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QUANTUM ERGODICITY OF EIGENFUNCTIONS ON PSL^Z^H2

WENZHI LUO and PETER SARNAK1

To Wolfgang Schmidt on the Occasion
of His 60th Birthday

1. Introduction

Schnirelman [SH], Colin de Verdiere [CD] and Zeiditch [Zl] have proven the
quantum analogue of the geodesic flow on a compact Riemannian manifold Y being
ergodic. Let A denote the Laplacian on Y and 9 .̂ an orthonormal basis ofl^-eigenfunctions
of A. The corresponding eigenvalues are denoted by X^.. One forms the probability
measures d[Lj(z) :== | (p/^)!2 dV{z), dV being the volume element (actually they consider
a microlocalization of these measures to S^(Y), the unit cotangent bundle). If the geo-
desic flow on S^(Y) is ergodic they show the existence of a full density subsequence \y
(i.e. one satisfying S^. ̂  1 ̂  2 .̂̂  1) for which (JL^(A)—^ Vol(A)/Vol(Y) for all
nice sets A (e.g. geodesic balls). Zeiditch [Z2] has extended this result to noncompact
surfaces such as the modular surface X == PSL2(Z)\H2. He shows that if h e C^(X),

the space of smooth functions on X with compact supports, and h[x) dV(x) == 0, then
Jx

W SK^I^i—^ — ^ / ' "logX

Here A <^ B means | A | < CB where C depends only on T. Selberg [SE] has shown
that in this case, S^.^ 1 /^ X/12 and from this one can easily deduce the quantum
ergodicity using (1).

Recent works of Hejhal-Rackner [H-R] and Rudnick-Sarnak [R-S] suggest that
at least for this X much more is true. Namely, that there are no exceptional subsequences,
that is .̂ -> dV as j -> oo. This phenomenon might be called Quantum Unique Ergo-
dicity. Hejhal-Rackner confirm this numerically while Rudnick-Sarnak show that certain
natural candidates for such singular limits (that is, measures concentrated on closed
geodesies) do not occur.

1. The research of the first author was supported by NSF Grant DMS 9304580, while he was a member at
the Institute for Advanced Study during 1993-1994. The second author was partially supported by NSF Grant
DMS 9102082.



208 WENZHI LUO AND PETER SARNAK

This paper is concerned with this individual equidistribution conjecture for X.
While we fall short of proving it we obtain a number of results in that direction. Firstly
we prove the conjecture for the continuous part of the spectrum of X—that is we show
that the Eisenstein series become individually equidistributed. Secondly for the discrete
spectrum (cusp forms) we show that if exceptional subsequences occur they must be
very sparse. We also introduce the discrepancy—a well-known measure of equidistri-
bution for sequences—to quantify the measure of equidistribution of the p./s. This enables
us to show that except for a sparse set offs the pi/s become equidistributed at a certain
rate. For more background on this problem see the Lectures [SA]. Along the way we
establish a conjecture of Iwaniec concerning the average size of Rankin-Selberg L-func-
tions on their critical lines. The latter may be used to obtain new bounds for the remainder
term in the Prime Geodesic Theorem (see below). We turn to a precise description of
our results.

The spectrum of A on L2(X) consists of three types, see Hejhal [H2J:

(A) <po(;2:) = VS/TT, the constant function;
(B) 9i(^), opa^)? • • • ? an orthonormal basis of cusp forms, A<^. + X, 9, = 0;

(G) E ^ , . + ^ j , ^ 0, the unitary Eisenstein series which furnish the continuous

spectrum, AE + (- + /2] E = 0.

We will assume that the basis 9^, is chosen to be simultaneously eigenfunctions
of the Hecke algebra. This choice is possible and in fact determines the 9 .'s up to a
scalar and hence determines (JL, uniquely. It is quite likely that there is only one o.n.b.
of <p/s anyway, since the numerical evidence points to the spectrum being simple

[H3, ST]. We define ^ = E ( z , l + it} 2 dV(z). Note that ^(X) - oo, so that there

is no canonical normalization of ^. Our first result is that [JL( become individually
equidistributed.

Theorem 1.1. — Let A, B be compact Jordan measurable subsets of X, then

lim ^W ^ ^(A)
< — ^ ( B ) Vol(B)'

The renormalizadon is actually needed since we in fact show that as t -> oo,

(2) ^(A^^VoHA)^.
7T

Jakobson [J] has recently extended Theorem 1.1 to the microlocalizadons % of (JL(
to S^(X).
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To describe our main result concerning .̂ we introduce some norms on functions
on X. For H e (^(X) let |[ H [|̂  be defined by:

avi + V2 H

(3) [ I H [L , == max sup f —————' / 1 1 I Ifc, v r ^ /Q^^v^ /Q,,,\v<>vi+va^ ^ev W 1 (W 2

where F is the usual fundamental domain for X in H. For H an integrable function
— I fon X we denote by H the mean value H(-2') dV{z).

Vol(X) Jx

Theorem 1.2. — For s > 0 and H e G^X),

2: H(.) d^{z) H < H j [2 ^( l /2)+eIks7^ ?

^ implied constant depending on e 07 .̂

The upper bound here is essentially the square root of that in (1) and in fact is
sharp (i.e. it cannot be replaced by any exponent less than 1/2). Theorem 1.2 asserts

f H(^) 4^
Jx

that on average -2') d[jLj{z) — H is of size \y 1/4. We expect that this is true indi-

vidually (see [SA]). As a corollary to Theorem 1.2 we can address a question of Zei-
ditch [Z], as to the size of an exceptional subsequence. He showed in general that such
a subsequence must be of zero density. The following asserts that an exceptional subse-
quence must be very thin.

Corollary 1.3. — Let j\ be a subsequence of j 's corresponding to a subset S C N and for
which ̂  ->v=t= 3rfV/7r. Then for any a> 1/2, | S n [1, N]| === O^N^.

We also establish Theorem 1.2 for H an individual Eisenstein series, that is

S
Xy^X

(4) < E ( . , ^ + ^ ^ > 2 < 3 ( | ^ | + l ) 6 X ( l / 2 ) + e .

By Cauchy's inequality and in view of the integral representation

47t8 r(j)
E(^)|<p,(^rfV(^),L(a,®u,,.r) = rw,) r(./2 + a,) r(./2 - a,) ̂

the last implies the following "mean Lindelof" conjecture of Iwaniec [II]:

L(M ;® ^^2+^
S).,•$). < ( | f | ^-l)4^6,(5)

cosh(Tt^)

where L(M,.®K,,J) is the Rankin-Selberg L-function (see § 2 and § 3 below) and
.̂ = (1/4) 4- t^. We apply (5) to counting prime geodesies on X. Let

^)=|{P|N(P)^}|,
27
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where P runs over the primitive conjugacy classes of F = PSLa(Z) and N(P) is the
corresponding norm [HI]; n^{x') counts the number of prime geodesies on X of length
at most log x.

Theorem 1.4.

n^x) = \i(x) + O^7710^6), for s > 0.

