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THE EXPLOSION OF SINGULAR CYCLES
by RODRIGO BAM6N (1), RAFAEL LABARCA (2)

RICARDO MANE, MARIA JOSE PACtFICO

Introduction

The objective of this work is to introduce and analyze a new natural mechanism
through which a vector field depending on a parameter may evolve, when the parameter
varies, from a vector field exhibiting a very simple dynamical nature (say, having a finite
chain recurrent set), into one exhibiting non trivial forms of recurrence.

For diffeomorphisms, the study of such mechanisms goes back to the work of
Newhouse and Palis [NP1], where they considered one-parameter families of diffeo"
morphims and analyzed the dynamics of the diffeomorphisms corresponding to values
of the parameter close to the first bifurcation parameter (i.e. the first value of the
parameter for which the diffeomorphism is not Morse-Smale). After avowing the diffi-
culties of proving which is the generic dynamics at the first bifurcation, they focused
their research on the case when at the first bifurcation value the chain recurrent set
of the diffeomorphism is the union of a finite set of hyperbolic periodic orbits and a
cycle i.e. a finite family of hyperbolic periodic orbits linked, in a cyclic way by orbits
contained in the intersections of stable and unstable manifolds of different periodic
orbits of the family [NP2]. They conjectured a certain genericity of this property, to be
recalled below. In that paper and afterwards in a joint work with Takens [NPT], the
authors describe how the cycle explodes when the parameter increases. Explosion here
means, as usual in this context, a sudden increase of the size of a relevant dynamically
defined set (say, the non wandering set) triggered by a small perturbation of the sytem.
Essentially, in [NP1], [NP2] and [NPT], a perturbation of the system leads to the
creation of homoclinic tangencies and then to the vast array of phenomena they carry
on their wake (Newhouse wild horseshoes, persistent tangencies, non hyperbolic attrac-
tors, etc.). Their research then moves to the natural question of how large are the
set of parameters for which each one of these phenomena arise, and their main and
more accurate results are in the case of diffeomorphisms of two dimensional manifolds
[NP2], [NPT], [PT].

(1) Partially supported by Fondecyt 1059/89, Chile.
(2) Partially supported by Fondecyt, Chile and FAPERJ, Brazil.
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For vector fields without singularities, a similarity with the case of diffeomorphisms
of surfaces can be expected. But, when the cycle whose explosion gives birth to non
trivial dynamical structures contains a singularity, new mechanisms, with no analogy
with the case of diffeomorphisms of surfaces, arise.

The first such mechanism was studied by Afraimovic and Shilnikov in [AS],
where they considered one-parameter families of vector fields on 3-dimensional manifolds
that cross the boundary of the Morse-Smale region through the collision of two saddles
producing a saddle-saddle singularity whose stable and unstable manifolds have trans-
versal intersections. They analyse how, after crossing the boundary, this saddle-saddle
self connection unfolds into non trivial hyperbolic sets that admit an accurate description
in terms of Bernouilli shifts.

Our objective is the explosion of what we shall call singular cycles, i.e. cycles
containing a hyperbolic singularity, and we shall describe how they explode in a way
entirely different from that of the cycles of diffeomorphisms of surfaces or the Afraimovic-
Shilnikov cycle. Through the explosion of such a cycle we enter a region largely filled
by Axiom A flows, and in an important subcase, the non Axiom A flows that may
appear are arranged in a codimension 1 lamination of the space of vector fields, having
small Hausdorff dimension, and where each leaf of the lamination is characterized as a
class of topologically equivalent vector fields, whose dynamics is a generalization of the
Lorenz-Guckenheimer-Williams attractor [GW] and the Labarca-Pacffico [LP] singular
horseshoe.

Let us now give the precise statements of our results. Let M be a compact and
boundaryless 3-manifold and let ^ be the Banach space of C" vector fields on M. If
X e^ denote F(X) its chain recurrent set. We say that X e ̂  is simple when F(X)
is a union of finitely many hyperbolic critical orbits. By a critical orbit we mean an
orbit that is either periodic or singular. It is easy to see that the set S*" of simple CV vector
fields is an open subset of ^r.

Denote by Ck{I, ^r) the space of families X^ of C' vector fields depending on
a parameter ^ e [— 1, 1] such that the map [— 1, 1] 9 (JL h-> X^ e ̂  is G^ Endow
0^(1, ̂ r) with the C^ topology.

Among the families X^ e (?(!, ̂ r), we distinguish those that start at a simple
system, i.e.

(*) X^eS-,

and leave the region of simple systems, i.e.

(••) X^ ̂ r for some (x> - 1.

The crossing parameter value of such a family is the supremum of the [L'S such that X e S*'
(or, what is the same, the minimum (A such that X^ ^S1'). Denote by C^(I, ̂ r) the
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set of such families. To simplify the notation, and without loss of generality we shall
add to the definition of C^(I, ̂ r) the requirement that the crossing value of the parameter
be zero, i.e.

X^eG^I,^)
f X^ e S' if ^ < 0,

.x^s-.

A cycle of a vector field X e ̂  is a compact invariant chain recurrent set of X
consisting of a finite family of hyperbolic periodic orbits and orbits whose a and o-limit
sets are different hyperbolic periodic orbits of the family.

Translated into our context, what Newhouse and Palis conjectured in [NP] is
that for a generic family X^ e C^(I, ^lr), XQ either has a non hyperbolic periodic orbit
or a cycle. Even without the support of this conjecture, that remains widely open, cycles
are a crucial concept for the understanding of how complex dynamical objects are born
from very simple ones.

An orbit y °f a vector field X is nontransversal if a(y) and o)(y) are hyperbolic
critical orbits and the stable and unstable manifolds of a(y) and (o(y) intersect non-
transversally along y.

Our object of study will be simple singular cycles defined as follows: a simple singular
cycle A of a vector field X e SC9 is a cycle of X satisfying:

a) A contains a unique singularity (TO.
b) The eigenvalues ofD^ X : T^ M <-3 are real and satisfy — ^3 < — X^ < 0 < Xg.
c ) A contains a unique nontransversal orbit YO which is contained in W"((7o) and

<o(Yo) is a periodic orbit CTI.
d ) For every p e yo and every invariant manifold W(oo) of X, passing through (TO

and tangent at dy to the space spanned by the eigenvectors associated to — Xi and \,
we have

T,W(oo)+T,W^) =T,M.

^ There is a neighborhood ^ of X such that if Y e W the continuations o-,(Y),
0 ̂  i < A, of critical orbits cr, of the cycle are well defined, the vector field Y is C2-
linearizable nearby <7o(Y) and the Poincar^ maps of cr^(Y), 1 ̂  i ̂  k, are C^linearizable.

f) A is isolated, i.e. it has an isolating block. Recall that an isolating block of an
invariant set A of a vector field X is an open set U such that

A-nx^u) ,
t

where X^ : M <—» is the flow generated by X.

The motivation of this definition is closely related to the following property which
is nowadays standard knowledge in bifurcation theory.

