ALEXANDER S. MERKURJEV

R-equivalence and rationality problem for semisimple
adjoint classical algebraic groups

Publications mathématiques de | 'LH.E.S., tome 84 (1996), p. 189-213
<http://www.numdam.org/item?id=PMIHES_1996__ 84 189 0>

© Publications mathématiques de PLH.E.S., 1996, tous droits réservés.

L’accés aux archives de la revue « Publications mathématiques de I'LH.E.S. » (httpy/
www.ihes.fr/IHES/Publications/Publications.html) implique 1’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

‘NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=PMIHES_1996__84__189_0
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

R-EQUIVALENCE AND RATIONALITY PROBLEM
FOR SEMISIMPLE ADJOINT CLASSICAL ALGEBRAIC GROUPS

by A. S. MERKURJEV

AsstrAcT. — The group of R-equivalence classes for all adjoint semisimple classical algebraic groups is computed.
Examples of stably non-rational adjoint simple groups of type D,, n > 3, are presented. The complete stable
birational classification of adjoint simple groups of rank 3 is given.

Introduction

In [7, Cor. 2] Chevalley proved that over an algebraically closed field of charac-
teristic zero the variety of any connected algebraic group is rational. He has also
constructed examples of algebraic tori over local fields which are not rational.

Since all algebraic tori of dimension at most two are rational ([38, Th. 4.74]),
and the variety of maximal tori in a connected algebraic group is rational ([7, Prop. 3]
(in characteristic zero) [9, Exp. XIV, Th. 6.2] and [5, Th. 7.9]), it follows that all
connected algebraic groups of rank at most 2 are rational. The special orthogonal group
of a non-degenerate quadratic form over an arbitrary field is also an example of a
rational variety (see Lemma 1 for a more general statement).

On the other hand, a semisimple group over a number field which is a counter-
example to weak approximation (necessarily neither simply connected, nor adjoint
[30, Th. 3.1, Cor. 5.4, Ex. 5.8]) provides an example of a non-rational group.

The first example of a simply connected semisimple not stably rational group
was found by Platonov in [27] (the group SL,(A) for a suitable simple algebra A).
In [28] he has also constructed examples of quadratic forms ¢ of a given dimension
d > 6 such that the variety of the spinor group Spin(¢) is not stably rational. For an
arbitrary central simple algebra A with the index divisible by 4 the group SL,(A) is
not stably rational ([22]). On the other hand, the variety Spin(q) for a canonical
quadratic form ¢ (sum of squares) is always rational ([29]).

Key words and phrases. Adjoint simple algebraic groups, R-equivalence, rational varieties, algebras with
involutions.
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For adjoint semisimple groups only a few results were known. Voskresenskii and
Klyachko proved in [39, Cor. of th. 8] that any adjoint simple group of type A, with
even n is rational. Cernousov has shown ([6]) that the variety of the projective orthogonal
group of a canonical quadratic form is rational.

As was noticed by Voskresenskii (see [38]), the invariant (the group SK,(A))
which Platonov has used in [27] to show that the group G = SL,(A) is not stably
rational, is nothing but the group of R-equivalence classes G(F)/R. The notion of
R-equivalence was introduced by Manin in [20] and studied for linear algebraic groups
in [8] by Colliot-Théléne and Sansuc. In particular, the group of R-equivalence
classes for algebraic tori was computed in this paper.

The present paper is devoted to the computation of the group of R-equivalence
classes for semisimple adjoint classical groups. As a consequence of this computation
we give examples of stably non-rational simple adjoint groups.

In the preliminary section we remind basic definitions and facts in the theory
of hermitian forms and algebras with involutions.

By a classical result of Weil ([40]), an adjoint simple group of classical series is
the connected component of the automorphism group of some algebra with involution
(except for some ¢ non-classical ” groups of type D,). In the first section we compute
the group of R-equivalence classes for such groups (Theorem 1). The result of the
computation is given in terms of certain invariants of the corresponding algebra with
involution. Note that in [12] Gille has studied the behavior of G(F)/R under isogeny
and in the special case of an even dimensional quadratic form came very close to
Theorem 1 of the present paper (see Prop. 2.3 in [12]).

In the second section, following the classification of Weil, we consequently
consider the classical types A, B, C and D of simple adjoint groups. In some cases we
prove that adjoint groups are (stably) rational. For the type D we give a sufficient
condition for an adjoint group to be not stably rational (Theorem 2).

In the next section, the complete stably rational classification and the classification
of R-trivial simple adjoint classical groups of rank 3 is given (Theorem 3).

In the last section we give examples of not stably rational adjoint simple groups
of type D, for n > 3. The base field in these examples is an arbitrary number field for
odd 7 and the field of rational functions in one variable over a number field if z is even.

In order to prove that the variety of an algebraic group G defined over a field F
is not stably rational, we produce a field extension E/F such that G(E)/R % 1. We are
forced to take E big enough, since it may happen that G(E)/R is trivial for all algebraic
extensions of F. (For example, if G = SL,(A) for a central simple algebra A over a
number field F.) A field E is obtained by passing over to iterated function fields of
certain quadrics and Severi-Brauer varieties. The main ingredients in the proofs are
the index reduction formula ([21, 24, 32]) and the results of [3] and [25].

The mail tool we use to prove the stable rationality of a certain adjoint simple
group is the Proposition 3 with the corollaries. In order to apply them we need to know
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that the group of multipliers of the associated algebra with involution is ¢ well rationally
parameterized ’ (compare [6]).

The author would like to thank J.-L. Colliot-Théléne, P. Gille, J.-P. Tignol for
useful discussions and the referee for many valuable comments and providing better
proofs of the key Lemma 7 and Proposition 8.

We use the following notation.

F is a field of characteristic different from 2.

All algebras considered in the paper are assumed to be finite-dimensional over
the center. For a central simple -algebra A over F we denote by Nrd: AX — F* the
reduced norm homomorphism. The image of Nrd we denote by Nrd(A). The index
ind A is the square root of the dimension of the division algebra similar to A. For a field
extension E/F the algebra A ®; E over E is denoted by Ag;. We write A ~ B for Brauer
equivalent central simple algebras A and B. We use the notation (a, 4)y for the quaternion
algebra over F of dimension 4 given by generators ¢ and j with the relations i* = ¢ € F*,
jP=beF* = —ji.

For a non-degenerate quadratic form ¢, we denote by G(g) the group of multi-
pliers of ¢: G(¢) ={x €F* such that x.¢~ ¢}. The discriminant disc(¢) equals

n(n—1)

(—1) 2 det(q). For a field extension E/F the quadratic form ¢®;E over E is
denoted by g¢z. For any x;,%,,...,x, €F* we denote the n-fold Pfister form
®:=1 < 1: — % > by << K1y Xgy ooy Xy >>

For an algebraic variety X defined over a field F and any field extension E/F
the set of E-points Morg,, z(Spec E, X) is denoted by X(E). If E/F is a finite separable
extension and Y is an algebraic variety defined over a field E, then Rygg(Y) is the
variety over F, obtained from Y by the restriction of scalars ([41]). The one-dimensional
split torus Spec F[z, #7'] is denoted by G, 5.

0. Algebras with involutions

In this preliminary section we collect known facts in the theory of hermitian
forms and algebras with involutions. The basic references are [14], [31].
Adjoint involution

Let P be a free right module over a ring D with an involution 1, € = + 1. For
a regular e-hermitian form % on P over D with respect to v one can define an involution
¢ = o, on the ring A = End,(P) by the equality

k(a(%),9) = k(x, o(a) (1)), %y €eP;acA.

The involution ¢, is called adjoint to h.

Kind of an involution

Let F be any field of characteristic different from 2, Z be either a field F, or a
quadratic etale extension of F (not necessarily a field). Consider an Azumaya algebra A



192 A. S. MERKURJEV

over Z (if Z is a field, then A is a central simple algebra over Z) with involution ¢ such
that F coincides with the subfield of s-invariant elements in Z. The involution ¢ is of
the first kind if it is trivial on Z (hence Z = F) and of the second kind otherwise.