Here as usual, li(^) = dtj\og t. For a general discrete cofinite F C PSL^R)
J2

the best-known bound for the remainder term is O^/log x) [RAN, SE], while for
F == PSL^Z), Iwaniec in the paper quoted above established the bound O^35748^6).

In § 6 we will give an outline of a proof of Theorem 1.4. It is based on (5) and
Iwaniec's method in [II]. It should be pointed out that the expected remainder term
here is Og^1^4'6). In the analogy with the Riemann zeta function and primes, the
analogue of the Riemann Hypothesis for Selberg zeta function is true. Even so the
abundance of eigenvalues puts the O^172^5) bound completely out of reach. Indeed
the O^374) bound is reasonably straightforward but anything beyond that involves
capturing cancellation in the sums over the eigenvalues.

To quantify equidistribution of the (JL/S it seems best to avoid issues of subsequences
(as has been traditional in this problem) and to investigate directly the discrepancy.
Various notions of discrepancy have been introduced in connection wich equidistribution
of sequences [K-N]. The spherical cap discrepancy D((J(.) is defined by

(6) D(pL) = sup
BCX

,(B) - ̂ "W
7T

where the supremum is over all injective geodesic balls in X. It is clear that if D((JI,.) -> 0
then .̂ become equidistributed and the size ofD(^.) gives the rate. The choice of balls
in this geometry seems natural enough. A somewhat bold conjecture that emerges from
Theorem 1.2 (see also [SA] and the question of Golin de Verdiere [CD]) is that for
s>0, D(pi,) <^^')^(w+e. As pointed out in [SA] this equidistribution rate if true
would be optimal.

Theorem 1.5.

S |D(^,)|2 ^\(20/21)+s.
Ay^ X

The main achievement in Theorem 1.5 is that the exponent of X is less than 1.
We have made no effort to reduce it further which is certainly possible by these methods.
On the other hand the optimal exponent 1/2 seems out of reach by these methods.
From Theorem 1.5 it follows that with exception of a very sparse set, the (JL^S become
equidistributed at a rate which is a negative power of \y.
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We end the introduction with some comments about the proofs. As pointed
out in [SA] these questions of equidistribution are in part related to obtaining
non-trivial bounds for Ranking-Selberg L-functions on their critical lines. Concer-
ning Theorem 1 an involved but pleasing computation which exploits each factor of

E \ 3 2 "̂  ! E \ 5 2 ~*~ 7 ^^^^y' leads to two features: (1) The entire problem in
this case reduces to estimating L-functions. (2) The Rankin-Selberg L-functions in
question conveniently factor into Euler products of degree at most two. We can therefore
appeal to known estimates on the Riemann zeta function and L-functions of cusp forms
(Meurman [MEU]) to prove the Theorem. For the case of cusp forms, viz Theorem 2
we no longer have any direct relation to L-functions. Our method is to first establish
Theorem 2 for certain families of h's called incomplete Poincar^ series. This allows us to
exploit that 9, is a Hecke eigenform and to represent | 9^(2') |2 with expressions involving
the Fourier coefficients in quadratic polynomials. Eventually this allows us to use the
Fourier coefficient—Kloosterman sum connection, that is the Petersson—Kuznetsov
trace formula [KU], to convert the problem to estimating exponential sums. To do
so effectively Weil's bound on Kloosterman sums is used as a key arithmetical ingredient.
Also crucial in our analysis are the recent bounds oflwaniec [12] and Hoffstein-Lockhart
[HN-L] for Fourier coefficients of cusp forms in the j aspect. Theorem 1.5 is derived
from Theorem 1.2 using only Fourier analysis and geometry. The key point here is
the structure of the spectral development of the characteristic function of a geodesic ball.

All of the above results may be proven for congruence subgroups of PSLJZ)
(save for the possibility of small eigenvalues \j < 1/4 intervening in Theorem 1.5).
However inasmuch as we use heavily Poincar^ and Eisenstein series (and related Fourier
coefficients) we do not know how to establish these results for compact arithmetic
surfaces.

2. Eisenstein Series

This section is devoted to the proof of Theorem 1.1. The Eisenstein series E(^, s)
for X are defined by

(7) E(.,.)= S yW- S — — y -veroc\r 2 (c ,d)=i | cz + d |28

where 9?(J) > 1, z = x + zy, F = PSL^Z) and

^ = { z t - > z + n , n e Z } .

The Fourier development ofE(^, j) is well known [SA2]:
gyl/2 00

w EM =y + <pMy-8 + — s ^-l/2o,_J;z) K,_^(2TOjo cos(2^),^\^) n~~l
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where ^) = TT- s'2 F(./2) ^(.), 9^ = i(——^
^(72) = S ̂

d|r»

and K is the Bessel function.
In order to prove the equidistribution of (JL( we consider its inner products with

various functions spanning L^X). We begin with inner products with Maass cusp
forms 9^. Set

(9) J,(f) = f 9, d^ = f y,(^) E ( z 1 + it\ E fz,1 - it\ dxd^.
Jx Jx \ ' \ I ^

To investigate this we first consider

(10) !,(.) = f y,(.) E i z , 1 + it\ E(z, s) ̂ .
Jx \ / -'

Note that all of the above integrals converge rapidly since 9, is a cusp form. Now for
9t(j1) > 1 we can "unfold" the integral in (10) using the definition (7) to get

(ii) W = f f y,-(^) E Ll + it) f dx±.Jo Jo \ i -y
Since E(-2', s} == E(— z\ s) it follows that I^(^) == 0 if q .̂ is an odd cusp form (the cusp
forms are of two types 9,(— z ) = s?,^)? e = 1, — 1) so we may assume that 93 is
even. In this case it has a Fourier development

(12) (p,^) -V72 S P,(l) W K, (2^) cos(2^).
w == 1 -

Here (1/4) + ^ == \. and the coefficients \.(n) satisfy the multiplicative relations which
are a consequence of (p^) being a Hecke eigenform. (We will ignore the normalization
p^.(l) since in the discussion of this section^' is fixed.) These amount to

(is) L(V,,.):= s ^=^(l-x,c^-8+^-2r l.
n== 1 71 p

So

I,W = f f (VJ^,^) K.,/2 )̂ cos(2^))
Jo Jo

( i , , /i \ i . 9yi/2 co \ dxdv
^ + 9 o + ^ ^2-^ + ————. S ^< CT_^(^) K^(2^) cos(2^) y -^\/ y ^^i + w) n = i / j^

= ̂ rh^ [ ^^^^^ ̂ ^^^nit G-mw K^27^^)^ ̂

",,^(.£/-•(")'^)^w^^
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which on evaluation of the integral ([G-R]) yields

(14)
^_ ̂ y)^ ('-̂ -fl) r f-t^) r (̂
1 + 2it) ——————————^——————————————S(l + 2it)

where R(,) = S w nit a-^
-._, ^3tt-1

Now R(s) may be expressed in terms of the L-function L(<p,,^) in (13):

