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ORBIHEDRA OF NONPOSITIVE CURVATURE
by WERNER BALLMANN1 and MICHAEL ERIN2

ABSTRACT. A 2-dimensional orbihedron of nonpositive curvature is a pair (X, F), where X is a 2-dimensional sim-
plicial complex with a piecewise smooth metric such that X has nonpositive curvature in the sense of Alexandrov
and Busemann and r is a group of isometrics ofX which acts properly discontinuously and cocompactly. By analogy
with Riemannian manifolds of nonpositive curvature we introduce a natural notion of rank 1 for (X, T) which turns
out to depend only on F and prove that, if X is boundaryless, then either (X, T) has rank 1, or X is the product
of two trees, or X is a thick Euclidean building. In the first case the geodesic flow on X is topologically transitive
and closed geodesies are dense.

1. Introduction

The idea of considering curvature bounds on metric spaces belongs to Alexandrov
[Ale], Busemann [Bus] and Wald [Wal]. Busemann initiated the theory of spaces of
nonpositive curvature. Later, Bruhat and Tits [BrTi] showed that there is a natural
metric of nonpositive curvature on Euclidean buildings and used it to prove a generaliza-
tion of the theorem of Gartan on maximal compact subgroups of semisimple Lie groups.
The work of Gromov (see for example [Gri] and [Gr2]) led to a revival of the general
theory of metric spaces with curvature bounds and to applications in Riemannian
geometry, combinatorial group theory and other fields.

In this paper we discuss the rank rigidity for singular spaces of nonpositive curvature.
To a large extent the main concepts and ideas introduced below are a natural develop-
ment of the corresponding aspects of the rank rigidity theory for Riemannian manifolds
of nonpositive curvature (see [BBE], [BBS], [Ba3], [BuSp], [EbHe]).

An orbispace is a pair (X, T), where X is a simply connected topological space
and r is a group of homeomorphisms of X acting properly discontinuously. An orbi-
space (X, F) is compact if F acts cocompactly. An orbispace (X, F) is an orbihedron if X
admits a F-invariant triangulation.

We are interested in orbispaces and orbihedra of nonpositive curvature, that
is, we require in addition that X has a complete F-invariant geodesic metric d of non-
positive curvature in the sense of Alexandrov and Busemann. As in the smooth case,
asymptote classes of geodesic rays define the space X(oo) of points at infinity and
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170 WERNER BALLMANN AND MICHAEL BRIN

X == X U X(oo) has a natural F-invariant topology. If X is locally compact, then X
is compact. Here are some examples of spaces of nonpositive curvature.

1. Smooth Riemannian manifolds with nonpositive sectional curvature.
2. Trees with interior metrics.
3. Euclidean buildings with their canonical metrics (defined up to a constant),

see [Bro, Chapter VI],
4. (w, n) -spaces for mn ̂  2(w + ^) with their canonical piecewise flat metrics.

Such a space is a 2-dimensional GW-complex X with the following properties:
the attaching maps are local homeomorphisms, the boundary of each face consists of
at least m edges (counted with multiplicity) and every simple loop in the link (see Section 2
for the definition of a link) of a vertex consists of at least n edges. The natural flat metric
on X makes each face of X with k edges an isometrically immersed regular Euclidean
A-gon. Such spaces arise naturally in combinatorial group theory, see [LySc] and [BaBr],

Let (X, F) be a compact orbispace of nonpositive curvature. A geodesic a : R -> X
is called T-closed if there is an isometry <p e F translating cr that is, 9(0^)) = cs(t + to)
for some IQ =)= 0 and all t e R. A F-closed geodesic cr and an isometry 9 e F translating a
are said to have rank 1 if a does not bound a flat half plane. The orbispace (X, F) has
rank 1 if F contains a rank 1 isometry.

Theorem A. — Let (X, F) be a compact orbispace of rank 1 and suppose that X(oo) contains
more than two points.

Then for any two nonempty open subsets U, V C X(oo) there is cp e F such that
<p(X(oo)\U) C V and ^~l(X{oD)\V) C U. Moreover, there is a T-closed geodesic cr of rank 1
with cr(— co) e U and o-(oo) e V.

This is the key property of rank 1 orbispaces. Applications of this property are
discussed in Theorems D and E below.

Theorem B. — The property of a compact orbispace (X, F) of nonpositive curvature to have
rank 1 depends only on F.

This theorem generalizes a result of Eberlein [Eb2]. The main idea of the proof
goes back to Morse [Mor], In fact, we obtain an algebraic criterion for an element of F
to have rank 1. Theorems A and B are our main motivation for considering rank 1
orbispaces.

Let X be a locally finite simplicial complex. A piecewise smooth Riemannian metric g
on X is a family of smooth Riemannian metrics g^ on the simplices A of X such that
8A\-s = g-s f01* ^y simplices B and A with BC A.

Let g be a piecewise smooth Riemannian metric on X. Then the lengths of curves
in X are defined and the induced distance function d makes X an interior metric space.
Assume that there is a uniform bound on the geometry of the simplices in X. Then d is
complete, and hence, geodesic, since X is locally compact.
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Let (X, F) be an orbihedron with X locally finite. We say that a r-invariant
metric d on X is piecewise smooth if there is a r-invariant triangulation on X with a
r-invariant piecewise smooth Riemannian metric g such that d is the induced distance
function.

A ^"simplex in X is called a boundary simplex if it is adjacent to exactly one (k + 1)-
simplex. An ^-dimensional orbihedron (X, F) is called boundaryless (or we say that it
is without boundary) if there are no boundary simplices in X with respect so some (and
hence any) triangulation of X. If (X, F) is a 2-dimensional orbihedron of nonpositive
curvature, then X contains a r-invariant suborbihedron X' without boundary and of
dimension ^ 2 such that a) X' is a F-equivariant strong deformation retract of X,
b) the action of F on X' is effective and c ) the induced metric on X' is piecewise smooth
and of nonpositive curvature (see Section 2). If (X, F) is a compact 2-dimensional
orbihedron of nonpositive curvatuve, then every geodesic segment of X is contained in
a complete geodesic (one defined on the whole real line) iff (X, F) is boundaryless.

The following theorem is the main result of this paper.

Theorem C. — Let (X, F) be a compact 2-dimensional boundaryless orbihedron with a
piecewise smooth metric of nonpositive curvature. Then either

(i) (X, F) is of rank 1, or
(ii) X is the product of two trees endowed with the product metric of two interior metrics^ or
(iii) X is a thick Euclidean building of type A^, B^ or Gg, endowed with its canonical metric.

In Gases (ii) and (iii) every geodesic is contained in a flat plane. In Case (i) we
prove that there is a F-closed geodesic a such that either a) a passes through a point
in an open face where the Gauss curvature of X is negative, or b) a passes from one
face to another through a point in an open edge e where the sum of the geodesic curva-
tures of e with respect to the two faces is negative, or c ) a passes through a vertex v and
the distance between the incoming and outgoing directions of a in the link of v is > TC.
We call a hyperbolic if one of the cases a), b), or c ) occurs.

Denote by G(X) the set of unit speed geodesies cr: R -> X, endowed with the
compact-open topology. The geodesic flow g1 acts on G(X) by ^(cr) (s) = cs(s + t).

Theorem D. — Let (X, F) be a compact 2-dimensional boundaryless orbihedron with a
piecewise smooth metric of nonpositive curvature. If (X, F) has rank 1, then

(i) hyperbolic T-closed geodesies are dense in the space of geodesies;
(ii) the geodesic flow is topologically transitive modulo Y.

Note that in Gases (ii) and (iii) of Theorem G the geodesic flow has continuous
first integrals. In a later paper we will study the asymptotics of the number of F-closed
geodesies. In the rank 1 case the arguments are very similar to the arguments ofG. Knieper
in [Kni].
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Theorem E. — Let (X, F) 6^ a compact 2-dimensional boundaryless orbihedron with a
piecewise smooth metric of nonpositive curvature.

Then either T contains a free nonabelian subgroup or X is isometric to the Euclidean plane
and r is a Bieberbach group of rank 2.

This result is analogous to the Tits theorem on free subgroups of linear groups,
see [Til]. Theorem E is a consequence of Theorem G and the following result.

Theorem F. — Let X he a Euclidean building and V a group of automorphisms of X acting
properly discontinuously and cocompactly.

Then either F contains a free nonabelian subgroup or X is a Euclidean space and F is a
Bieberbach group whose rank is dim X.

For thick Euclidean buildings of dimension ^ 85 this follows from Tits5 theorem
quoted above [Til] and his classification of spherical buildings of rank ^ 3 (see [Ti2]).

The proof of our main result, Theorem G, consists of two parts. In the first part
we consider the case when all faces of X are flat Euclidean triangles and all links have
diameter n and show by an elementary argument that X is either a product of two trees
or a thick Euclidean building of type Ag.Bg or Gg. This part is related to the (unpublished)
result of B. Kleiner [Kle] that if every geodesic of an ^-dimensional complete simply
connected space X of nonpositive curvature is contained in an ^-flat, then X is a Euclidean
building or a product of Euclidean buildings.

In the second and main part of the argument we start by considering the following
cases: a) the Gaussian curvature of a face is negative at an interior point, b) there is an
edge e with adjacent faces ̂  and^ s^d a point x in the interior ofe such that the sum of
the geodesic curvatures of e at x with respect to f^ and f^ is negative. In both cases we
conclude that (X, F) has rank 1, thus reducing the general discussion to the case when
all faces of X are Euclidean triangles but at least one of the links has diameter > TT. The
existence of a rank 1 isometry in F in the latter case would follow easily if there were
a r- and ^-invariant measure which is positive on open sets of geodesies. In Section 3
we construct a natural generalization of the Liouville measure which is invariant under
isometrics and the geodesic flow. However, this measure is concentrated on the set of
geodesies that do not pass through vertices.

After discussing some preliminaries in Section 2, we construct an analogue of
the Liouville measure in Section 3. Theorems A and D are proved in Section 4, Theorem B
in Section 5, Theorem G in Sections 6 and 7, Theorems E and F in Section 8. Sections 4
and 5, Sections 6 and 7, and Section 8 can be read independently.

We express our gratitude to M. Gromov who encouraged us to study singular
spaces and with whom we had many useful discussions. We thank our families for the
infinite patience during the time we worked on this paper.
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2. Preliminaires

Let X be a metric space with metric d. A curve c : I -> X is called a geodesic if
there is v ^ 0, called the speed, such that every t e I has a neighborhood U C I with
d(c{t^), c{t^)) == v I /i — /2 | f01* an ^i? ^2 e U. If the above equality holds for all ^, ^ e I,
then <; is called minimal or minimizing.

We say that X is a geodesic space if every two points in X can be connected by a
minimal geodesic. A locally compact and complete metric space X is geodesic if it is
interior, that is, if the distance between every two points in X is the infimum of the lengths
of curves connecting them. We assume from now on that X is a complete geodesic space.

A triangle A in X is a triple (oi, erg, 03) of geodesic segments whose end points
match in the usual way. Denote by S^ the simply connected complete surface of constant
Gauss curvature K. A comparison triangle A for a triangle A C X is a triangle in S^ with
the same lengths of sides as A. A comparison triangle in S^ exists and is unique up to
congruence if the lengths of the sides of A satisfy the triangle inequality and, in the case
K > 0, if the perimeter of A is < 2TC/VK. Let A = (o^, o^, 03) be a comparison triangle
for A = (cTi, erg, 03), then for every point x e c^, i == 1, 2, 3, we denote by x the unique
point on (^ which lies at the same distances to the ends as x.

Let d denote the distance functions in both X and S^. A triangle A in X is a CA T^
triangle if the sides satisfy the triangle inequality, the perimeter of A is < 27T/A/K for
K > 0, and if

d(x^)^d{x^)

for every two points x,jy e A.
We say that X has curvature at most K and write K^ < K if every point x e X

has a neighborhood U such that any triangle in X with vertices in U and minimizing
sides is CAT^. Note that we do not define K.x. If X is a Riemannian manifold, then
Kx ̂  K iff K is an upper bound for the sectional curvature of X.

We call X a Hadamard space if X is simply connected, complete, geodesic with
Kx^ 0. The following result if proved in [AIBi], see also [Ba2].

2.1. Hadamard-Cartan Theorem. — If^ta Hadamard space, then

(i) for any two points x,y e X there is a unique geodesic or^ : [0, 1] -> Vifrom x to y and a^y
is continuous in x, y\

(ii) every triangle in X is GAT^.

