Theorem A. In all
that follows we let n > 1 be fixed, sufficiently large. We define m ̂  1 by w2 <S n < {m + I)2

and take also / = m - M, where M = M(a) is as above. Note that / w m « Vn as

long as n > log ̂ . Recall also that we are considering an arbitrary admissible curve Xo.

Given 1 <s v ̂  n and o)^, e ̂ ,, we set y = 9'(Xo j o>v+,). Then we say that v is

• a 1^-situation for 6 6 <o^, if y n (S1 x J(0)) + 0 but y n (S1 x J(w)) = 0;
• a 11^-situation for 6 6 cd^, if y n (S1 x J(m)) + 0.

Note that, by Lemma 2 1, y is the graph of a function defined on ^(<o,+() e^»,
and whose derivative is bounded̂  above by a. Therefore, its diameter in the -̂direction
is bounded by a(rf - a)-' ̂  Vac-"*. This means that whenever v is a IÎ -situadon
for <o^, then yC (S1 x J(ro - 1)). At this point we introduce Ba(») = { 6 <^S 1 : some
1 <S v< n is a 11,,-situation for 6 } and then Corollary 2.3 gives

(16) m(W) < »Ci /L1^"——1!-1 ^ const a-1/4 w--/2 < const <•-VB/4.
^ oc

From now on we consider only values of 6 e S^B^n) that is, having no 11,-situations
in [!,%]. Let 1 ^ v^ < ... < v. < n be the 1,-situarions of 6. Note that our definition
of N (recall the proof of Lemma 2 4 ) implies v^,^ v, + N for every i; in particular
(J-l)N<n. For each v = v, we fix r = r, e{ 1, ..., m} minimum such that
Y n (S1 X J(r)) = 0. Then, by Lemma 2.4,

v,+N-l

n |^./(x,(e))j^-^a-1/2^^
for each 1 ̂  i< s. On the other hand, Lemma 2.5 gives

vi-i ^•+1 -1n
v;+N

n I ̂ /(X,(6)) | ̂  C, o^-1 and n | a,/(X,(6)) | ̂  G, o^-^-1^,
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for every 1 ̂  i < s and also
»
n | ̂ /(X,(6)) | ̂  (2 - a) i ̂  | G^ VaCT?-^ ̂  const a<?-^ CT?-^.
^

Altogether, this yields the following lower bound for log II?«i | c^/(X^(6)) [:

< / / I \ 1 \ 3 1
(^- (^- l )N) log(Ta + ̂  11. -7] log- -r^ - s const —— log -.

We consider G = p : r ^ ( . — 2 7 ) j log -1 (note that it depends on 6) and then
\ \^ I a j

S ((, - T]) log- - r\ > - S r< + 7]jlog^ ~ S r< + ̂ s
i»i \\2 ) a / IGG a »eo

for some Y2 ^> 0 independent of a or n j because N « log -). Substituting above we get
\ °7

*» 3 1
log II | ̂ /(X,(6)) \^ 3cn— S r, — ^ const — - log - ̂  2^ — S r<

i «eo 4 a iea

where ^ == o min { Y2> l°g ^2 } and we use n > log - w N > 1. Now we introduce
3 a

Bi(7i) === { 6 e S 1 : S^Q r^ ̂  } and set £„ = Bi(n) u Bg^). Then

log A | ̂ /(X^(6)) | ̂  w for every 9 e S^E^.
i

In view of (16), we are left to prove that m(Bi(w)) ^ const ^"^v^ for some y ̂  0.
We deduce this from Lemma 2.6 by means of a large deviations argument. First we
let 0 < q < m — 1 be fixed and denote

Gy = { i e G : ̂  = q mod m }.

We also take m^ = max {7 : yyy + q ̂  n } (note that m^wmw Vn) and for each
0 < j < m^ we let r^ = r, if Tnj -{- q == ^y some i e Gg, and r, == 0 otherwise. Observe
that Gy and the f, are, in fact, functions of 9. Then we introduce

"<(Po. ..-.P^) ^eeS^B^):^?, for O^j^m,}

where for eachj either p, = 0 or p ,^ j . — 2"y]) log-; we also assume that the p^ are
\2 / a

not simultaneously zero. Consider 0 < j < niy and (0^3 ̂  y ̂  ^ e ̂ .̂ + g 4. j. Recall that
our construction is such that the value of r, is constant on (0,^4.^,. Now
YO == ^mi+q+l(XQ\ u^^y^^ is an admissible curve and we have defined / in such
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a way that mj + ^ + / = w(j + 1) + ^ — M. Therefore, we are in a position to apply
Lemma 2.6 to this curve and obtain in this way

^({8^^+a+^+i-P})^ C.^e-^ for all p ^ ^-Z^log^.
V / a

Here, as before, Q, is a uniform upper bound for the metric distortion of the iterates
of g. Repeating this reasoning for each 0 < j < m^ we conclude that

m(£Vpo,...,p^))^C^-6^,

where €4 === C, €3 and T == # { j : p, + 0 }. As a consequence,

f^'eog ri ^Q ̂  ^ (̂  ̂ - SpSpy ̂  ^ C^ ̂ T, R) €-33B,

J (PO,. - . .Pwg) ^B

where the integral is taken over the union of all the sets ^(po? • • • ? Pw ) ^or a^ possible
( p o 5 - - - ? P w ) ? an(l ^(T? ^) ls tlle number of integer solutions of the equation

x^ + - - - + -^T == ^ satisfying Xj ^ (- — 27]) log- for all j. Now, for some absolute
constant K > 0, \2 / a

'̂̂ ^^^^MRT^
For the last inequality we use the fact that R/T ^ const log -, which ensures that all

oc
three factors can be made arbitrarily close to 1 by taking a sufficiently small. For this
same reason we may also suppose G^ ̂  ^3E. It follows that

f^*^^ S<?-31^ SR^-^ 1,
J T,E B

since T < R and R ^ ( _ — 27)) log - ^> 1 (because T ^ 1). Therefore,
\2 ; a

m( 6 : S r,^
" ieQq m

\ F< ^-2c(3n/m ^0S^^r, ^Q ̂  ^-2cpn/m^

/ v

cn
Now, clearly, 6 eBi(%) => S^o ^> — for some 0^ q^ m — 1 and so

(17) ^(BiW) ^ ̂ -^^^ ^-Yvw, for Y == ^•

This concludes the proof of the theorem, under the simplifying assumption (1).
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2.5. Conclusion of the proof and extensions

Now, we prove the theorem in full generality: we take <p to be any C3 map of the
form 9(6, x) == {g{Q, A:),/(6, x)) satisfying || 9 — ̂  || ^ e, where e > 0 is small with
respect to a, and we explain how the conclusion of theorem may be obtained for 9 by
a variation of the previous argument.