(15) R^) ^ L(y,, ^ - it) L(y,, ^ + ^)
v / ^ / 0 _ \ " ^ •m

To prove (15) first we factor R(^) (we write X(n) for X,(») in short),

RM = n R,(.)
»

where

(16) R^ = ̂ /(^r' ̂ {p3)?-38

Now
3 1 /,- 2 i t ( j+ l )'-'•w-y—^^.

so
] __ A-2t(»+l)/,*«-—L___.-,.^-^W^-T^-^

ii _p-2u {^np')?-^-^ -/>-2it 2; x(/,o/>-^+«'>)
1 / 1 __ ^-2«

i - y-2" v -x(/>)/>-"-*t'+/,-2(.-i» i -np)p-^+u^p-
i -p-^

(1 -X(/>)/>-<8-*" +^-2(»-.o) (i _up)p-,s+it) ̂ p-^+wy

This proves (15). Using this in combination with (14), (11) and (9) we get

(17) J^)=I,f1-^J^)=I, \^-it\

=27t

f i+^rrf1-^ ^r^^
^ 4 + 2 ^ ^^4 I-T 4+^

r +Y r -?-^ +^-.

^(1 + 2^) |2 r,+.
^^S Lk^
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One can check using the functional equation for L((p^.,^) that the RHS
of (17) is real as it has to be in view of (9). An interesting point here is that
J^t) EE 0 if L(9,, 1/2) == 0.

We are now ready to investigate the behavior of Jj(t) as t -> oo. Using Stirling's
formula (| r(o + it) \ ̂  ^ - " l ^ l / 2 | f |"-(i/2))^ we see that the F factors in (17) will yield
a factor ̂  c \ t \~112' as t -> oo (here ty is fixed). This together with the arithmetic estimates:

(A) (log^)-1 < W +it)\ <log^,

(B) L ^ . ^ + ^ l ^ ^ i ^ r ^ ^ ^ o ,
yields

Proposition 2.1.

I J . W I ^sM-^6^ tor all £ > 0 .

The estimate (A) above is well-known in the theory of the Riemann zeta
function ([T]). Actually later we will need an improvement of (A) due to Weyl. Indeed
this method of Weyl of estimating exponential sums is used crucially by Meurman [MEU]

in his proof of the estimate (B) above. The standard convexity bound for L (9, . + in

is L ( c p , , - + ^ ) <,^ | ^ [( l /2)+e. Clearly this would not suffice to show J,(^) -> 0

as t -> oo. However any improvement (in the exponent) of the standard bound would
suffice for our purpose. This completes the analysis of the inner products of (JL( with
cusp forms. We turn now to inner products of (JL( with incomplete Eisenstein series.

Let h[y) e C°°(R4') be a rapidly decreasing function at 0 and oo, that is, for any
positive integer N, h[y) = 0^) when 0<jy^ 1, and h[y) = CVjT^ when y > 1.
Let H(^) be its Mellin transform

/*oo »

(18) H(.)= h^y-^.
JQ —

Clearly H(^) is entire in s and is of Schwartz class in t for each vertical line a + it. The
inversion formula gives

(19) ^^-f WV^
v a — ioo

for any u e R. For such an h we form the convergent series

(20) W = S h[yW} = — [ HM E(^, s) ds;
rer»\r 2w J^_^
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F^ belongs to C°°(X) and is rapidly decreasing in the cusp (i.e. asj/->oo). Hence we
may form

I f f /
-o^ HMVA

2nl Jo J^)-2 V

Now

J

»d+.')

W d^(z) = 1
x Jx

1
27t

1

27CT

2

== 1, so that the

p

i

first term above contributes (as t -> oo)

'̂ )

II
JxJ9?

Jo Js

^(l +2^|2^

E(4+,<)

H(t) E(z,
( s ) = = 2

H(^)yA
K(s) == 2

0 00
zv V

2

^)

1!

^

^
j2

^
i

0

y

/ I

^

$•

i

^ ^ + y ^ +

CT

^

E (^ J + ̂

E(^+^)

-^Wl2!^

)
2

(^

2^^
y

dxdy
y

,^y/2-«

2^)1^^
"'"'/ 1 1 y2

/•OO ,

l ^y(21) 2 A(j/) — +a rapidly decreasing function of t depending on h.
Jo ^

The second term which we denote by l^(t) is

1 ^-^^Wl^•̂  H ( . ) S ' -V^)-—̂iW +2it) |2 J^ n=i n

The series can be evaluated as was first done by Ramanujan [RA]

^ 1<^-2«(")12 W ^{s - 2it) ^(s + 2it)S
»-i n° m

|K„(2^)|2y^A.

The j'-integral is evaluated in terms of r-functions as before. We obtain (note that t is
fixed while s is the variable for the integral)

Ut)=-m\^\+2it)\2
n-s H(,) W ̂ (s - 2it) ̂ (s + 2it) r\sf2) F ^ - it\ F (- + ̂

W FM
ds

v 9l(»)—2

^-W^W2] ^ds'sa•Y•1 ' v 1 / ' t/<ffr.<i^== 9.91(8) == 2
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Now shift the integral to 91 {s) = 1/2,

4ni 24?ri 2 r
I2(^^|^+2^|-Res3=lB(^+^|^(l+2^J , B(^+0(r-).I2(" -..WTW^-1^ ̂ Igo r̂.,,,....,.

The 0-term comes from the contribution of poles at s = 1 ± 2^. To justify shifting the
contour we use Stirling formula to estimate the F-factors and the fact that H((T + it) is
rapidly decreasing in t. In fact using this and WeyFs bound

(22) t:(j+^) ^t(m)+^

we find that

2 r
(23) —————————————— f i f e ) (h <^ y^/3^8 /-1/2 — /-(l/6)+ev / w | ^ l +2^)[2 ^ W ^ < ^ ^ ^ -t

' v ' / 1 ^ (R(8)=1/2

This corresponds to the bound in Proposition 2.1. The residue term is
more complicated. Write B(^) as ^(s) G(s) where G{s) is holomorphic at s == 1. Then

/ C i f \
Res,^iB(j) = G(l) 2y + — (1) , where y is Euler's constant. Now a simple cal-

, . . \ u- / r

culation gives

G^)^24^!)
TT

G' H' ' € . ' rand -Q (1) = ̂  (1) + C + - (1 - 2^) + - (1 + 2it)

r'/i \ r '/i \
+ r [ 2 + l t ) + ^ ( 2 - ^ t ) )

C being independent of t. According to the Weyl-Hadamard-de la Vallee Poussin
bound [T]

(24) ^ (1 + „) ^ _10^v / y \ ' -*'/ -< i i^ log log ^

and Stirling's approximation

r ' /i \
^ ^ + z d = l o g ^ + 0 ( l ) ,

we have

(25) Res,., B(.) = 48 H(l) log ^ + 0 (logi-)
7T l̂og log ̂
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as t -> oo. Note that

H(i)=r^)*fF,(,)^.
Jo -' Jx J

This leads to

Proposition 2.2. — Let F e G°°(X) ^ of the form F^ ̂  ̂  (20). TA^

fF^^^-^ffF^^log.Jx 7T \Jx y i
as t —> oo.

