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PAPPUS'S THEOREM AND THE MODULAR GROUP
by RICHARD SGHWARTZ

1. Introduction

Pappus's theorem is as old as the hills. It refers to the configuration of points and
lines shown in Figure 1.1.

FIG. I . I

Pappus's Theorem. — If the points A, B, and C are collinear and the points A', B' and C'
are collinear, then the points A", B" and G" are collinear.

A slight twist makes this theorem new again. The twist is to iterate, and thereby
treat Pappus's theorem as a dynamical system.

Pappus's theorem may be considered as a dynamical system defined on objects
called marked boxes. Essentially a marked box is a collection of points and lines in the
projective plane P which comprises the initial data for Pappus's theorem. (See § 2.2
for a precise definition.) When Pappus's theorem is applied to a marked box, more
lines and points are produced. These new lines and points may be used to form new
initial data for the theorem, and so on.

In fact, one can construct an entire group G of operations to perform on marked
boxes. Algebraically G is the modular group, Z/2 * Z/3, and is generated by the simple
operations alluded to above. (For a precise definition of the operations, see § 2.3.) The
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orbit 0 of a marked box is an infinite collection of marked boxes, nested inside and
outside of each other in a pattern encoded by the modular group.

The modular group makes a second entrance into Pappus's theorem, as the group
of projective symmetries of il Projective transformations are analytic diffeomorphisms
of P which take collinear points to collinear points. Projective dualities are analytic
diffeomorphisms between P and its dual space of lines P* which take collinear points
to coincident lines. Projective transformations and dualities together generate the Lie
Group of projective symmetries of P. It turns out that the projective symmetry group M
of Q. (those projective symmetries which permute the marked boxes of t2) is again
algebraically the modular group. The group of projective symmetries and the group of
operations commute, and so there are two commuting modular group actions on t2.
As the original marked box varies, the orbit varies, along with the two group actions.
Everything varies smoothly, thereby producing two commuting modular group actions
on the space of all marked boxes.

There is a certain geometric condition one can put on marked boxes, called
convexity. The set of convex marked boxes forms an open subset of the set of all marked
boxes. For these marked boxes, there is a certain amount of geometry and topology
associated to the group actions described above.

In the convex case, there is a fractal curve associated to the orbit t2. Certain
< c distinguished " points of the marked boxes in 0, are dense in a topological circle A,
which is generally non-smooth. Dually, certain (c distinguished " lines of the marked
boxes in 0 are dense in a topological circle L of lines. The circles A and L are " self-
projective " curves in the sense that they are preserved (or swapped) by the modular
group of projective symmetries of ^. In a certain sense, they are analogues of quasi-
circles in the projective plane. Figure 1.2 shows certain of the convex marked boxes
in an orbit. Both A and L are < ( hinted at " in the picture.

Projective symmetries induce analytic diffeomorphisms of the projective tangent
bundle 8ft of the projective plane. When the original marked box is convex, the symmetry
group M gives a discrete group action on 8ft. In fact this group action has a domain
of discontinuity and a corresponding quotient 3-manifold. More precisely, let ^V C 8ft
denote those pairs (p, 1) such that p ^ A and / ^ L. The fixed points of M are dense in,
and contained in, the complement of ^T, and ^F itself is the domain of discontinuity
for M. The quotient ^° = ̂ /M is a three-dimensional analytic manifold with the homotopy
type of the trefoil knot complement in the three sphere.

The manifold ris a (< (^, ^-manifold " in the sense of [T]. Here ^ is the Lie
Group of projective symmetries, and S£ is the universal to the projective tangent bundle 8ft.
There is a classical geometric structure on the trefoil knot complement coming from
its description as SL^I^/SL^Z). In the case of a " totally symmetric 5? marked box,
one essentially recovers this structure. However, as the marked box varies, one obtains
a 2-parameter family of t( exotic 5? geometric structures on the (homotopy) trefoil knot
complement.
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FIG. 1.2

In sum, each initial choice of lines and points involved in Pappus's theorem
(subject to the convexity condition) gives rise to the following objects:

1. an infinite collection 0, of marked boxes, which is indexed by the modular group,
and which has the modular group as its group of projective symmetries;

2. a pair of (usually fractal) curves A e P and L e P* which are invariant (or swapped)
under a modular group of projective symmetries $

3. a representation M of the modular group into the Lie Group of symmetries of the
projective tangent bundle 8^\

4. a (usually (< exotic ") (^, .^-structure ^ ==^T/M on the (homotopy) trefoil knot
complement.