The first step is to show that such a 9 always admits an invariant foliation ^c

by nearly vertical smooth curves. This is a direct consequence of the fact that the vertical
straight lines { 6 = const} constitute a normally expanding invariant foliation for 9^, see
[HPS], but we sketch the main points in the proof, since results on persistence of normally
hyperbolic objects are somewhat less standard in this setting of non-invertible dynamics.
Let 3E be the space of continuous maps ̂  S1 X Io -> [— 1, I], endowed with the sup-
norm, and define F : SE -> SK by

F?(.) - 9sf{z} wz)) - 8sg(z) . - ( Q ^ e y x l
w ~ - ̂ ) W^} + <W(^)' ~ ( ' ) s x Io-

Note that F is indeed well-defined

I vv(,\ I <- (4 + e) + e
Imz} I < ̂ const-aT^TT^ < 1

and, moreover, it is a contraction on S£ : | FE; — FT] | is bounded above by

______detD9||^-7)| ^ ( ( ^ + s ) ( 4 + s ) +s) |g^ |
| (- Be/S + O^g) (~ Be/T) + ̂ g) | " (d - const a)2

^K^l.

Let y e SE be the fixed point of SC. Then we take ^e to be the integral foliation of the
vector field z h-> {^{z), 1). Note that we defined F in such a way that, for every z e S1 X Io,
'D^(z) maps E^-?) == span{ (^(^), 1) } to E^^)) and this implies that ^r€ is invariant.
It also follows from the methods of [HPS] that the leaves of ^r€ are as smooth as the
map 9, i.e. they are G^embedded intervals; moreover, they approach vertical segments,
uniformly in the G3 topology, as e -> 0. Note that, in general, yc is not a smooth foliation
(its holonomy maps may not even be Lipschitz continuous).

Existence of such an invariant foliation replaces the skew-product assump-
tion of (1) in the general case of the theorem. More precisely, what we do
now is to show that almost every z = (6, x) e S1 X IQ has positive Lyapunov
exponent along the direction cf E^). In order to do this we introduce A(z)
defined by D9(.) (E^), 1) - A(.) (^(9^)), 1), i.e. A(^) = 8,f(z) ̂ z) + 9J(z). We
also need an analog of the second part of (1). Let the critical set ^ of 9 be defined by
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V = { z e S1 x Io : A(0 == 0 }. We claim that T = graph(T)) for some G2 map -^ : S1 -> !„
and, moreover, 71 is C^close to zero i f e > 0 i s small. Indeed, it is clear that z e T implies
det Dy(^) = 0 and the converse is also easy to deduce: if z is such that det Dip(z) = 0
then the image ofDy(^) is a one-dimensional subspace with slope | ̂ /(z)/^ g(z} | < 1 •
on the other hand. Dq^) (^), 1) is colinear to (^(9^)), 1), a nearly vertical vector
hence, it must be Dy(^) (y(z), 1) = 0. Therefore, our claim follows directly from an
implicit function argument applied to det Dcp(6, x) == 0. Now, this means that up to
a C2 change of coordinates C^close to the identity we may suppose T) = 0 and, hence,
write A(6, x) = ̂ (6, x) with | ^ + 2 | close to zero if s and a are small. We define
admissible curves in just the same way as before but a few words are required concerning
the definition of the partitions ̂  in the present setting. Indeed, since ^ is usually
not a smooth foliation, there is no natural smooth structure (let alone smooth expanding
action of the dynamics) on the space of its leaves, as happened in the previous case.
Instead, we let ©„ denote the leaf of ̂  close to { 6 = 0 } which is fixed under <p and
we define ^ to be the set of all intervals [6', 9") such that (6', 6") is a
connected component of X^((S1 x Io)\©o). Note that this depends on the
admissible curve Xo (in an unimportant way). On the other hand, it is easy to
check that (d + const a)-» ̂  | <o | < (rf - const a)-" for every o> e ̂ ,. At this point we
may use the same argument as before, with ^/(6, x) replaced by A (6, x), to show that
n?=i ̂ '(x, 6)) grows exponentially almost surely. The proof of the theorem is complete.

Concluding this section, we mention two easy extensions of the arguments we
have presented. To start with, we note that the quadratic map h{x) == a<, - x2 may be
replaced by any unimodal or multimodal map with negative schwarzian derivative and
having all critical points nondegenerate (quadratic) and preperiodic. In particular, one
may take such a map defined on the circle, for instance h(x) = x + a^ sin 2-KX mod 1,
flo == 3/4. Then the same arguments as before yield a G'-open set of maps of the torus
T2 == sl x sl exhibiting multidimensional expanding behaviour on the whole manifold
U = T2.

Next, we explain how these arguments can be easily adapted to give a higher-
dimensional version of our construction. We consider <p, : T"1 x R -> T" x R
(6, x) h-> (r(6),y,(6, x)), where g is an expanding map on the ro-torus T" and

/a(6, x) = OQ + a<p(6) — x^, a,y as before. For simplicity, we take g to be linear and to
have a unique largest eigenvalue \. Then we suppose the function <p to vary in a Morse
fashion along the corresponding eigendirection co,,. In this setting we take admissible
curve to mean a curve of the form { (©(f) = Qy + ̂ , X(f)) }C T"1 x R with | X' |,
| X" | small. Then, up to assuming \ sufficiently large (depending only on the Morse
function <p), the same arguments as before prove that for small enough a the map y,
has m + 1 positive Lyapunov exponents at y(©(f), X(f)), for almost every t. Moreover
the same remains true for all small perturbations of <p,, as long as every eigenvalue of g
is larger than 4 (this is to assure that the invariant foliation { 6 == const} is normally
expanding, recall argument above).
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3. PROOF OF THEOREM B

In proving Theorem B we follow a similar global strategy as for Theorem A, but
we have to deal with several additional difficulties arising, fundamentally, from the
higher-dimensional nature of the X-variable. We fully present the new ingredients
required to bypass such difficulties and refer the reader to the previous section for many
details which are common to both proofs. First we derive the conclusion of the theorem
for <p(Q, X) == 9a.6(©. X) == (i(©),/a,6(®5 X). Extension to all maps in a neighbourhood
of 9, ^ follows precisely the same lines as before, as we comment in Section 3.5.

For the sake of notational simplicity we write g == g and /==/a & • I11 au that
follows we let a and b be small, more precisely 0 < b^ a^ c2 for some CQ < 1. The
constant CQ is determined by a number of conditions which we state along the way. We
point out that none of these conditions involves the value of d, cf. also remark preceding
Lemma 2.1. In addition, for fixed d we assume that b is large enough with respect to
1/Vrf, say b Vd^ 100. Clearly, this last condition is compatible with the previous one,
provided d be large enough.

3.1. Admissible curves

Recall that 0 = (6, T) e T3 = S1 x B2 and X == (x,y) e I2. Here we call X-vector
any tangent vector of T3 x I2 which is a linear combination of SfBx and ( ) / 8 y . An
X-vector x S / S x +jy S^y will also be denoted, simply, by (^,j?). By admissible curve we
now mean any subset 3C C T3 x I2 X S1 which is the graph of some 3: : S1 ->B2 x I2 X S\
^(6) = (T(6), X(6), Y(6)), satisfying
1. T, X, Y are C2 except, possibly, for being left-discontinuous at?o = 0;
2. | X' | ^ a, | X" | ^ a, | Y' | ^ 6a/rf and | V | ^ ioc/rf2.