With Proposition 2.1 and 2.2 we are ready to establish the following Proposition
which by standard approximation arguments implies Theorem 1.1:

Proposition 2.3. — Let F e Coo(X) {i.e. F is a continuous function of compact support
in X); then

hww^lf^^^t
•/x 7r \Jx y

as t -> oo.

Proo/'. — It is easy to see that the functions of the form F^ as above together with
the cusp forms 9, are dense in Co(X) (the space of continuous functions vanishing in
the cusp). Let F e Goo(X) and s > 0; then we can find G = G^ + Gg with G^ a finite
sum of cusp forms and Gg in the space of incomplete Eisenstein series with corresponding
h e Go°°o(R+), such that |[ G - F ||^ < c. If H = G - F then H is rapidly decreasing
in the cusp and so we can find an h^ ^ 0 which is rapidly decreasing and for which

Hi(^)= S Ai(j^))> |H(.)|,•yeroo\r

f
and Hi(^) dV{z) < 5s.

Jx

Hence by positivity of ̂  we have

lim ——< -^ co log / H{z)d^(z)
lx

240
^ ——£.

7T

From this the Proposition follows easily.
To end this section we remark that while | < F, ^ > [ is expected to be of size ^-1/2

for F in the space of cusp forms (and smooth), the above shows for F an incomplete
Eisenstein series and of mean zero, that < F, ^ >/log t -> 0, but this convergence is
very slow.

28
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3. Incomplete Eisenstein Series and Poincare Series

In this section we will establish Theorem 1.2 in a very special but important
case, i.e., H(^) is either an incomplete Eisenstein series or an incomplete Poincare series.
For these functions, we have the advantage of being able to "unfold" the integral

H{z) d^j(z) and then appeal to automorphic L-function theory and the Petersson-

Kuznetsov formula. In the next section we will see that Theorem 1.2 holds in general
by an approximation argument.

Proposition 3.1. — Let h{x) be a smooth function on (0, oo), supported in (^, oo), XQ > 0,
such that for some U ̂  1,

I^WI^ C^x-\ i,k^ 0.
Let

P.,o(^) - S A(j/(y.)).•reroo\r

Then for any s > 0, T ̂  1, we have

S I < P,,o, I «,(^ I2 > - PM. I2 < G,,, C^ T^6,
tj ̂  T

where ^-voi^i)^/^^^^-

Proof. — By unfolding the integral and using (12) we have, with p/n) = p/1) X,.(re),

f l^))^ S A(J>(y.)))^V(.)=S|p,W|2^K?,(r)A(———^r.
Jr\H Teroo\r t+o J^ ; \2-!v\k\] r

Set h^x) = h{x-1), and
f»00 000

(26) G(s) = h^x)xs-ldx=\ h^x-'^dx.
Jo Jo

Then G(J) is entire and by Mellin inversion

(27) h ^ x ) = l \ G(s)x-sds, a>0.
^Jw

It is clear from the definition of G{s), by partial integration, that

(28) G(s) < ——————cl^______
' / u '001^-1) ... (s - /+1) |
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for / ^ 0, s (j= Z, and 1 > (T = 9?(.?) ^ (?o > 0. By Mellin transform and a well-known
formula (see (35)), it follows that

f^'W
^•L^—m-m1^-

where <y> 1. Then we have

(29) f \uWe^z-)d\{z]
'T\H /j.\

_ 1 f G(.) L(«, ® u,, s) (s + 2^,\ ^ ( s - 2it,\ r2 (2) ,
- snii ——^—r [-T-] r hr-j -^wds>

00 00

where L(M, ® M,, ^) = S | p,(») |2 »-' = | p,(l) |2 S X2^) Tz-8.
n = 1 n = l

We move the line of integration to 91 {s) == 1/2 and pass the simple pole of the inte-

grand at . = 1 with residue P^ = ̂  l f P, ,(^) rfV(^), in view of

___ /»oo ,

Res.^i L(^®a,, ^) = 12TC-2 cosh(7tf,.) and P^o = 3n-1 h(y) -^ = 37c-1 G(l), which
Jo -'

follows from the unfolding method. In order to finish the proof, we need to understand
the behavior ofL(^.®^., s) uniformly inj and s, which is of independent interest.

Let L^^u^s) stand for the second symmetric power L-function [SHI] attached
to the Maass-Hecke form Uy{z), and

R,(.)=S(2.) ^\^n)n-\
n=l

the Rankin-Selberg convolution L-function. We have

R,(.) = W L ,̂, .), 1; \^n) n-8 = W S X,(^) n-\
n=1 n=l

Hence

L^,,^) = W S X,^2) n-8 = S ^.(TZ) 7z-8,
n =1 w= l

^) = S \.(^2),
? 2 f c = w

for 9l(^) > 1. It is well known from the work ofShimura [SHI] that L^^,, s) is entire and

TC-3/2S r © r (̂  + ̂ )r (I- ̂ )Lw{u)>s)
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is invariant under the change of variable s -> 1 — s. Define

e,(.) = n-^ r ̂  + ̂  r ̂  - ̂

and let w = (1/2) + ^o. Consider the integral {x > 0)

(30) 2^-f ^^^+^^+l)x-lds,
" ( a )

where ^ is a positive integer, and CT == (1/2) + 1/log^.. Clearly (30) equals

î (-).
where F(f) = 1 [ F(j + Z) f-9 ds = f ^-s i;1-1 ̂ .

2TO J<o) ^ J<

Moving the line of integration in (30) to — <r, we pass the simple pole of the integrand
at j = 0 with residue F(l) L12^,, w), and get

^{l)V2\u„w)+i-! — . — . - x "F(l) L^u,, w) + 1- f L*2 ,̂, s + w) T{s +l)^ds.
2m J(-o) s

Now the integral equals
2m J(-o)

- 1
'2m

r Xs
L ( 2 ) ( M , , - ^ + w ) ^ ( - ^ + ^ - < f c

«'(o) •y

r _ r s-^-w\
^ L^,,.+.)6-(i^_t2^^(-.+^^.
^^ 6,(— s + w) i— s + w\ s

*'«" [ 2 ]
Moreover

6A±^ = ̂ +"- l(^+w-w)-3/2(l + 0(|. + w^8) ^1)

^l^\\l+0(\s+wr8)^

"3^ ' w^ ^ ,2(8 +W)-

) ( ^ I ,-.\ 3
J^"

= ̂ ito ̂ 2"() (̂ )s (i + o(i s + w r8) t j1 ) .
In [13] it is shown that S,,̂  ̂ (n) < ^ N, hence L'2^^,, ^ + w) = R,(J + w)/!:(.? + w) < ̂ ,
where 8 is an arbitrarily small positive number. We conclude that the above integral
equals

(3i) - .-o t^^ °M F [w, ̂  + o(i w r^ ̂  ̂
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where
(s+w\
r̂ " rr

F(w, t) = r(- ^ + /)(32) ds.
— s + w\ sr

^ ("> \ 2 ;

Hence, we have derived the "approximate functional equation"

F(/) L'2'^,, w) = S ̂ F^)
w = = l %

+ Tt8"" f^2"' S ̂ ) F (w, ̂  + 0(| w {w}+s ̂  ̂ ).