Let X be a Hadamard space and let CTI, c^ be two unit speed geodesic rays going
out o f ^ e X . We define /-{o^y ^g) ln tne following way. Let A be a comparison triangle
with K = 0 for the triangle A = (^i([0, s]), ^([O, t]), o^), where a^ is the geodesic
from CTi(j') to G^{t). Since triangles in X are GATg, the angle a(^, t) of A at x decreases
as s and t decrease. We set

^(^1^2) = ^lim^a(^).
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Let x,jy, z e X withjy, z 4= A? and let y^, Ya^ be the unit speed geodesies from x to y, z
respectively. Set

L^y.z) == ^(y^Yj-

2.2. Proposition. — (See [Ba2], Proposition 1.5.2.^ Let X be a Hadamard space and
let A be a triangle in X with sides of length a, b, c and angles a, (B, y at ̂  opposite vertices,
respectively. Then

(i) a + p + y ^ TT;
(ii) (Cosine Inequality) c2 ̂  a2 + 62 — 2<z6 cos y.

/^ <?^A case, equality holds if and only if A z^/to, ̂  zj, A is the boundary of a 2-dimensional
convex region in X isometric to the region bounded by the comparison triangle in the flat plane. D

It follows easily that for any two geodesies a^ ^ in X, the function d{a^t), a^t))
is convex in t. A more special property is as follows.

2.3. Corollary. — Let X be a Hadamard space. Let x^, x^ e X be two distinct points and
let a be the geodesic connecting them. Assume that or, is a geodesic ray going out of x^ and making
angle a< with a, i = 1, 2. Suppose that a^ + OL^ > n.

Then d{a^(t), a^{t)) is strictly increasing in t. D

2.4. Lemma. — Let X be a locally compact Hadamard space and Y C X be a path connected^
closed^ locally convex subset. Then Y is convex.

Proof. — For every compact subset K C Y there is e > 0 such that if x,y e K and
d{x,y) < s then the geodesic CT^, connecting x toy, lies in Y. Let x, y e Y and let co^ be
the shortest path in Y connecting them. Choose K to be the ball of radius d(x,jy) centered
at x. If G)^ is not a geodesic in X then there is z in the interior of co^ such that co^ is
not a geodesic at z. We can shorten co^ by replacing a small subarc of co^ near z by the
corresponding geodesic segment in X. By the remark at the beginning of the proof applied
to K = Y n B(^, d{x,y)), the new curve is contained in Y. This is a contradiction. D

FIG. 1
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2.5. Lemma. — Let X be a simply connected space of nonpositive curvature^ let
XQ, x^, ..., x^ be pairwise distinct points in X and let c, be the geodesic segments connecting x,_^
to x,, i = 1, 2, ..., n. Let c connect XQ to x^ and set a == Z- î, c), p = Z.^(c, c^) and

Pi = 4^o ̂  +1)- rA^
n—l

a + M S (TT - P,).
i==l

Proof. — Let <y, be the geodesic from XQ to x, and let o^ = ^-aj^ ^2)?
^ == ^0(^0 ^i+i)? ^ = ̂ (^ 0'i)? ^ == ^.(^+15 ^), ^ = 2, ..., n — 1, see Figure 1.
Then S, + ^i ^ P» and a < Sl*Ji1 a,. Since X has nonpositive curvature, the sum of
the angles in each triangle A^o^_i^ is at most n, and hence o^ + pi + ^2^ ^
^ + fli + Si+i ^ TC? a^_i + 7]^_i + (B ^ TT. Adding these inequalities yields the
lemma. D

Let 9 : X -> X be an isometry of a Hadamard space. Then the displacement function
d^{x) :== d(x, <f>{x)) is convex, that is, for any geodesic C T : I ->X the function dy(a(t))
is convex in t. Isometries are classified according to the following possibilities for the
displacement function. If dy achieves its minimum in X, then 9 is called semisimple.
If the minimum is 0, then 9 has a fixed point and is called elliptic. If the minimum is
positive and is achieved at x e X, then the concatenation of the geodesic segments o,
from 9^) to 9^+l(^), i e Z, is a geodesic CT which is invariant under 9 and is called an
axis of 9. In this case we call 9 axial. If dy does not achieve a minimum, then 9 is called
parabolic. If F is a group of isometries of X acting properly discontinuously and cocom-
pactly, then every 9 e F is semisimple, that is, either axial or elliptic.

We assume from now on that X is a locally compact Hadamard space. Our dis-
cussion of rank 1 spaces uses the following three lemmas from [Ba2] (see also [Bal]
for the case of Hadamard manifolds).

2.6. Lemma. — (See [Ba2], Lemma 3.3.1.^ Let a: R -> X be a unit speed geodesic
which does not bound a flat strip of width R > 0.

Then there are neighborhoods U of (T(— oo) and V of cr(oo) in X such that for any ^ e U
and T] e V there is a geodesic from ^ to T], and for any such geodesic a we have <f(</, o(0)) < R.
Moreover, </ does not bound a flat strip of width 2R. D

2.7. Lemma. — (See [Ba2], Lemma 3.3.2J Let or : R -> X be a unit speed geodesic
which does not bound a flat half plane. Let (9^) be a sequence of isometries of X such that
^nW -> or(°°) ^d 9„"1(A;) -> a{— oo) for one (and hence any) x e X.

Then, for n sufficiently large, 9^ has an axis or^ such that <y^(oo) -> <y(oo) and
c^(— oo) -> cr(— oo) as n ->• oo. D

2.8. Lemma. — (See [Ba2], Lemma 3.3.3.^ Let 9 be an isometry of X with an axis
<r : R -> X, where a is a unit speed geodesic which does not bound aflat half plane. Then

(i) for any neighborhood U of a{— oo) and neighborhood V of (r(oo) in X there exists N e N
such that 9^X^11) C V, 9-n(X\V) C U for all n ̂  N;
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(ii) for any ^ e X(oo)\{ or(oo)} there is a geodesic a^from ^ to 0(00), and any such geodesic does
not bound aflat half plane. For any compact K.C X(oo)\{ 0(00)}, the set of these geodesies
is compact (modulo parameterization). D

We assume from now on that X is a locally finite simplicial complex with a piece-
wise smooth Riemannian metric g. We are interested in conditions under which X has
nonpositive curvature in the sense defined above, that is K^ ̂  0. We start by discussing
the links of points x e X. By subdividing X if necessary, we may assume that x is a
vertex. Let A be a ^-simplex adjacent to x. We view A as an affine simplex in R^, that
is A = fl^o ̂ , where H^, H^, ..., H^ are closed half spaces in general position and
WLOG x eInt(Ho). The Riemannian metric g^ is the restriction to A of a smooth
Riemannian metric defined in an open neighborhood V of A in R^. The intersection

T,A:=n^H,CT,V

is a cone with apex 0 e T^ V, and g^{x) turns it into a Euclidean cone. Let B C A be
another simplex adjacent to x. Then the face of T^ A corresponding to B is isomorphic
to Tg, B and we view Tg; B as a subset of Tg; A. Set

T,X==LLs,T,A.

Let Sy A denote the subset of all unit vectors in T^ A and set

(2.9) S,=S,X=LL^S,A.

The set Sy, is called the link of A: in X (or the space ofdirections). If A is a ̂ -simplex adjacent
to x, then g^{x) defines a Riemannian metric on the (k — 1)-simplex S^ A. The family g^
of Riemannian metrics g^(x) turns Sy, X into a simplicial complex with a piecewise
smooth Riemannian metric such that the simplices are spherical: a ^-simplex in S^ is
(isometric to) the intersection of k + 1 closed hemispheres in S^ in general position. We
denote by d^ the associated metric.

0

Suppose now that the dimension of X is 2. If x lies in the interior f of a facey,
0

then Sy^ X is the unit circle of the smooth surface f with respect to the Riemannian
0

metric gf ]/. If x lies in the interior e of an edge ^, then S^ X is the bipartite graph with
two vertices corresponding to the directions of e at x and edges of length Tr/2 which repre-
sent the faces adjacent to e and connect the two vertices. If A? is a vertex, then S^ X is a
graph whose vertices correspond to the edges adjacent to x. Two such vertices $ and 73
of S^ X are connected by an edge of length o^ e (0,7r) if the corresponding edges ^
and e^ of X are adjacent to a face f with interior angle a^ at x (see Figure 2).

2.10. Theorem. (See [BaBu].} Let g be a piecewise smooth Riemannian metric on a locally
finite two-dimensional simplicial complex X and let d be the associated distance function.

Then K^ ̂  K ijf the following three conditions hold:
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(i) the Gauss curvature of the open faces is bounded from above by K$
(ii) for every edge eofX, every two faces f^f^ adjacent to e and every interior point x ee the sum

of the geodesic curvatures k^(x), k^(x) of e with respect to f^f^ is nonpositive^
(iii) for every vertex v of X every simple loop in S^ X has length at least 2n. D

Neighborhood of x in X The link of x

FIG. 2

Let X be a 2-dimensional simplicial complex without boundary. An edge of X
is called inessential if it bounds exactly two faces; the other edges are called essential, A
vertex v of X is called inessential if its link is homeomorphic to a bipartite graph with
two vertices and m(v) ^ 0 edges connecting them; the other vertices are called essential.
An inessential vertex is called interior if its link is homeomorphic to the circle (that is,
if m(v) = 2).

A connected component of the union of all open faces, inessential edges and interior
vertices is called a maximal face of X. A connected component of the union of all open
essential edges and inessential but not interior vertices v is called a maximal essential edge.
A maximal essential edge might be a loop. Since X is boundaryless, the maximal faces ofX
are bounded by maximal essential edges and essential vertices.

23
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2.11. Proposition. — Let (X, F) be a compact 2-dimensional boundaryless orbihedron
with a metric d of nonpositive curvature. Assume that d is induced by a T-invariant piecewise smooth
Riemannian metric with respect to a T-invariant triangulation of X such that:

(i) the Gauss curvature of all faces is 0;
(ii) for every edge e and any two faces /i./g adjacent along e and for any x ee we have

W + k^x) = 0;
(iii) for every interior vertex v, the complete angle of S^ is 2n.

Then the maximal essential edges (/X are geodesies and the maximal faces (/X are smooth flat
surfaces. Moreover, X admits a T-invariant triangulation such that all edges are geodesies and all
faces are Euclidean triangles.

Proof. — If e is an essential edge and if e is not adjacent to any face, then e is a
geodesic. If e is adjacent to at least three faces, then the geodesic curvature at e with
respect to any face adjacent to e is 0 since, by (ii), the sum of the geodesic curvatures
of every pair of these faces is 0. Hence all essential edges are geodesies.

Assume now that e is an inessential edge and that/i./g are the two faces adjacent
to e. Since the metrics on /i and f^ are flat and since the geodesic curvatures k^ and k^
ofe with respect to/i and/a add up to 0 precisely, the metrics extend smoothly to a flat
metric on/i u e u/^. (View e,f^ and/g locally as sitting in the Euclidean plane.) Now
(iii) implies that the maximal faces of X are smooth flat surfaces.

We now first replace the inessential edges of X in a F-equivariant way by piecewise
geodesies arcs. Then we subdivide the faces r-equivariantly so that the break points of
these arcs become vertices. D

2.12. Proposition. — Let (X, F) be a compact 2-dimensional orbihedron with a piecewise
smooth metric of nonpositive curvature.

Then (X, F) contains a Y-invariant suborbihedron X' without boundary such that:

(i) X' is a Y-equivariant strong deformation retract of X;
(ii) the action of F on X' is effective^
(iii) the induced metric on X' is piecewise smooth and of nonpositive curvature.

Proof. — Fix a F-invariant triangulation on X such that the given metric is piece-
wise smooth with respect to it. Iteratively, we apply the following reductions:

a) Delete boundary vertices and the unique open edges adjacent to them.
b) If/is an open face adjacent to exactly one open boundary edge e, then delete/

and e.
c ) If/is an open face adjacent to exactly two open boundary edges e^ and ̂ , then

replace / u ^ u ̂  by the segment from the midpoint of the third edge to the opposite
vertex.

d) If/is an open face with three open boundary edges e^e^e^^ then replace
/ u e^ u e^ u ^3 by the three segments from the barycenter of/ to the vertices.



ORBIHEDRA OF NONPOSITIVE CURVATURE 179

We may have to apply each of these reductions more than once. Since X has only
finitely many simplices mod F, and since these reductions do not increase their number,
after a finite number of steps we end up with a boundaryless complex X', as asserted. D

3. Liouville measure for the geodesic flow

From now on we assume that X is a locally finite, ^-dimensional and boundaryless
complex with a piecewise smooth Riemannian metric. We denote by X^ the ^-skeleton
of X and by X' the set of x e X such that x is contained in the interior of an (n — 1)-
simplex adjacent to at least two ^-simplices.