27
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FIG. 1

Proposition. — If r ^ 3 and k ^ 1 ^r^ mjl? o% open and dense set ^ of Q(I, ̂ r) J^A
/Aa/ if X^ e j3/ a^rf Xo A^ a <^fe A that contains a singularity, then A is a simple singular cycle
and r(Xo) — A is a finite union of hyperbolic critical orbits.

The r ^ 3 condition is required because the C^topology is the weaker one where
the openess and density of property {e) is granted by Sternberg's linearization Theorem [S],

The next result gives the basic elementary description of what happens nearby
a simple singular cycle when you perturb the vector field. We shall use the following
notation: given Y e ̂  and U C M, set

A(Y, U) IIY^U).
t

Theorem 1. — Let K be a simple singular cycle of X e SE^ and let U he an isolating block
of A. Then there exists a neighborhood ^ of X and a codimension-one submanifold ^ C ̂ r

containing X such that:

a) Y e W n^T => A(Y, U) is a simple singular cycle topologically equivalent to A.
b) ^U — ^T has two connected, components^ and one of them^ that we shall denote by ^~,

is such that Y e W~ implies that the chain recurrent set o/*Y/A(Y, U) consists of the continua-
tions <T,(Y), 0^ t^ k, of the critical orbits (T, contained in A.
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This means that the cycle persists topologically unchanged in^ n ̂  and is broken
in ^-, leaving behind a very simple dynamical object. The explosion will really take
place in the other connected component of °U —^T, to be denoted ^+. Define ^g as

the set o f Y e ̂  such that the chain recurrent set ofY/A(Y, U) is CT()(Y) plus a transitive
hyperbolic set. The set ̂  fills a very large part of ^+. This is the content of the next
result, in whose statement m{ • ) denotes the Lebesgue measure of subsets of R.

Theorem 2. — If X^ e s/ crosses transversally e/F at Xo and Xg has a simple singular
cycle A, and U is an isolating block of A, then there exists 8 > 1 such that

lim sup -g m{ 0 ̂  [L ̂  t \ X,, e ̂ + — ^g } = 0.
t-^o t

The study of ^+ — ^<g heavily depends on whether the eigenvalues

— ^3 < — Xi < 0 < ̂

at the singularity GQ satisfy — \ + Xg > 0 or — T^ + Xg < 0. In the first case we say
that the cycle is expanding and in the second that is contracting.

Denote by c { ' ) the upper limit capacity of subsets of R.

Theorem 3. — Let X^ e ̂ /, A ̂  U be as in Theorem 2. Then:

a) If the cycle is expanding, the set

{ 0 ^ ^ / IX^G^ -^nL

for t sufficiently small, is a Cantor set whenever X^ e ̂ g, and

lim c({ 0 < u. ̂  / | X, e ̂ + — ̂  } = 0.(->0 i i * ± 1 ^

6^) If the cycle is contracting then the set of parameters y, > Ofor which the unstable manifold
of the singularity Oo(X^) converges to an attracting periodic orbit, accumulates on [L = 0.

This leads naturally to introduce a new open subset ^g/ C ̂ + consisting of those
vector fields Y e ̂ + for which the chain recurrent set ofY/A(Y, U) is the union of(To(Y),
a transitive hyperbolic set and a unique attracting periodic orbit. It is clear that this
set is open. The natural question is:

Is <̂H u ^H' ^ense m ̂  m ̂  contracting case?

In the expanding case, the next theorem will show that ^g. is empty and ^g is
dense in ^+. In a special contracting case, determined by supplementary conditions
on the eigenvalues of the singularity, an affirmative answer to the question has been
recently given by Pacffico and Rovella [PR].
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Theorem 4. — If X e ̂ r, A ̂  U <zr<? ^ ̂  ̂  statement of Theorem 2 and if A is
expanding, then % — ^g is laminated by codimension 1, G1 submanifolds, such that for all the
vector fields in each lamina, the dynamics of the maximal invariant set ofV is the same up to tope-
logical equivalence. Moreover, when Y e % — ^g, A(Y, U) is a chain recurrent expansive set.

This gives a complete description of ^ — ̂  m ^e expanding case. Our next
and final result shows the stability of one-parameter families of vector fields crossing ̂ T
transversally, in the expanding case.

We say that a one-parameter family X^ e G^I, ̂ r) is F-stable if for all s > 0
there exists a neighborhood ^ of X^ in €!'(!, ̂ r) such that if Y^ e ̂  there exist a
reparametrizing homeomorphism <p : I -> I, s-near to the identity, and, for each [L e I,
a topological equivalence h^ between X^/F(X^) and Yjr(Y^), s-near to the identity, such
that the map

(^,^)e{(^^);^eI ,^er(X^}h^(y(^) ,^))e{^,z<;) ;^I ,coer(Y^}
is continuous.

Theorem 5. — If X^ e ̂  is as in the statement of Theorem 2 and X^ has an expanding
simple singular cycle, then there exists 8 > 0 such that { X^ | — 1 ^ [L^ 8 } is Y-stable.

We are thankful to J. Palis for useful conversations and to M. Viana for the proof
of the result in the Appendix. The first two authors are grateful to IMPA for its very
kind hospitality.

Proof of the Theorems

Proof of Theorem 1.

Let X e ̂  be a vector field having a simple singular cycle A with isolating block
U C M. For simplicity we will assume that A contains a unique periodic orbit. So, A is
the union of a singularity GQ, a periodic orbit a-^ and a unique nontransversal orbit y
such that X(y) = (TO ^d ^(y) = ^r

Let S be a cross section to the flow of X at q e a-^ parametrized by

{(^ ) ;mbi^ i}
and satisfying W8^) ^ {(^, 0); | x \ ̂  1 } and W^i) ^ {{x,y); \y \ < 1 }.

We call a closed subset C C S a horizontal strip if it is bounded (in S) by two disjoint
continuous curves connecting the vertical sides of S, { ( — \,y), \y \ ̂  1 } and
{ ( l ^ ) J ^ I ^ 1}.

ILetp be the first intersection ofy with S. Then? === (XQ, 0) and we assume XQ > 0.
Since W^i) intersects W^dg) and y has GQ as a-limit and o-i as co-limit set, a first return
map F is defined on a subset of S. Moreover, if q^ = (0,j^o) e S is such that its co-limit
set is GO then there exists a horizontal strip R 9 ^ so that F is defined on R. As A is
isolated, we have A n SC{(A:,^);J^ 0} and F(R) C{(x,j/),j^ 0}. See figure 2.
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FIG. 2

I f Y e ^ is nearby X then W^CT^Y)) intersects S at a curve c(Y) and the first
intersection ofW^Y)) with S is a point p(Y). Observe that both c(Y) and j&(Y) vary
smoothly with Y.

The implicit function theorem on Banach spaces implies that the condition
p(Y) e^(Y) defines a G1 local codimension-one submanifold ^ in a neighborhood
^C ̂ r of X such that ^\^T has two connected components; one of them, that we shall
call ^-, characterized by p(Y) e S, lies below ^(Y). Let ^+ be the other component.