Now we integrate both side of the above expression from Tt872^, to e^jt, with respect
to the measure dxjx, which yields, for t, ~ T (we denote T < f, < 2T by f, ~ T),

^'tj ^ ̂  _ ln^y\ dyF(/) L^u,, w) S -^Fl
»=i n" \ T l y

>'T/(,

cT/ty

+ Tt8"" f-2"" [ ' S c^ F (w, ̂ A ̂  + 0 (| W |'^)+S T-("2'+s).
•' I - , ^w \ ' T* I ». • M l /' T hn = l ^

^T/ef

We observe that:

1. F(w, ^) ^e^"8 I ze; [s, t > 0. This is easily seen by moving the line (a) in (32) to (s).
2. F(w,^) <^ (^/l^l)-^^ ^>0. This is also easily seen by moving the

line (<?) in (32), but this time to ( / — 1/2). Thus, if tf\w\ ^> T8, then for any N,
F(w, t) < T-^j w \lt)2 by choosing / = [N/s] + 4.

Hence, by Cauchy's inequality, we have

2 |L.»(.,,,)|.J' S s^F^'^l'-'-'
TT«y<2T T«y<2T n = l « y•I 112

c,(n)_( n^A^dy
+ 2 S -^—Fa ; , ^- + ocr1-^81 w \!>+8).Ji^'1'^-'^2'1' n-1 »"' \ T / I v

Now if we choose / = [10/s] + 4, and note that | (;,(»)/»" | < ?^( l /2)+8 since | \,(k)\ <^ ^1/2

[SA2], we have
c,(w) _ / wr8/2^ , ,

L -^V F \w, ——/ < w 2.
TBXTlwl ) 1 * 6 "

Also

S ^F^Ll.
T„>T1+E K
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S I S ^^I^^+^T8 S K|2,
(y<T w^N n^N

the lower bound [I2], ^.(1) > ^-e (where p,(7z) == cosh(^./2) ^.(/z), ^(^) == y/l) X,(^)),
the definition of Cj{n), the above remarks on F, and Cauchy's inequality, we deduce that

(33) S IL^^I^T2^!^!5^.
T«y^2T

Finally, by the upper bound ^.(1) < ^ [HN-L], and the crude bound ^{w) = 0(| w I172),
we have proven

(34)

Theorem 3.2.

2
tyaST COSh 27tf,

[ L(M;®M,, W)|2 < T^6 I W l"172^8

This establishes (4) and the conjecture of Iwaniec (5).
We return to (29). By Cauchy's inequality,

___\2

|^)|2P,,o(^)^^)-P,,o
Jr\H

'+2"^/I-2"A12^-|A| |GM||L^,®M,,,)|2 r 1^1 r< IGMI FMI ^(1/2)' (1/2)

<c,,,f |GM||L(.,a.,,.)p ri'-^rl'-^
^(1/2)

But according to Theorem 3.2 and Stirling's formula,

2 /

A |.

s f |G(.)||L(.,^,,,)|2 rf^r^^l
J|3sl^T/10 \ 4 / V /^ | 3s | ̂  T/10

^C^T^6.
Also, we have trivially, again using Theorem 3.2 and (28),

2 G(.)||L(^,,^ r(^K--2^ A

^|.3s|^T/10

^G^T1-^.
This completes the proof of Proposition 3.1.

Proposition 3.3. — Let h{x) be a smooth function on (0, oo), supported in (^o, oo), XQ > 0,
such that for some C^^^- 1,

I^WI< c^-^ ^ ^ ^ o.
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Let
P,,^)= S h{^z))e{mx^z)).

Yeroo\r

TA^ yi?r <3^ e > 0, m =1= 0, T ̂  1, ̂  have

S I < P.,.J ̂ ) I2 > I2 <e ̂ (C^ + C2^) T14-8.
(y^T

Proo/'. — Without loss of generality we may assume that the first Fourier coef-
ficient p,(l) of Uj{z) is real. It follows from the unfolding method that

}r\n
u^)\^ S h{yW) e{mx^z))) dV{z)

YGroo\r

k + 0, - m

d\m , -mid

m

•W K., (

'}<'1 V^
m

^Tt

k\

'}

dr

Here we use, for k > 0, p/^) = p/1) \-(^), p/— k) = s, p/^), s, = ± 1, and the
multiplicativity of Hecke eigenvalues

x,(^x,(n)= S x,(^).x,^)x,(n)= S x,(^.
dl(n,w) \fl /

By a standard dyadic partition it suffices to estimate the sums with ty ̂  T, ^ ̂  K,
K > 0. The cases where dK > AT (A is sufficiently large) can be ignored, since from [G-R]

we have

K^{x) = e-^^costrd^
Jo

K )̂ <^-l^-a;/2, ^^0.

So the contribution from these terms is exponentially small, in view ofp^.(l) < cosh(7T:^./2) ^,
\j{k) < A172, and h^y) is supported in j^ j /o>0 . Henceforth, we assume flfK^AT.
Similarly, we can assume m < T, because otherwise r \ 1 + ^ildk [ > AT. Recall [G-R]

(35) x-^ K^ax) K,{bx) dx

g-2_X^-v+^- l ^ ^ _ _ ^ ^ _ ^ _ ^ . A r /i - x - (i + v\
r(i - x)

^ l -X+[x-^ ^1 - X - {x - v\ p - X + (. + v 1 - X - t x + v , , , ^\r^——^——jr^——^——JF^——^——.——^——' l-x ' l-^•

9t(a + ^) > 0, 9tX < 1 - | 9?(A | - | SRv |,
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where

^ .(.+.).. ( .+.-1)^+1) tf+.-!),.
n-o Y(T + 1) . . . (y + n — 1) 7z!

is the hypergeometric series. Taking \ == 1 — s, (JL = v = t^., a = b = 1 or
a = b == | 1 + ̂  dk [, and using ab ̂  (a2 + ^)/2 and Stirling's formula we obtain

S S p,(l) p,(^2 + kmid) f K, (r) K ( 1 + m r\h (————\dl

(y~T fc-K Jo \ dk I \2'^:d\R\/ r

^C^K^T6 .

Here we have applied the following result due to Kuznetsov [KU, D-I2]:

(36) S I v,{l) |2 e-^ = 2TC-2 T2 + 0((T + I1'2) d(l)).
(,'ST

Hence we can assume K ^> T"2, and m < K2'3. With the above reduction, we proceed
to prove Proposition 3.3.