We think of T3 x I2 X S1 as the bundle over T3 x I2 whose fibers are the unit
balls of X-vectors and we let 0 denote the action induced by Dy on this bundle,

o(e,x,T)=(,(e),/(e.x),^^

In the same way as we did for Theorem A, we reduce the proof of Theorem B
to a main claim stated in terms of admissible curves. We let SQ = graph (^o),
^o = (To? Xo, Y^), be any admissible curve with Y() (6) == Bj^y. For every j ̂  0 we set
^(9) - (^(8), T,(6), X,(6), Y,(6)) = ^(6, ̂ W) and also W,(8) = c^/^OO)) Y,(6).
Note that Wo(6) = Yi(6) s= QjSx and W,(6) = || W,(6) || Y,+i(6). Now, clearly,

r\

Dq^^O)) —. ^ d" for every 6 e S1 and n ̂  1. We claim that
0\}

(C) for convenient constants c, C, y > 0 and all large n we have || W,,(9) [| ^ ^cn, except
on a set E^ of values of 6 with m(EJ < Ce-^^.
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The proof of this statement occupies most of what follows. On the other hand,
the theorem is an easy consequence. Markov partitions ̂  for 6 i-»^(6) = dQ mod 1,'
to be used in the sequel, are denned in just the same way as in Section 2.

Lemma 3.1. — IfX is an admissible curve and u e ̂  then $»(^" | <o) is also an admissible
curve.

Proof. — Clearly, it is sufficient to consider the case n = 1. Observe that if
S£ == graph(T, X, Y) then 0(^ | o) = graph(T., X., Y.) where T.((/6) = G(6, T(6)),
X.(rf6) = (a(6) - ̂ (6)2 + by(Q), - bx(Q)) and Y.(rf6) is the unit vector obtained dividing

/- 2x(Q) b\

( -< oh81

by its norm. Property 1 is clear and so we proceed to check 2. Note first that

|X:| = -^' - 2xx' + by', - bx') < ^(27ra + 4a + ba., bat) < 12a < a

and a similar calculation gives | X:' | < (48a/rf2) < a. On the other hand, we write
Y = (cos ({;, sin 4<) and T. = (cos +., sin <{;.) and then

tg<(;(rf6) = ^cos^6)6 ' 2A-(6) cos ^(6) - b sin 4<(6)

which leads to

(18) V = 1 ^2 ̂  - 2 '̂ cos2 ^
</ (2 ;̂ cos 4» — ^ sin +)2 + (b cos 4-)2'

Note that the denominator is bounded from below by IPx/"1 ll"2 > (b2|5)2 and,
clearly, also by b2 cos2 <}/. In this way we find

(19) l ^^^( 2 5 ^ / l+ 2 6 1^1)<^(2^+^ l j a )<^

recall that b^d-^ 50. On the other hand, taking derivatives in (18) and performing
the same kind of estimations as before, we get

I ̂  I ^ ̂ i (const b2 I ̂  I + const y | A?" | + const &2 | x1 \ \ ̂  [)

+ ,1,4 (const | +' | + const b \ x ' |) (const | x ' \ + const b~1 \ ̂  |),

where const always replaces some numerical constant. (For the deduction of this
inequality note also that {2x cos ^ - b sin <p)2 + {b cos ^)2 ^ const 63 | sin ^ | | cos + |.)
It follows that | ^' [ < (const b2 + const a) 6a/^2 ̂  Aa/rf2. D

11
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3.2. Expansion and contracting directions

Given (0, X) e Ta X 1̂  and j ̂  0 we set (©,, X,) = ^'(Q, X) and also
©, - (6,, T,), X, = (A:,,jy,). In what follows T) > 0, 81 > 0, N = N(a) ^ 1, and ^ > 1
have the same meaning as in Section 2. Given an X-vector V == (x.jy) we define
slope V =jlx.

Lemma 3.2. — There is Cg > 0 and, given (0, X) e T3 X 1^ fl^A? ̂  1 ̂  | XQ \ < 2 Va,
/—' /'» ^s

I -y, I ̂  Vw.for I ^ j ^ k and \ A^i \ < 8^, ̂ ^ m .̂y S == S^(Z) a^ ^.-vector at Z = (©i, Xi)
ĵ ^^^

fl̂  yi?r ^^ ^-vector V at Z with \ slope U | ̂  CQ and every 1 ̂  j ^ k, we have

I slope ̂ -(Z) U | ^ c, and \\ B^(Z) U [| ^ C, o^ || U ||;

m addition, \\ B^/^Z) U || ^ G^ a-^71 ̂ -N || U | |$
^ § == (?, 1) w^A | ? | ^ b and O^f^Z) S = (0, ?) with \ ?\ ̂  ^/Cg; moreover
\ slope ̂ f^Z) S | ̂  l/^o /or ^ 1 ̂  j ̂  k.

Proof. — For simplicity we set I/ = S^f^Z), 1 ̂ j ^ k. Observe first that, given
any point Y e { [ x \ ^ Va j and any X-vector V = (^^) at Y with | slope V | < CQ,
we have || ̂ /(Y) V || ^ | - 2^ + by \ > (1 - c^) \ - 2x \ \\ V [ [ and

(20) slope ̂ /(Y)V ^ •^ ^o-
2x — b slope V 2 Va — be. Va

In view of this, and up to assuming CQ small, the arguments in Lemma 2.4 give

(21) I I L ^ U I I ^ c o n s t p ^ l l U I I for l ^ j < N and \\l^V\\ ̂  a-1-^ || U||.

An analog of Lemma 2.4 b) also follows from those arguments. Moreover, we take
m ̂  1, <TO> 1, K > 0 as in Lemma 2.5 and then, by continuity (take CQ small),
1. I I ^/"(Y) V || ^ ^ || V || if ^-(Y) e { | x \ ̂  8,} for 0<^ m - 1
2. || ^ x / W V I I ^ ^ H Y I I if p^Y) e { | A ; | ^ 81} for O ^ j ^ Z - 1 and

^(Y) e { | A ; | < §1}, with Z < w.

Now the same reasoning as in Lemma 2.5 yields

(22) H L ' U I I ^ C^-^'a-14-71 | |U|[ and \\W\\ ̂  G^r1'^^71 1|U||

for all N < j < & . Recall (Lemmas 2.4, 2.5) that a-1 « const p^ ^ consta^. This,
together with (20)-(22), completes the proof of a).