If Z is not a field, i.e. Z =F X F, then there exists a central simple algebra B
over F and Z-algebra isomorphism A ~ B X B°? such that ¢ corresponds to the switch
involution (x, y°?) — (1, x°*) on B x B,

Type of an involution of the first kind

If ¢ is of the first kind (i.e. Z = F), then over a field extension splitting A, it is
adjoint to some non-degenerate bilinear form /. The involution ¢ is called orthogonal
(or, of orthogonal type) if k is symmetric and symplectic (or, of symplectic type) if k is skew-
symmetric. For example, the canonical involution on a quaternion algebra is symplectic.

If ¢ is an adjoint involution to some e-hermitian form with respect to an invo-
lution © of the first kind, then ¢ and « are of the same type if ¢ = 1 and of different
types if e = — 1.

Hpyperbolic involutions

Assume that Z is a field. By Wedderburn’s theorem, A = End;(V) for some
central division Z-algebra D and a right vector D-space V. There is an involution =
on D of the same kind as o (the restrictions of = and ¢ on Z are equal). Then the invo-
lution o is adjoint to some (unique up to an F-multiple) non-degenerate e-hermitian
form 2 on V over D with respect to v (where ¢ = 4 1 if ¢ is of the first kind and ¢ = 1
otherwise).

The involution ¢ is called Ayperbolic (resp. isotropic) if h is a hyperbolic (resp. an
isotropic) e-hermitian form ([4]).

If Z is not a field, then the switch involution ¢ is also called hyperbolic.

Clifford algebra

Let A be a central simple algebra of degree 2z over F, and ¢ be an orthogonal
involution on A. We denote by C(A, o) the (generalized, even) Clifford algebra of (A, o)
defined in [13, 36]. It is an Azumaya algebra over an etale quadratic extension L/F,
called the discriminant quadratic extension. The discriminant disc(s) of o is the class
dF*? e F*[F*? such that L = F[t]/(#* — d). If the discriminant of ¢ is trivial (i.e. L splits),
then C(A, ¢) = CG*(A, 6) X G (A, o) where C*(A, o) are central simple F-algebras.

The Clifford algebra C(A, ¢) carries a canonical involution © of the first kind
if n is even and of the second kind if z is odd.

Ifa € A* is a skew-symmetric element, i.e. 6(a) = — a, then Nrd(a) € (— 1)" disc(o)
([17]).

Example. — Consider an involution ¢ on A = M,(Q), where Q is a quaternion
algebra, adjoint to a (— 1)-hermitian form % = { xy, %5, ..., x, > with respect to the

canonical involution on Q (x; are skew-symmetric elements in Q). Then the diagonal
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matrix @ = diag(%y, %3, ..., ¥,) is a skew-symmetric element in A with respect to o
and, therefore, the discriminant of ¢ equals dF*2 where

d = (—1)"Nrd(a) = (— 1) I Nrdg(x) = II (2.

The class dF*2 in F*[F*% we also call the discriminant of a (— 1)-hermitian form £.
The discriminant of a hyperbolic involution is always trivial ([4, Cor. 2.3]).
When 7 is even, then coryy(G(A, ¢)) is Brauer equivalent to A over F and

C(A, 0)®, G(A,6) ~0 over L. If n is odd, then coryy(CG(A,s)) ~0 over F and

C(A, 6) ®, CG(A, 6) ~ A, over L ([33, Th. 3.3, Prop. 7]). In any case, the algebra

C(A, o) ®; A is equivalent to the conjugate of C(A, ) over L.

If A splits, A = Endg(V), then ¢ is adjoint to some symmetric bilinear form %

and the Clifford algebra C(A, 6) coincides with the even Clifford algebra C(V, q)

of the quadratic form ¢ associated to 4. The discriminant of ¢ coincides with the one

of (A, o).

1. R-equivalence on adjoint simple classical groups

Let G be an algebraic group, defined over a field F. Any point g € G(F(¢)) of
the group G over the rational function field F(¢), in other words, an F-morphism
Spec F(t) - G, can be considered as a rational map g:A; — G, defined over F.
Denote by RG(F) the normal subgroup in G(F) consisting of all elements x € G(F)
such that there exists a rational map f: Ay — G over F (which can be considered as
an element of the group G(F(¢))), defined in the points 0 and 1 with f(0) = 1 and
f(1) ==« ([12], Lemma 2.1). The factor-group G(F)/RG(F) we denote simply by
G(F)/R. It is the group of R-equivalence classes introduced by Manin in [20] and
studied for linear algebraic groups by Colliot-Théléne and Sansuc in [8].

An algebraic group G defined over F is called R-trivial if G(E)/R =1 for any
field extension E/F.

An irreducible algebraic variety X defined over F is called stably rational if the
variety X X p Ap is rational for some n e N. The relation between R-triviality and
stable rationality of the variety of an algebraic group is given by the following

Proposition 1 ([8]). — If the variety of a connected algebraic group G, defined over a field F,
is stably rational, then the group G is R-trivial.

Proof. — If the variety of G is stably rational over F, then it is stably rational over
an arbitrary field extension. Hence, it is sufficient to show that G(F)/R = 1.

Assume first that the variety of G is rational. The case of a finite field F is considered
in [8, Corollary 6]. Over an infinite field there is an open subset U C G with U(F) + ¢
isomorphic to an open subset V in some affine space A;. Let ¥ € G(F) be any rational
point. Consider two translations U; and U, of U containing x and 1 respectively.

25
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Choose any rational point y in the intersection U; N U,. Translating the intersections
with V of two appropriate straight lines from Ap to U, and U, we get elements
&(t), h(¢) e G(F(#)) such that g(0) =k(0) =y, g(1) =x and k(1) = 1. Then for
S@) = g(¢) k()= we have: f(0) =1 and f(1) = x, hence » € RG(F).

If the variety of G is stably rational then G Xy Ap is rational for some 7z € N.
Since Aj is a rational algebraic group, it follows from the first part of the proof that
GF)R =GF)R x Ap(F)/R = (G x, A} (F))R=1. m

Let F be any field of characteristic different from 2, Z be either a field F or a
quadratic etale extension of F (not necessarily a field). Consider an Azumaya algebra A
over Z with involution o such that F coincides with the subfield of s-invariant elements
in Z. An element a € A* is called a similitude if o(a) a € F*. Denote by Sim(A, ¢) the
group of all similitudes. For any 4 € Sim(A, ¢) the element p(a) = o(a) a in F* is called
the multiplier of the similitude a. Moreover, we have a group homomorphism

w:Sim(A, 6) — F*,

The image of p. we denote by G(A, o).

If ¢ is adjoint to an e-hermitian form £, then an element x € F* is the multiplier
of a similitude if and only if x.%2 ~ . In particular, for a hyperbolic involution ¢ one
has G(A, ¢) = F*.

An element a € A is called an usometry if o(a) a = 1. The group of all isometries
Iso(A, o) coincides with the kernel of p.

We consider the groups Sim(A, ¢) and Iso(A, o) as the groups of F-points of the
corresponding algebraic groups Sim(A, o) and Iso(A, ¢). The latter algebraic group
is the kernel of the algebraic group homomorphism induced by the map p:

p:Sim(A, 6) - G, 5.

Since Z* is in the center of Sim(A, o), it follows that the torus R,5(G,, ;) is a cen-
tral subgroup in Sim(A, ¢). The group of projective similitudes is the factor-group
Sim(A, 6)/R;5(G,, ;) which we denote by PSim(A, s). By Hilbert’s theorem 90,
the group of F-points of PSim(A, o) equals

PSim(A, o) (F) = Sim(A, o)/Z*.

For any a € A* the inner automorphism Int(a) of A commutes with ¢ if and only
if a € Sim(A, o). By Skolem-Noether’s theorem, the correspondence @ +— Int(a) induces
an isomorphism of the group Sim(A, ¢)/Z* and the group Aut(A, ¢) of F-automorphisms
of A commuting with o.