As before, set h^(x) = h{x~1), and define G(s) as in (26). We use the Mellin
transform to obtain (with (T = s)

r \ dr
K,,(r) K,.(| 1 + rnldk \ r) h\2-Kkd] r

w r,_,r^K^.MK^.dl +mldk\r)drds.
2TO ^dk}3]

«l(o) ' ' «'0

To deal with the inner integral we apply the formula (35) and [G-R p. 1040]

/»00

r^K^.MK.^l+CTWr)^
Jo

^ g-3+s p [s_^_2it\ ̂  (s - 2it\ (1 + midk)^

l2\-s/2-»(,2-wi
^/2-1(1 _^)./2-1 1 + — — — + T

\ OR
P[dk

d-v.

If we can show

(37) 2 | 2 a, v,^ + kmld)f{k, t,) |2 < OTT2+£ K,
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where

a^a^^.^fcfi+^+j^n)-"
V \ dk \dk

m v'y
1+

dkf(k, t j ) =f{m, d, k, T, t,) =
2TOT /m^l '

1+^+TU

then from Cauchy's inequality, (28), Stirling formula, and by considering [ 3j | < T/10
and | 3s | > T/10 separately, we obtain Proposition 3.3.

In the following we will prove (37). It suffices to treat the case where

| I , — T | < T1-6.

We infer that

S,-<"y-T>/Ti-^ ( ^ ^ ̂  ̂  kmld)f(k, t,) |2
• K ^ XL.

= ̂ s^a&a ' ̂ v^ + M )̂ v^P + /CT/rf) h(tf) + 0(1),

where A(f) = .-."-•m'l-.̂  ̂ ^^ _ ^ ^_ ^<»+T,/TI-^^ _ ̂  ̂ ^

Applying Kuznetsov's formula [KU] to the inner sum, we deduce that

2 v^k2 + kmfd) ?,(/2 + Imjd) h(t,)

^ p00 ^ /»oo ,.

= ̂ "J- «' tanh(TC') A(f) dt ~ T. J |^(1+2^|2 /w + M^) ̂ 1(/2 + lm^ dt

+2t s c-«s(^+^/^^+^;.) r i.^^4'^^^'^^^ ^)-.
7t <°l J-o \ C ] COSh(7t<)

Here S{m, n; c) is the Kloosterman sum and

d^n)= 2 (̂ ".
dld2-» \d2/

Since

f tanh(Trf) h{f) dt ^Tt+t,

h(t)
^1 ^_2^)|2 rft((A2 + ̂ /rf) du(lz + lmld) dt < mt T+t'

29



226 WENZHI LUO AND PETER SARNAK

their contribudon is at most m6 T24'6 K. It remains to estimate the sum of Kloosterman
sums which we shall do for each modulus c separately. If c> K^T"14"6, we estimate
the integral transform of BessePs function

2z f°° (4nV{k2+km|d) (I2 + lmfd)\ h(t)

^J-oo \ c I cosh^t)^

by moving the line of integration to St = — B, where B is a sufficiently large integer,
depending upon e.

From Poisson integral formula [G-R]

(zi2v r"
W = . v i ^ cos(^ cos 6) sin2- QdQ

r(.+J)r^J.

and Stirling formula for r(^), it is easy to see that the resulting integral is very small.
The residues of the integrand at the relevant poles are also very small. Therefore it
remains to consider terms with c < K2 T~! +1. We have

F , (4nV{k^+kmld)(P+lmld)\, h{t) ^
LM————————c————————J^cosh^^

.T+TI-^T ^^+kmld)^+lmld)\^ h{t) ^,^^^^u] , J 2 i <——^—— r^w ( )'— Jrr—Tl~elog2T v / •

We need the following Van der Gorput's lemma [T]:

Lemma 3.4. — (1) If f'[x) > (A > 0, or f'{x) <£ - (A < 0, a; e [a, b], then

p» ^
e^dx ^-.

J. (A

(2) Iff"{x} ̂  r> 0, or f"[x) < - r< 0, x e [a, b], then

f6 1
e^dx <—=.

VJa •

Now (see [ER])

^=^^^'(l+o^'
————————— VV2 .̂ ^2 __ y

Q),(^) = Vr2 + x2 +r log ————————,



QUANTUM ERGODICITY OF EIGENFUNCTIONS ON PSLg(Z)\H2 227

and

8 , . , Vr2 + x2 + r^(.)=-log———^———,

32 i
—— ^rW == —

If T/(K2/^) > A-1, using part (1) of Lemma 3.4 and WeiTs bound for Kloosterman
sum [W]

i i
| S{m,n;c)\^ d{c) (m,n,cfc2,

we deduce that the corresponding contribution is

1 K2 Tl+s

< max ^/c —== T^6 ^ — ——— < KT6.^.-i.sV ^^ T Kc^KST-l-^

IfT/(K2/^) ^ A""1, and c ^> m, we use (1) of the Lemma to deduce that the corresponding
contribution is

< maxv^—L^T^^^KT6.
^ir2rr-l+e V ^J^l^ rp "c^KZT-l-^6

IfT/(K2/^ ^ A~1, and <? < w, we use (2) of the Lemma to deduce that the corresponding
contribution is

Hence, summing over A, /, we obtain (37).

4s. Approximation

The estimates for < P, .̂ > which were established in the previous section for
incomplete Poincart series may be used to obtain similar bounds for a general smooth
function F. To do this we need to approximate such functions by P's. Let F e C°°(X).
Let GI, €2, . . . , GL be a decomposition of X into neighbourhoods, C^ of the cusp,
G2 of the point z, €3 of the point p == e^13 and G,, j = 4, ..., L containing no elliptic
fixed points. If we choose a partition of unity subordinate to this decomposition, we
can write F == S^ i F .̂ where Fj has the same smoothness properties as F and each F,
is supported in G,.. So for our purposes here we can assume to begin with that F is
supported in such a neighbourhood C^. Let 6, be the lift to H of G, into a fundamental
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domain. Let ¥ be the F^ periodic function on H which is equal to F in Gj . Clearly
^(Xyjy) is smooth and is supported my^. 1/2. Also

(38) F ^ ) = = —— s F(T^W,^ veioAr

where W^ = 1 ifjg 4= 2, 3 and otherwise is the order of the stabilizer. Expanding F(^)
in a Fourier series in x gives

(39) ¥(z) = S A,(jQ ̂ ),
W == — 00

hence

(40) ^=w- s P^-"^-W ̂  m == - oo "*

This will serve as our means of approximating F by the P's. From partial integration
we see that, for ^ ^ 0 and k ^ 0,

a3^
^p/ wvw(41) y i ^ ^ K d O T i + ^ - ^ s u p y ——F^) ,

hence, for p. ̂  0, and L ^ 0,

(42) m^ c^ ̂  (Im + l D"' IIF ILL+.-
The norm is the one introduced in (3). Now

WJ < F, (x, > - F | - |« P^.o (x, > - P^o) + S < ?,„,„ (x,. > |.
fn ̂  0

Applying Cauchy's inequality to this with weight a^ > 0, oo = = I , gives

| < F, (z, > - F |2

<(Sa, l ) ( |<P^o(x,>-I \ . , J 2+ S aJ<P,^(x,>|2).
w+0

Summing this for | ^ | ^ T yields

I = S I < F, (x, > - F |2
<y^T

< 'S'-^ f,2.' ̂ -^^ -p-- r+.?."",^1 <p•..-l">l•>•
We are ready to apply the main result of section 3. Using (42) with (1=3,
a^ == (| m | + I)372 and the bounds of section 3, we get