In order to prove b) we introduce ?,., ?y defined by L^?,, 1) == (0, f,), every
j ̂  1, and then we take ? = ?^ f = ^. Note first that

/- 2^ ^\ /?A /0\
< - and ^b\gives Ji =

2A:,-b 0 \1, 2x,
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since x^wao>l. In general, we write V = ( ' '( and then ?. = - B./A
\C, D,/ 3 3 1 s

and F, = D, - B, G,/A, = det V/A,. Note that A,^ = - 2^ A, + &C, and
^+1 = - 2^+i B, + b D, and so ?,+i - ̂  = - b det L^A,^ A,). On the other
hand, the estimates in part a) imply | A, | ̂  (1 - ̂ ) [ [ ^'(1, 0) || ^ const. In this
way we get | ?, [ ^ const b23 and [ j,^ - ̂  | ̂  const ̂ '+1 for every j ̂  1 and this
last inequality also gives | ?J ^ (6/2) + S^i const ̂ '+1 ̂  b. Finally, if we had
| slope L3 S^ | < I / C o for some j< A, then the same calculation as in (20) would give
[ slope If S^ | ̂  CQ, contradicting our definition of S^. D

Remark 1. — If we drop the assumptions on XQ, A^i (keeping only | x, | ̂  Va
for 1 ̂  j ̂  k) then the same arguments yield the following slightly weaker conclu-
sions, which will be of use below. For any X-vector U with [ slope U | ^ CQ and any
1 ^ j ̂  k, we have [ slope ^/^(Z) U [ ^ ^ and || ^/^'(Z) U || ^ const Va^ || U ||
(cf. Lemma 2.5). A vector S^ = (?^, 1) is defined, satisfying ] ?J ^ (i/Va),
^xf^W ^ = (0, ^) with 1 ^ 1 ^ const ̂ /Va, and | slope Bx/^Z) S | ̂  l/^ for
l ^ j ^ k . Moreover, if | x^ \^ Va for allj ̂  1 then the corresponding sequence (^, 1)
converges to some X-vector §„ == (^, 1) such that | ?„ | ^ c^\ slope B^/^Z) $„ | ^ l/^,
and || a^/^Z) §„ [| ^ const ̂ /Va for all j ̂  1.

We also need to consider pairs of points (©(t), X^) e T3 x 1 ,̂ z == 1, 2, and the
corresponding objects ©^ == (O^, T^), X^ = (^.y^), and Z^ == (0^, X^). Let
[Z^, Z^^ be the straight line segment connecting Z^, Z^^ Given any Z e [Z^, Z^],
we define ©, == (6,, T,) and X, = (^,^) by (0,, X,) = ^"'(Z), every j ^ 1.

Z^mwa 3.3. — There exists Gg > 0 ^A ^^ the following holds. Let Q^ = 6^ ^rf
A ^ 1 6^ such that \x,\^ Va /or any l ^ j ^ k and any Z e [Z^ Z^] 2>^
S^mind^l,]^!}. Then

a) | ?,(Z^) - ̂ (Z^) [ ^ 6 | ̂  - ̂ ) [ - G, -v—
8 SVa

^ 1 ^(Z^) - ̂ .(Z^) [ ^ — [ ̂  - ̂  [ + C,b || X^ - X^ ||.

Proof. — We keep the notation of the previous lemma. First, we observe

b A I y(D y(2) | ;,
- | yd) _ y(2) [ < | ^ f7(m ^ /y(2)\ | ° I ^1 ~ ^1 I „ y | (1) (2) |-. "'1 •^t ;̂ Jii/.j J — Ji iZj ) === ————————————— <» —— y1' _ y ' - ' I8 1 I I 1\ / 1\ ) \ , ^ (D (^ . <s; j ^^ ^ j.

I ^^1 -*1 | ^S

Recall that ?,+i - ?, = - ̂ ^^(A^i A,). Using | A^ ( ^ ^ and | A, | > const Va for
allj (see Remark 1), [ ̂  - ?J < const (^/^Va) + S,^2 constC^'+'/a) < const (^Va).
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This proves a). Now, let D denote derivative with respect to the X^-variable. A simple
induction argument shows that || D .̂ |[, | Ay [ < 43 and || DA .̂ || ̂  42^. Hence,

II D(? î - !,) |[ < const ̂ +1 42^2 a-872

and so || D(^ ~ ?,) || ̂  const S^i ̂ +1 4^+2 a-872 ̂  const b.

Then &J follows from our first estimate and the mean value theorem (note that the ?,.
are independent ofT^, and 61 is constant on [Z^, Z^]). D

3.3. Estimating expansion losses

Recall that SQ == graph (T(? X^, Y^) is an arbitrary admissible curve with
Yo = SjQy. Let n be any large integer and M == M(a), J(r), be as in Section 2. Let
©,(9) = W), T,(6)), X,(9) == (^,(9),j/,(9)), and Y,(9) == (cos+,(6), sin ^,(6)). Given
1 ^ v ^ w and ^v-M6^-^ we ŷ ^̂  ^ is a r̂ m for (every) 6eco^_^ if
^(^v-M) n (— V^ 'V^) + 0- Note that this implies ^(0^^) c (-- 2 Va, 2 Va),
since osc(^ | co^_^) ^ Va, recall (11). For completeness we set ^ = = { S 1 } for all
i ^ O ; observe also that v < M can only occur for, at most, one return.

Our goal at this point is to introduce a function A^(6), defined on 9 e (x^..^,
bounding the amount of expansion lost by B^f at (©v(9), X^(6)). In what follows <o»(6)
denotes the element of the partition ^ containing 9. First we take k == k^(Q) ^ 1
minimum such that (JL == v + k + 1 satisfies x^{^_^(Q)) n (— Va, Va) 4= 0 (in other
words, p. is the next return of 6). Then we let S^O) = (^(6), 1) == S^(0^i(6), X^i(6)),
given by Lemma 3.2 (use Remark 1 i f ^ = = o o ) , and we decompose

W,=||W,_J|(A,(1,0)+^,1))

and W^=||W,_J|(cos^,sin^).

Now we define

(23) A,(6) = -Av(e— == - 2^(6) + b tg ̂ (6) + ̂ (6)
cos ^(6)

(note that WJ|| W,_, || == ^/(©,, X,) Y, = (- 2^ cos +, + b sin +„ ~ 6 cos ^)).
A main property of these A^(-) is to be stated in Lemma 3.7, which is an analog of
Lemma 2.6 in this context. First we need a few auxiliary results.

For 1 ̂  q^ ^(9) we define A^(9) = — 2^(9) + b tg ^(9) + ^,(9), with
j^^(9) =^(©v+i(9),X^i(9)) as in Lemmas 3 2, 3.3. We denote by A,, B,, C,,
D, the entries of ^/^(©v+iW? ^v+i(9))- Finally, as in Lemma 2.2, we let
^ = { 9 : | sin 27:9 [ ^ 1/3 } and < = ̂ \^
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Lemma 3.4. — Let 6 6 CD^_n ^ jwA fAaf | b tg ̂ (8) [ < 10 Va. TAcn /or cwry
l^q^W,

a) |^,(6)|>-
10|A.A._, rf^8-1 ifd^^-^e^ and

b) \ A;:.(6) | > ^+,-i) ;y^+«-i6e^.
10|A.A._^

Proof. — We detail the proof of a): statement b) is proved along precisely the
same lines and we omit the corresponding calculations. Note first that our assumption
on <pv(6) implies (recall also Lemma 3.1)

|(-2^+^g^|^2^+,(l+l^a)^^<25a^.