Denote by Sim (A, ¢), PSim (A, 6), Aut (A, o) and Iso (A, o) the connected
components of the identity in the corresponding algebraic groups. We have the canonical
isomorphism

PSim (A, ) ~ Aut (A, o).
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By the fundamental work of Weil [40] any adjoint absolutely simple classical algebraic
group defined over F is isomorphic to PSim (A, 6) for a suitable algebra with invo-
lution (A, 6) over F.

If Z=TF and deg A = 2n, then the group of rational points Sim, (A, o) of
Sim _ (A, o) consists of all a € Sim(A, o) such that Nrd(a) = u(a)" ([26, p. 14]).

Denote the subgroup w©(Sim, (A,0s))CF* by G, (A,s). In the split case,
when o is adjoint to a symmetric bilinear form (quadratic form) ¢ one has
G, (A, 0) = G(A, 0) = G(g).

Lemma 1 ([40]). — The variety of the group Iso, (A, o) is rational.

l — '
Progf. — The Cayley transformation a 7 % establishes a birational isomorphism
a

between G = Iso_ (A, 5) and the affine space of all skew-symmetric elements in A
with respect to ¢ (the Lie algebra of G). m

Remark. — In the case A splits, A = End(V), and ¢ is adjoint to a quadratic
form ¢, the group Iso_ (A, o) is isomorphic to the special orthogonal group O, (¢).

We will need the following generalization of a Cassels-Pfister theorem for algebras
with involutions.

, Lemma 2 ([35]). — For any f(t) in G(Agy, 6gyy) N F[t] there exists a polynomial
a(t) € A[t] such that f(t) = o(a(2)).a(t). m

For an irreducible polynomial p(¢) over F we denote the field F[¢]/p(¢) F[¢]
by F(p). We will use the following statement which is a slight generalization of [35,
Prop. 2.4].

Proposition 2. — A rational function f(t) € F(¢) suck that f(0) =1 belongs to
G, (Agy> op) if and only if, for any irreducible polynomial p(t) suck that the p(t)-adic valuation
of f(t) is odd, the involution & is hyperbolic over the field F(p).

Proof. — In the case Z splits the statement of the proposition easily holds since
G, (Agy) 0ppy) = F()* and o is hyperbolic over any field extension. Thus, we may
assume that Z is a field. Let f e G (Ag,, 6p,) and p(f) be an irreducible polynomial
such that the p(¢)-adic valuation of f(¢) is odd; put E = F(p). By Wedderburn’s theorem,
Ag = End,(V) for some division algebra D and a right D-module V. The involution oy
is adjoint to some e-hermitian form % on V over D with respect to an involution = on D.
We have: f(t) . kg ~ kg . By induction on dim(%) we will prove that # is a hyperbolic
form.

Ife= —1, 6 =i and D = E, then % is an alternating form over a field and,
therefore, is hyperbolic. Otherwise we may assume that # is isomorphic to some diagonal
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e-hermitian form <(d,,d,, ..., d, >, d, eD* ([31], Chapter 7, Th. 6.3). Since
Sf@) kg = kg, it follows that d,.f(f) is a value of 4, i.e.

410807 = 2, (5(0) 450

for some polynomials 0 # g(¢) € E[¢], x,(¢) e D[¢].

Let 6 be a root of p(¢) in E. The (¢ — 6)-adic valuation of f(¢) is odd. Hence,
dividing both sides of the equality by an appropriate even power of ¢ — 6, we may
assume that x,(0) + 0 for some 7 and the left side is divisible by ¢ — 6. Substituting
t =0 one gets

0= 2 +(5(6)) %),

L.e. & is isotropic. Hence, £ = &’ L H, where H is the hyperbolic plane, and f(¢).4' ~ &'.
By the induction hypothesis the forms 4’ and, therefore, & are hyperbolic.

For the proof of the converse statement we may assume that f(¢) = p(¢) is irre-
ducible, p(0) = 1 and the involution oy is hyperbolic over the field E = F(p). Denote
by % an e-hermitian form over a division F-algebra D with involution t associated to
the involution 6. Since oy, is also hyperbolic, G(Ag,,, 6g,) = E(#)*; in particular,

60—t
A(2) . kg ~ kg, where A(t) = —

By [31, Chapter 2, Lemma 5.8] there exists an F(¢)-linear function s : E(¢) — F(¢)

such that

51> —=<A(#) D) =< 1> =< Ngyuro(@®) > =<1>—=<p@) >

in the Witt ring of F(¢), where s, is a transfer map.
The linear map s defines also a transfer homomorphism of Witt groups of the
classes of s-hermitian forms ([14, p. 62])

$.: WDy, Trw) = W (Dguy» To)-
We have

byyy — 0(8) byyy = (1> — <p(2) ) gy = 5. (K1) — (A(F) >) Py
= 5,(kgy) — M2t) .bgy) = 5.(0) =0

in the Witt group W*(Dy,,, Tpy)- The Witt cancellation implies that p(¢). Ay, ~ /g,
hence, p(t) € G(Ag,), 05y). By Lemma 2, p(t) = o(a(t)).a(t) for some a(t) € A[t].
Since 1 = p(0) = o(a(0)).a(0), it follows that a(0) €Iso(A, ¢). Replacing a(t) by
a(t).a(0)~* we may assume 4(0) = 1. In order to prove that p(f) € G (Apy, Opy)
we need to consider only the case of an orthogonal involution ¢ on a central simple
algebra A of even degree 2n since otherwise the group Sim(A, o) is connected. Substi-
tuting ¢ = 0 to the equality Nrd(a(t)) = + p(¢)" one gets the sign “ 4 7. m
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Denote by NZ* the subgroup in F* consisting of all elements of the type oz.2,
z € Z*. If ¢ is an involution of the first kind (i.e. Z = F), then NZ* = F*% If ¢ is of
the second kind, then NZ* is the group of norms N,,5(Z*) of the quadratic extension Z/F.

Denote by Hyp(A, 6) the subgroup in F* generated by the norms of all finite
extensions E/F such that ¢y is a hyperbolic involution.

The following Theorem describes the group PSim (A, 6) modulo R-equivalence.

Theorem 1. — There is a natural isomorphism

PSim , (A, o) (F)/R ~ G, (A, 6)/NZ*.Hyp(A, o).

Proof. — It follows from the exact sequence
Iso (A, 6) - PSim, (A, 6) > G_ (A, 0)/[NZ* -1
that the following sequence is also exact:

Iso, (A, o) (F)/R —PSim, (A, ) (F)/R - G, (A, 0)/NZ*.U — 1

where U is the subgroup in F* consisting of the elements wp(a(l)) for all
a(t) € Sim  (Ag,, 6p), defined in the points 0 and 1 with 4(0) = 1.

Lemma 1 shows that the group Iso_ (A, ¢) is rational. Hence by Proposition 1
we obtain the isomorphism

PSim, (A, o) (F)/R ~ G, (A, 6)/NZ*.U.

It remains to show that NZ*.U = NZ*.Hyp(A, o). Let f(¢) = n(a(t)) where
a(t) € Sim (Ag,,, opy) defined in the points 0 and 1 with ¢(0) = 1. Then
f) € G, (Apy, oxy) and f(0) = 1. By Proposition 2, f(1) is the product of a square
and elements of the type p(1) where p(¢) is an irreducible polynomial such that p(0) =1
and the involution oy, is hyperbolic. Since p(1) = p(1) p(0)~! is a norm of the
extension F(p)/F, it follows that f(1) e F**.Hyp(A, o) C NZ*.Hyp(A, 6), hence
U C NZ*.Hyp(A, o).

Conversely, let E/F be a finite extension such that the involution ¢y is hyperbolic,
x e E”, y = Ngg(x), Eg = F(x). Then y = 2* where z = Ng () and & = [E: E.
If & is even then y € F** If % is odd then the involution oy, is hyperbolic ([4, Prop. 4.1]).