Let x e X'. Then x is contained in the interior of an (n — 1)-simplex B. For any
^-simplex G whose boundary 8C contains x let S^ G denote the open hemisphere of unit
tangent vectors at x pointing inside G. Let Gi, . . . , G ^ , m ̂  2, be the yz-simplices
containing B. We set

m

S,===US,C,, S'= U S, and S'C = U S^ C.
i = 1 x e X' x e 9C n X'

For v eS^G denote by Q{v) the angle between v and the interior normal v^(^)
ofB with respect to C at x. Let dx be the volume element on X' and let \ be the Lebesgue
measure on S^. We define the Liouville measure on S' by

(3.1) d^{u) == cos 6(») d\(y) dx.

Note that d[L(v) x dt is the ordinary Liouville measure invariant under the geodesic
flow on each ^-simplex C of X. Therefore, for (x-a.e. v e S' G the geodesic y^, in C deter-
mined by y^(O) == v meets BG n (X^-^X^-21) after a finite time ^> 0 so that
I(^) =^ — Y^) e S' C, see Figure 3. Note that y^(^) e X' since X is boundaryless. Simi-
larly to the billiard flow, ^ is invariant under the involution I (see, for example, [GFS]).

FIG. 3
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Let I(v) == w + cos 6(1 (z/)) Vc(Ti?(^))9 where w is tangent to X' and set

F(,) == U (- w + cos 6(I(.)) ^(Y.(^))),
c'

where the union is taken over all Tz-simplices G' containing Yv(^) except C.
Thus there is a subset S^ C S' of full ^-measure such that F(^) is defined for any

v e Si. We set recursively S,+i = { v e S^ : F(^) C SJ and define S^ = fl^i S,,
V == So, n I(Soo). By construction, V has full [ji-measure. We define now the transition
probabilities for a Markov chain with states in V by the formula

-———- if w e Ffy)
(3.2) p{v,w)= |F(^)| < /

0 otherwise,

where | F(^) | is the cardinality of F(^).

3.3. Proposition. — Let x be a locally finite boundaryless simplicial complex with a piecewise
smooth metric g.

Then the measure [JL given by (3.1) is stationary/or the Markov chain on V with transition
probabilities R{v, w) given by (3.2).

Proof. — For w e T(v) set q(I(v), w) = (P(v,w))-1 and H(I(»)) = F(zQ. Let P(y, M)
denote the transition probability from v e V to a measurable subset M C V. Then we
have

f P(^, M) d^(v) = f S p{v, w) ̂ (w) d^v)
Jy J V w e TW

=f S q-^IW, w) XM^) d^v).j y wevw

Since I preserves (A, the last expression is equal to

f S q-\u, w) -^(w) d^u) = 2 f S q-\u, w) ̂ {w) d^u),
JV w£H(it) B JV(B) w6H(«)

where V(B) denotes the set of vectors from V with foot point in B. Note that for w e H(^)
the number q(u, w) is exactly the cardinality ofH(M) or the number of terms in the inner
sum. Hence the last expression is equal to

S ^(^ d[L(w). D
B JV(B)

Let V* be the set of sequences (Vn)nez^- ̂  such that y^i eF(yj for all n eZ.
Proposition 3.3 implies that p. induces a shift invariant measure p(* on V*.

Recall that G(X) denotes the space of complete geodesies in X and the geodesic
flow { g 1 } in G(X) acts by the formula

(^(T)M==^+^.
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Let G*(X) C G(X) denote the set of geodesies which do not meet X^"^ and intersect
(n — l)-simplices transversally. Then G*(X) is a Borel subset of full pi-measure in G(X)
and we may think of V as a cross section for the geodesic flow on G*(X). Thus the
measure pi* on V* defines a measure on G^X) invariant under the geodesic flow. We
call this measure the Liouville measure since it is the natural generalization of the usual
Liouville measure on the unit tangent bundle of a smooth Riemannian manifold.

3.4. Remarks. — a) The set G^X) is not dense in G(X) if there is a vertex whose
diameter is > n.

b ) The Liouville measure [L is positive on nonempty open subsets of G^X).
If r is a group of isometric automorphisms of X that acts cocompactly and pro-

perly discontinuously, then the Liouville measure defines a finite invariant measure for
the geodesic flow in G^X)/?. Recall that a geodesic o- e G(X) is V-recurrent if there are
isometries (?„ e F and ^ -> oo for which ^(^(a)) -> a as n -> oo.

3.5. Corollary. — Let (X, F) be a compact orbihedron without boundary and with a piece-
wise smooth metric. Then:

(i) For every subset G C G^X) with pi(G) > 0 and any T > 0 there are a e G, 9 e F
and t^ T such that cpQ^ c) e G.

(ii) With respect to the Liouville measure, almost every geodesic in G(X) is T-recurrent.

Proof. — The statement follows directly from the Poincard recurrence theorem for
the induced action of g1 on G(X)/r. D

4. Some properties of rank 1 spaces

Let (X, F) be a compact orbispace of nonpositive curvature. Then X is a locally
compact Hadamard space, that is a locally compact, simply connected, complete geodesic
space of nonpositive curvature. Observe that if c: R -> X is a geodesic that does not
bound a flat half plane then there is R > 0 such that a does not bound a flat strip of
width R.

We say that S? ^ ^ X(oo) are dual (relative to F) if for any neighborhoods U of S
and V of Y] in X there is ^ e F such that

^ (X\U)CV and ^(XyV) C U.

The set A^ of points T] e X(oo) dual to ^ e X(oo) is clearly closed and r-invariant.
Lemma 2.8 implies that the endpoints of a F-closed geodesic of rank 1 are dual.

4.1. Theorem. — Let (X, F) be a compact orbispace of rank 1 and assume that X(oo)
contains more than two points.

Then X(oo) is a perfect set and any point in X(oo) is dual to any other point and to itself.
Moreover^ for any two nonempty open subsets U, V C X(oo) there is a T-closed geodesic <o of rank 1
with <o(— oo) eU and <o(oo) eV.
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4.2. Remarks. — a) Note that X(oo) consists of at least two points, and if | X(oo) | = 2,
then X is quasi-isometric to the real line and F contains an infinite cyclic subgroup of
finite index (given by the powers of the rank 1 isometry).

b) Following Ghen and Eberlein [ChEb] we say that F satisfies the duality condition
if for any geodesic c: R ->- X there is a sequence <?„ e F such that (pj^;) -^ 0(00) and
^n1^) -> <7(— oo) as n -> oo for any point x e X. Theorem 4.1 and the remark above
imply that F satisfies the duality condition if (X, F) is a compact orbihedron of rank 1.

In order to prove Theorem 4.1 we begin with three lemmas. Fix an isometry
( p e F translating a geodesic a that does not bound a flat half plane. Set o-(O) = XQ and
^o) = 9(^0)5 where ^ is the period of o, and let Rg > 0 be such that a does not bound
a flat strip of width R^. Set 5 == o- u { <r(oo), c{— oo)}.

4.3. Z^wwa. — For any T, e > 0 ̂ r<? ̂  R > 0 ̂  /A^/or any x e X w^A d{x, a) > R
W flyy/ ^o points y, z ea the unit speed geodesies y^ ̂  y^ connecting x with y and. z satisfy

^(U^T^))^, O^^T.

Proo/'. — Since G- is invariant under 9 it suffices to consider only those A? e X for
which the closest point of a lies in o([0, ^])- These points x form a compact subset A
of X and <r(d= oo) ^ A, see Figure 4.

O(-oo)
FIG. 4

Choose neighborhoods U of o-(— oo) and V of 0(00) in X so that any geodesic
from U to V passes through the ball B(A:o, Ro), see Lemma 2.6. By Lemma 2.8 there
is N eN such that qT^A) C U and (p^A) C V for all n ̂  N. Choose ^ > 0 such that
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or([— oo, —• ^]) C U and <r(|A, oo]) C V. Hence for any point x e 9" "(A) the geodesic ̂ y
connecting x with y e (r([^, oo]) passes through B(^o, Ro). Since d(xQ, 9"" "(A)) -> oo,
for a sufficiently large n any two such geodesies Ya-y ^d Ya;^ by comparison with the
plane, satisfy

d^y{t), Y..W) ^ s/3, ( K / ^ T .

Hence the statement of the lemma holds for any x e A andjy, ^ e <r([^i + ^o? °°]) wlt!1

e/3 instead of s. Similarly, for a large enough ^ the same estimate holds for x e A and
y^ z e o([— oo, — t^ — 7^0] )• Using comparison with the plane we obtain the necessary
estimate for the middle segment o([— ^ — ntQ, t^ + n^o]) for a large enough R. D

4.4. Lemma. — For any T, s > 0 there is R' > 0 such that ifd{x, Xo) > R' then

^(W^T.o(oo)M) ^ s, O^^T ,

^ ^(Y^)' Y.o(-oo)W) ^s, 0^ ̂  T.

Proof. — Choose neighborhoods U of a(— oo) and V of 0(00) in X so that any
geodesic from U to V passes through the ball B(A:o, Ro). By decreasing U and V if neces-
sary we may assume that the first inequality holds for all x e U and the second one holds
for all x eV. Now let R be from Lemma 4.3 and choose R' so large that d{x, a) > R
i f^U uVuB(^ ,R ' ) . D

4.5. Lemma. — Let ^ be an axial isometry with an axis o,, i = 1, 2. Assume that
<7i(— oo) == (yg(— oo). Then ori(oo) = (73(00).

Proof. — Let ̂  = CT, (0), i === 1, 2. For every 72 > 0 there is m such that d (^ ^i"n A;! 5 ^2)
does not exceed the sum of the period of 03 and ^(^i, ^2)- Since F acts properly dis-
continuously, there is ^o e ̂  such that 4'? 4'iTn == ^o f01' infinitely many pairs m, n.
Therefore, ^ = ̂  for some m, n 4= 0. D

Proof of Theorem 4.1. — Since X(oo) contains more than two points and since F
acts cocompactly, there is ^o 6 r* such that ^(^0(^0)3 CT) ^ ^o* ̂ e geodesic ^(X0) does not
bound a flat half plane and is an axis of 4»o 9^cT1 e r*. Therefore the points (po^^ °°))
are dual to each other. Since a does not belong to a flat strip of width greater than R(),
we have, by Lemma 4.5, that ^o{c{± oo)) <^{ cr(oo), o(— oo)}. By Lemma 2.8,
^"(^(^(^ °°))) -> o-(oo) as TZ-> oo, and hence cr(oo) is dual to both ^o^00)) an(!
4»o((y(— oo)). By symmetry, each of the four points o(± oo), ^(^(^ °°)) ls dual to every
other and to itself.

Now let ^ e X(oo), ^ =f= a{± oo) and let ^ e F be such that ^ x -> ^ for any
^ eX. By Lemma 4.4, ^n^00)) ->^ or ^n^" °°)) ~^^ (or both) and hence ^ is
dual to CT(— oo) and 0(00). Now let T] be any other point in X(oo). Choose 9^ e F so
that 9»(<r(oo)) ->T) or 9^(<r(— oo)) ->T]. Since ^ is dual to both c(oo) and (?(— oo) we
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conclude that ^ is dual to T]. Hence any two points in X(oo) are dual. Clearly X(oo)
is a perfect set.

To prove the last assertion of the theorem, let U, V C X(oo) be nonempty open
subsets. By Lemma 2.8, there is a geodesic coi from c(— oo) to a point ^ eU such
that coi does not bound a flat half plane. Since o(— oo) is dual to ^, there is a sequence
<?„ e r such that <p,»(^) -> S and 9^ ^^ic?) -> o(— oo) for any A: e X as ^ -> oo. By Lemma 2.7,
if ^ is sufficiently large, then <?„ has an axis a^ such that 73 == o^(oo) e U and ̂  does not
bound a flat half plane. By Lemma 2.8, there is a geodesic (1)2 from T] to a point ^ e V
such that cog does not bound a flat half plane. Now T] and ^ are dual and Lemma 2.7
implies the existence of a F-closed geodesic of rank 1 with endpoints in U and V. D

We derive some applications of Theorem 4.1 which are relevant in our paper.
Applications to random walks on F can be found in [Ba2].

4.6. Theorem. — Let (X, F) be a compact orbispace of rank 1 and assume that X(oo)
contains more than two points.

Then F contains a free nonabelian subgroup.

Proof. — Choose disjoint open subsets U, V e X(oo) with U u V 4= X(oo) and
let ^ e X(oo)\(U U V). By Theorem 4.1 there are <p, ^ e T such that

^^(oo^CU and ^^(oo^V) C V.