Moreover, 25arfv- l< (a/10) 62<'4l-2<'rfv+t-l < (a/10) (^/j A,A,_i |) d^9-1 for every
q ^ 1, since b2 d^ I 000 and | A, | < 4^. Therefore, it suffices to prove that

yv-i
d^"-1 whenever (/v+<'-l 6 6^.<«(6) I > i5 IA-A,i-i

Recall, from the proof of Lemma 3.2, that .̂1 == ^/(2^v+i) = —A/A^ and also
^s+i—^.i^ — bsi+l|(.A^+l A,) for all j. Hence,

"v,!
6 A^

AiA;
and "V,3+l

^+1 /A'
= s ' , +

^ +1 ̂  V^ +1 ÂJ

and so, by induction, ^ , is equal to
9-1 ^2J+^ / A ' A'\

,' i V _°____ f^+l , A^
''•1 '" •— A A I A ' A"S -1 A,.,. i A, ^A, ̂ . i A,.̂

^(-1 A,
A,A,_j A,

'^A' / ^+1

+ s
f-i A, \A A,A,_,;y +1 ̂ i

+
y,-i

(convention Ag = 1). In order to estimate the right-hand side we introduce E, = A,/A,_^
and note that Ei = — 2x^ and E, = — 2^,+, — &2/E,_^. It follows, by induction, that
(i) V a < [ Ej | < 4 for all ^'> 1; moreover, no two consecutive values of | E^ [ can

be less than 1 (because no two consecutive | x^ | are less than 3/5).
(ii) |E; |< 25xdv+i~l for j^. 1 (note that |^+, |< ^ocrf'^-1, cf. Lemma 3.1).

Now, suppose | sin(27r rfv+a-l 8) | < 1/3. Then (compare the proof of Lemma 2.2)
| <+, | = | a'{d^9-1 6) d^^-1 -2x^,_, x^,_, - by^,_, \ > (3a/2) ̂ +t-1 and so
| E, | > 3a d^"-1 — (^/a) 25xdv+s-'t^ (5a/2) d^9-1. As a consequence,

(24) ^
A,

5?
E'
E-

t - S
f f-1 | E.'
)-1 E (C OR t — 1 \ „

^ arf^8-1 - - —— S rf*-' > a rf^'-1.
8 Va<-1 / 2
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On the other hand,
ff-1b23-1 A; / b^-1 A'Q ^^-f l ) n IE.E,'i - î + 1 I

^ j ^ j - l ^ j / -\-\-1 -\ »= 3
^,x|E:/EJ
Wd^9-1

(db^3-9^o u •
In order to check this, use [ E^ [ ^ 4 and (i), (ii) above i f^<j , and

n |E.E.^||E;/E,|=|E,^| n |E.E.+,||E;|
» - j < == 3 + 1

<42<a-.»-l.25a<f+1'-1

otherwise. In a similar fashion,

b^+1 A' I ^-1 A'
^•j+l-^S ^il \\-l \

< 5 w'9w '

Using b2 d ^ 1 000 once more, we get

(25) <J>
b29-1 A:

•\^»-i \

9-1

'q 1 - S 25
j-i

^y-A

l̂ J

z-l

A. A-ff-i
^-\

and our argument is complete. D

Remark 2. — The same type of estimates (cf. (25), (24), and (ii) above) also gives
the following upper bound which will be useful below:

(26) b^-1 A'
1 < J ^ 2 q ^ 100 VaAgAg_^ Ag

^-i
Jv+fl-l

AgA^_i|
^constVa^-1^4-^-1.

Lemma 3.5. — Z ^ l < v ^ w fl^rf ^v-M e ̂ -M ̂  &y fl^^ fl7z^ ̂  ^v ̂  fl7^ element
of ̂  contained in ^v-M-
a; J/' | 6 tg ̂ (r) | ̂  10 Va /or some T e ̂  ^w | A^(6) | ̂  2 Va /or every 6 e (o^

/| •\(r\ |\^10

6; m({ 6 e o),: A,(6) 6j(r) }) < i-^4 (—^- w(cl)v) ̂ r ̂ ^ r ̂  °-

Pro</. — Suppose first that the assumption of a) is satisfied. Since | G\ | == rf^^
and (by Lemma 3.1) | ̂  | ^ (&a/rf) ^v, we must have | b tg ^(6) | ̂  8 Va for all 6 e ̂
and then <z^ follows immediately: | A^(6) | ̂  — 4 Va + 8 Va — 62 ̂  2 Va. Now we
prove b). Note that, in view of a), it is no restriction to assume | b tg 4/v I ^ 10 Va
and we do so in what follows. We start with a few simple remarks concerning the A,,
E. introduced above. Let 1 < j ̂  q. It follows from the proof of Lemma 3.4, namely
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from (ii), that [ E^(6i) — E^) | < 25a d 3 " 9 whenever 61, Og belong to a same
(^4-g-ie^+Q-r Hence, under this assumption we have

,A,(6,) |^ - | E,(e,) | , _
(27) nll^^ n (i+25Va^-)<V2.

,=i|E,(62)| 3=1l ii I -r' ff\ \ l ^ 1-
\(^ 3 = 1

We also observe that

(28) 1 \ ,~A,

since (recall (i) above)

(29)

y j + 2k-1

ŝ
A,^A,

^2ff+2 ^2

A^AJ'Va

^

A A^ff^-l

^•4-2

A^+1 A^ A, A,_i
'• .^i<1} for ,11,.

Va\ 2;! ^+1^

We define K == K(r) to be the maximum integer satisfying Va^"*"^ 16(^/4)^. In
what follows we assume K ^ 1, as the bound in b) is trivial when K = 0. Observe
also that we defined k^ in such a way that ^(6) == k implies ^(r) = k for every
T e o\4.fc+i_MW5 m particular for every T e co^^^_i(6). For I ^ ^ ^ K — I we let
^ be the family of all intervals ^^.jc-.i^^+k-i^ wltn ^v+fc-^ ^v? satisfying
• ^(9) === k for (every) 9 e co^^_^_i and A^(r) ej(r) for some T e o^+fc.r

Then we also let ̂  be the set of all c^.^_i e ^^.^_i, (o^^K-lc ^^ sucn^ ^^
• ^(6) ^ K for (every) 6 e o\4.^_i and A^(r) ej(r) for some T e co^^^_r

We claim that
1) Given 1< q^ K, each cx^.^_ie^.^_i contains at most (lOO^174^)"'"3 elements

of^. In particular (taking q == 1) #J^^ (100^4 ̂ K-1.

We prove this statement by induction on K — q. Note that the case q = K is trivial.
Let q< K and assume that 1) holds for q + 1 (i.e. for all o\_^ e ^4.3). Given o\+g_i
an arbitrary element of^^g_i ,we count the intervals 0)^4.^ e ^4. ̂  with ^+q C co^+g.i
and containing some element of<^. Let (*\+« be any such interval: then there exists
T eco^g with | A^(r) [ ^ Vff.e~f and hence, in view of (28), (29) and the fact that
q + 1 ̂  K,

i A ^ M^ /- 2^fl+2 G^34-2
I \,(T) | < Va.- + -——————. < -————

A^iA,(T)r ^+1^^)
6

^ - —— lAldA 1 "

Va \

b2 ( b^

A.A,J

where the maximum is taken on («\.^_i. In other words, co^g must intersect

b296b2

3£ == Q eco^^_i: | A^(6) |< ——max
Va A,A._,
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Now, using Lemma 3.4, the same arguments as in Lemma 2.2, Corollary 2.3, give

(^ < 6 I (l2^2/V/a)max(^/|A,A,_J) \112

v /" Va/10)mm(^/|A,A,_J)^+^-^ •
m (3£ K

Therefore, recall (27), m(^) ̂  6 (24062/(a Va))172^-^1 ̂  9561/4rf-v-fl+l. On the
other hand, Lemma 3.4 implies that (A^ | <o^g_i) is at most 3-to-l and so 3£ has
no more than 3 connected components. Hence, there are at most 95bl/4c d + 6 ̂  100&174 d
intervals o^g as above. This, together with the induction hypothesis, implies that
1) holds for co^g_i and so the proof of our claim is complete. Now we observe that
the same argument also proves

2) Given l < y ^ < K , each (Oy+g-i e ̂ +,-1 contains at most (lOOA174 d)k~~q ele-
ments of^. In particular, ft^^ (1006174 rf)^-1.