Denote by p(¢) the minimal polynomial of s = ll—x such that p(0) = 1. It follows

from Proposition 2 that p(¢) € G, (Ag,, 6py). Lemma 2 implies that p(t) = w(a(t))
for some polynomial a(#) € Sim(Ag,), op,) N A[f]. Replacing a(¢) by a(¢).a(0)"! we
assume that 4(0) = 1. As at the end of the proof of Proposition 2 we check that
a(t) € Sim  (Ag,), opy), hence p(1) = u(a(1)) € U. Finally,

—1
z = Ng p(x) = Ngyp (ST) =p(1).p(0)~' = p(1)
and y=2=2"1p1)eF2UCNZ*.U. =u
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Two irreducible algebraic varieties X and Y defined over a field F are called
stably birationally isomorphic if the varieties X X Ap and Y X Ap are birationally iso-
morphic for some n and m.

We will use the following Proposition in the next section in order to derive stably
rational groups.

Proposition 3. — Let o : X — T and B : Y — T be two morphisms of irreducible algebraic
varieties defined over a field F. Assume that

(1) The fiber of o and B over any field-valued point of T is an irreducible stably rational variety
provided it has a rational point.
(2) For a field extension E[F the images of o(E) and B(E) in T(E) coincide.

Then X and Y are stably birationally isomorphic.

Proof. — Let V=X XY and W = SpecE Xy V = SpecE X, Y be the fiber
of B over the generic point 6 : Spec E — X where E = F(X) is the function field of X.
Since ' by assumption im «(E) =im B(E), it follows that there is a morphism
vy :Spec E — Y such that oy = a0 0. By the universal property of the fiber product,
the variety W has a rational point over E and by assumption is an irreducible stably
rational variety. Hence V is an irreducible variety and since F(V) = E(W), it follows
that X and V are stably birationally isomorphic. Analogously, Y and V and, therefore,
X and Y are stably birationally isomorphic. m

Corollary 1. — Let A be an algebra with involution o over F as above, X be an irreducible
stably rational algebraic variety defined over ¥ and o : X — G,, x be a morphism defined over F.
Assume that

(1) The fiber of o over any field valued-point of G,, y is an irreducible stably rational variety
provided it has a rational point.
(2) For any field extension E[F the image of a(E) in E* equals G _(Ag, og).

Then the variety of the group PSim_ (A, o) is stably rational.

Proof. — We can take Y =S8im,(A,s), T = G,, y and the multiplier map
B = u:Y — T. If the fiber of p. over a field E has a rational point, then as an E-variety,
it is isomorphic to Iso (A, )5 and hence is an E-rational variety by Lemma 1. By
Proposition 3, the variety of the group Sim_ (A, o) and X are stably birationally iso-
morphic, hence Sim (A, ¢) is stably rational.

The variety of Sim (A, c) is a Ryy(G,, y)-torsor over PSim, (A, 5), hence,
by Hilbert’s theorem 90, the stably rational variety Sim (A, o) is birationally isomorphic
to the product PSim (A, ¢) X A} where i = (Z:F) ([38, Th. 4.15]) and, therefore,
the variety of PSim (A, o) is stably rational. m

The following statement is a particular case of Corollary 1.
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Corollary 2. — Let G be a connected stably rational algebraic group over a field ¥ and
a:G - G, y be a homomorphism defined over ¥. Assume that

(1) The kernel of o is a connected stably rational algebraic group defined over F.
(2) For any field extension E[F the image of «(E) in EX equals G, (Ag, og).

Then the variety of the group PSim (A, o) is stably rational. W

2. Classification and examples

An arbitrary semisimple adjoint algebraic group over a field F is isomorphic to
a direct product of several groups of type G; = Ry3(G), where E/F is a finite separable
field extension and G is an absolutely simple adjoint algebraic group over E ([37, 3.1.2]).
Since the R-equivalence commutes with direct products and G,(F)/R = G(E)/R, the
computation of the group of R-equivalence classes for a semisimple adjoint algebraic
group reduces to the case of absolutely simple adjoint algebraic groups.

Below we give the list of all classical absolutely simple adjoint groups following [40].
In some cases we prove that these groups are stably rational and hence R-trivial. The
main statement (Theorem 2) gives a condition which is sufficient for an adjoint group
of type D, not to be R-trivial and hence not to be stably rational.

ije An—— 1

An arbitrary absolutely simple adjoint algebraic group of type A, _, is isomorphic
to a connected group PSim(A, ¢), where A is an Azumaya algebra of degree n over
an etale quadratic extension Z of F and ¢ is an involution of the second kind trivial on F.

Consider first the case when Z splits, Z = F X F. Then A is isomorphic to
B x B°? with the switch involution, where B is a central simple algebra of degree n
over F. It is easy to see that the map & +— (b, (b~')°?) gives rise to an isomorphism of
PGL,(B) and PSim(A, ¢). The group PGL,(B) embeds as an open subset in the
projective space P(B), hence, the variety of this group is rational. '

Consider now the case when Z is a field. The involution o, is hyperbolic since
Z ®y Z splits, hence NZ* C Hyp(A, o). It follows from Theorem 1 that

PSim(A, o) (F)/R = G(A, o)/Hyp(A, o).
Consider the following particular cases:

Case 1: n is odd.

We claim that G(A, ¢) = Hyp(A, 6) = NZ*. Indeed, NZ* C Hyp(A, ¢) C G(A, o).
Conversely, if x = o(a) a € F*, then taking the reduced norms of both sides one gets:
%" = N, p(Nrd(a)), hence x e NZ* since n is odd. The equality we proved implies

that PSim(A, o) (F)/R =1 in this case. It reflects the fact that the algebraic group
PSim (A, o) is rational if #n is odd ([39, Cor. of Th. 8]).
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Case 2. n = 2.

In this case A is a quaternion algebra over Z. Denote by (4 — a) the canonical
involution on A and consider the quaternion F-subalgebra

Q ={a €A such that ca =a}

in A. We claim that Sim(A, ¢) = Q*.Z*. The inclusion ¢ 5’ is clear. Let ¢ € Sim(A, o),
i.e. o(a) a e F*. Since oa.a™ ' = (o(a) a).(aa)"' € Z* and N,g(ca.a ') =1, it follows
from Hilbert’s theorem 90 that 6.2~ = oz.2* for some z € Z*. Hence, o(az" ) = az" ",
az '€ Q* and a € Q*.Z%.

It follows from the formula above that Sim(A,¢)/Z* ~ Q*/F*, hence
PSim(A, ) ~ PGL,(Q) is a rational algebraic group, and also G(A, ¢) = Nrd(Q).NZ*.
Since NZ* C Hyp(A, o), it follows that Hyp(A, ¢) = G(A, 6) = Nrd(Q).NZ*.

Type B,

An arbitrary absolutely simple adjoint algebraic group of the type B, is isomorphic
to a connected group PSim(A, ¢) where A is a central simple algebra of degree 2n + 1
over a field F with involution ¢ of the first kind.

The algebra A necessarily splits, hence the involution ¢ is adjoint to some quadratic
form ¢ (uniquely determined up to a scalar) of dimension 2z + 1. The algebraic group
PSim(A, o) is equal to the projective orthogonal group PGO(g) of the form ¢ which
is naturally isomorphic to the special orthogonal group O, (g) = Iso (A, ¢). This
group is known to be rational by Lemma 1.

Since ¢ is of odd dimension, it is not hyperbolic over any field extension of F,
hence Hyp(A, o) = 1. If x € G(A, o) = G(¢), i.e. x.q ~ ¢, then, taking the determinant
of the both sides, one sees that x € F*2 and G(A, ) = F*2

b

Type G,

An arbitrary absolutely simple adjoint algebraic group of type C, is isomorphic
to a connected group PSim(A, o) where A is a central simple algebra of degree 2z over
a field F with a symplectic involution .

Consider the following particular cases:

Case 1: n = 1.

In this case A is a quaternion algebra and o is the canonical involution. Hence,
Sim(A, ¢) = A* and PSim(A, 6) ~ PGL,(A) are rational algebraic groups of type
C, = A,. It is clear that G(A, 6) = Hyp(A, 6) = Nrd(A).

Case 2: n = 2.