Clearly if Y G ̂ -, then F(Y/A(Y, U)) is the union of ^(Y) and ^(Y) and, so,
Y is simple.

If Y e ̂ +, then cri(Y) has transversal homoclinic orbits and so Y is not simple.
Thus, ^U n Sr coincides with ^-, proving Theorem 1. •

Before going through the proof of Theorem 2, let us introduce some notation.
Let X e ̂  be a vector field having a simple singular cycle A with isolating

block U. For simplicity we will assume that A contains a singularity (TO, a unique periodic
orbit CTI and a unique non transversal orbit y C W^do) such that a(y) = CTQ and co(y) = GI.

Let S, °U, ^T, ^+ and ^T be as above. Taking ^ small enough, S is also a cross
section for every Y e ̂  at G-i(Y), where CTi(Y) is the periodic orbit obtained by conti-
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nuation of a^. As before, there exists a first return map Fy defined on a subset of S for
every Y e ̂ .

Since A(Y, U) is the closure of the saturation by Y^ ofA(Y, Y) n S and A(Y, U) n S
is the maximal invariant set of Fy, it is necessary to describe Fy to understand the
dynamics ofA(Y, U). To do so we choose coordinates {x,jy) on S depending smoothly
on Y so that

(i) Q=={(^ ) ;M,b |^ i}cs;
( i i ) { ( ^ 0 ) ; M ^ l^W^Y));

(iii) { (0^) ;b |^ !}cW^(Y));
(iv) A n S c={(^),j^0};
(v) the first intersection ofW"((To(Y)) with S is a point j&y = (^y^y) wlt!1 0 < ^y < 1-

Notice that Y 6 ̂ + if and only ifj^y > 0; F(Y/A(Y, U)) + { <7o(Y), CTi(Y)} if and
only i f^y>0 and A(Y, U) nSCQ^ ={(^^) e Qj x,y ̂  0}.

Forj^O, ^((^(Y)) intersects W^CT^Y)), and since W^Y)) intersects
^((^(Y)) (transversally!), we see that if ^o(Y) == (0,j/o(Y)) e Q4- is such that
<°(?o(Y)) == CTo(Y) and a(^o(Y)) == ^i(Y), then there exists a horizontal strip R^9 yo(Y)
so that the positive orbit of points at R^ pass first near do{Y) and then return to Q.
On the other hand, the positive orbit of points at a horizontal strip Ry containing
W^cr^Y)) n Q^ turns around the closed orbit cri(Y) and then returns to Q. See figure 3.

So, Fy is defined on Ry u Ry and the restriction of Fy to Ry coincides with the
Poincar^ map Py associated to cri(Y). We further assume that Py is linear on Q. Let
py > 1 and Ty < 1 be the eigenvalues of DPy(0, 0). Thus,

Ry == {{^y); x > 0, i^ y < 6yM}

where 6y(^) = 6(Y, x) is a smooth real function satisfying

{(^, OyM), (K ̂  1 } c W^Y))

and if 8^{x) == 8(Y, x) is so that {(^, Q^(x) - 8y(^)), 0^ x^ 1 } c W^o^Y)), then
there is s > 0 such that 0' + e < 6y(^) — Sy(^) for every A:. Making a linear change of
coordinates we can also assume (vi) | 6y [ < 1/100, 8y goes to zero in the C1 topology
when Y approaches ̂  and 9y(A:o) = 1 for some XQ e [0, 1].

Clearly Ry ={{x,y)\x-^ 0, py 1 ^^^ PY^QY^)} 2Lnd ^(^jQ = ^Y-^ PY-^) for

(^)eRy.
To obtain the expression of Fy(A;,j^) for (A:,J/) e Ry we proceed as follows.

Let - VY) < - Xi(Y) < 0 < X2(Y) be the eigenvalues ofDY^Y)), ay == x1^0

X fY^ ^l1-)
and (3y = —-_- . Let (A:i, x^y x^) be C2 linearizing coordinates for Y in a neighborhood

^2(1)
Uo 9 cro(^) depending smoothly on Y.

Let L, L be the planes x-^ == 1 and x^ = 1 respectively.
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FIG. 3

For (^j) eR^ we have F^,^) ==n^o^on^x^) = (fy(x^), gy(x,y)) where
a) 7^1 : Q^ -> L is a difFeomorphism, n^x, Qy(x)) = (^3, 0) for 0 ̂  x ^ 1,

/^j0 ,̂J^
with ^ ^ | a{x,y) |, | d{x,y) \ ̂  K^D^i(^j0

V(A:,jQ flf(^j/)J

for k^ and K^ two positive real constants. Up to replacing {(A;, Qy{x)), x e [0, 1]} by
some negative iterate of it (and shrinking ^ if necessary) we may assume that
I ^.JOI/I ̂ j)l < s for every {x,y) e R^ and Y e ̂ +, 0 < e < 1.

(
f^/ /1^1 f**^ \ i f f*^ f>j \ i

^ a (^3, A:i) ^(A:3, X^)\
b) 7C3:L->Q + is a difFeomorphism, D^^,^) = ^ with

A W \ l» A / /^//<^/ /^/ \ » / ^ /̂ /^ \ Ic(^3, ^) d { x ^ , x ^ ) l
k^ ^ I ^(ys? ^a) I? | </(%, Si)! ^ Kg for some positive constants ̂ ? Kg. Moreover, replacing
p(Y) by some positive iterate of it (also contained in W^c^Y) n S) has the effect of
decreasing |?|/|^| so that we may assume 1^1/1^1 ^ s for some small e > 0.

c ) TCg: L -^t is given by 7^3, ̂ ) = (% = x^.x^, ̂  = ̂ Y).
From a)^ b) and ^ above follow

d) ^/Y(^J) = aY.^j/).^^,^).^-1

+Py.^J/).y(%,^).A;3.4-1

+ a^,^) .?(y3, ̂ i) .̂  + r3(^,^), [ r^x,jy) \ < constant.^-1.
?
-^-f^y) = a,.^,j)J(%,^).^-1

+ PY-^J')-^^.^)-^-^"1 + ̂ {.x,y), \r^x,y)\ < constant, x^.
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c> g^y) = ocy.^j) .^(%, ̂ ) .^Y-1
8x

+ Py^jO •?'(%? %) •^3•^Y--1 + ̂ A I ^{x,jy)\ ̂  constant.^.

^Y(^) == aY.^,^).^^,^).^-1

+ PY-^J^) -y(%. %) .^•^Y-l + y4(^^). I ^(^^l ^ constant.^.

We now state a useful lemma establishing the existence of G1 invariant stable
foliations for Fy. Its proof is in the Appendix.

Lemma 1. — For every Y e ̂ \%~ there exists an invariant G1 stable filiation ̂ for Fy
depending G1 on Y.