1 ^, || v ||2 T'1+e
^e I I r 118,8 1

This established Theorem 1.2.
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Finally we establish the above quantity for F = <p^ . We can estimate ^.{z)
from its Fourier expansion. It is easily seen that ^.{2) is exponentially small for y > tj
and also that || ?x [ loo ^ x^4 [I"S]. In fact in [I-S] a stronger estimate has been esta-
blished. However we use the crude bound which together with the Fourier expansion
yields

9xjls,8 < \tk 117/2

Corollary 3.1. — Let \ =)= 0; then

s K^^^r^J^FT^6.
(y<T

Note that this bound is only of use when T is much larger than ^ since the trivial
bound for the above sum is T2 | ^ [. This Corollary is the analogue of Theorem 3.2
which is equivalent to

(43) S
tj^T

E ( • ^ + ^ ) , ^ y < ( l ^ l + l ) 6 T l + e .
5. Discrepancy

This section is devoted to proving the upper bounds for the discrepancy D(^.)
as claimed in Theorem 1.5. The noncompactness of X leads to some technical compli-
cations. To deal with these, choose j^ > 1 and set

and

so that

D^,) == sup
B(?;, r) CX, ̂  GF, St^yo

^O^-) = ^P
B(^,r)CX, ̂ GV,S(^)^VQ

^(B) -

^,(B) -

Vol(B)
Vol(X)

Vol(B)
Vol(X) I 9

D(^,) - max(D^,), D^,)),

and in particular

(44) D(pt,) ^ D^) + D^(^,).

We will estimate D^0 and D^ differently and we begin with D^((JI,). Let k{z, ^) be a
point-pair invariant on H (see [SE]) and K{z, ^) = S^r^T^ ^)- If XB(!:,r)('2') 3S ^e
characteristic function of the ball B (which we are assuming is injective in X) and if we
define k^z^) == 1 when d{z, ^) < r, and == 0 otherwise, then we have

(45) XB(^)=K^).
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According to the spectral expansion [SE] we have, at least in the I^-sense,

(46) K^, ̂  == S h,W 9,(.) ̂ )
k==0

+^f WEL^+i^k^+^dt.
v — 00 \ / \ /

Here h^t) is the Harish-Ghandra-Selberg transform [SEL] of k,. In order to use the
expansion (46) to estimate the discrepancy we must smooth K,. so as to deal with
absolutely convergent series. For s > 0 let ^ be an approximate identity, that is,
^e(^) ^ 0 is supported in a ball of radius e, and

f ^^)dV{z)==L
JR

We can and will also choose ̂ , ̂ ) so that ^(^ ^) < s~2 and its Harish-Chandra-
Selberg transform h^ satisfies | h^^t)} < 1 for | t \ ̂  1/s and is rapidly decreasing for
| 11 > 1/s. Given the ball B = B(t:, r) as above, let A^ = B(^, ri), A^ = B(?:, r^) where
r! = r — 2s and ^ = r + 2e (ifr^ < 0 then A^ is taken to be the empty set and ̂  = 0)-
For a function F(z) defined on r\H we set

(F^)(^:= f F(C) ̂ , z) rfV(Q,
Jx

where ^(^,!:) == S ^(y^ C).
ver

It is easily seen that with these choices

(47) ^*^(^^(^^^).

For I = 1, 2 the expansions of these functions take the form

(48) ^ * ̂ ) = J|̂ (4) A^) 9,(^) 9^
fc=0

1 F , ..^.^( 1 . ..\~7~T+ ̂  f h^t) h^(t) E ̂ , j + it\ E fc J + ̂  rff.
v — oo ' / \ /

The mean value over X of the functions in (47) differ by a quantity which is 0(e) and
we may therefore conclude that

(49) ^(B)-^^ ^s+^I^A^^^Xtx,^,)^

+ ̂  f W ^W L E (. - + it\ \ E ̂ 1 + it] dt .
«/— 00 \ \ I I \ I
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Now

S^JA^X^,?^^)!2
f c+0

<£ ( 2 [ ̂ (4) | 2 1 A'̂ ) || 9,(̂ ) ( 2 | < (x,, y, > | 2 1 A'^l),
A; + 0 k 4= 0

which, according to the estimate on A^, is

^ ( s iwn^rH s i<^,,9.>i2).
\tk\< 1/6. ̂  + 0 1 <Jfc I ^ 1/e, A; 4= 0

Using (46) we see that

(50) S | A^,) | 2 1 9^) I2 ^ f | K ,̂!:) |2 dV(z).
|< j fc |< l /e , fc+0 * J^ 2

The right hand side can easily be estimated uniformly in ^, r for 3(^) ^j/g and one
finds it to be 0(1 + ^Vo)' We have shown that

I S ^(^) A^^) < ^,, 9, > 9,(?:) |2 ̂  (1 + s3^) S | < ̂ , 9. > I2.
f c + O | ( j f c | < l / e , f c + 0

The same considerations hold verbatim for the Eisenstein series contribution. On taking
supremum over all balls with 3(^) ^jo we are led to

(51) | DJ^,) |2 < e2 + (1 + ^o) ( S | < (i,, 9. > I2

| ( j f c |<a /6 .&+o

+ f /^E^+i^A
^KKl/e \ \ ^ I I I

Next we turn to estimating D^0^.) which we do in a crude fashion. First we need an
upper bound for S(.^T I 9i(-^0 I2- If^e(^ ̂  £ = 1/T is an approximation to the identity
as before (and for which h(t) ^ 0, which can be arranged), then

K,(^)= S k^z^z) > S |9^)r.
ver <^^T

On the other hand the middle term above is easily estimated as being <^ T2 + Ty,
where y = 3(2'). It follows that

(52) S ^(^MT2^-^.
(y^T

From the Fourier expansion of 9/2'), it is easily seen that | ̂ j(z)\2 is exponentially
small for y > | tj |. Hence in considering balls B(^, r) when computing D^jj^.), with
| ̂ . | ̂  T, we can ignore those balls with center ^ satisfying 3(^) > T. (Note also that
the volume of such a ball is 0(T-2).) For B = B(^, r) with^o ̂  3^) < T we have

Vol(B) Vol(B) 1 f1 fT d x d y
(53) <l•'•B>-Voi^ <voi^+l<^t'•B>l<5,+ijJT'(•t)l'y•
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Taking supremum over all of these balls and using the fact that D((JI,) ^ 1 we conclude
that

1 , fT.-.^(54) iD^^i^i+pri^)^
Ju JO Jl/n y^ Jo Jvo

Gathering the bounds, we have

(55) | D(pt,) |2 <^ e2 + (1 + e3^) ( S ] < ̂ , 9. > I2

| tk I < l/e, k + 0

.1 (^^f^i.rj'i^.
J|<|<l/e \ \ 4 / / / -70 Jo Jvo •'

We now sum these inequalities for | ty \ < T and apply Corollary 3.1, (43) and (52),
where in the latter we use y ^ T, to get

S D(pL,)2^,T2£2+(l+^s3)( S ^+ f |^I^^T1^+T2

^T V^6 JKKI. / ^(y^T \(^l/e

for Y] > 0. That is

|< |<l /e

S D((i,)2 <, T2 s2 + (1 +^o s3) T1^ e-19 + T2.
(y^T J/0

Now optimize the choices of e = T-3, y^ == T01. This yields the bound T2-^72^ for
the RHS. This concludes the proof of Theorem 1.5.