The space of skew-symmetric elements of trivial reduced trace

V ={a € A such that 64 = — ¢ and Trd(a) =0}

carries the 5-dimensional quadratic form ¢(a) = 4* € F. The map Sim(A, 6) - O_(g),
a — Int(a)|y induces an isomorphism of simple adjoint algebraic groups
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PSim(A, o) ~ O (g) of type G, = B, [15; 23, Prop. 5.4]. In particular, the group
PSim (A, ) is rational.

Case 3: n is odd.
Lemma 3. — If n is odd, then G(A, ) = Hyp(A, o) = Nrd(A).

Proof. — Since n is odd, the algebra A is similar to a quaternion algebra Q = (a b)g
and the involution o is adjoint to a hermitian form % on some space V over Q with the
canonical involution on Q. Any element x in Nrd(A) is a norm of some quadratic
extension E/F which splits the algebra A. Since Ay splits, the involution oy is adjoint
to some skew-symmetric form over E and, therefore, is hyperbolic, hence, x € Hyp(A, o).
Conversely, assume that x € G(A, o), i.e. x.h~ kh The hermitian form % gives a
4n-dimensional quadratic form ¢ on V considered as an F-space. If &t = < a,, a5, ..., a, >
with g, € F*, then ¢ = ({4, b >> ® f where fis a quadratic form of dimension n over F
with the same diagonalization as 4. Thus,

8,050 f~(a,b>®f

hence the form << 4, b, x >)) ® f is hyperbolic. Since f is of odd dimension, it follows
that (< a, b, x ») is a hyperbolic form ([18, Ch. 8, Cor. 6.7]), i.e. x e Nrd(Q) = Nrd(A). m

In particular, we have proved that the group PSim(A, o) is R-trivial. This state-
ment is also a consequence of the following

Proposition 4. — Any absolutely simple adjoint group of the type G, with odd n is stably

rational.

Proof. — We apply Corollary 2 of Proposition 3 to the rational algebraic group
G = GL,(Q) and to the reduced norm homomorphism Nrd = «: G — G,, 5 (we use
the notation of the proof of Lemma 3). The kernel of « is the rational algebraic
group SL,(Q) (affine quadric with a rational point). Finally, by Lemma 3,
G(Ag, og) = Nrd(A;) = im «(E) for any field extension E/F. m
Type D,

An arbitrary adjoint algebraic group of the type D, (except for some non-classical
groups of the type D,) is isomorphic to a group PSim (A, s) where A is a central simple
algebra of degree 2n over F with an orthogonal involution 6. The group of F-points
of PSim (A, ) equals Sim_ (A, ¢)/F* where Sim (A, o) consists of proper similitudes,
i.e. similitudes a € Sim(A, o), such that Nrd(a) = p(a)".

Denote by C = C(A, ¢) the Clifford algebra of algebra with involution (A, o)
with the center L/F being an etale quadratic extension over F (section 0). By functo-
riality there is a natural homomorphism

o: PSim_ (A, 6) = Aut, (A, 6) — Aut,(C) = PGL,(C) = C*/L*.
26
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Lemma 4. — Hyp(A, 6) C Ny (Nrd G(A, o)).

Progf. — Let E be a finite extension of the field F such that the involution oy is
hyperbolic. Since the discriminant of oy, is trivial, we may assume that L C E, therefore,
L®;E=E X E and one of the two components of the Clifford algebra C(Ag, o),
say Gt = C*(Ag, o), splits ([2, Th. 3]). Hence,

New(E™) = Nop(Npgee(E* X 1)) € Ngy(Np g gu(Nrd(GF x C7))
= Ny ggr(Nrd C(Ag, o5)) C Ny x(Nrd C(A, 6)). =

Consider the following particular cases:

Case 1. n = 2.

Proposition 5 (compare [26, Prop. 1.15]). —
(1) Any adjoint group of the type Dy = A, is isomorphic to
PSim (A, ¢) ~ Ry (PGL,(C))

and hence is rational,

(2) Hyp(A, 6) = Ny Nrd C and G, (A, 6) = F*2. N Nrd C.

Proof. — 1. The homomorphism pinduces the desired isomorphism ([23], Prop. 5. 3]).

2. Let x € Ny Nrd(C). We will prove that x e Hyp(A, o).

Claim: we may assume that x is a norm in a field extension E/F such that the
discriminant of oy is trivial and one of the components of the Clifford algebra
C* = G*(Ag, oy) splits. For the proof of the claim assume first that L is a field. Then
there is a field extension E/L such that C splits over E and x is a norm in E/F. Clearly,
the split algebra C ®,, E is one of the components C*. Consider now the case L = F x F.
Then N Nrd C = Nrd(C*).Nrd(G~) and we may assume that x € Nrd(G*). Hence,
there exists a field extension E/F such that C* splits and x is a norm in E/F.

Now in order to prove that x € Hyp(A, o) it suffices to show that ¢ is hyperbolic
provided the discriminant is trivial and one of the components G* = C(A, o) splits.
The algebra A is isomorphic to the tensor product of two quaternion algebras Gt x G~
and the involution ¢ is isomorphic to the tensor product of two canonical involutions
([33, Prop. 4.5]). Since one of the components splits it follows that the corresponding
canonical involution, and hence o, is hyperbolic. We have proved that x € Hyp(A, o),
i.e. N,y Nrd CC Hyp(A, o). The inverse inclusion is given by Lemma 4. The second
equality follows from Theorem 1 and Proposition 1. m

Corollary ([26, Cor. 1.16]). — If disc(c) s trivial, then
PSim (A, ¢) ~ PGL,(C*) x PGL,(C")
where G = C*(A, o) and G, (A, ¢) = Hyp(A, 6) = Nrd(C*).Nrd(C™). m
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Case 2: n = 3.

Lemma 5. — Let E[F be a field extension. For a central simple algebra A of degree 6 over F
with an orthogonal involution o the following conditions are equivalent:
(1) o is hyperbolic over E;

(2) A is split over E and the involution o is adjoint to a 6-dimensional hyperbolic quadratic form;
(83) L can be embedded into E over F and the algebra C @ E is split.

Progof. — (1) = (2). Since the dimension of the hyperbolic s-hermitian form
associated to ¢ is even and the index of A is a 2-power, it follows that the algebra A
must be split.

(2) = (1) is trivial.

(2) = (3). The discriminant of a hyperbolic involution is trivial, hence
dE*? = disc(oz) = E*?, i.e. L can be embedded into E. The algebra C®, E is similar
to the Clifford algebra of a hyperbolic 6-dimensional quadratic form over E and,
therefore, is split.

(3) = (2). Since A, ~C®; C (see section 0) and C® E is split, it follows
that A is split over E. Hence, the involution oy is adjoint to some quadratic form ¢
over E of dimension 6 and trivial discriminant. The Clifford algebra C(¢) ~ C®, E
is split, hence ¢ is a hyperbolic form ([1]). m

Corollary. — We have Hyp(A, ¢) = Ny Nrd C and
PSim (A, 6) (F)/R =G, (A, 6)[F**. Nz Nrd C. m
Assume that the discriminant of the involution o is trivial (i.e. L splits, L ~ F x F).
In this case G~ C* x CG*°? for some central simple algebra C* of degree 4 over F.

The following statement is the consequence of the Corollary, Theorem 1 [23, Prop. 5.5]
and [26, Cor. 1.19].

Proposition 6. — Let disc(c) € F*%. Then:
1. The homomorphism o gives the isomorphism of algebraic groups

PSim (A, ¢) ~ PGL,(C*)
of the types Dy = Ag. In particular, the former group is rational.

2. Hyp(A, ¢) = Nrd(C*) and G, (A, 6) = F**.Nrd(C*). m

Case 3: The algebra A splits: A = End,(V).

In this case the involution ¢ is adjoint to some non-degenerate quadratic form ¢
on the space V. The groups Iso (A, o), Sim (A, ¢) and PSim _ (A, o) are respectively

equal to the special orthogonal group O, (g), the group of proper similitudes GO, (¢)
and the projective special orthogonal group PGO,(g) of the quadratic form ¢. The
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group Hyp(A, ¢) equals the subgroup Hyp(¢q) of F* generated by the norms in all finite
extensions E/F such that the quadratic form ¢ is hyperbolic. The groups G(A, ¢) and
G, (A, o) are equal to G(g). The algebra G(A, ) equals the even Clifford algebra C,(q)
with the center L.