Let w be a nontrivial reduced word in 9 and ^. Since U n V == 0 we conclude that
w^E,) e U if w starts with a power of 9 and that w(^) e V if w starts with a power of ^.
In either case w(^) =t= ^ hence w 4= id. Therefore 9 and ^ generate a free subgroup
ofF. D

We say that X is geodesically complete if any geodesic segment in X is contained in
a complete geodesic.

4.7. Theorem. — Let (X, F) be a compact, geodesically complete orbispace of rank 1 and
assume that X(oo) contains more that two points.

Then the geodesic flow o/'X is topologically transitive mod F, that is, for any two nonempty
open subsets U, V C G(X) there are t e R and 9 e F ze/^A ^(U) n <p(V) =(= 0.

4.8. Remarks. — a) Topological transitivity is equivalent to the existence of an
orbit of (^) which is dense mod F.

b) In general, the geodesic flow is not topologically mixing mod F.

Proof of Theorem 4.7. — We let U(oo) (respectively V(oo)) be the set of points <r(oo)
in X(oo) with a e U (respectively a eV). Then U(oo) and V(oo) are open and non-
empty. By Theorem 4.1, we can assume that U(oo) C V(oo). Let CT e U. Then there
is a geodesic a eV with (/(oo) = <r(oo). Since U and V are open there are s> 0 and
T > 0 such that a geodesic 5? belongs to U if

^(T),?(T)), d{a{- T). ?(- T)) < s
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and belongs to V if

^((/(T), ?(T)), d(a(- T), ?(- T)) < s.

Now let x = a(T) and A;' = </(— T) and choose a sequence (yj in F such that
^(jO -^(oo) and ^(jQ -^<T(— oo) for anyj/ eX. Let cr^ be a unit speed geodesic
with crj— T) = x ' and CT^J == 9^), where /„ = d(x\ ̂ {x)) — T. Then ̂  is in V for n
sufficiently large since 9^(A:) -> (/(oo) == (r(oo). Furthermore pn'1^^) eU for 72 suf-
ficiently large since ^l{gtn or^) (T) == x and ^(A;') -> CT(— oo). D

Recall that a compact 2-dimensional boundaryless orbihedron (X, F) with a
piecewise smooth metric of nonpositive curvature is geodesically complete. Thus asser-
tion (ii) of Theorem D in the Introduction is a special case of Theorem 4.7. We now
prove assertion (i) of Theorem D.

4.9. Theorem. — Let (X, F) be a closed 2-dimensional rank 1 boundaryless orbihedron
with a piecewise smooth metric of nonpositive curvature.

Then hyperbolic T-closed geodesies are dense in the space of geodesies.

Proof. — Consider the set U of geodesies a such that a) a passes through a point
in an open face where the Gauss curvature is negative, or b) a passes from one face to
another through a point in an open edge e where the sum of the geodesic curvatures
of e with respect to the two faces is negative, or c ) a passes through a vertex v and the
distance between the incoming and outgoing direction of a in the link of v is > TC. Then U
is open and invariant under the geodesic flow. Now U is not empty since (X, F) has rank 1.
Since the geodesic flow is topologically transitive, U is dense in the space of geodesies.
By Lemmas 2.6 and 2.7, each geodesic in U is a limit of hyperbolic F-closed geodesies. D

5. Homotopy invariance of rank 1

5.1. Definition. — Let X be a metric space and let A ^ 1, B > 0. A curve c : I -> X
is an (A, 'K)-quasigeodesic in X if for all s, t e I

A~1 | s — / 1 -- B < d(c{s), c(t)) ̂  A | s — 1 1 + B.

Note that we do not assume that a quasigeodesic is a continuous curve.

5.2. Theorem. — Let X be a locally compact Hadamard space having an axial isometry 9
with an axis a. Then c does not bound a flat half plane if and only if for any A ^ 1, B > 0 there
is R == R(a) such that any (A, B)-quasigeodesic c with ends on a stays in the ^.-neighborhood of a.

If cr bounds a flat half plane then clearly such an R does not exist. In what follows
we assume that o does not bound a flat half plane. We will need the following three
lemmas. Let P denote the projection to cr.

24
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5.3. Lemma. — There are constants Rg, T > 0 such that ifx.y e X, d(x, a), d(jy, a) ̂  R^
and d(Px, fy) ̂  T then

d(x^) ̂  d{Px, Pj/) + 1.

Proof. — If this is not so, there are points A^,J^ eX with

d{^ G), d^ a), d(Px^ P^) ^ n and d{x^) < d(-Px^ Pj/J + 1.

Fix a positive integer m. By choosing 72 large enough and applying an appropriate
power of 9, we may assume that the segment of a between P^ and P^ contains
(T([— m, m]). WLOG assume that the points P^, a(— m), a(w), P^ lie in this order
on CT. Let (?„ be the geodesic connecting x^ to j^ and denote by ̂ , ̂  e ̂  the points
for which P^ == CT(— w), P^ = cr(w). By Corollary 2.3, P does not increase distances.
Hence,

^n.Pn) ̂  d(Px^ CT(~ m)) and d(y^ yj ̂  d(Py^ (y(- w)).
We have

Therefore,
^Jn) = ̂ (^n^n) + d{Pn. 9n) + ̂ (?n^n).

^(^n. ?n) ^ ^(^,A) - ̂ (P^n, ̂ - ^)) - ̂ (Pj/n, <l(w)).

Hence

(5-4) ^(^n. yJ ^ d(a{- m), a(m)) + 1 == 2m + 1.

Let a^, ?„ be the geodesies from CT(— w) to ̂  and from a(m) to ^ respectively.
By passing to a subsequence if necessary, we may assume that oc^ and (3^ converge to
geodesic rays a and (3. By construction, the angles between a and CT, (B and <y are both
at least Tr/2. Hence ^(a(^), (B(^)) is not decreasing. By (5.4), d(w.{t), p(^) ^ 2m + 1 for
all t ̂  0. Hence, a, (3 and a bound a flat half strip S^ with right angles at c(± w). For a
subsequence m^ -> oo the corresponding half strips S^ converge to a flat half plane
along a. Contradiction. D

5.5. Lemma. — Let T be from Lemma 5.3. Then for any K ^ 1 ̂ ? ^ R^ > 0 such
that d^y) ̂  KT provided d(x, a), d?(j/, a) ^ R^ ^rf rf(P^, Pj) ^ T.

Proo/; — By Lemma 5.3 and the convexity of the distance, we have

d{x,y) ̂  d(Px, PjQ + 772 ^ T + m if d{x, a), d{y, a) ^ mRo,

where m ̂  1. Now choose 7% == [(K — 1) T] + 1 and R^ = mRo. D

5.6. Lemma. — Let c : [u, v] -> X ^ ̂  (A, 'B)-quasigeodesic. Assume that for every
t e [u, v] we have d{c(t), a) ̂  Ri, where Ri is chosen by Lemma 5.5 for K> 2B/T. Let
fc(u) = a{Q and 1?c(v) == cr(^) and assume that a{[t^ Q) contains a segment CT(^, ^o + T)
of length T. Then there is SQ e {u, v) with P^o) e (T((^, ̂  + T)).
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Proof. — If there is no such SQ then {u, v) == U u V, where

U = = { ^ : P ^ ) =0(^^/0}, V={s:Pc{s) ==a(t),t^ ^ o + T } .

Note that by Lemma 5.5 and the choice of K and Ri, | ^ — ^ [ ^
whenever ^ e U, ^ e V. Contradiction. D

KT-B B
A5A

FIG. 5

Proof of Theorem 5.2.— Set K == max(3A2 B/T, 25A4) and choose Ri by Lemma 5.5.
Assume that there is 7 such that d(c{7), or) ^ R^ + B. Set

a = sup{^ r: d(c(s), o) < Ri + B},

b == inf{ s ̂  7: d(c{s), a) < Ri + B }.

Then d(c{s), a) ^ R^ + B for s e (a, b), and hence

RI ^ d(c{a), o), d(c{b), a) ^ Ri + 2B

since c is an (A, B)-quasigeodesic. Let 1?c{a) = cr(^), Pc{b) == <r(^) and assume
that ^ ^ ^ & - Let ^ ^ 0 be such that ^ — ^ = 2wT + T, where 0 < r < 2 T . By
Lemma 5.6, there are a = SQ < s^ < s^ < ... < j^i = 6 such that P^(^) = <r(^) with
^ e (^ + (2z — 1) T, ^ + 2iT), 1 ̂  i^ m, see Figure 5. By Lemma 5.5 and since c
is a quasigeodesic, we have

A(^ - ̂ -i) + B > rf(^), <;(^_,)) ^ KT,

and hence, B ̂  KT — B ̂  A(^ — ^_i), 1 ̂  i < w. Therefore,
m+l m+1

(5.7) S </(<;(^), ̂ ,_i)) < ^2 (A(.. - .._,) + B)

< A{b -a) + A(^ - a) + B < 2A(b - a) + B.
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On the other hand,

S (̂̂ .), ̂ _,)) ^ ^S (A-1^ - ̂ _i) - B)

/KT - B _\ 1 KT 1 K 1 ,
^-A———^^A^SA^-^-2^

which by the triangle inequality is

^ § wa}'cw ~ 2R1 ~ 4B ~ 2T)

^ 1 K^ ((^ _ a) _ AB - 2ARi - 4AB - 2AT)
o A

and if b — a > 2(2AR^ + SAB + 2AT) <^ K the latter is

^^K(b-a)>2A^-a)+B>

which contradicts (5.7). Hence b — a ̂  K. Since <? is a quasigeodesic, rf^G?), c{d)) < AK + B
for all s e [fl, b] and hence

rf(^), <r) < Pi + 3B + AK S R. D

Let F be a finitely generated discrete group and let d^ be the word metric on T
corresponding to a finite system of generators. Note that any two word metrics on F
are equivalent and the notion of quasigeodesics (see Definition 5.1) can be applied to F.

5.8. Definition. — A finitely generated discrete group F has rank 1 if there is 9 e F
with the property that < D = = { ( p f c | ^ 6 Z } i s a quasigeodesic and for any A ^ 1, B ̂ 0
there exists R > 0 such that any (A, B)-quasigeodesic c : [a, b] -> F with endpoints
on 0 is contained in the R-neighborhood of 0. We call such cp a rank 1 element.

Since any two word metrics on r with respect to finite systems of generators are
quasi-isometric, the notion of rank 1 does not depend on the choice of the word metric.
Note that rank 1 elements in F have infinite order.

5.9. Theorem. — Let T be a group of isometrics of a locally compact Hadamard space X
acting cocompactly and properly discontinuously.

Then F is finitely generated and 9 e F is of rank 1 if and only if 9 is axial and one (and
hence, any) axis of 9 does not bound a flat half plane.

Proof. — Since X is locally compact, F is finitely generated. Note that for any
x e X the map ^ : F —^ X, ^(y) = ^x is a quasi-isometry between F and X. Hence, for
any A ^ 1, B^ 0 there are A'^ 1, B'^ 0 such that for any (A, B)-quasigeodesic
c : [a, $] -> r the curve (;'(•) == c{-) x is an (A', B')-quasigeodesic in X.
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Now assume that 9 e F is axial and that an axis a of 9 does not bound a flat half
plane. Choose x = <r(0). Then c(a) x, c(b) x e o- and, by Theorem 5.2, c ( ' ) x is contained
in the R(A', B^-neighborhood of or. Since ^ is a quasi-isometry, c{[a, b]) is contained in
the R-neighborhood of {^k} for an appropriate R. This proves the "if3 5 statement of
the theorem. The other direction is obvious. D

6. Euclidean buildings and products of trees

We assume throughout this section that (X, F) is a 2-dimensional orbihedron of
non-positive curvature, that all links of X have diameter n and that all faces of X are
flat Euclidean triangles, in particular, all edges are geodesies.

6.1. Lemma. — Let A be a connected graph such that the valence of each vertex is at least 3.
Assume that A has a length structure with injectivity radius and diameter equal to TT. Then:

(i) Every geodesic of length ^ TT is contained in a closed geodesic of length 2-n:.
(ii) If i; is a vertex then any T] with rf(S, T)) == n is also a vertex.
(lii) There is an integer k ̂  1 such that every edge of A has length TT/^.
(iv) If^ and T] are not vertices and d{^ T)) == TT then there is a unique closed geodesic of length 2n

containing ^ and T].
(v) If^ and 7) are vertices, d(^, T]) == TT and e,fare two edges adjacent to T] then there is a unique

closed geodesic of length 2n containing e,f, ^, T].

Proof. — Let G be a geodesic of length n with ends a and co. Whether co is a vertex
or not, there is a way to continue a locally as a geodesic beyond G) to a point ^ such that <o
and ^ lie on the same edge. If follows from our assumptions that fl?(a, o>) = TT and
d(ai, ̂ ) = TC — d(^, co) < TT. Therefore, the unique shortest connection from a to ^ together
with the continuation of or form a closed geodesic of length 2n. This proves (i).