This lemma implies that after a G1 change of coordinates, 6y(^) and Sy{x) do
not depend on x and that g^[x,y) does not depend on y. For simplicity we assume
6y(^) == 1. We also have c{x,jy) == 0. As TC^ is a diffeomorphism, a{x,y) + 0 and d{x,jy) =)= 0
for every {x,y). Thus using ̂  we conclude that there are real positive constants C and K
so that

e ) 0< ^/Y(^) ^K.^+r^,j),

^/Y^J^) ^ K.^-^r^j/)

and g^jf) ^ C.x^-1 + r^y), I r^y)\ < constant.^.
d y 1

Moreover,

^ /Y(^ 1) == ̂  for A; e [0, I], ^(1) =J'Y.

^ A(^ 1 - Sy) c {(^ 0),.»; e (0, 1)}, ^(1 - Sy) = 0.

Conditions ^^,/^ and g ) imply 8y == Ay.jy^, Ay a positive constant.
Finally, making another C1 change of coordinates we obtain

FY(^) -(/T^A^))

py.j forj'e[0,py1],
with ^(j>) = ^ _ ̂ . (i _^aY[i + y((i -^)«v,^)J

for^eEl-Ay.yYM],

where y is continuous, C1 on [0, 1), 9(0,^) = ^(A^'.JY,^) == 0.
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Furthermore, using e ) , f) and g) we obtain

h) d
^&

0<

Y(J)

^

<s c.

r(^J')

1 -J']^-1.

<K.|1-^ ^/y(^) ^K.ll-.-j^-1.

graph of ̂

OCY< 1 aY>l

FIG. 4

We now come to the proof of Theorem 2.

Given Y e ̂ +, let ̂  == 1 +J^1 and

^ = { Y e^; 3^o eN so that Ay.py^ py.^y< 1 — ̂  }•

The next two lemmas show that ̂  c ̂ , that is, F(Y/A(Y, U)) is Oo(Y) plus a transive
hyperbolic set for every Y e ̂ ".

To prove Theorem 2 we shall actually prove that there exist positive real cons-
tants Mi, M^ and 8 so that

(1) M,<limsup"•(l^^w)<M.,
P^8

£->0

where X^ is a one-parameter family as in the statement of Theorem 2. This obviously
implies the result.

Lemma 2. — IfY e ̂  then F(Y/A(Y, U)) is (7o(Y) plus a hyperbolic set.

Proof. - Let A(Fy, Q+) = H F^(Q+). For Y e ̂ , (^,^) ^A(Fy, Q-4-) and
n £Z

then A(Y, U) is the closure of the saturation ofA(Fy, Q4') by Y^. Thus, to obtain the
result it is enough to prove that A(Fy, Q^) is a hyperbolic set.

28
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Observe that for Y e ̂ +, A(Fy, Q+) c ]̂  u Ry, where

R°Y - {(^) e R°^ ̂  1 - A^2^}.

The previous lemma implies the existence of a stable cone field for Fy. So, to
obtain the hyperbolicity ofA(Fy, Q4') we have only to prove the existence of an unstable
cone field for Fy. We will actually prove the existence of an unstable cone field for
Gy ='F^O+2 which easily implies the result. For this we claim that if % is small enough,
then

(i) DGy(x^) . (1, 1) = (u, v}; u = u{x,jy), v = v{x,jy) and [ v \ > | u \ for every
(^)eA(F^y); ^

(ii) DGy^). (1, 1) == (u, v); z7 == z7(^,jQ, y == ^,j/) and | v [ > | u \ for every
(^)eA(FY,y);

(iii) there exists v > 1 such that

|| DG^.j/).^, ^)|| ^ v.||(^ .)|| for | y | > | u |.

Notice that (iii) follows from (i), (ii) and the inequality

I I DG^j/).(± 1, 1)|| > ||(± 1, 1)|| for every (^) eA(F^ Q4-).

Suppose (x,jy) eR^. Then G Y = P y + l o F Y where Py is the linear map
PY^J) == (^y^ PY-J) and hence

^A(^) ^A(.^)' ,
DGY(^)•(±1,1)=P^+ 1° ± = ,

n a ^ \ 1 / I"/
^^(J;) .

( Q ^ \

where u = ̂ +1. ± ̂ A(^J') + ^-/y(^)j

Q

and y==py+l.^-^Y(J ;)•

Using ̂  above we obtain that there are positive real constants L and N such that

| U\ < L.T^^^I 1 —y\^-1

and \v\^ N.py+1 . ! 1 -y |̂ -1.

Hence we have [ u \ < [ v \ for ^ small enough.
For {x,y} e Ry, either Fy^,^) e Ryfor every j = 0, 1, .... ̂  + 1 or Fy^) e Ry

forj = 0, 1, ..., yzo and F^1^) eR^. In the first case G^y} = P^^2^,^) and
the result follows trivially. In the second case Gy^FyoP^1 and we argue as
before.
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We now prove (iii). For {x,y) eS.y we have

(2) || DF^2^)^!,!) || =||(^)||^ \\v\\^V^\\\-y\^-\

If ay — 1 < 0, choosing ^ small enough we are done. Otherwise, since {x,jy) e Sly we
have y< 1 - A.y^2-1-0^ and hence | 1 -y j^-1 ̂  A^-^yy-^2. So

(3) l |DF^^(^).(±l,l) | |^N.py+i.^.^«Y2 .

But Y e^o- implies ^0+1.^^ 1 and thus

HDF^4-2^^).^ 1, 1)|| ^ N.J/Y^^ 10 for ^ small enough.

If {x,jy) e Ry the result follows similarly. •

Lemma 3. — If Y e ̂  then A(Fy, Q^) ^ a transitive set.

proof. - Let Fy(^) == (/y^),^)) and ly == [0, py1], ly = [1 - Ay^, 1].
Then gy : ly u ly -> [0, I], To each x e Iy u ly we associate a 2-symbol sequence x
defined by x, = 0 if g^{x) ely, ^ == 1 if g^x) ely. The sequence x is called the
itinerary of A:.

Given Y e ̂ -, let No be so that 1 <^Y.py0 < py. We claim that given (N,),^,
N, e N, N, ^ No for every i, the sequence a = 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 . . . is

^5T^ ^N2^ '̂ N3 '̂
realized as the itinerary of a unique point ^ e l ^ u l y . Indeed, for each i^ 1, let
^.^ PY^TI - Ay.Vy^, 1]. Then ^^(R^,) == ly for every i and defining
inductively

Gi^^R^nlY,
C^^-^^^o^-^4-1^ ... o^-^-i+^-^R^ nlY) nlY

we have Ci 3 G^ 3 ... Thus f1 C, is nonempty and there exists x e Y0 u Yy so that
i^l

its itinerary is a. Now we observe that the proof we gave in Lemma 2 (actually ine-
quality (3)) implies the unicity of such an x.

Denote by Ag the maximal invariant set of ^y. The result above implies that
the pre-orbit ofO by gy is dense in Ag and so Ag is transitive. This implies the transitivity
ofA(Fy ,Q+) .B

To conclude the proof of Theorem 2 it remains to prove inequality (1) above.
For this, let X^ e ̂  be as in the statement of the theorem. We start by reparametrizing X^
in such way that^ = (JL- As before oco = ̂ iWI^W where — ^(O) < — Xi(0) < 0 < ^(O)
are the eigenvalues of DXo((To), CQ the singularity contained in the simple singular
cycle AQ of Xo.