The following statement gives examples of stably rational groups PGO_ (g).

Proposition 7. — If ¢ = f®y g is the tensor product of a Pfister form f and a form g of
odd dimension over ¥ then the group PGO  (q) is stably rational.

Proof. — We apply Corollary 1 of Proposition 3 to the rational variety X of
anisotropic vectors in the space of definition of f and to the morphism «: X — G,, 5
defined by the equality «(v) = f(v). Any fiber of this map with a rational point is an
affine quadric with a rational point and hence is a rational variety. Finally, the image
of «(E) for any field extension E[F, i.e. the set of non-zero values of f3; is equal to the
group of multipliers G( fg) = G(¢y) since f is a Pfister form and the dimension of g
is odd ([18, Cor. VIII.6.7, Cor. X.1.7]). m

The main result of the section is the following

Theorem 2. — Let A be a central simple algebra of even degree over a field F with an orthogonal
involution o. If disc(c) is not trivial and ind G(A, ) > 4, then the group PSim (A, o) is
not R-trivial and hence is not stably rational.

We start with some preliminary results. Let D be a central simple algebra over
a field F.

Lemma 6 ([19, Prop. 7; 42]). — A monic rational function f(t) € F(t)* belongs to
Nrd(Dy,,) if and only if, for any irreducible polynomial p(t), the p(t)-adic valuation of f(t) is
divisible by ind Dy ,,. m

Let L=F (\/Z), d € F*, be a quadratic extension. Denote by X the affine conic
curve given in A% by the equation #* — dv* = a, a € F*. We assume that X is not split
or, equivalently, X(F) =0, or a ¢ Ny 5(L*). The degree of any closed point in X
is even. The conic curve X is split over L, X; ~ Al — pt.

Lemma 7. — If ind(Dy) is divisible by 4 then

a ¢ F(X)**. Ny (Nrd Dyx,).

Proof. — Assume that
w — dv’ = a = f*.Nyxypx (8)
where f € F(X)* and g € Nrd(D,,x,). Hilbert’s theorem 90 then yields » + » Vd = Sfell~1

for some [/ e L(X)*. Replacing f by fll, we have u + 2 Vd = fgh* with feF(X)*,
g € Nrd(Dy,x,) and ke L(X)*.
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Let x" and x” be the two L-points at infinity on the projective conic X;,, which
are defined by div (x + 2Vd) = x' — x”’. Then

1=, (u+2Vd) = 0,(f) + 2,(e) + 20,.(h).

By Lemma 6, v,,(g) is even, so that v, ( f) is odd. Let x be the closed point (of degree 2)
at infinity of the projective conic X. From f e F(X)* we conclude that »,(f) is an odd
integer. Since the degree of a closed point in X is even, it follows that there exists a closed
point y € X such that 2,(f) is odd and the degree of y is twice an odd number. Let »’
be a closed point in X over y. The degree of y' is either an odd number or twice an
odd number. Since Dy, has an index divisible by 4, the index of Dy, is even in all cases.
By Lemma 6, this implies that v, (g) is even. Now v,(f) = 7,(f) is odd. From the
equality 0 =o, (u+ 0 \/Z) =0, (feh*) = v,(f) + v,(g) + 2v,(k) we get a contra-
diction. m

Lemma 8. — Let L =F (\/2) be a quadratic extension and D be a central simple algebra
over ¥. Then for any quadratic form f of even dimension and trivial discriminant there exists a field
extension E[F, linearly disjoint from L|F, such that the group G( fg) is not contained in the norm
group of the extension EL/E and ind(Dyg;) = ind(D,).

Progof. — We proceed by induction on 2z = dim f. If n = 1, then f is hyperbolic
and we can take E = F(¢) since t € EX = G(fg) and ¢ is not a norm in the extension
EL/E. In the general case we may assume thatz > 2 and write fin the form 2 L { u, 0, w )
for a quadratic form % of dimension 2z — 3 and u, v, w € F*. Hence in the Witt ring
of F, f=g + x.<{{a, b)) for the form g = £ L { — usw > of dimension (2n — 2), trivial
discriminant and ¢ = — v, § = — uw, x = u. By the induction hypothesis, replacing F
by some extension, we may assume that the group G(g) is not contained in the norm
group of the extension L/F. Choose any ¢ € G(g) that is not a norm in the extension L/F.
In particular, the quaternion algebra QQ = (¢, d); does not split.

Consider the function field E of the projective quadric given by the form
¢g=<K1,—a, —b,ab, — ¢ ). Since ¢ € G(K{a,b>)g) and ¢ € G(gy), it follows that
¢ € G(fg).- On the other hand, the function field of the quadric given by ¢ does not
change the index of any central simple algebra ([21, Cor. 3 of Th. 1]). In particular,
ind(Dg,) = ind(D) and ind(Q ) = ind Q , hence Q ; does not split, i.e. ¢ is not a
norm in the extension EL/E. m

Proof of Theorem 2. — Assume first that A is split. Then the involution ¢ is adjoint
to some quadratic form ¢. Denote by dF*? the discriminant of ¢ and by D the Clifford

algebra C(g). Then Cy(g) is similar to D;, where L = F (\/E) By assumption ind D, > 4.
Consider the quadratic form f= ¢l {1, — d ) of trivial discriminant. By Lemma 8,

we may assume (extending the ground field if necessary) that there exists a € G(f)
such that a ¢ N (L*).
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Consider the affine conic curve X given by the equation #* — dv* = a. It is not
split since @ ¢ Np,x(L*). By Lemma 7, a ¢ F(X)**.Nyx,px (Nrd Dyx,). Replacing F
by F(X) we may assume that a ¢ F**.Np(Nrd D) but ¢ € Ny(L*). Lemma 4
shows that a ¢ F**.Hyp(g). It follows from the equality Ny (L*) = G((1, —d))
that a e G(f) N Nyz(L*) C G(g), hence a represents a nontrivial element in
PGO_ (9) (F)/R = G(¢)/F**.Hyp(g).

Now consider the general case. Let Y be the Severi-Brauer variety corresponding
to the algebra A, E = F(Y) be the function field of Y. By the index reduction formula
([24, § 5; 32, Th. 1.3, Th. 1.6]),

ind(C(A, o) ®, E) = min(ind C(A, o), ind(C(A, o) ®5 A)) > 4

since the algebra G(A, ) ®, A is similar to the conjugate of C(A, ¢) over L (section 0).
But A is split over E and by the first part of the proof the group PSim_ (Ag, o5) (and
hence PSim (A, 6)) is not R-trivial. m

The following Corollary is a particular case of the Theorem 2 when algebra A
is split.

Corollary. — Let q be a non-degenerate quadratic form of even dimension over a field F. If
the discriminant of q is not trivial and ind Cy(q) > 4, then the group PGO _(q) is not R-trivial
and hence is not stably rational. m

3. Absolutely simple adjoint groups of rank 3

In this section we consider absolutely simple adjoint classical groups of rank 3.
Groups of the types B; and C; are R-trivial (section 2), hence we will consider the type
D; = A;.

An arbitrary absolutely simple adjoint group of type D, is isomorphic to
PSim (A, o) for some central simple algebra A over F of degree 6 with an orthogonal
involution ¢. As in section 2 denote by C the Clifford algebra of (A, o). It is a central
Azumaya algebra of degree 4 with involution < of the second kind over the discriminant
etale quadratic extension L/F. The natural group homomorphism

PSim _ (A, o) — PSim (G, 7)

is an isomorphism of simple adjoint groups of type Dy = A; ([23, Prop. 5.5]).
Denote disc(s) by dF*% deF*; then L =F (\/Z) If the discriminant is trivial,
dF** = F*% then L=TF X F and C is the product C* X C~ of two central simple
algebras of degree 4. In this case PSim_ (A, ¢) ~ PGL,(C") is a rational group (Pro-
position 6).
We will assume that the discriminant dF*? is not trivial, i.e. L is a field. By the
Corollary of Lemma 5

PSim, (A, o) (F)/R = G, (A, o)/F*2. Ny Nrd C.
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Consider the following four cases:

1. The algebra C is split.

2. Ind C = 2 and A is split.

3. Ind C =2 and A is not split.
4. Ind C = 4.

Case 1: The algebra C is split.