To prove (ii) let d(^ T)) == TT. Then, by (i), ^ and T) lie on a closed geodesic y of
length 27T. Let ^ be an edge adjacent to ^ and not contained in y and let ^ be a point
on e different from S. As in the proof of (i), </(•/), ^) == TC — J(^, ^) < TT. Hence, ^ lies on
a geodesic arc p of length TC from ^ to 73. Since the injectivity radius of A is TT, the arc p
intersects y only at S and T]. Hence, Y) is a vertex. This proves (ii).

Let e, f, g be three edges adjacent to a vertex ^. Continue ^ to a geodesic a of
length TT and assume that l(e) := lengthy) < length(/). Let ^ be the point on cr with
d(^^) = n — l(e). Then the distance from the other end of e to ^ is TT, and hence, ^ is
a vertex by (ii). Let T] be the point on/with d{r\, ^) = l(e). Then d(^, ̂ ) == TT, and hence,
7) is a vertex. This is a contradiction since 73 lies in the interior of/. Hence, the lengths
of any two adjacent edges are equal. This proves (iii).

To prove (iv) assume that ^ lies in an edge e with ends ^i, ̂  and T] lies in an edge/
with ends y^, 732. Since ^(^, T]) < TT, there is a unique shortest connection co^ from ^
to T), t == 1, 2. WLOG assume that ̂  e o^. Since the injectivity radius of A is TT, we have
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o)^ n cog == T) and (Oi * e * cog is the unique closed geodesic of length 27T containing ^
and 73. This proves (iv).

To prove (v) let 7^31\^ =)= 73 be the other ends of e and /, respectively. Then
0 ̂  ^(7)g, ^), ^OQ/, S) < TC, and hence, there are unique shortest connections <x)g, <x)y
from 7^, 7]y to ^, respectively. Similarly to the proof of (ii), e * Og * (Oy *jf is the unique
closed geodesic containing e, f, S- D

6.2. Lemma. — Every geodesic in X is contained in a flat plane.

Proof. — It is sufficient to show that for every / every geodesic a of length / is the
middle horizontal line of a flat 1 x 1 square. By subdividing the faces of X if necessary,
we may assume that / is greater than the maximal length of an edge and that all angles
are < Tr/2. Set A ==={a^ 0: a is the horizontal middle line of a flat I X a rectangle}.
Let OQ = sup A. By the local compactness of X, the set A is closed and there is a flat
/ X OQ rectangle for which a is the middle horizontal line. We will show now that A is
open in [0, oo).

Let a be the middle horizontal line of a flat I X a rectangle R whose top and bottom
boundaries are geodesies (T^ : [0, 1] -> X. We will extend R beyond or4' and o~ by flat
strips of width c > 0. We will deal only with o-4", the argument for o-"" is the same. Assume
first that cr4' does not contain an open subsegment of an essential edge. For any t e (0, /)
the incoming ^(t) and outgoing f\(t) directions of o'4' at ^(t) lie at distance n in Sg+^
and are not vertices. Hence, by Lemma 6.1 (iv), there is a unique closed geodesic
in SQ+(() containing ^(t) and 73 (t). It follows that o-4' is contained in a unique flat strip S
of positive width e. The strip S extends R.

FIG. 6
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Assume now that o4' contains an open subsegment of an essential edge. Then, by
Lemma 6.1 (ii) and Lemma 6.1 (v), it consists of essential edges and maybe two segments
of essential edges at the ends. Let ^ ^ 0 be the minimal value of the parameter for which
<y4' {to) is a vertex, see Figure 6. By assumption to < I. Rectangle R is represented in the
link SQ+(^) by a geodesic arc oco of length Tr/2 i f / o = 0 and of length TT if to > 0. In either
case extend oco to a closed geodesic coo in Sg+^. Extend R by the union PQ of closed
faces adjacent to ^{to) which are represented by the edges forming coo in S^ p Note
that Po is convex since all angles are ^ Tc/2. Assume that ^, to < t^ ̂  I, is the next para-
meter value for which ^{t-^ is a vertex. Then Po is represented in S^ ^ by two adjacent
edges ^i,./i with the incoming direction ^(^) of o-4' adjacent to both. One of the edges,
say ^i, lies in the arc oci representing R in Sg+^ p Note that oci has length n if f-^< / and
7T/2 if ft = /. By Lemma 6.1 (v), there is a closed geodesic coi of length 2n which contains/i
and oci and is unique if^< I. Let Pi be the union of closed faces adjacent to o^i) which
are represented by the edges forming <x>i in S^ p Then Pi is convex and Po n Pi
consists of the two faces represented by e^ and f^ in SQ+(( p Therefore, we can extend
R u Po by Pi to a bigger flat surface. We repeat this process until we construct a flat
surface containing R and a flat strip of positive width which extends it. D

6.3. Lemma. — Let A be a connected graph with a length structure of injectivity radius and
diameter equal to n. Assume that the length of each edge in A is Tr/2.

Then A is a complete bipartite graph.

Proof. — Let ^, T] be two vertices in A with d{^ T)) == TT. Let U and W be the sets
of vertices that lie at distance Tr/2 and n from i;, respectively. Clearly there is a vertex
^ e U such that d(^ ^) = d{^ T)) = 7r/2. Let ^ e V. If d(^, T]) + ^/2 then ̂ ', T)) = TT.
Note that d^\ ^) = TT. Hence the distance from any point between T] and ^ to ^' is
greater than n. Contradiction. Hence d{^, T]) == Tc/2. D

6.4. Lemma. — Let X be a simply connected, locally finite complex of nonpositive curvature
such that all maximal faces of X are flat rectangles and all links have diameter n.

Then X is a product of two trees.

Proof. — Since X has nonpositive curvature, every link satisfies the assumptions of
Lemma 6.3, and hence is a complete bipartite graph. Fix a vertex VQ e V^ and declare
it a marked vertex. Choose a vertex ^o e ^vo an(! mark it " horizontal5?. Mark <( ver-
tical " all vertices T] with distance 7r/2 to S;o and mark " horizontal5) all vertices ^ in Sy
with distance TC to ^o- Mark " horizontal " all edges adjacent to VQ which are represented
by horizontal vertices in S^ and mark c < vertical " all other edges adjacent to VQ. Let w
be any vertex of X connected to a marked vertex v by an edge e. Assign to the vertex ̂
representing e in S^ the marking of e. Now mark accordingly the rest of the vertices
in Sy, that is the vertices with distance n from ^ get the same marking as ̂  and the
vertices with distance n/2 get the opposite marking. We claim that this process can be
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used to mark consistently all vertices in the links of X and all edges in X. Since X is
simply connected, it is sufficient to check that no contradictions arise for one face of X.
Let u be a vertex of a maximal face F, let v, w be the vertices of F connected to u by
edges e, f, and let u' be the diagonally opposite vertex of the rectangle F. Assume that
all vertices in the link S^ have horizontal or vertical markings. Note that ^-{e,f) = Tr/2,
and hence, e and/have different markings. WLOG assume that e is horizontal and/is
vertical. Let g be the edge connecting v to v! and let h be the edge connecting w to u\
Then L{e, g) = /.(/, h) = Ti/2, and hence, g is vertical and h is horizontal. Therefore,
the markings for S^, obtained by moving through e * g and through /• h, coincide.

Hence, every edge of X is marked either " horizontal " or <( vertical5?. When two
edges ̂ ,/are adjacent, they have the same markings if 1̂ (<?,/) == n and different markings
if Z.(e,f) == 7T/2. Now let w be any vertex. Denote by T^ the connected component of the
union of horizontal edges which contains w and denote by T^ the connected component of
the union of vertical edges which contains w. It is clear now that X = T^ x T^. D

6.5. Theorem. — Let (X, F) be a compact 2-dimensional orbispace without boundary and
of nonpositive curvature. Assume that all links ofX have diameter TT, that all faces of^K are Euclidean
triangles and that all edges are geodesies.

Then either all angles between essential edges of X are 7r/2 and TC and X is the product of
two trees, or at least one angle is TC/A, k ^ 3, and X is a thick Euclidean building of type A^, B^
or Ga.

Proof. — By Lemma 6.2, X is the union of embedded flat planes. Let F be such a
plane. It follows from 6.1 (ii) that any line a in F containing an essential edge of X is
the union of essential edges.

Suppose first that F does not contain essential vertices of X. Then, by what we
said above, the union of essential edges in F is a set of parallel lines in F (an intersection
would produce an essential vertex). IfF does not contain an essential edge then X == F
since a fundamental domain of F has finite radius. If X + F, let x ^ F and letjy be the
point in F closest to x. Then there is a line a of essential edges in F through y, such that
the geodesic y from x toy is perpendicular to a atj^ (recall that diam Sy == 71). Hence,
a ray y' in F fromj/ and perpendicular to cr is a geodesic continuation ofy, and y * y' is
contained in a flat plane F'. By our assumption on F we have F n F' == H, where H
is the half plane in F determined by a and y'. It follows that all essential edges in F'
are parallel to a in F'. We can see now that X is the product of an (essential) tree with
a line (in the direction of c).

Suppose now that F contains an essential vertex » . I fa= a(^) is the common length
of edges in Sy, see Lemma 6.1, then a = nfm for some m ̂  2. Hence there are m lines
of essential edges in F passing through v such that the angle between consecutive lines
is TC/W. These lines cut out m triangular surfaces from F. If F does not contain another
essential vertex, then a fundamental domain of F lies completely inside one of these
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triangular surfaces, a contradiction. Hence there is another essential vertex in F. Since
the angles at essential vertices are TT/TZ, n ̂  2, it follows that the maximal faces of X in F
are either rectangles or triangles.

Suppose that a maximal face A in F is a triangle and let e be an edge of A. By
Lemma 6.1 (iii), the maximal face A' o f X i n F opposite to A along e has interior angles
at the ends of e equal to the interior angles of A. Hence A' is the reflection of A along e.
It follows that the maximal faces in F are all isometric and that the tesselation ofF by
them is of type Ag, B^ or Gg.

Now let e* be any essential edge in F with ends y', w' and A' D e ' be any maximal
face not lying in F. Take a segment co in A' which is parallel to e1 and close to it. Extend <o
to a geodesic CT. By Lemma 6.2, there is a flat plane F' containing (T, and hence, containing
A'. The angles a, (B at y', w' in F' are the same as in F. Hence, A' is equal to the triangles
in F. Therefore, all maximal faces of X are equal triangles. Note that any flat plane F
in X is partitioned into triangles that are maximal faces ofX and this partition is invariant
under the reflections with respect to all essential edges in F.

We claim now that X is a thick Euclidean building whose apartments are flat
planes and chambers are maximal faces of X. We must verify the following properties.

1) X is the union of flat planes. That is so since every geodesic lies in a flat plane.
2) If the intersection F^ n F^ of two planes contains a maximal face A, then there

is a unique Coxeter isomorphism between F^ and Fg fixing F^ n Fg. This follows from
the face that F^ n Fg is convex and the position of any triangle in a flat plane F, uniquely
determines the positions of all other triangles.

3) For any two maximal faces A^, Ag of X there is a flat plane F containing both.
To see this connect the centers of A^ and Ag by a geodesic CT. By Lemma 6.2, there is
a flat plane which contains <r, and hence, contains both A^ and Ag.

Assume now that a maximal face A C F is a rectangle. Then the argument above
shows that all maximal faces of X are rectangles and the length of each edge in each
essential link is 7c/2. Then, by Lemma 6.3, each link of X is a complete bipartite graph,
and by Lemma 6.4, X is the product of two trees. D

7. Rank 1 orbihedra

In this section we will consider the situation complementary to that of Section 6
and will show that F contains a rank 1 isometry. We start with several lemmas that allow
us to reduce step by step the class of spaces X. After Proposition 7.7 we are reduced to
the situation when all edges of X are geodesies, all faces are flat triangles and the angles
between essential edges in all links are rational. To handle this case we introduce a
parallel dihedral structure in X and prove in Proposition 7.14 that, if there is a link in X of
diameter > TT, then F has rank 1.

Let (X, F) be a compact 2-dimensional boundaryless orbihedron with a piecewise
25
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smooth metric of nonpositive curvature. We fix a r-invariant triangulation on X such
that the metric d on X is induced by a piecewise smooth Riemannian metric on this
triangulation.

7.1. Lemma. — Assume that:

(i) there is a point XQ in an open face F ofX such that the curvature ofF at XQ is negative, or
(n) there is a point XQ in an open edge eofVL such that the sum of the geodesic curvatures ofe in

two adjacent faces F^, Fg is negative at XQ.