We will assume a^ == a, A^ == A and p^ = p for 0 < p. < e. The general case,
although more difficult can be done in a similar way.
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Let KO > 0 be so that p~ Bo < s. Call y.y .== p~ no and for n> fly define

R^^l—A^p'1.^ 1},

R^ = { tx; p-1^ p». tx< ̂  + p-1}, where ^ = t^.p-1.

If R* = U R*», i = 1, 2, we have { (x; X^ <^- } = R1 u R2. So, to obtain (1)
n > no

it is enough to prove that

A+p- 1 ff^R'uR2) A+p- 1

: ̂  ——- , _-i— ̂
1 +p-d+a-1)'" ^+a-1 " 1 _p-d+a-1) '

Indeed, if ( A e R ^ , n ^ »o, then (A s$ p"" and so (x01 l^ p""'""1 which implies
1—A^" 1^ l-A.p-"-01"1. Hence (A ep-^1 — A.p-"-""1, 1] and m{R\) < A.p-"'^"'1'.

If ( ieR^, n ^ Bo, then t A < p - " which implies ^ = (A0'''1.?-1 < p-"'̂ 01"1*.
Hence p-»-1^ p. ̂  p"""^! + p""-01"1) and OT(R^) < p-"'̂ 01'1*. Thus

ff^uR2)^ S (A.p-"'^0'"1'+p-».p-l.p-»•a"l)
n ̂  »o

pnod+a-1)
^ ( A + p - 1 ) S p-n(l+a- l )==(A+p- l).—p^— » \ ' » / <

n^no 1 — p (1+a--1)

m(R1 u R2) m(R1 u R2) A + p - 1

So ——————=i—— = ——. .. . ..-i. ^^+a-l p-nod+a-1) - ^ __p-(i+a-l)-

The other inequality of (1) is obtained in a similar way. This concludes the proof
of Theorem 2. •

Proof of Theorem 3.

a) Let X^ ej^ be as in the statement of Theorem 85 3^^ be the stable foliadon
for F^ given in Lemma 1 and g^: [0, 1] -> [0, 1] be the map induced by ^^. Recall
that after a G1 change of coordinates g^ is given by

p^ for O ^ j y ^ p^,

^(j0 = _ A, "..(I -^^[1 + 9((1 ~^)^ ^)] + PL
for 1 -A^.^^j/^ 1.

Define T^ == {j/ e R; p^1 <j/ < 1 - A^. ̂  }.
Given pi > 0 small and such that X^ e W^ Lemma 4 implies that

{ (x^ iI;X^^}={pte[0,iI]; ^(l)^T^ for every ^^ 0}.

Since the change of coordinates above is differentiable and depends C1 on (A, the result
is a consequence of following lemma.
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Lemma 4. — Given y. as above, { pi ̂  p; X^ f ̂ g } is a Cantor set audits limit capacity satisfy
^({pi^pi; X^^}) =0.

Proof. — We will assume o^ = a, p^ = p and A^ == A for 0 ̂  pi ̂  (1. The general
case, more difficult, can be done using the same ideas and similar calculations.

Given HQ e N, let ^ == p^o and if E C [0, ̂ ] denote by E0 the complement of E
m[0,?].

Observe that for 0^ pi^ ^ we have ^(1) = pi, ^(1) = p.pi, .. .,^°(1) = p^.pi
and^(l)=^°(?0==l.

Define, inductively, Go((Ji) = g^^l) = ̂ °((x) and G, (pi) ==^(G,_,(pi))for^^ 1.
We claim that min G^((JI) ^ p*min G^_i(pi), A ^ 1.
Indeed

G,̂ ) ==^^(G^^)) + ̂ ^(G,_^)).G,_^).

^ a
As ̂ ^(^-i^)) ^ 0 ̂ d ^^(Gfe-i(^)) > P we get

(1) G.(^P.G^Ox)

and so we have proved the claim.
Since Go(p.) ^ p^0, (1) implies

(2) G;(pi) ^ ^+k for every A ^ 0.

For [L ̂  ̂  define

^-T.u^^TJu... U^-^I(TJ.

Given ^ ^ 1, let E^ == { pi e [0, ?]$ 3 0 ̂ j< k\ G^,(pi) eT^} and N^) be the
number of connected components of E^. Since E^ ={p . e [0,^]$ 30^ j^ ^;,?S03(1) e^}
and, for eachj/ e [0, I], the cardinality of{ x e [0, 1]; g^(x) =y } has 2 as lower bound
and HQ + 1 as upper bound we obtain N(A) ^ (n^ + l)^4^1. So E^ is covered by at most
(HO + l)^4"1 intervals whose lenght is, by (2), bounded by p-^-^+i). Moreover, if 1 ,̂
0 ^ j < (^o + l)^4'1 is a connected component of E^ then the restriction of G^ to 1^
is an increasing function. Thus

A^ = n E,6
Jfc^O

is a Gantor set and its limit capacity satisfies

r(^ } < 1,m !°g(̂ ±l)̂ !
^noX^ logpn,.( l̂)

= lim ^+ l ) • l og(«o+l ) ^ log(«o + 1)
t-*00 (A + l).»o.logp Bo.logp



222 RODRIGO BAM6N, RAFAEL LABARCA, RICARDO MA^fi, MARIA JOSfi PACfFICO

But, for (A < p-^ == y, Is n [0, (I] = A^ which implies that c{l^ n [0, (1]) == c{Ao)

and since lim ———°——— = 0 we get Um c(I^ n [0, (IJ) =0, proving the result. •
HO -^ CO HQ V.->0

b) Let X^ be as in the statement of Theorem 2 and suppose ao == X^/Xg > 1. Then

for (AO > 0 small, a^ = -l— > 1 for every [A e [0, [LQ]. As before we can assume y^ == [A.
^(^

Let TtQ e N be such that ^no < ^0 for every [L e [0, pio]. To each n > HQ let (JL^ be
so that p^.^ == 1. Then F^-^, 1) == (p^.^, 1) and since F^(A-, 1) == (^, (JiJ for
every 0< x^ 1 we obtain F^^A?^, ^) = (^, pij. So, (^, (JiJ is a periodic orbit
of F^ corresponding to a homoclinic orbit for X^ associated to <T()(X^).