By the formula above PSim_ (A, ) (F)/R = G_(A, 6)/Nyp(L*). On the
other hand, it is known that G, (A, ¢) C N (L*) ([26, Theorem A]), hence
G, (A, 6) = Ny p(L*) and the group PSim_ (A, o) is R-trivial in the case 1. Applying
Corollary 2 of Proposition 3 to the torus G = Ry (G, 1) and the norm homomorphism
Npr = «: G - G, ; one sees immediately that the variety of the group PSim_ (A, o)
is stably rational in this case.

Case 2: Ind C = 2 and A s split.

The involution ¢ is adjoint to some quadratic form ¢ of dimension 6 and discri-
minant dF*%

We claim that there is a quadratic form ¢’ of dimension 4 and the same discri-
minant dF*? such that G(¢) = G(¢') and Cy(g) ~ Cy(¢')- Indeed, if ¢ is isotropic then
¢~ ¢ LH and ¢’ clearly satisfies the properties we need.

Assume that ¢ is anisotropic. Since by assumption, the degree 4 algebra C ~ C(¢y,)
is not a skewfield, it follows that the Albert form ¢; of C is isotropic ([1]). Hence,
g~ q'L{x, —xd> for some x e F* and some 4-dimensional quadratic form ¢"’ of
trivial discriminant ([18, Lemma VII.3.1]). Replacing ¢ by some multiple we
may assume that ¢ = {(b,¢)) for b,ceF*. Consider the quadratic form
¢ =<1, — b, — ¢, bed ) of discriminant dF*2. By the theorem of Dieudonné [10, Th. 2],
a similarity factor of a quadratic form of even dimension is a norm of the discriminant
extension, so that G(g), G(¢") C Ny x(L*). Since in the Witt ring ¢ — ¢’ and
¢ —¢" is a multiple of <((d)> and G({{(d)>)) = Npg(L*), it follows that
G(g) = Nys(L*) n G(¢"") = G(¢'). On the other hand, C = Cy(g) ~ (b, ¢);, ~ Cy(q").

By Proposition 5,

G, (A, o) = G(g) = G(g) = F**.Ny5 Nrd(Co(¢))
= F*2. Ny Nrd(Cy(g)) = F**. Ny Nrd C,
hence by the Corollary of Lemma 5 the group PSim_ (A, o) is R-trivial in case 2.

Proposition 8. — In case 2 the group PSim_ (A, o) is stably rational.

Proof. — Denote by D the quaternion algebra (b, ¢)y, so that
G (A, 0) = G(g) = Nyp(L¥) N Nrd(D).
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Let G be a subgroup in Ry (G, ;) X GL,(D) consisting of pairs (x,) such that
Npr(¥) = Nrd(»). The kernel of the homomorphism

G — Gm,]i" (x,}’) land NL/F(x) = Nrd(y)

equals R} (G, 1) X SL;(D) and hence is a rational variety. The variety of G is
defined by

W —d* =x*—b?® — ¢+ bet* + 0

which is an open subset in a smooth affine quadric with an F-rational point, hence is
an F-rational variety. By Corollary 2 of Proposition 3, PSim (A, o) is stably rational. m

Case 3: Ind C = 2 and A is not split.

Since the index of A is a 2-power, in this case A = Endy(V) where Q is a qua-
ternion division algebra over F and V is the right Q-vector space of dimension 3.

By the results of section 0, the algebra A; is similar to G®; G which splits by
assumption. Hence, A is split over L, therefore Q = (d, b); for some b € F* is a qua-
ternion division algebra over F and V is the right Q-vector space of dimension 3. Denote
the generators of Q by ¢ and j::2 =4, j2 =10, j = — ji.

The algebra A splits over L, hence the involution oy, is adjoint to some quadratic
form ¢ over L of dimension 6 and trivial discriminant. Since G(g) is similar to G over L,
it follows that ¢ is an Albert form for C. By assumption, C is not a division algebra,
hence ¢ is an isotropic form ([1]), therefore, the involution ¢, is isotropic.

Lemma 9. — Let (V, k) be a (— 1)-hermitian form over Q with respect to the canonical
involution. Then hy, is isotropic over L if and only if h over F represents xi for some x € F*.

Proof. — Assume that 4, is isotropic. If % is isotropic over F, then it represents xz
for any x e F*. Let % be anisotropic over F. By assumption, there exist 4, » € V such
thatu + 2V d + 0and / (u + 9V d, u + vVd) = 0 or, equivalently, k(x, u) + dk(s, v) = 0
and A(u, v) €F.

Assume first that « + vz = 0. Then v+ 0, ¥ = — v and

0 = k(u, u) + dh(v, v) = — th(v, v) ¢ + dh(v, v).
It follows that (v, v) commutes with z in Q , therefore, 0 = k(v,v) e F(z) = F 4+ F.3,

and k(v, v) € F.7 since A(v, v) = — k(v, v).
If u 4+ vi+ 0 then

0=+ h(u + vi,u + ) = — dh(v, v) — ih(v, v) ¢ + h(u, v) i — th(v, u) = x1

for some x € F* since k(u,v) = — h(v,u) e F and dg + iqi e F.: for any pure qua-
ternion g.
Conversely, if A(u, u) = xi for some « € V and x € F*, then one easily checks that

h(wi +uVdui+uVd) =0 m
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The canonical involution on Q is symplectic, so that the orthogonal involution &
on A is adjoint to some (— 1)-hermitian form £ of dimension 3 on V over Q with respect
to the canonical involution on Q . Since the involution o, is isotropic, it follows that
k is isotropic over L. By Lemma 9, £ = &’ L { x1) for some x € F* and some (— 1)-her-
mitian form % on 2-dimensional subspace V'C V. It follows from the equality
disc(< x¢ ») = dF** that disc(#’) e F*%. Note also that if ¢ =) — dz® € Ny ,z(L*)
for y,zeF then (y+ z).xi.(p + 21) =cxi, hence c¢{xi )~ (x), therefore,
Ny (LX) C G(C x2 )).

Consider a central simple algebra A’ = End, V' with the orthogonal involution ¢’
adjoint to a (— 1)-hermitian form %’ of trivial discriminant. Then A’ = Q ,®,Q ,,
6 = o6, ® 6, where Q ; are quaternion algebras and o; are canonical involutions ([16]).
The Clifford algebra CG(A’, ¢’) is isomorphic to Q ; X Q , ([33, Prop. 4.5]). Note that
Q.9,Q, 2 A'~Q.

Let ¢’ be a 4-dimensional quadratic form associated to the involution ¢’ over L.
Since the form < xz ) is hyperbolic over L. by Lemma 9, we have: ¢ ~ ¢’ L H. Hence,

C = C(A, o) ~ Glg) ~ C) ~ C*(Ay, o) = (Q),, for i =1,2.
Lemma 10. — We have F** Nz Nrd G = Ny »(L*) nNrd Q , for i = 1, 2.

Progf. — Assume that ¢ € Nz Nrd G. Then there exists a finite extension E/L
such that E splits G and ¢ is a norm of E/F. The algebra C is similar to (Q ,);, hence
E splits Q; and ¢ e Nrd Q ;.