6. Appendix

In this section we will give an outline of the proof of Theorem 1.4 which follows
closely the method in [II], Indeed using the argument below together with the analysis
in § 9 of [II], one can improve the exponent 7/10 slightly. However the bound Og^273^6)
which is mentioned following equation (12) of [II] appears to remain out of reach. On
the other hand, the exponent 2/3 can be deduced conditionally on the Lindelof Hypo-
thesis for the usual Dirichlet L-functions (see [14], p. 189). We first show that

(56) S X^- exp(- /,/T) ^ T574 X^log T)2.
^

Let A(^) be a smooth function supported in [N, 2N] whose derivatives satisfy

[^(i;)! ^N-^, for p === 0, 1, 2, ...
/•+ 00

and h{^) d^ = N.
J— oo
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Thus, in review of [II lemma 8] and (5), we have

S^I^^I^^N+^^N),
n 7T

S |r(f,,N)| ^TW^logT)2.
tj-s»T

We deduce that

1
^ 2W (S | ̂ (n)|2 X". exp(- f,/T))

= - S (S | o,(«)|2 A(»)) X^- exp(- t,IT)
J'-^l (y w

= 1^ SX^- exp(- f,/T) + 0(T2N-l/2(logT)2).
Tf (y

Therefore, we only need to treat

(57) SI^^X^exp^Vr)
t]

for n e [N, 2N]. Let (f(x) be a smooth function on [0, oo] such that

| (p(A;)| < ^ ^ ->0,

I ^WI ^^-3, ^oo,

for j& = 0, 1, 2, 3. Define

1 f00

90 == 27C ^0^ <p^^ ^5

Jo

V B W = f f ^Jo(^)Jo(^)?(j')^^,
Jo Jo
/•oo /»oo

<PHW= ^Jo(^)Jo(^)yO)^^,
Jl Jo

^-a^J""^'-^"^-
</0

With these definitions we have

?W = 9BW + PnW
30
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and the Kuznetsov formula [KU] reads. For ^, ^ > 1,

S y(^) »A) ̂  + ̂  f .m-^)|2 ̂ t) 4(/,) dt

= \^ <po + 2; ^-1 S(Zi, /a; c) yH (47t V^/c)
C==l

For 9 we choose

— sinh (3
<p(^) = ————— x exp(ix cosh p),

7T

2 p = l o g X + ^ .

Then [D-I2 lemma 7]

sinh(7t + 2ip) f
$W- sinh Ttf '

— cosh p
<Po = 27tasinh2p'

TB(^) - ̂ mh2p f ^J,(̂ ) (cosh2 p - S2)-8/2 rf^,
2TC Jo

<PHW = ~ smh 2P f ^Jo(^) (cosh2 p - ̂ )-8/2 rî .
2TC Ji

It is easy to see that

y(^) = X"^-'^ + 0(e-^),

and yo ^ X-"2,

^2 f î W2 ̂ ^"^ ̂  ̂ T(log T)2 '2(B)-
Furthermore, Jo(j>') < min(l,Jy-l/2) and |S(n, »;<:))< {n^c}1!2 c1^ d{c), hence

S»(yB) ^ N1/2 X-l/2(log N)2 and SJ<p) ^ N1/2 T1/2 X1/4 log T,

where S»(<p) - S c-1 S(n, re; c) <}- (̂ l
c=l \ C /
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So we conclude that

Sexp(-^/T)X^
i]
< N172 T172 X174 log T + N172 X-1/2 log2 N + N-1/2 T2 log2 T + T log2 T

< T574 X178 log2 T,

on taking N=T8/2X-1/4.
Next we show that the above estimate is still valid if we replace the smooth weight

function exp(— ^/T) by the characteristic function /(<) of [1, T]. Take a smooth func-
tion^) such that supp(^) c [1/2, T + 1/2], 0 ̂  g{^) ̂  1, and^(^) = 1 when ^ e [1, T].
Since it is known that ^ > 1 and | { t y : T ̂  ty ̂  T + 1 }[ < T, we have

S X^-= S ,̂) X^-+ 0(T).
(y^T (y

Let ^(^) be the Fourier transform of g{^) exp(^/T):
/•+ 00

^(^) = g^ exp(^T) .(̂ ) rfS.
J— 00

The easy estimate

g{x) ^ m i n ( T , 1 )
\ I x 1 /

gives
f1

\g{x)\dx^logT.
J-i

For | x | ̂  1, from partial integration

i r4'00 ^
^W = - 2^ ^ W ^(S/T)) ̂ ^) ̂ ,

we infer that

e { - y x ) g { x ) d x
J|a?|^l

= - A [+co ̂  (^(^ exp(i,/T)) f" sin(2^-^))^^
"J-o,"^ Jl x

^ 1 , 1 . Iog(T + 1J' |)
" M + l ' I T - ^ l + l ' 1 T

Thus, from the Fourier inversion formula
/•+ 00

g{x) exp(A;/T) = g^) e{- )̂ i^
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we deduce that
f1

g{x) exp«T) == g^) e{- ^) ̂
J-i

Therefore

+o(^—+__1—— + ̂  + I x
' I „ I i 1 ' 1 '-n -. I i i I »-r«A; | + 1 1 |T -A; | +1 T

S^(^) X^ = f i(S) (S (X.-2^)^ exp(- ^,/T)) rfS
^ J-i t]

-/-^-^ ^7T WT + ^.) ̂ -^
+ 0 S —— + + -gL——"——— <s T5/4 X^log T)2.

\ <y ^ | 1 — tj | -+- 1 1 J

Thus,

(58) S X^- < T574 X^^log T)2.
tj^T

Now [II, lemma 1]
v(l/2)+«y /v \

(59) ^(X)=X+^(,p^^+0^.og'x),

where Yr(X) === ^^{D^X-^F ^d AP = logNPo if { P} is a power of the primitive
hyperbolic class {Po}. Hence from (58), (59) and partial summation, we deduce that

Yr(X) == X + C^X™ log2 X)

on taking T = X8710. Finally Theorem 1.4 follows by partial summation.
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