As a^> 1, F^ is differentiable at {x, 1) and DF^, 1) = 0 for every 0^ ^< 1.
Thus DF^^^ , (xj = 0 and (^ , (JL^) is an attracting periodic orbit for F^. We also
have F^-^R^J c R^, where R^ = R^^ was defined before. As F,, varies conti-
nuously with [L, we obtain that there is 0 < ̂  < ̂  such that F^ ̂ R^) C interior (R°^).
Hence, F^1 has an attracting fixed point in the interior of R^ which is also an attracting
periodic orbit of X^ . Clearly the o-limit set of yo(^) is this attracting periodic orbit,
where Yo(^) ls ^e separatrix of G^iri) close, in compact parts, to YO* Letting n go to
infinity we finish the prove. Notice that for every ,̂ e [^, (AJ the vector field X^ has
an attracting periodic orbit and the co-limit set of Yo(p1) ls ^[ns orl:)it. •

From now on we assume that the simple singular cycle A of X is expanding, that
is, ao === X^/Xg < 1 where — ^3 < — X^ < 0 < Xg are the eigenvalues of DX(<ro), o-o Ae
singularity contained in A.

The next lemma characterizes the vector fields in ^g in this case.

Lemma 5. — The following conditions are equivalent:

(i) Y e ̂  ^•5 ̂ ^(^ U)) ^ c^) ̂  fl transitive hyperbolic set;
(ii) A(Y, U) ij a hyperbolic set;
(iii) 3 n e N jî A ^Aa^ F^y^y) ^ Dy == Ry u Ry, Dy ^ ̂  domain of Fy;
(iv)(^^)^A(Fy,Q+).

FIG. 5
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The fundamental tool for the proof of this lemma is the existence of an invariant
unstable cone field for Fy, Y 6 ̂ \^-, and consequently, of an invariant unstable
foliation ̂  for Fy. This foliation is obtained by the Fy-foward saturation of a foliation ̂
of the fundamental domain for Fy which looks like the one on figure 5. The foliation ̂
is singular because through the Fy-orbit of (^jyy) there are infinitely many leaves^

The proof of the existence of such unstable cone field is contained in Lemma 2.
We point out that for ay < 1, the proof ends at inequality (2) of Lemma 2. These
remarks together with Lemma 3 easily imply Lemma 5.

Proof of Theorems 4 and 5.

Let ,̂ %-, W+ and ̂  be as in Theorem 1. By lemma 1, after a G1 change of
coordinates, we can assume that the horizontal lines y = constant in Q+ form a stable
foliation ̂  for Fy, for every Y e ̂ + U./T. Recall that ^+ " the set of Y e ̂ + such
that A(Y, U) is hyperbolic and ^+ = ^+\^+. Given X e ̂ +, we shall prove that
there exists a C1 codimension-one submanifold ̂  such that the dynamics of A(Y, U)
for every Y e^ ̂  up to a topological equivalence, the same. In order to prove this,
let us first fix some notation.

To each Y e ^+ and (xy,j>^) 6A(Fy, Q+) define

W^o,J'o) = {{x,J>) e Q+; I I F^,^) - F^o,^)|| -> 0 as n -> oo }.

Clearly W^(^,^o) = {(^jro); 0 < x^ 1 }. Recall that {(x,^); 0< x^ I } is the stable
leaf of y^ at {xy,jyy). Moreover, there exists Sg > 0 such that

W^s^o^o) ={{x,y); || F ,̂j0 - F^o,̂ ) II ̂  ̂  V n > 0 }
^{(^J'o); O < A ; < S 1}.

Here ||(.v,j)|| = max{| x |, \y \} and K{(x,^,r) is the ball of radius r and
center (x,y).

SetA(Y) = (^,JY) and P,(Y) = F^(P,,(Y)) = (^,^) for n > 0. Take X e ^+
so that />o(X) 6A(Fy, Q+). For 8 > 0 fixed and Y nearby X define

Wg(X, Y) = {(x,y) e Q+; || F ,̂.y) -^(X)|| < 8, V n ̂  0},

that is, Wg(X, Y) is the set of points in Q+ whose Fy-orbit 8-shadows the F^-orbit
of/»o(X). The next lemma shows that if the F^-orbit of^o(X) is at a distance 8 from
{(,»,!), 0^ x^ 1}, then Ws(X, Y) is nonempty for Y nearby X.

Lemma 6. — Suppose that there exists 8 > 0 such that |ĵ  — 1 [ > 8 for every n ̂  0.
Then Wg(X, Y) is nonempty for Y nearby X and it depends smoothly on Y.

Proof. — Under the hypothesis of the lemma we have that B(/»,,(X), 8) £ Q for
every n ̂  0.

Clearly Wg(X, Y) = f1 FY»(B(^(X), 8)).
n^O

But oc^ < 1 implies that F^1 contracts vertical segments and since it always expands
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-,-1F-x(B(Fx(^),§))
FIG. 6

horizontal segments, we obtain that for every {x,y) eA(Fx,Q+), Fx^WFx:^-^)? ^))
is a horizontal strip. See figure 6.

If ^ is a small neighborhood of X then for every Y e ̂ , Fy^F^^), 8))
is also a horizontal strip, near Fxl(B(Fx(^^J/), 8)). This implies that the sequence
B(^o(X), 8) n FY^BQ&JX), 8)) is a nested sequence of horizontal strips for Y e V. So
W§(X, Y) is nonempty and it also depends smoothly on Y. •

Let us now suppose that sup{j^, n ̂  0 } == 1. In this case it could happen that
for every 8 > 0 there exists Y arbitrarily near X with W§(X, Y) = 0. This is so because
it could occur that FY"(B(^(X), 8)) n Q^ == 0 for some n. To bypass this difficulty
we define a fake return map Fy, much related to Fy, in such way that it always induces a
fake G1 curve W^X, Y) as above. We shall also prove that if (^y^y) == j&o(Y) e Wg(X, Y)
then W§(X,Y) exists and it coincides with W§(X, Y).

In order to define Fy recall that the domain Dy of Fy for Y e ^U is Ry ^ R^ where
RY={(^)^Q.;O^^ ^-pY^j^pY1}^^^) ^Qjo^^ 1,1 -e^j^ i}
and 6 satisfies 6 — s ̂  8y for some s > 0, 8y == Ay.j^. Also recall that Fy(^, 1 — 8y)
is contained in W^CT^Y)) and Fy(A:, 1) = (^y?^) ^or GV^Y 0^ ^^ !•

Let Ry = {(A:,J/) eQ; O ^ A ; ^ 1 , 1 — 6 ̂  j/ ^ 1 + 6 } and consider

(^) ifj^l

(^,2-j/) ifj/^ 1,
TY(A;,J/)

i f j^^^y
T^^^) (^^

(^2^-^) ifj^Y-
The fake return map Fy is defined by

Fy(^)
T^ 0 Fy 0 Ty(^jy)

if (^,^) e RY u R^
FY^,J)

if(^eR°AR°Y.
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FIG. 7

Observe that the family of horizontal lines in By = Ry u Sly is an invariant
stable foliation y^ for Fy, Fy is an extension of Fy depending C1 on Y and ?y also

expands the vertical direction.
For 8 > 0 define

W,(X,Y) =={(^) eQ; ||F^,jO -A,(X)||< 8, n ^ 0}.

Shrinking ^ if necessary we prove, as in lemma 6, the following.