Then there is a F-closed geodesic a such that in Case (i) a passed through a point x e F
and the curvature at x is negative, and in Case (ii) a passes from F^ to Fg through a point x ee
and the sum of the geodesic curvatures ofeatx with respect to F^ and F^ is negative. In both cases a
is hyperbolic.

Proof. — In either case there is a geodesic o> such that co(0) = XQ, co does not bound
a flat strip and does not pass through vertices. By the Poincar^ recurrence theorem (see
Corollary 3.5), there are geodesies co^ -> o), isometrics <?„ e F and real numbers ^ -> oo
such that ^(^(coj)-co. It follows that <?„ XQ -> co(oo) and 9;-1 XQ -> <o(— oo)
as n -> oo. By Lemma 2.7, if n is large enough then <?„ has an axis ^ and
orj± oo) -> o>(± oo) as n -> oo. Since co does not bound a flat strip, ^ ->• co as % -> oo.
Hence, for yz large enough the axis <?„ passes through a point A; as claimed. D

7.2. Lemma. — Assume that there is a vertex VQ ofX whose link S^ has the property that
for any point S e S^ the set { 73 e S^ : fif(S, T]) > -n;} z'j ̂  ̂ ^ .̂ TA^ Aa^^, ̂  particular,
when S^ ^ 720^ connected.

Then there is a T'-closed geodesic a passing through VQ and making an angle > n at VQ.

Proof. — By the compactness of the link S^, there is 8 > 0 such that for any ^ e S^
there is a point T) e S^ with d{^, T]) > TT + 8. Let ^o be any point in S^ and let CTQ b^
any geodesic in X such that ^(O) = ^o an(i ihe outgoing direction of (JQ in S^ is ^o.
Denote by R the diameter of a fundamental domain for F. Then there is an isometry
^o e r such that d(^o VQ, (r(4R/8 + R)) < R. Let (OQ be the geodesic connecting VQ to
v! = +o ^o- Then Ae outgoing direction 7]o of coo at yo satisfies ^(730, So) < 8/4. Let ^o
be the incoming direction of <0o at y! ^d let Si e S^ be such that d{^, ̂ ) > ^ + 8.
Let (TI be a geodesic such that ^(O) = y^ and the outgoing direction of c^ at ^ is Si.
There is an isometry ^ e F such that rf(^i y^ or(4R/8 + R)) < R. Let o)i be the geo-
desic connecting v^ to ^ =^1^1. Then the outgoing direction 7]i of (Oi at ^ satisfies
^("^i? Si) < 8/4. Set 9 2 ^ ^ 1 + Q - Proceed in this manner to construct isometrics
^ Tn = +n-i • • • +o? anci geodesies co^ such that the distance in S^ between the
incoming direction ^_^ of(o^_i and the outgoing direction •/]„ ofco^ is at least TT + 38/4.
The last inequality implies that the concatenation of the geodesies co^ is a geodesic in X.
By the compactness of the link S^, there are two integers m, n, 0 ̂  m < n, such that
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^(?n1 ̂  9m1 ^m) < 8/4. Set + == 9» ?m1 and a = ym'^m * ^m+i * . . . * ̂ n-i)- Then
the concatenation <o of the geodesic segments ^(o), ^ eZ, makes an angle > TT at ^
and is an axis of ^. D

7.3. Lemma. — Let v be a vertex in X and suppose that ^, T] e S,, ar^ ̂ ^ ̂  ̂ (S? TQ) = ̂ -
Then for any s > 0 ^OT ̂  ^'5 ^' e S,,, ̂  isometry 9 e F ̂ rf a geodesic co connecting v

to (^v such that the outgoing direction of ̂  at v is '̂, the incoming direction of co at (fv is 97]' fl^rf
^ S), W, 7]) < £.

Proo/. — We subdivide the faces of X, if necessary, by the geodesic segments e
and / starting at v in the directions ^ and T), respectively, and assume WLOG that e
and/are edges of X. Let 6 be a shortest connection from ^ to T) in S^. Then the union
of the faces of X represented by the edges in S^ forming 6 is a polygon P with angle n
at u between e and/. By subdividing further, if necessary, we may assume that P is convex.
Let y, and ^ be the other ends of<? and/and let e ' + e and/' 4=/be the other edges
ofP adjacent to ^ and ^, respectively. Fix 8 > 0 and let 7 ' and/' be the subsegments
of<?' and/' of length 8 containing ^ and v^ respectively. Let G be the set of geodesies a
which do not pass through vertices, contain segments connecting points from ?" to points
from/^' and such that a(0) e P. Then G has positive Liouville measure. Hence, by the
Poincar^ recurrence theorem (see Corollary 3.5), there is a geodesic a e G, an isometry
9 e F and T > 0, which can be chosen arbitrarily large, such that 9-l(^T(<y)) e G. For
a large enough T and small enough 8 the geodesic co connecting v to 9^ satisfies the requi-
rements of the lemma. D

7.4. Lemma. — Assume that there is a vertex v in X whose link has the following property:
there exist points ^,7],eS^, i == 1, 2, ..., n, such that d{^ T],) = TT, d(^, Si+i) ^ ̂
i == 1, 2, . . . , % — 1, and d{^, ̂ ) > n.

Then there is a Y-closed geodesic G passing through v and making an angle > n at v.

proof. — Let rf(^, Si) = TT + 8 with 8 > 0. Fix any positive s < 8/(2^) and use
Lemma 7.3 to construct geodesies co, and isometrics 9^. Set +, = 9i • • • 92 9i ^d
0 == (o^ * <pi cog * . • . * ̂ n-i (*>n- Then <x) consists of geodesic segments with angles
> TC _ 2e at the n — 1 break points, its starting direction is at distance < s from ^
and its ending direction at ^nW ls at distance < e from ^nC^n)- ^Y Lemma 2.5, the inco-
ming direction of the geodesic <r from v to ^(^) at ^^(v) and the image of its outgoing
direction under ^ lie at distance > n in S^. Hence, the geodesic

... * ̂ k a * ... * <]^1 ( y * ( T * ^ < y * ... *^c r* ...

is an axis of ^ and satisfies the requirements. D
The assumption diam S,, > TC is not sufficient for the existence of a finite sequence

of pairs of points ̂  T), as in Lemma 7.4—the 1-skeleton of a tetrahedron with all edges
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of length 27T/3 is a counterexample. However, as an immediate consequence of
Lemma 7.4 we have:

7.5. Corollary. — Let v be a vertex in X such that diam S,, > TT and there is a closed
geodesic in S,, whose length is an irrational multiple of TT.

Then there is a hyperbolic axial isometry ^ e F. D

7.6. Lemma. —— Let v be a vertex in X such that the link S,, contains a simple arc G) of
length I > TT whose end points ^ =t= ^ a-re essential vertices and whose interior does not contain essential
vertices.

Then there is a T-closed geodesic a passing through v and making an angle > TC at v.

Proof. — lfl> 27c, the statement follows from Lemma 7.2. We assume that / < 2n,
the argument for the case / = 2n is similar. Let ^ be the midpoint of co. Since ^ is essential,
there are at least two ways of extending the subarc from ^ to $ beyond S to arcs co^, o^
of length TT. Similarly, there are at least two extensions co^, 0)^2 °f K? Y]] ^ co beyond T)
to arcs of length TT. Recall that l> n, the injectivity radius is TC and there are no essential
vertices in the interior of co. Hence there exists indices i, j such that co^ does not intersect
any arc of length TT — //2 starting at T] and co^j does not intersect any arc of length
TT — //2 starting at S- Therefore, d) can be extended to a simple arc o/ in Sy of length
2(7r + e), e > 0, which contains co^ and (o .̂, does not intersect other arcs from ^ and T)
of length TC — //2, and for which ^ is the midpoint. Let a and (B denote the ends of <x/.
Consider the following points on o: So ^les on (0^ at distance s from ^, 7]o = a, Si lies
on (o .̂ at distance e from ^, 731 == p. By construction, d^y, 731), ^(^i? ^3o) ^ 71:- Hence,
Lemma 7.4 applies and the lemma follows. D

7.7. Proposition. — Let A be a finite graph with a length structure of injectivity radius 1.
Assume that every vertex is adjacent to at least 3 edges and that the length of every closed geodesic
in A is rational.

Then the length of every edge is rational.

Proof. — If an edge connects a vertex to itself then it is a closed geodesic and its
length is rational be assumption. To treat other cases we need the following auxiliary
statement.

7.8. Lemma. — Iffis an oriented edge with different ends then there is a geodesic loop c
in A starting with f and ending with f~1.

Proof. — Let e connect v to w 4= v. By assumption, A\/ is a nonempty graph with
every vertex adjacent to at least 2 edges. Therefore, A\/contains a geodesic loop c ' at w.
Now let c ==/* c ' */~1. D

We continue now with the proof of Proposition 7.7. Let e be an edge connecting x
toj + x. If there is an edge/^ e starting and ending at x then/:== ^ is a closed geodesic
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at x. Otherwise there are 2 oriented edges^,^ starting but not ending at x. By Lemma 7.8,
there are geodesic loops c^ c^ for f^f^ such that c^ :== c^ * c^ is a closed geodesic at A?.
We construct Cy in a similar way and note that c = ^ * ^ * Cy * ̂ -1 is a closed geodesic
and 2 lengthy) = length (^) — length(^) — length(^). This finishes the proof of
Proposition 7.7. D

By Proposition 2.11, Lemma 7.1 and Lemma 7.2 we can assume that all edges
of X are geodesies, that all faces are Euclidean triangles and that all links are connected.
By Corollary 7.5, Lemma 7.6 and Proposition 7.7 we can assume that all angles between
adjacent essential edges are rational multiples of TC and ^ TC.

7.9. Definition, — A parallel dihedral structure D of order q in X is a family of subsets
D^ C S,., x e X, such that:

(i) for any A; e X and ^ e D^ we have

D .̂ = T] e Sa;: ^(^, T]) = — for some integer k [ ;
? ^

0 0

(ii) if .y,j/eX belong to the same open face F then D^ and D are parallel in F;
(iii) if A: e X lies in a closed face F and ^ e Dg; belongs to Tg F then for any y in the

0

interior F there is Y) e Dy parallel to i; in F;
(iv) if A; e X lies in an essential edge e then the point ^ e S^ representing e lies in Dg,.

Clearly (m, ^-complexes with their canonical piecewise flat metric (see Section 1)
are examples of complexes with a parallel dihedral structure.

7.10. Remark. — If X has a parallel dihedral structure of order q then:

(i) the length of any closed geodesic in any link of X is an integer multiple of TT/^;
0

(ii) if A:, lies in an open Face F,, i = 1, 2, and the faces Fi, F^ are adjacent by an edge
then D^ 11 D .̂ in the union of the faces.

Recall that a maximal face of X is a connected component of the union of all open
faces, inessential edges and interior vertices (see Section 2).

7.11. Lemma. — If all angles between adjacent essential edges of X are < TC, then every
maximal face of^K. is locally convex. D

7.12. Proposition. — If the angles between the essential edges of X are rational multiples
of TT and ^ TC, then X has a parallel dihedral structure.

Proof. — The assumptions do not immediately imply the existence of a parallel
dihedral structure because the union E' of closed essential edges ofX may be disconnected.
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I f E ' = = 0 then X has a parallel dihedral structure by the well known classification
of planar lattices. If E' =(= 0 then, by Lemmas 7.11 and 2.4, the maximal faces of X
are embedded polygonal subsets in the plane. Since F acts cocompactly, maximal faces
of X do not contain arbitrarily large disks. Therefore, we have the following possibilities
for a maximal face F: 1) a convex polygon, 2) an infinite flat strip, 3) two parallel rays
whose ends are connected by a finite polygonal line, see Figure 7. Let q be the common
denominator of all angles between adjacent essential edges. If x e X is a point lying on
an essential edge e then let D^ C S^ consist of the point S representing e and all points
T] e 83; for which d^(r\, ^) is an integer multiple of 7r/y. For any other y e X lying in the

0

interior F of a maximal face F choose any x e 8¥ and define Dy as the parallel translation
ofD^ from x to y in F. In Cases 1) and 3) all essential edges forming 8¥ belong to the
same connected component of E', and hence, the set Dy does not depend on the choice
of x e 9¥. In Case 2) there are two connected components of E' but they are parallel,
and Dy also does not depend on where x lies in 8¥. It is easy to see that this defines a
parallel dihedral structure on X. D

Case 1. Case 2. Case 3.

FIG. 7

7.13. Lemma. — Let X have a parallel dihedral structure D and let <p be an axial isometry
with an axis a which bounds aflat half plane and whose direction does not belong to D.

Then the set P of geodesies parallel to a is a plane and F contains a subgroup acting cocom-
pactly on P.