Moreover, using Lemma 3.4 (with q = k), along with the calculations of Lemma 2.2
and Corollary 2.3, we get (the minimum is over c«\+jb-i)

^({6e(^_,:A,(6)6j(r)})^6 2^- \172

^(a/10) min(^/|A,A^J) rf^-i^

Now, V^e-r ^ 16(^/4^) < 4(^/1 A, A,_, |) ^ 4 (^/Va)'"' (^/| A, A,^ |), recall
(29). It follows that the Lebesgue measure of { 6 e ̂ ^-i: Av(6) ^JW } h bounded
above by 6 ((80/a) (^/Voc)1'"')172 d-"-^1 ̂  (GOA1^-^-^^1. Altogether, this
gives

w({ 6 e co,: A,(6) ej(r) }) ^ S (100A174 rf)fc--l(60&l/4)K'-fc rf-^+i
f c= i

^ 3(100& l /4)K- lrf-v^ ^l/4(10061/4)Kw((oJ.

Finally, up to assuming CQ small enough, the maximality condidon in the definition
ofK implies (lOOA174)^ (A^)^5^ {V^e-^b2)1110. D

3.4. A technical lemma

Let S£ = graph(^) be an admissible curve and Z(6) = 9(^(6)). We write
Z === te? U, Z, S), Z = (2;, w) and S == (cos or, sin o-). For 1 < i ̂  d denote

^=0(^|[^_,,e,))=graph(^),

with ^ = (U,, Z,, 2^), Z^ = (^, ^), and S^ == (cos o^, sin cr^). Observe that
z{Q) == ^(^(6)) for 6 e [?^_i, 6^), and similarly for w, w^ and o, c^. Given j ^ 1 we
let A,, B,, G,, D,, be the entries of S^f^ and (recall Lemmas 3.2, 3.3), we write
!j == — B,/A, and r, = det ^x//^j •
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Lemma 3.6. — Let \ z(Q) | > \^. for all 6 eS1. Then there are Hi, HgC { 1, ..., d }
with #Hi, tfHg ^ [^/100], such that
a) I ^i(6) — ^(Q) I ^ ^l250 for all 6 e S1, ?i e Hi o^ ^ e Hg,
^ | cotg G,(6) - ̂ (6, U,(6), Z,(6)) | ^ &2 Va /or ^ 6 e S1 flW z e Hi u Hg, /or ^

A > 1 such that 9'(^'(6)) e { | x \ ̂  Va} for all 1 < j ̂  k and all 6 e S1.

Proo/ — Let / == [rf/100] and define ft, == { 2sl + 1, . . . , 2sl + 1} for ^ = 0, 1, 2.
Observe that [(^.i,^) C [0, 1/20] C ̂  for all 1 ̂  i^ 51 (recall that 6', == ifd). More-
over, as in (4), [ ^(Q) | ^ a/2 for all 6 ej^. Hence, given any z'i eHy, ^ eHg with
r =t= ^, we have infgi | ̂  — ^ | ̂  (a/2) (lid) ^ a/250, which gives us ^J. Now we claim
that given any such i^ i^ at least one of them satisfies b). Note that the lemma is a direct
consequence: one obtains sets Hi, Hg as in the statement just by choosing appropriate
elements from fio, Hi, fi^. We prove the claim by contradiction. Suppose there is
T e S1 such that | cotg cr^r) — ^(r) [ ^ b2 Va for both i = ?i, i == Zg (we write
^(r) == ^.(T, U,(r), Z,(r))). Since | ^ \ ̂  6/A/a (recall Remark 1), it follows
| cotg CT,(T) | < (^/Va) + (&2 Va) ^ 1 for i == z'i, ^ (if ^o ^ small). Using (19),
a^ == cyo (^| E^-i?^))"1, and the mean value theorem, we get

I cotg (^(T) - cotg (^(T) | ̂  ̂  50 ̂  5^ ̂ ,

recall that b-\/d^ 100. It follows that

I ̂ W - ̂ M \^2b2V^+ (M2 000) < (&a/l 500),

for small enough CQ . But Lemma 3.3 a) gives (note that our assumptions imply E; ^ \/a)
& ^3

I -^M - ̂ (T) I > g I ̂ (T) - ̂ (T) I - const ̂ /i
b(X. b(X.

> —— — const b^ ^55- ———— —— l̂ UHOL U\J>. ^ ——————— •
800 1 0005

if CQ is small. We have reached a contradiction, thus proving our claim. D
Now we are in a position to prove our last lemma. Given ^ = graph (f3Q an

admissible curve and j $? 0, we write ̂  = O^(^) and

^.(6) == (^(6, TO) == (^(6), S,(6), Y,(6), r,(6)),

with Y, == (Sj, T},) and r, == (cos y,, sin yj). We suppose that | ̂ (^ I <^ ^//a ^or some
T e S1. Then | ^(9) I < 2 V^c for every 6 e S1: this is because osc(^.) < 2a43 for all

r— ^

j ^ O , in particular osc(^) < Va, cf. (11). To the curve @^ we associate
A^(6) == - 2W + b tgY^W + bs^Q) with ^(9) = ̂ ^^^e), 8^+1(6), Y^(6)), as
in (23).

12
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Lemma 3.7. — There are Gy > 0 and [B > 0 such that, given any admissible curve

WQ == graph (^) as above and any r ^ ( ^ — ' y ] ) log -5
\2 / a

m{{ 6 e S 1 : A^(6) ej(r - 2) }) < C, e-^.

Proof. — The argument has two parts, which can be sketched as follows. The
first step is parallel to the proof of Lemma 2.6. For each 7 = (/i, ..., l^) in { 1, ..., d }^
we let ^.(/) = graph(@<, (F)) == O^ | ̂ (J)) and also introduce the objects S,(J, 6),
Y,(^ 6) = (^ 6), T^ 6)), r,(J; 6) = (cos Y,^ 6), sin y^, 6)), ^(Z; 6), and A^I, 6)

corresponding to it. We fix r ^ ( o ~ 2 Y ) ) log - and say that I and m are incompatible if
\2 / a

(30) | SM(^ 9) - SM(̂  9) I > 4,2-r Va for every 6 e S1.