Lemma 7. — If S< So then \Vs(X, Y) is nonempty for every Y e ̂ .
, Notice that the curves W^X, Y) coincide with Wg(X, Y) whenever {x,y) e \Vs(X, Y)

and Î (̂ ,j0 e Ry u R^/or ^y^ ^ ̂  0. Moreover, \Vg(X, Y) depends smoothly on Y.

Let^x = = { Y 6^ ^o(Y) e1vv8(x5Y)}• We claim that N^ is a codimension-one
submanifold defined on a neighborhood ^x^^ °^ X- Furthermore, for every
X e ̂  n ^B? t^le corresponding *̂  is such that ^xX^S ^a!s two connected compo-
nents. The proof of these facts is a consequence of the implicit function theorem. Indeed,
assuming Wg(X, Y) = {(^(X, Y)), 0 ̂  x ̂  1 } and defining H(X, Y) =^(X$ Y) -jpy
one has ^^ == { Y ; H(X, Y) ==0}, Since there exists a direction YQ along which

3 rf
——H(X, X) == -H(X, X + ^Yo) L=o + ° the P1'0^ of the claim follows.
0\Q dS

The next lemma provides a condition implying the coincidence between Wg(X, Y)
and Ws(X,Y).

29
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Lernma 8. — If p^) e ̂ (X, Y) then \V,(X, Y) = W^X, Y).

Proo/'. — Suppose first that RQ^X) is an eventually periodic orbit of F^. Then,
the stable leaf through po{^) is an eventually periodic leaf of the stable foliation y^
for FX. This implies that there exists a hyperbolic periodic orbit q of F^ so that
po(X.) eW8^). Let ^y be the continuation of q for Y in a small neighborhood of X.
Then we clearly have W^X, Y) c W^y) and W^X, Y) =Ws(X,Y). In this case
^-{Y^Y^W^y)}.

Now assume that A)(X) is not eventually periodic. Then ^o(Y) is not eventually
periodic for every Y e^x. Suppose that there is Y e^x such that A(Y) e Q^ for
j == 0, 1, . . . , TiQ — 1 and^(Y) = (A^J^) withj/y0 > 1. Let Y(, 0 < ̂  1, be a G1 arc
contained in ^/^, Yo == X and Y^ = Y. Then there exists IQ e (0, 1) so that
j^ (Y( ) e{(^, 1), | x | ^ 1 }. Hence, ̂ o(Y^) is eventually periodic, which is a contradiction.

Thus, pj{Y) e Q. for every j ̂  0 and reasoning as before we obtain

W8(X,Y)=Ws(X,Y). •

Lemmas 6, 7 and 8 prove that if X^ e ̂  is a G1 arc such that Xo has an expanding
singular cycle, then ^g is laminated by codimension-one submanifolds. Moreover,
for ^ sm^ll enough, if X e ̂ g and e^x ls t^ corresponding submanifold through X,
then ^Y^x has two connected components. To conclude the proof of Theorem 4, it
remains to prove that the dynamics of A(Y, U), Y e^x 1s topologically equivalent to
the dynamics ofA(X, U). To do so we proceed as follows.

Given Y e.^? let SY : [°5 Py1] u [1 — ̂  1] -^ [0, 1] be the map induced by ̂ .
As we already saw gy is an expanding map, G1 on Jy — { 1 }, where Jy is the domain
of^y. The itinerary i^y) °^ SY ls ^e g^-o^i^ of 1. Since g^ is an expanding map, it
follows from [MT] that the itinerary of g^ characterizes the dynamics of g^ that is,
an expanding map g :J -> [0, I], J = [0, a] U [b, I], 0 < a < b < 1, is conjugate to g^_
if and only if i{g) == iQ^)- ^ut ^or Y e-^x we clearly have i{gy) == i{g-s) and so ^y
and g^ are conjugate. This implies that the dynamics of the stable foliations J^x and e^y
for FX and Fy, respectively, are conjugate.

As in [LP], to obtain a conjugacy h between A(Fx, Q4') and A(Fy, Q^) it remains
to prove that the dynamics of the unstable foliations y^ and ^y for F^ and Fy,
respectively, are conjugate. This follows from the fact that these dynamics are given by
nearby expanding maps of the interval.

Since A(X, U) is the closure of the forward saturation by the flow ofX ofA(Fx, Q4'),
standard methods (see [LP], [GW]) allow us to extend the homeomorphism already
defined on Q^ to a homeomorphism between A(X, U) and A(Y, U) sending orbits
of A(X, U) onto orbits of A(Y, U), preserving their orientation. This completes the
proof of Theorem 4. •

The proof of Theorem 5 is easy and it is left to the reader.



APPENDIX

Here we shall prove Lemma 1. The stable fbliation ^y will be obtained as the
integral curves of a G1 vector field 7]y : Q4' -> [— 1, I], ^y(x,jy) = (I, 9y(^,j0),
where (py will be obtained as a fixed point of an appropriated graph transform. In
order to define this we start by fixing, for each Y e W\%~, a G1 nearby/horizontal
foliation ^y in O^Ry u Ry) containing {{x, PY^-QY^Y-^)) ; ^ e [0. 1]} an^
{(^ 6y(^) — SyM); x e [0, 1]} as leaves, see Figure 8. We denote by r(Y, {x,y)) the
inclination of the corresponding leaf passing through the point (^,jQ and assume that
(Y,(^))^r(Y,(^jQ) isCi.

FIG. 8

Consider the space ̂  of continuous functions 9 : (GU\}U~} X Q4' -> [— 1, 1] satisfying
(i) <p(Y, (^j/)) = r(Y, {x^)) if ,(^,j/) e O^Ry u Ry);
(ii) 9(Y, (^ 6yM)) = OyM and (9(Y, (^ 0)) = 0 for every ^ e [0, 1].

To each 9 ej^ we associate a continuous vector field
W (^)) = (0, (1,9Y(Y, (^)))

and by integrating T^ we obtain a C° foliation '̂<p of (^\^~) X Q4' such that
(i) each leaf of ̂  has the form { Y } x ^{x,y) where ^{x,y) is a curve in Q^

passing through (A:, y)\
(ii) for (A;,J/) eQ^^Ry uR^), ^(A;,J/) coincides with the leaf ^y(^j) of ^y

passing through (A:, ̂ )$
(iii) for each Y e (^\^-), {(^ eyW); x e [0, 1]}, {(^ py^ey^y.^); ^ 6 [0, 1]},

{(^ M^) — ^W); ^ e [0, 1]} and {{x, 0); A; e [0, 1]} are leaves of ^y. i
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Now we define an operator T: ̂  ->• ̂  in such a way that having T(y) = <p
is equivalent to ^ being invariant under the map F-^Y, (A:,^)) = (Y, Py^,^)).
Since, for (^,j>) e Dom Fy == Ry u Ry,

DF(Y, («,»))

"Id 0 0

* ^A(^) |;/Y(̂ )
^"

111 H^^ y^\

where Py^) == (/y(A-,j),^y(.v,^)), we have

DF^,,.^(F(Y, (A;,J)))

1
A

"Id 0 0 '
Q r\

* ^^^^) -ayA^j)

/ -^^ ^^^^

0

i

y(F(Y, (^)))

with A = det DF(Y. (.„,„)). Hence ̂ p is invariant if and only if for every {x,y] e Dom Fy,

?(Y, {x^)) =
- ̂ ^y(^) + ^A(^).<p(F(Y, (^^)))

^Y^^) - ̂ /y(^).9(F(Y, ^^)))

We denote by ^(Y, (^j^)) the right-hand term in this equality and define
T : ̂  -> ̂  by

^ .^ , . ( ̂ (^ M) if (^^ e ̂ ^ F^T(y) (Y, (A;,^)) =
W(^)) if(^) ^DomFY

In order to prove that T has a fixed point we endow ^ with the norm of the
supremum and prove that T is a contraction with respect to this norm. Afterwards we
shall prove that the fixed point of T is in fact G1, completing the proof of Lemma 1.