Proof. — Since the direction of a is not in D, the set P is the product of a line (in
the direction of a) and an interval. Since a bounds a flat half plane, the interval is infinite.
Assume that P is not a plane. Then it is exactly a flat half plane with boundary </ inva-
riant under 9.

Let F be a fundamental domain of F, set a'(0) = XQ and let x^ be the point in P
that lies on the perpendicular to or' through XQ at distance 2n X diam F from XQ. Let cr^
be the geodesic passing through x^ and parallel to </. Note that a^ is an axis of 9. There is
^ e r such that y^ = ^nxn e^- The geodesic ^((rj passes through j^, and hence,
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through F and is an axis of ̂  ̂ n19 Observe that the displacement ofj^ by ̂  9^n1 is
equal to the displacement of XQ by 9 and ally's lie in F. Hence, by the discreteness of F
there are infinitely many pairs m =t= n such that 4'n 9^1 = ^m ?^m1* Hence 9 commutes
with ^ = 4ro1 ^n • Note that ^ =1= ^ by the choice of x^. Since ^ commutes with 9, it
leaves invariant the set of axes of 9. By composing ^ with itself, if necessary, we may
assume that ^ preserves orientation in P. If m > n then ^) moves x^ away from a ' in P,
and hence, moves XQ away from a in P. This is a contradiction. Hence, P is a plane. The
same argument implies that the group generated by 9 and ^ acts cocompactly on P. D

7.14. Proposition. — Assume that X has a parallel dihedral structure D of order q and that
there is a vertex v in X such that Sy has diameter > TT.

Then there is an axial isometry ^ e F with an axis which does not bound aflat half plane,
and hence, F is of rank 1.

Proof. — By doubling D if necessary we may assume that q is even. Suppose that
all axes of the isometrics from F bound flat half planes. If there is no essential edge
adjacent to v then Sy is a circle and, by Lemma 7.2, there is an axial isometry in F with
a hyperbolic axis. Hence, we may assume that there is an essential edge e adjacent to v.
Choose two points ^, T) e S,, such that:

(i) ^ and T] lie on a minimal geodesic y C Sy of length > TT,
(ii) d{^, T]) = TC,

(iii) ^,DJ=^,D,)-

(iv) the balls B |^, —| and B Y), —1 centered at ^ and Y) are contained in y.
\ 4y; \ 4q)
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By construction, we have:

(7.15) if ^' eB ^, 7r-), 73' eB IT], -?-) then there is no closed geodesic in S
\ 4?/ \ 4?/ v

of length 27c containing ^' and T]'.

By Lemma 7.3, for any e > 0 there are ^ ' , T]' e S^, an isometry 9 e F and a geodesic co
connecting v to <py such that the outgoing direction of co at v is i;', the incoming direction
ofco at 9^ is 97]' and ^(^', S), ^,(T]', 73) < e. By passing if necessary to the geodesic connec-
ting the ends of co * <o, we may assume that the isometry 9 corresponding to co is a
square. Let a be an axis of 9 and let T be the shortest connection from v to o.
Set a = Z.^(r, co), (B == Z^(9(r), co) and denote by a' and (3' the angles formed by T, a
and 9(r), <y, respectively. Obviously, a', (B' ^ 7r/2. By Corollary 2.3, a + a' ̂  TC and
(B + P' < TT since d(v, a) = d{^(v), cr). Note that a + (B ^ TT — 2s by the choice of co.
Hence

J - 2e < a, P ̂  7-^ a', |B' ̂  7- + 2e.

We are not using is but actually a' + P' = TT, and hence, a' = p' = 7r/2. Let yi, ̂ , ..., ̂
be the vertices lying in the interior of T in consecutive order and let u ' be the inter-
section point of T and a-. Denote by CT, the geodesic connecting ^ to 9^) and let
a,, a^', (B^, (3^, z = 1, ..., ^3 be the angles indicated in Figure 8. Since T and 9(r) are
geodesies, we have a, + a; ^ TT, (B, + (B; ^ TT, z = 1, . . ., n. By Lemma 2.5, all these
angles are between 7c/2 — 2e and 7r/2 + 2s. Let 8, denote the defect of T at y,, that is
8^ = d^ — TT: ^ 0, where fl^ is the distance in S .̂ between the incoming and outgoing
directions of T. Note that a,, v.[ < n, and hence, o^, y.[ realize the distance from these
directions to the direction of G, at v,. Therefore, a, + a,'^ TC + \. Similarly,
Pi + Pi ^ TT + 8,. Since the sum of the angles of any geodesic quadrangle is at most 2n,
we have:

2(n + 1) T. ̂  a' + P' + ai + pi + S (a;_, + p;_, + a, + 0,)
i=2

+ < + (3, + a + P
n

> S^ (a. + a; + P. + P:) + a' + (3' + a + (B > 2»7t

+ 2 S 8. + 27t - 4e.

n
Hence, S 8, < 2s.

Let 6^ denote the outgoing direction of T at ». Then ^(64', D^,) ^ -7C- — 3e since ^

is even and 7r/2 — 2s ̂  a ^ 7r/2. Let 6,4' and 6," denote the outgoing and incoming
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directions ofr at ^, respectively. Then d^(Q^~, D^) = d^, DJ ^ — — 3s, and hence,

dy (6^, D^) ^ — — 3s — 81. Repeating this argument, we obtain for the incoming

direction Q~ of T at y'

^•(9-, DJ = d^, DJ > ̂  - 3.- JĴ  ̂  - 5s.

Let ^ be the direction of a at y'. Since TC/2 < a' ̂  Tr/2 + 2e, we have:

(7.16) ^DJ^--7e.

Therefore, if e is small enough then ^ ^ D^.
By our assumption, a bounds a flat half plane. By Lemma 7.13, the set P of geo-

desies parallel to a is a plane and, since 9 a square, it acts as a translation in P in the
direction of CT. WLOG assume that T is the shortest connection from v to P. Recall that
v! < TC/2 + 2e < TT. Hence, T and G- locally span a unique flat sector S in X with angle a'
at the apex v\ Since the direction of o- is not in D, there is a subsector S' of S containing

a and lying in P. By (7.16), the angle of S' at v ' is at least — — 7s. It follows that the
angle between T and P is at most

/ 7T \ 7C 7T
a' - — - 7e ^ . - — + 9s.\2q ] 2 2 q 1

For a small enough e the right hand side is less than Tr/2 which contradicts the fact that T
is the shortest connection from v to P. Hence, co lies in P and is parallel to <y. This
contradicts (7.15). D

8. Euclidean buildings

A general reference for the following is [Bro]. Recall that a Tits building is a sim-
plicial complex X which is the union of subcomplexes, called apartments^ such that:
(BO) each apartment is a Goxeter complex;
(Bl) for any two simplices A, A' in X, there is an apartment containing both of them;
(B2) for any two simplices A, A' in X and apartments F, F' containing both of them,

there is an isomorphism F -> F' fixing A and A' pointwise.

We may take A and A' to be the empty simplex in (B2), and hence any two apartments
are isomorphic. In particular, all apartments have the same dimension. Simplices of
maximal dimension are also called chambers. Axiom (B2) can be replaced by the following
axiom, see [Bro, p. 77]:
(B2') if F, F' are apartments with a common chamber G, then there is an isomorphism

i: F -> F' fixing F n F' pointwise.
26
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We say that X is a Euclidean building if its apartments are Euclidean Goxeter complexes.
A Euclidean building has a canonical piecewise smooth metric d consistent with the
Euclidean structure on the apartments and turning it into a Hadamard space.

Let X be a Euclidean building of dimension n^ equipped with the complete system
of apartments and the canonical metric d. Then a subset ofX is an apartment if and only
if it is convex and isometric to R". For this reason, we call the apartments of X flats.
Every geodesic of X is contained in a flat.

Let Ap be the group of automorphisms of a flat F preserving the triangulation.
Then Ap preserves the metric, and hence, Ap is a Bieberbach group of rank n. The sub-
group Tp C Ap of translations is a normal and maximal abelian subgroup. It is free
abelian of rank n and has finite index in Ap.

8.1. Remark. — The trianguladon ofF is defined by a finite number k ofpairwise
transverse families J^i, . . . , J^ of parallel hyperplanes in F which are called walls.
The (n — 2)-skeleton of F consists of the intersections of walls H^ n H^ with H, e Jf^,
H^. e e .̂ and i^j. The open (n — l)-simplices are the complements of these inter-
sections in the walls.

The Goxeter group Wp C Ap of automorphisms of F generated by the reflections
in the walls H e ̂  :== U?=i ̂  has finite index in Ap.

Fix a flat F and a translation T e Tp. We say that a translation T' of a flat F' is
conjugate to T if there is an isomorphism i: F' -> F such that T' = i~1 o T o i. Thus a
translation T' of F is conjugate to T if and only if T' is conjugate to T in Ap. It follows
that the number of translations of a flat F' conjugate to T is equal to the number m of
elements in the conjugacy class of T in Ap.

We say that a geodesic <s is special (with respect to r) if a does not meet the {n — 2)-
skeleton ofX and if there is a flat F' containing a and a translation T' ofF' conjugate to r
such that

T'((T(^)) === (s{t + to) for all t eR,

where /o = 11 T/ 11 == 11 T 11 ̂  0 is the displacement. This is independent of the flat F'
containing a: if F" is another such flat, then a C F' n F". Since or does not meet the
{n — 2)-skeleton of X, this implies that F' n F" contains an ^-simplex. Hence there
is an isomorphism i: F" -> F' fixing a pointwise and T" == i~1 o T' o i is a translation
of F" conjugate to T and shifting or as required.

If a is special with respect to T, if F' is a flat containing CT, and if i: F' -^ F" is
an isomorphism to another flat F", then i o a is also special with respect to T.

8.2. Example. — Let B be an open (n — 1)-simplex in X, and let F be a flat containing
B. Consider the system Jf of walls as in Remark 8.1. Then BC H e jf^ for some z,
1 ̂  i ̂  k. If H' e J^ is another wall, then the composition T of the reflections in H
and H' is a translation of F perpendicular to B. A unit speed geodesic (T in a flat F' is
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special with respect to this T iff it does not meet the (n — 2)-skeleton ofX and if there is
an isomorphism i: F' -> F such that i o a intersects B perpendicularly.

8.3. Lemma. — Let a be a special geodesic in aflat F'. Suppose that <o is a geodesic with
<r(0) = (o(0) and o(0) = o>(0). Then <o is also special. More precisely, if <o is contained in a
flat F", then there is an isomorphism i: F" -> F' with t(o>) = a.

Proof. — Since special geodesies do not meet the (n —• 2)-skeleton ofX and intersect
the (n — 1)-skeleton transversally, there is an ^-simplex G o f X and an e> 0 such that

co(^) == a{t) eG, 0< t< e.

Hence CC F' n F" and therefore there is an isomorphism i: F" -» F' fixing F' n F"
pointwise. Then z((o) === T. D

8.4. Lemma. — Suppose T' is a translation of a flat F' which is conjugate to T. Denote by v
the parallel field of unit vectors in F' in the direction of T'. Let B be an open (n — \)'simplex of F'
transverse to T'.

Then there is an open and dense subset B(r') C B of full measure and an e^ > 0 such that
a geodesic a in F' with x :== a{0) eB and d^a(0), v(x)) < ̂  is special iff x e B(r') and
a(0) == v(x).

Proof. — If m is the number of elements in the conjugacy class of T in Ap then there
are m directions in F' which special geodesies can point in. Hence a geodesic CT approxi-
mately pointing in the direction of v can be special only if cr(0) = v(x), where x == a{0).
If CT(O) == v{x), then G is shifted by T' and (T does not meet the (n — 2)-skeleton of X
if <r([0, || T' ||]) does not meet the (n — 2)-skeleton of F. D

We return to our discussion in Section 3. For a point x in an open (n — 1)-simplex
adjacent to an ^-simplex C denote by S^ G C S^ G the directions tangent to special
geodesies. Then S^ C contains at most m elements. Let G^, . . . , G, be the yz-simplices
adjacent to an (n — l)-simplex B. We set

S; = U ,̂ S;' C, and V, = U,ex' S;\

Then V .̂ C V by the defining property of special geodesies.
There is a natural measure v on V^ (the conditional measure of pi, see (3.1)):

(8.5) d^(v) = cos Q{v) dx,

where x is the foot point of v and dx the volume element of X' (see the beginning of
Section 3).

By the definition of V,, we have F(^) C V, if v e V^, and hence the Markov chain
with transition probabilities given by (3.2) restricts to a Markov chain with state space V^.
One can check easily that the measure v given by (8.3) is stationary and hence gives
an invariant measure v* for the shift in the space V^ of sequences (^J^z m V^..