Using Lemma 3.6 a) we prove that each I is incompatible with all but, at most,
d^{[d — [rf/lOO])/^)00118^ elements m e{ 1, ..., d}^. Then, in a second step, we prove
that the incompatible pairs /, m obtained in this way also satisfy

(31) | A^, 6) - A^(w, 6) | ̂  2^-r Va for every 6 e S1,

thus ensuring that A^(/, 6) and A(m, 6) can not both belong in J(r -- 2). This is done
by checking that the two last terms in A^ have a negligible effect, which relies on the
property in Lemma 3.6 b). The lemma follows directly from the combination of these
conclusions.

First we note that | ̂ (6) | ̂  V^a for all 8 e S1 and O^j^ M — 1. Indeed, let
8, (6) = dist(^,(6), 0) + | T), (6) |, recall that (PC R is the post-critical orbit of
h{x) == OQ — A;2. In the same way as in (12), 8,4.1(6) ^ C4i(a + | ^.(6) |2) for
O^j^ M — 1 and 1 ̂  z^ M — j (throughout, C denotes any positive constant depending
only on A). Then, by the same argument as in (13), one gets | S^(6) [2 ̂  const 4J-M ̂  Va.

Let y e ̂  be fixed and write y , = O^o) == (9^S,, Y,, f\), with Y, == (^,, ^,)
and r, == (cos 9,5 slnT3)• Define also X, = Il^J"/ | — 2Si |- Then the same continuity
argument as in Lemmas 2.5 and 3.2, gives X, ^ const o^~3 for all O ^ j ^ M — 1.
We let K == 1 OOOe2 and define ^ < ^ < ... ^ M by ^ = 1 and

^^ = min{ ^ : ̂  < j < M — 5 and \. ^ 2KX, } (if it exists).

Then we set k = k(r) = max \i\\.^ 2K^~r/Va . In precisely the same way as in
the proof of Lemma 2.6, we deduce that k{r) ^ YI r where YI = ^/l0^ 8K.

We already remarked that | ̂ ,(6) | ̂  y^a for all 6 e S1 and 0 < j ^ M — 1.
Hence, we are in a position to apply Lemma 3.6 to obtain H^, H^' C { 1, . . . y d } with
#H;, #H^ ^ [^/100], such that

I W. 9) - Si(^\ 6) | ̂  ̂  for all 6 e S1,



MULTIDIMENSIONAL NONHYPERBOLIC ATTRACTORS 91

for all ![ = (/^, 4, ..., V and l[' = ( l [ ' , 4, ..., ̂ ) with /; e H;, l[' e H',', and
arbitrary 4, ..., ̂ . Since osc^i) = & osc(^o) < ba., we also have

I ̂ i(^ 9) - ̂ i', 6) | < &a < Va —— for all 6.
^ou

By induction (using the same kind of calculations as in (20)),

I ̂  e) - T^7, e) | ̂  Va | s,(/L e) - w, e) |
for every j ̂  1 and 6 in the corresponding domain. Combining this with

^^-^^Ga2-^Ca4^Va| ^, | Vcî
(take CQ small for the last inequality), we find

(32) l^+i(^e)-^,+i^',e)|
^ | - 2S, 1 (1 - Va) | ^(/i, 6) - W, 6) I - b I ^,(/;, 6) - ̂ ,(^', 6) |

^ | - 2l, | (1 - 2 Va) | ^(^ 6) - W, 6) [.

Hence, using log (l — 2 A/a)" « const A/a log a > — log 2 (if Cy is small),

I W, 9) - W, 6) | ̂  X^ (1 - 2 Va)11-1 1 ̂ (^ 6) - W, 6) |

^J'1^^4'2"'^

(because k(r) ^ 1), which means that any such /i, ^ are incompatible. Moreover,

l^^^-^^^l^^^^^a,

by the definition of ^- Also, given any m[ == (/;, l^ ..., ̂ ^^ l^ ..., Q and
^ == (^l') 4? • • • ? ^-13 ^5 • • • 3 O? we hwe

I S<,(^ 6) - ̂ i, 6) | < osc(^(/;, 4, ..., ̂ )) < 8a

and analogously for ^, ^'. Therefore, Wi, m'^ are incompatible:

I ^M(̂ I. 6) - ̂ ( î'. 6) I ̂  ^ ̂ (4^2 - 16) a ̂  4^ Va

(if^(r) ^ 2). Now, proceeding as in the proof of Lemma 2.6, we conclude that each
^ e { l , ....rf}11 is compatible with not more than (P{{d — [rf/lOO])^)^' elements,
m e { 1, ..., d}^, as claimed above.
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Starting the second part of the proof, we note that it is sufficient to consider the
case ^ r^ 4aA"~9. Indeed, otherwise the lemma is an immediate consequence of
Lemma 3.5 b) (take (B ^ 1/20). Let /, m be a pair of incompatible sequences as cons-
tructed above. More precisely, for some 1 ̂  i^ k{r) we have I , == m, for j< t, and
l^eH^ w^.eH,". For notational simplicity, we shall write t = t, and let 7,(l, 9),
?^6), A,(/;6), C^,6), be the values of !^_^ ^_< , A^_,, C^, respectively,
at the point (6, S,(/, 6), Y^, 6)) e T3 x I2. We write

r,(l, 6) == (cos Y,^ 6), sin ̂  6)) = A,(l, 0) + v^ 6), 1)

and then 1̂ ", 6) = (cos ̂  6), sin y^/; 6)) = A,(A,(J; 6), C,(/; 6)) + ^(0, ^(J; 6)) which
yields

(33) b tg ŷ ", 6) == 6 § (/", 6) + b^ § (/; 6).
A» A, A,

Note that

(i) | (^/A,) (I, 6) | < constA2^-^, by Lemma 3.4;
(ii) | hju, | = | cotg Y<(^ 6) - ̂ (/, 6) | ̂  &2 -V/a, by Lemma 3.6 b).

Hence, the last term in (33) is bounded by

const ^2(M-t) + Y^2 Va) ^ const ̂ /Va ̂  ̂ -r Va

(using M — t> 5 and ^ r^ 4aA~9 and assuming ^ small enough). Clearly, the same
arguments and estimates hold also for m. In order to control the first term in (33) we
introduce u,{T, 6) = slope ̂ /^(O, S^, 6), Y,^ 6)) (1, 0), and let u,{m, 6) be the
analogous object for m. Note that ^ = 0, ^ = CjX,, and | M, | ^ CQ for all ^ < j < M
(by Lemma 3.2 a) and Remark 1). Note also that ^-+1 = &/(2S, — ^,) for all j.
Hence, using | ^ | ̂  V^a > ^o ^ I ^^, I ?

|^^6)-^(m,6)|

< VA | S,(^ 6) - ̂ (m, 6) | + Vb | ̂ (^ 6) - u,(m, 6) |.