(i)T(^)C^.

The continuity of T(<p)(Y, (x,jy)) outside the graph 6y is clear. Along this curve
it follows observing that d ) of the expression for Fy (see Section II) implies that

T(<p)(Y, {x,jy)} converges to c y when (x,^) tends to graph Oy. As ~~i:{x>y) is0 d{x^)
the inclination along graph 6y we obtain the result.

d^y}
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We now prove that | ^(Y, \x,y))\ ̂  1 for every {x,y) eDomFy, Y e ^\<%f-.
For (x,y) eRy,

|T(,)(Y,(^)|=i^l^^^
I PY I

If (x,y) e Ry, using ̂  of the expression for Fy(A?,j/) given in Section II we obtain
r\ ^

1 ! = ~~8x ̂ -^ + 9 ° F(Y' ^'-^^ • jx ̂ '^

^ l ^ l . l ^ l 1 + — — •^Y-1+1'•I(^)|
L a J

^ ̂ (^^) + ¥ ° F(Y, {x^)). ̂  /Y(^J')

^l^l.l^lfl-^l.^-'+Irn^
L |a |J

^(^J^) I

where | r-^x,y) \ and | r^{x,jf)\ are bounded by constant.^"1. Therefore,

I I I J ^ l [ l + l ? ' l / l ^ | ] + s, s > 0 small.<
II| | r f | [l- |y|/ |rf ' |]-s

But, as explained at a) and b) in the expression for Fy given in Section II, | H \ /1 d^\
can be choosen as small as we want and | c [ / ) d \ were also fixed smaller than s, with
e<^ 1. So, for {x,y) eRy,

|^(Y,(^))| = — — 1 , < 1 •

Thus | 9 | < 1 implies | T(<p) [ < 1 as we claimed.
(ii) T is a contraction.
We have

(T(yi) - T(9^)) (Y, (^))

( 8 8 8 8 \
^ ^ /Y•^^Y-^ /Y•^^Y; (<P10F-<P20F)

7 » f l \ 7 ^ a \ ~ (x» '̂)^ „ a \ p
^/Y-<ploF•a,^Y^^^Y

^
ay^•^-A

lay

det DFy. (y^ o F — 93 o F)

gy — 9i oF . — /Y . (—^ — ^ o F. —^
^•/1(; ̂ ^-

(^j)-
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If (x^) e Ry we have | (T(q>i) - T^)) (Y, (^)) | = p^l | <pi o F - <p, o F | and
I ^ |< |PY| . IPy | •

If (^,jQ e R^ then using a), b), c ) and d ) of the expression for Fy one obtain

|T| == | detDFy^,^) | < constant. x^^~^~1,

^ I /a 8 \ / a a \
n|=|^^-^oF^/J.^^-cp,oF.^/J(^)

> a2 1 / f l 2 l ^ l 2 n 1—U r20^-2
^ a Y . | a | . | f l | . l l — —^7— 1 . ^2

^l2

< const. A^4^'"2.

J(^^) 1. I s{x,y) |

^ constant. x0Y~aY4 ' l. As py — ay > 0 for every Y we obtain -i^— ^ -.
] I I | ^ 1111 2

Thus

This proves that T has a unique fixed point 90 • I11 order to prove that <po is of class G1

we proceed as follows. Define

S == { A e G°((^\^-) x Q^, L(R2, R));
A == Dr(Y, (^^)) for (^) e y\R^ u R0^ }.

Here Dr(Y, (^,j^)) means a(^) r(Y, (^,j^)) where r(Y, {x,y)) is the inclination field

of the foliation ^y defined and fixed above.
We now introduce an operator T : \s^ X ^ -> ̂  X ^ such that if f, g are of

class C2 and 9 is of class C1 then T(y, D(f) = (T^, D(T<p)). This operator is defined

( n \
as T(y, A) === (T9, 8(9, A)) and the explicit form of 8(9, A) is denoting^ == — fy , etc. (.

8x ]

8(9,A) =

[(^ - 9 o F./,) (- D& +/,.A o F.DF + 9 o F.D/J
- ( -&+yoF^) (D^-Jv»AoF.DF->9oF .D/ , ) ]

(^-9oF./,)2

for (A;,J^) e RY U R^

Dr(Y, (x,y)) for (^^) i R^ u R^,

where DA means
BA

a ĵ.) for h =&,^,F, etc.

Note that if T has a globally attracting fixed point (90, Ao), then choosing 9 of
class C1 we obtain T"(9, D9) == (T^D^^)) -> (90, D9o) as n goes to oo. This
implies that Ac == D9o and so 90 is of class C1. Thus, to conclude the proof of the lemma
it remains to show first that T is a well defined operator and secondly that it has such
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an attracting fixed point. For this last point it is enough to show that each map
T<p: ̂ -^^, Ty(A) == S(<p, A) is a contraction, with constant of contraction uniform
on <p e j^.

To see that T is a well-defined operator involves a standard calculation and we
will not do it here. But it is possible to prove/using d) of the expression for Fy and the
fact that (By — ay > 0 that

(i) | S((pi, A) {x,y} — S(<p2, A) {x,jy) | ^ constant | <pi — <pa I and
_ ^/^ y\\

(ii) S(<p,A) (A:,J/) converges to D ' as (x,y) tends to graph Oy.
^ d{x9Jy) j

We now prove that T is a contraction. Observe that

[^ (^-^(^[^ .^——^-[(AoF-Bo^l . lDFI
I \Sy 9 o r .jyj [

(detDF).|DF|
= i7-ry7TTT2 ( )"I 6i/ T" ~ ' J y I

For (x,y) e Ry we have

| T,(A) - T^(B) | = | TY I . ] A o F - B o F | and | Ty | < 1.

For [x,y) e R^ we have

| I | == [ detDF [ . I DF | < constant. A;^4-^-1.^-1

|I?| = K^-yoF. /J l^a^l^M^l^l -KI?! 2 / !^! 2 ) .^ -^
-1^(^)1

with | ̂  (^» J^) | ^ constant. x^ + ay ~2 .

It follows that ——^ constant. ̂ ^ -. Thus T., is a contraction with constant
I11! 2

of contraction independent of 9. This proves the lemma. •
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