Denote by G^ the set of geodesies which are special with respect to T. Then G,
is invariant under the geodesic flow and under automorphisms of X. We may think of V^
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as a cross section in G^, where the return map (of the geodesic flow g^ corresponds to
the shift on V^. Hence v* defines an invariant measure v^ for ^( on G^.

Let r be a group of automorphisms of X which acts properly discontinuously
and cocompactly. Since F leaves G^ invariant, the measure v^ gives a finite invariant
measure for the induced action of g1 on GJF. Thus the Poincart recurrence theorem
implies the following corollary.

8.6. Corollary. — Every special geodesic a is nonwandering mod F, that is, there are
sequences a^ e G^, 9n e F and t^ e R with (?„ —^ or, ^ -> + °o <W ^(^'(CTJ) -^ o. D

Recall that special geodesies intersect the (n — 1)-skeleton transversally.

8.7. Lemma. — Let a be a special geodesic intersecting an (n — 1) -simplex B transversally
at x == <y(0).

Then there is an £3 > 0 z^A the following property: if ̂  is a geodesic with &>(0) == x and
<o(0) == <7(0), zf (o(^) ^ w an (n — 1)-simplex B' flnrf iff:W->T^isan isomorphism (of
simplices) with d{f{u{t)), x) < s^, thenf((^{t)) == .̂

Proo/'. — Let F' be a flat containing a and F" a flat containing <o. By Lemma 8.3,
<o is special and hence B' C F". Furthermore, there is an isomorphism i: F" -> F' with
^(<o) == a. Hence we may assume o> = a and F" = F'.

Now a is shifted by a translation T' ofF' conjugate to T. Since T' is an automorphism
of F', there are only finitely many (combinatorial) possibilities for the intersection of a
with (n — 1)-simplices. D

8.8. Lemma. — Suppose a is a finite segment of a special geodesic a.
Then there is a T-closed geodesic containing a.

Proof. — Let F' be a flat containing a. By reparameterizing G- and enlarging the
given segment of a if necessary, we may assume that x = a(0) is in an open (n — 1)-
simplex B and that a == (r([0, T]) with T> 0. By Lemmas 8.3 and 8.4, there is an
s > 0 with the following properties:
1) for any special geodesic o intersecting the balls Be(a(— 1)) and Bg((r(T + 1))? the

segment co n F' is parallel to <r in F';
2) if co is a geodesic with <o(0) eF', &>(0) parallel to or(0) in F' and d{x, (o(0)) < s,

then co is special.

By Corollary 8.6, there are sequences <?„ e G^, <?„ e F and /„ e R such that a^ -» cr,
t^ -> oo and <?„ g1" a^ -> a. Since cr does not meet the (n — 2)-skeleton of X, we conclude
that

^(^(?n^^)W^F, ^ 1 < ^ T + 1

for all n sufficiently large. By a small change of the parameterization of cr^ and a small
change of^ we may assume that ^(0) and (cp,»^" <rJ (0) are in B.
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Now <?„ and 9^" ̂  are special. For % large enough they intersect Bg((T(— 1)) and
B,(<r(T + 1)), and then ^ n F' and (9^" oj n F' are parallel to o in F' by (1). In
particular, cr^(O) and 9^((^J) are parallel to CT(O) in F'.

Let F^ be a flat containing (T^. Since special geodesies do not meet the (n — 2)-
skeleton, cr([0, T]) = a is in F^ and parallel to <^ in F^ for all ^ sufficiently large. Let co^
be the geodesic in F^ with <o(0) = A: and oJO) == cr(0). Then co^ is parallel to ^ in F^
and a is contained in (»)„. Since ^nS^^n -> o- and d ((«>„, o-J -^ 0, we conclude that
^(^n^J^) -^0. Hence by Lemma 8.7 9^(<oJ^)) = x for all TZ sufficiently large.
Since 9^(<7j^J) is parallel to a (ft) in F' and (»)„ is parallel to CT^, we have that
<Pn.(<^n)) = ^(0) = <^(0). Therefore,

U,ez?n(^([(UJ))

is a geodesic invariant under <?„ and containing o. D
Let Fp denote the stabilizer of a flat F and let

Fp == { 9 e Fp : 9(^) == A: for all x e F }.

Then Ap :== Fp/Fp is (isomorphic to) a subgroup ofAp. We say that F is F-closed if Fp
acts cocompactly on F, that is, if Ap has finite index in Ap. If F is F-closed, then
Tp n Ap has finite index in Tp and Ap.

8.9. Theorem.—Let K be a compact subset of a flat F in X.
Then there is a T-closed flat F' containing K.

Proof. — Let T e Tp be a translation in a direction which is not tangent to any of
the walls of F. Let a be a unit speed geodesic in F shifted by T and not passing through
the {n — 2)-skeleton of F. Then F is the unique flat containing a.

Consider the system of pairwise transverse families J^\, ..., ̂  of walls in F. By
a half flat in F we mean the part ofF on one side of a wall. For each i, 1 ̂  i ̂  k, there are
half flats F,4- and F,- in F with boundaries H,4-, H,- e^f, such that K C F,4- n F,-. By our
assumption on o,

a, :== a n (F,4- n F,-)

is a finite segment of CT. Let a be a finite segment of a containing a,, 1 ̂  t ^ A, see
Figure 9.

By Lemma 8.8, there is a F-closed geodesic a containing 5. Let F' be a flat
containing a . By the choice ofo, F n F' is a convex subset ofF with interior. Hence the
boundary of F n F' is a union of closed (n — l)-simplices. It follows that F n F' is the
intersection of half flats. Note that ̂  is contained in F n F'. Hence the half flat containing
F n F', bounded by a wall H in J^,, must contain F,4' n F,~. Therefore KC F n F'.

There is a unique isomorphism j : F' -> F fixing F n F'. Hence, j[a} = <y, and a
is not parallel to any of the walls in F' and does not pass through the (n — 2)-skeleton
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of F'. It follows that F' is the unique flat of X containing a . Let 9 e F shift CT'. Then
(p(F') == F', by the uniqueness of F\ By passing to a finite power of 9, we may assume
that 9 is a translation ofF'. Now the argument of Lemma 7.13 applies and finishes the
proof of the theorem. D

^^<\?s^^^
/^ySc^^^T^^^^^^^AAAZ

VYVIVIV^/s/^/^^^
FIG. 9

8.10. Theorem. — Let X be a Euclidean building and F a group of automorphisms of X
acting properly discontinuously and cocompactly.

Then either F contains a free nonabelian subgroup^ or else X is isometric to a Euclidean
space and F is a Bieberbach group.

Proof. — If X is not a Euclidean space, than X contains an (n — 1)-simplex B^
which bounds three yz-simplices C^, C^ and C^, where n = dim X ^ 1. By Theorem 8.9,
there is a F-compact flat Fi containing Gi~ and G^. In particular, there is 9^ e F trans-
lating FI in a direction perpendicular to B^. Again by Theorem 8.9, there is a F-compact
flat F containing Ci and a 9 e F translating F in a direction perpendicular to B^. Choose
a point x^ e B^ and let G-^ 9 x^ (respectively cr 9 Xy) be the geodesic in F^ (respectively F)
perpendicular to B^. Then a^ is shifted by 9^ and a by 9.

Let ^2 == 9(^1) and Bg === 9(Bi). Then Bg is an {n — 1)-simplex which bounds
at least three yz-simplices GT, G^ and Gg, where C^ is the last ^-simplex through which <r
passes before it meets Bg. By Theorem 8.9, there is a F-compact flat Fg containing C^
and G^. As above we conclude that the geodesic Og in Fg through A:g and perpendicular
to B^ is shifted by an isometry 9^ e F. Let ^ > 0 be the period of G, with respect to 9,,
that is, 9i(^)) = ^(^ + t,) for all / eR , i = 1, 2. Let U, be the set of points A? in X
whose projection P^) onto a, is not in CT,((— tj2, ^»/2)). Then

(8.11) 9r(X\U) C U, for ^ + 0, i == 1, 2.
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Denote by a the segment of a between x^ and x^. By construction, the angles between
the outgoing direction of 5 at x^ and the incoming and outgoing directions of o-i are TC.
Similarly, the angles between the incoming direction of a at x^ and the incoming and
outgoing directions of 02 are TT. Therefore, each of the rays cri((— oo, 0]) and Oi([0, oo))
joined with a and then extended by any of the two rays ^((— oo, 0]) or ^([O, oo)) is
a geodesic. We claim that

(8.12) Pi(U2) == ̂  and P^Ui) == .̂

Suppose, for example, that x is a point with p^(x) == c?i(^) and ^ — t^2. Note that
j^ == p^x) is the unique point on (?i with Z-yQc, Oi) ^ TC/2. Now let co be the geodesic
consisting of the concatenation of Oi((—- oo, 0]), 5 and <7a([0, oo)). Since ^ — ^/2)
we also have /-y{x, G)) > TC/2. Hence

L^X, ^2) == ,̂(A;, (0) < 7T/2

for all z e ^((O, oo)). Therefore p^x) ^ ^((O? 00))- The other cases are treated similarly
and (8.12) follows.

We conclude from (8.12) that Ui n U^ == 0. Let A; be a point on a. Then^i(^) == x^
and ^g(^) = ^2, hence x e X\(Ui u Ug).

Now consider any nontrivial reduced word w in 9^ and 92. It follows from (8.11)
that w(x) e U, if w starts with a power of 9^, i = 1, 2. Therefore w(x) + x, and hence
w 4= id. Therefore 9^ and 92 generate a free nonabelian subgroup of F. D

We now come to Theorem E of the Introduction.

8.13. Theorem. — Let (X, F) be a compact 2-dimensional boundaryless orbihedron with a
piecewise smooth metric of nonpositive curvature.

Then either F contains a free nonabelian subgroup or else X is isometric to the Euclidean
plane and T is a Bieberbach group.

Proof. — According to Theorem G, there are three cases to consider: if (X, F)
has rank 1, then F contains a free nonabelian subgroup by Theorem 4.6. If X is a thick
Euclidean building of type A2, B2 or G^, then F contains a free nonabelian subgroup by
Theorem 8.10. In the remaining case, X is the product of two trees T^ and T2. If X is
not isometric to the Euclidean plane, then T^ or T2 has vertices with valence > 3. Since
the essential edges of X == T^ X T2 are parallel and perpendicular to the factors, F pre-
serves the product structure.

If both TI and T2 have vertices of valence > 3, declare their maximal edges
(maximal arcs not containing vertices with valence ^ 3) to have length 1. Then the
barycentric subdivision of the unit squares in X is a triangulation of X which turns X
into a Euclidean building of type Bg. Clearly, F acts by automorphisms on this building,
and hence F contains a free nonabelian subgroup.

If one of the factors, say T :== T^, has vertices of valence > 3 and the other is a
line, T2 S R, then each 9 e F is of the form 9 == (4s r), where ^ is an isometry of T
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and T an isometry of R. By passing to a subgroup of F of index 2, we may assume that
each such T is a translation. Since F is a cocompact and properly discontinuous group
of automorphisms, the center of F consists of elements of the form (1, r). Now let F
be the group of automorphisms ^ of T such that there is a translation T of R with
(+? T) e r- Then r" is cocompact and finitely generated. Let J be a finite generating set.

We show now that F' is properly discontinuous, compare [Ebl, Lemma 5.1].
If ̂  is a sequence in F' with ̂  -> id, then the commutators [^, ^] -> id for any ^ ej.
Choose translations Ty,, T of R such that (^, rj, (^, r) e F. Then

[(^^J,(^T)]=([^^],O)-^id.

Since F acts properly discontinuously, we conclude that [^, ^] = id for all n sufficiently
large and any ^ ej. Since J generates F', it follows that (^, rj is in the center of F,
and hence ^n = id for all n sufficiently large. Hence r" is a properly discontinuous and
cocompact group of automorphisms of T. Therefore F", and hence also F, contain a
free nonabelian subgroup. D

As another application of Theorem 8.9 we state the following generalization of
Theorem 2 in [BaBu] to higher dimensions. The proof uses the arguments of [BaBu]
and Theorem 8.9. The possibility of extending the arguments of [BaBu] to higher
dimensions was indicated by M. Gromov (private communication), who also had a
(different) approach for proving Theorem 8.9.

8.14. Theorem. — Let X be a thick Euclidean building, F a properly discontinuous and
cocompact group of automorphisms of X and d a ^'invariant metric of nonpositive curvature on X.

Then, up to a Y-equivariant homeomorphism and reseating, d is the standard metric.

Added in proof: Some of the results of Section 6 have been obtained later and independently by Sylvain
Barre (ENS Lyon).
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