Conversely, assume that ¢ € N x(L*) N Nrd Q ;. Then ¢ is the norm of some
quadratic extension E over F which splits Q ;. It is known that

NL/F(LX) N NE/F(EX) = sz'NP/F(PX)
where P = L®, E ([11, 2.13]). Hence,
¢ € F*2 Ny (P*) C F*2. Ny, Nrd C,

since P splits C. m

Proposition 9. — The following equality holds for 1 =1, 2:
PSim (A, o) (F)/R
= (Npp(L*) N Nrd Q ;.Nrd Q ,)/(Nyx(L*) nNrd Q).
Progof. — We prove first that
G, (A, 6) = Nyp(L*) n G (A, &').
If c e Npp(L¥) n G, (A", '), then ¢.h' ~ k' and ¢.{xi) ~ (), hence ¢.k =~k and
¢ € G(A, o). Since ¢ e N x(L*) and A is not split, it follows that ¢ e G_(A, o) by
[26, Th. A]. Coversely, if ¢ € G (A, o) then ¢.k~ % and ¢ € Ny (LX) ([26, Th. A]),
hence ¢. (x>~ (xi) and ¢.k' ~ ¥, c e G(A’, ¢') = G (A, ¢") ([26, Cor. 1.16]).

27



210 A. S. MERKURJEV

It follows from the Corollary of Proposition 5 that
G,(A"6') =Nrd Q,.Nrd Q ,,
hence G, (A, 06) = Npp(L*) " Nrd Q;.Nrd Q ,.

The statement follows now from the Corollary of Lemma 5 and Lemma 10. m

Lemma 11. — There exists a field extension E[F, linearly disjoint from L|F, such that
Nppe(EL™) ¢ Nrd(Q 4)g and Nrd(Q ,)g ¢ Nrd(Q ,)g-

Progf. — The algebra (Q,); is similar to C and hence is not split.
Since A ~ Q ; ®; Q , is not split, it follows that Q , = Q ,.
Let

Q.z = (az’ bZ)F) E = F(tla ty, U3, t4)a f= t? - dtg € NEL/E(EX)’
g=1 —ayt; — by t; + a, b, t; e Nrd(Q ,) .

Assume that f € Nrd(Q ,)g. By the Subform Theorem ([18, Th. 2.8]), theform < 1, — d )
is the subform in the reduced norm form of Q ,, hence Q , is split by L, a contradiction.
If ¢ e Nrd(Q ,) then again by the Subform Theorem, the reduced norm forms of Q ,
and Q) , are isomorphic, hence Q ; ~ Q ,, a contradiction. m

Denote by H"(F) the Galois cohomology group H"(Gal(F,, [F), Z/2Z). For any
x € F* denote by (x) the class in H'(F) corresponding to xF*? with respect to the canonical
isomorphism F*[F*2 ~ HY(F).

Lemma 12 ([3, Satz 5.6]). — Let Q = (ay, b))y and Z be a projective quadric given
by the form {1, — a,, — by, a, by, — ¢ >, ¢ € F*. Then the kernel of the canonical homomorphism
S H3(F) - H3(F(Z)) is generated by (a;) Y (by) L (¢). m

Corollary. — The intersection F* N Nrd(Q , ®, F(Z)) s generated by Nrd Q ; and c.
Proof. — If e e F* N Nrd(Q , ®; F(Z)), then (a,) U (b;) VU (¢) ekcr(f), i.e.
(a1) U (b)) U (e) = (ar) L (b)) U (¢)
by Lemma 12, hence ¢ € *.Nrd Q , by [25, Th. 12.1]. m
Proposition 10. — In case 3 the group PSim (A, 6) is not R-trivial.

Proof. — It follows from Lemma 11 that there is a field extension E/F and elements
x € Ngg(EL*) and y e Nrd(Q ,®y; E) which do not belong to Nrd(Q,®;E).
Replacing F by E we may assume that x € N i (L*), yeNrd Q , but %,y ¢ Nrd Q ,.
Let Z be the quadric given by the quadratic form <1, — a,, — b,, a, b;, — xy .
Since x and y do not belong to Nrd Q ,, it follows from the Corollary of Lemma 12
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that y ¢ Nrd(Q ; ®; F(Z)). Therefore, replacing F by F(Z) we may assume that
xp € Nrd Q ;, but » ¢ Nrd Q , and hence x ¢ Nrd Q ;. On the other hand,

x=xy.97' € Ny p(L*) " Nrd Q ,.Nrd Q ,,

i.e. by Proposition 9, x represents a non-trivial element in PSim, (A, o) (F)/R. m

Case 4: Ind C = 4.

It follows from Theorem 2 that the group PSim (A, ¢) is not R-trivial in this case.
We have proved the following

Theorem 3. — Let A be a central simple algebra of degree 6 over a field ¥ with orthogonal
involution o, and G = CG(A, o) be the Clifford algebra of (A, ). Then
I. If disc(o) is trivial, then the group PSim (A, o) is rational and hence R-trivial.
II. If disc(c) is not trivial, then
(1) if G splits, or if ind G = 2 and A splits, then the group PSim (A, o) is stably rational
and hence R-trivial;
(2) if ind C =4, or if ind C = 2 and A is not split, then the group PSim (A, o) is
not R-trivial and hence is not stably rational. m

Corollary. — Let q be a non-degenerate quadratic form of dimension 6 over F. Then PGO _(q)
is not stably rational if and only if the discriminant of q is not trivial and Cy(q) ts a division
algebra. m

4. Examples

In this section we give examples of not stably rational adjoint simple groups of
type D,, n> 3 over “small” fields.

Let Q = (a, b); be a division quaternion algebra over a field F, A = M, (Q).
Denote by Q' the subspace of dimension 3 in Q) of pure quaternions (elements of trace
zero). For a (— 1)-hermitian form % = {xy, %, ..., %, > with x;, %, ...,x, €Q*
over Q with respect to the canonical involution on Q we consider the adjoint orthogonal
involution g, on A.

Proposition 11. — Let n be an odd integer, n > 3 and d € — Nrd(Q ). Then

(1) There exists a (— 1)-hermitian form as above such that disc(s,) = d.F**.
(2) If d¢D(K a, b, — ab >) UF*? and disc(s,) = d.F*?, then PSim (A, q,) is a
not stably rational adjoint simple group of type D, .

Proof. — 1. It is easy to see that any element in Q is a product of two and
hence n pure quaternions. Therefore, if d = — Nrd(x) for some x» € Q*, there exist
X1, X9, ..., %, € QF such that x is the product of all x;. Taking & = (%, %, ..., %, D,
we have disc(s;) = 2222 ... 22 F*? = — Nrd(x) F*? = dF*? (see example in section 0).
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2. By assumption, the quadratic discriminant extension L = F (V/d) does not
split Q and hence A. The tensor square of the Clifford algebra C of (A, o,) over L is
similar to A (section 0) and therefore is not split. Thus, the exponent (and hence the
index) of G s atleast 4 and by Theorem 2 the group PSim (A, ¢,) is not stably rational. m

The situation described in the Proposition 11 can be realized over an arbitrary
number field F. Consider any quaternion algebra () which is ramified at some finite
place v. Then any totally negative d €e F* — F*? being a square in the completion F,
satisfies the condition of the Proposition 11.

Example. — Consider the field F of rational numbers, Q = (— 1, — 1); with the

standard base 1, 7, j, Z ramified atv = 2;d = — 28; & = <3i+2j+k’2i’i>in—2—3H'

Then the group PSim (M, (Q), ;) is an adjoint simple not stably rational group of
the type D, over F.

Now consider the case of an even number z > 4. Since the tensor square of the
Clifford algebra C of a central simple algebra of degree 2z with an orthogonal involution
splits, over a number field we always have ind C < 2 and we cannot apply Theorem 2.
Instead of a number field, we consider the field of rational functions F = K(¢) over
some field K. Assume that we are given ga,b,c¢,d € K* such that the quaternion

algebra (a, b)x does not split over the biquadratic extension K (\/ 6 \/2) (such
examples clearly exist over an arbitrary number field K). Hence by [34, Prop. 2.4]

C = (a,b);® (¢, ) ®: F (Vd) is a division algebra of degree 4 over F (V).
It is clear that C is similar to the even Clifford algebra of the quadratic form
¢ =<ad, b, —ab, — ¢, — t,ct ) L (n — 3) H over F. Hence, by Corollary of Theorem 2,
PGO _ (¢) is an adjoint simple not stably rational group of type D, over F = K(t).
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