By recurrence, | u^{l, 6) - ̂  6) | ^ S^, {V~b)8 \ ̂ ,{1, 6) - SM-,(^ 9) I. More-
over (recall (32)), | ̂ .^ 6) - ̂ _,(m, 6) | ̂  (2AJ | ^(/, 6) - ̂ (m, 6) | and 2/\ is
uniformly bounded from above. This gives

G - S _
- (^ 9) - - (^ 6) ^ S;,, const (V&)81 SM^ 9) - SM^ 6) |^ v' 7 yA, A,

^I^M-SMMI.
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Altogether, we conclude that

(34) I b tg f^T, 6) - b tg YM(OT, 6) | < ^ | ̂ (/; 6) - ̂ (m, 6) | + 2^-r Va.

Now we estimate | &$^ 9)_— ^n^ 6) |. First we recall that by definition
^9) ==?^(e),Sn+i(/,e),YM+i(/,6)) where k==k(l,Q) is the number of iterates
before the next return. Clearly, up to taking Cg small enough, we may suppose k(l, 6) ^ 4
for all 6 e S1. Then the proof of Lemma 3.2 gives

I bs^{T, 6) - ̂ (.?(6), S^+iO 6), Y^(/; 6)) | < const b10 < ̂ Va

(we use <'•'< 4a^-9 once more). Of course, the same holds for m. On the other hand,
Lemma 3.3 b) gives (here we have ^1)

I bWQ), SM+^, 6), Y^^, 6)) - H (̂6), S (̂7n, 9), Y^(m, 6)) |

b2 - _
< ̂  I ^M+i(/, 9) - SM+I^, 9) I + const 6 2 1 Yn+i(/, 6) - YM+^OT, 6) |

< ^ I W 9) - ̂ (^ 9) |,

using the inequalities

I SM+I^, 9) - ̂ +i(w, 9) | < | YM+^ 6) - YM+I(OT, 6) |

< const | ^(/, 6) - ̂ (m, 6) |.

We conclude that

(35) [ bs^F, 6) - bs^m, 9) | < g [ ^(J; 6) - ̂ (m, 6) | + 2^-r Va.

Altogether, (30), (34), (35) imply (31) and so our argument is complete. D

3.5. Conclusion of the proof

Finally, we derive Theorem B from the previous lemmas. In the rest of the paper
^o = graPh(To, Xo, Yg) is any admissible curve with Y,, = SfSy and the notations
are as introduced at the beginning of Section 3. We take /, m w Vn, I = m — M, as
before. For any return 1 < v < n (recall the definition above) and 6 e w^_^ we define
r = r { v , Q ) ^ 0 to be the smallest integer such that A,((o,+,(6)) nj(r) = 0. Recall
that (o.(6) denotes the element of ^ containing 6. Then we say that v is a Q-situation,
resp. a I^-situation, resp. a II^-situation, for 6 i f r = 0 , resp. 1 < r ^ m, resp. r > m. Clearly,
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Lemma 3.5 a) asserts that | b tg ̂  | ̂  10 Va can only occur in a 0-situadon. On the
other hand, if v is a II^-situation then A^(o)^(6)) C]{m — 1), because

(i) osc(^ | co^(6)) ^ a d~1 < Va^;
(ii) osc(6 tg ̂  | <o^,(6)) ^ 6(1 + (100a/62)) (6a/rf) ̂  < Va^;

(iii) osc(^ | («\+,(6)) ^ Va^ ̂  A/a^"1.

Indeed, (i) and (ii) are direct consequences of the definition of admissible curve and
Lemma 3.1, and (iii) can be justified as follows. If^(r) < Z/2 (< m) for some T e ^+1(8)
then, by definition, k^ is constant on (x)^^_;(6) and then (26) gives

osc(fc, | o\+,(6)) ^ const Va^ ̂ -1-1 < const A/a ^-?/2-1 ̂  Va^.

If ^(r) >/ /2 for all Te(o^,(6), we take ^ = [7/2] and, using also

I ^ - ^ J ^ const A204-1,

we get osc(^ | co^(6)) ^ const V^b29 d9-1-1 + const b2^2 ̂  Vv.b\ Claim (iii) is
proved. Now we let ^(n) = { 6 e S1: some 1 ̂  v ^ n is a II^-situation for 6 } and then
Lemma 3.5 b) gives

m(B^)) < nb-^^e-^1)1110^ const e-^120

for all n sufficiently large (with respect to a and b).
From now on we may restrict ourselves to those values of 6 e S1 having no II^-situa-

tions in [1, n]. Let 1 ̂  v^ ^ . . . ^ v, ̂  n be the returns of 6 and denote ^ = r(v,, 6).
We write W,(6) = || W,_i(6) || (^(1, 0) + ^(6), 1)), for each v == v,. Then Lemma 3.2
and the definition of A^ in (23) give

|| W^,(6) || ^ (1 - .o) I I W,_,(6) || | ^ I || ^/(Zy+iW) (1. 0) ||

^ (1 - ̂ o) I I W,_,(6) || | cos ^(6) | | \(6) | const ̂

for all 0 ^ j < v ^ i — v , , where Z^i(6) = y^^O, To(6), Xo(6)). Moreover, taking
j = v,+i — v, — 1 and writing ^ = v,+i,

||W,_,(6)||^||W^,(e)|||cos^(6)|

^ (1 - ̂ o) I I W,_,(6) || | cos ^(6) | | A,(6) | const ̂ 1^ a^-^.

I 8\
By recurrence (recall that WQ == —) ,

\ ()x)

II WJ6) [| ^ a^-^-1^ a372-^ n (const | A,.(6) | a-^71)
i=l *
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and so log || W^(6) |[ is bounded from below by

8 / /I \ 1 \ 3 1(n -(s- l )N) log02+ S . - ^ l o g - - r , - s const - ^ log-.
<-i \^ y a / 2 a

From here on the argument is completely analogous to the one in Section 2, with
Lemma 3.7 replacing Lemma 2.6. We get log j [ W^(9) |[ ^ 2cn — S,̂  r,, where

^ > 0 and G == i'.: ^ ^ _ — 27]) log- , and we prove that the Lebesgue measure
V I a

of Bi(%) = { 6 eS^S^^ ^} is bounded by const ^con8t ̂  (if Vi < M then
Lemma 3.7 can not be used at time v^ but this is irrelevant for the conclusion; recall
that v,> M for all i> 1). Then £„ == Bi(^) u B^n) satisfies the claim (G) stated at
the beginning of Section 3. This completes the proof of the theorem in the
case <p == <pa,b-

Moreover, it is not difficult to see that all these arguments remain valid for
arbitrary diffeomorphisms in a sufficiently small neighbourhood of <p^ ^ (depending
on a and &), if one uses the same approach as for Theorem A. Indeed, since
^o == { © == const} is a normally hyperbolic invariant foliation for <p^ &? we have that
any nearby diffeomorphism 9 also admits such a foliation ^(9). Moreover, the leaves
of ^(9) converge to those of^o as 9 approaches <pa.&- Hence, we may reproduce the
previous calculations for 9, just taking X-vector to mean any vector tangent to a leaf
of ^(9) and making straightforward adjustments in the notation. As our argument
is based on analysing pieces of orbits whose length is bounded independently of n (this
remark is particularly clear e.g. in the context of Lemma 3.2), all our estimates remain
valid, by continuity, if 9 is close enough to 9a,&. Therefore, the proof of Theorem B
is complete.
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