This paper is self-contained, but does assume some basic hyperbolic and
projective geometry. The hyperbolic geometry can be found in [B], and the
projective geometry, as well as an excellent treatment of Pappus's theorem, can
be found in [H].
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2. Iterating Pappus's Theorem

2.1. THE PROJECTIVE PLANE

As usual, we will take the projective plane to be the space P of one-dimensional
subspaces of R3. The ordinary plane R2 sits naturally as a subset of P, and consists of
all one dimensional subspaces which do not lie on the r^-plane of R3.

Projective transformations of P are just projectivized linear transformations of R3.
The group of projective transformations is naturally isomorphic to SL^R). There is a
unique projective transformation which takes one specified set of 4 (ordered) general
position points to another such set.

P* will denote the space of lines of P. This set is naturally in bijection with P.
A duality is just a projectivized linear transformation from R3 to its dual space. More
concretely, a duality is a homeomorphism P -> P* which takes collinear points to
coincident lines. As a special case, a duality which is induced by a positive definite inner
product on R3 is called a polarity. Each duality A induces a dual map A*: P* -> P,
defined by the formula ^{pq) = AQ&) n A(y).

A set QC P is convex if there is a projective transformation T such that T(QJ
is a convex subset of the ordinary plane.
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2.2. MARKED BOXES

Informally, a convex marked box is a convex quadrilateral in P with a distinguished
top edge, a distinguished bottom edge, a distinguished top point and a distinguished
bottom point.

Here are some definitions, which culminate in a formal definition of a convex
marked box, the main object of study. An overmarked box is a pair of 6 tuples

((A^,.;^),(P,Q,R,S;T,B))

having the incidence relations shown in Figure 2.2. There is an involution on the set
of overmarked boxes:

((^, y, r, s, t, h\ (P, Q, R, S; T, B)) -> ((^, s, r; ^, A), (Q,, P, S, R; T, B))

A marked box is an equivalence class of overmarked boxes under this involution. Let ©
be the marked box labelled as in Figure 2.2. The top of© is the pair {t, T). The bottom
of © is the pair (6, B). The distinguished edges of © are T and B. The distinguished points
of © are t and b.

T v oy /
' ^A—A"

FIG. 2.2

So far, the definitions make sense in a projective plane over any field. (The exception
is the projective plane over Z/2, which doesn't have enough points to contain a marked
box.) The remainder of the definitions depend on the ordering properties of R. The
marked box © is convex if the following 4 conditions hold:

1. p and q separate t and T n B on the line T.
2. r and s seperate b and T n B on the line B.
3. P and Q seperate T and bt on the pencil of lines through t, in the cyclic ordering

of lines through b.
4. R and S seperate B and bt on the pencil of lines through A.

The first two conditions imply the last two, and vice versa.
The convex interior of © is the open convex quadrilateral whose vertices, in cyclic

order, are p, q, r and s.
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Project! ve symmetries act on marked boxes in a way which preserves convexity:
Let x == T{x) for a projective transformation T. We define:

T(©) == (G&, y, r: ?; ^ ?), (P, Q, R, S; t, B)).

Similarly, given a duality A, let x* == A (A:) when ^ is a point, and X* === A*(X) when
X is a line. We define:

A(©) = ((P*, Q:, S*, R*; T*, B*), {q\p\ r\ ̂ ; t\ ̂ )).

The reordering of elements of A(©) is deliberate.

2.3. OPERATIONS ON MARKED BOXES

There are three natural box operations one can perform on marked boxes. Before
defining these operations, we introduce some notation. If p, q e P, then pq is the line
containing^ and q. Likewise, ifP and Qare distinct lines in P, then PQ^is the intersection
of P and Q .̂ This notation may be applied recursively; for example, (ab) (cd) is the
intersection point of the lines ab and cd. Given

© = ((A g , r , s ; / ,&), (P, Q, R, S; T, B))

as above, we define:

z(©) = ((^, r,A q; b, t), (R, S, Q, P; B, T)).

^i(©) = ((A ?> QR, PS; t, {qs) (^r)), (P, Q, qs,pr; T, (QR) (PS))).

^(©) = ((QR. PS, ., r; {qs) (j&r), 6), (^r, ̂ , S, R; (QR) (PS), B)).

Finally, for completeness, we define the identity operation 1(©) = ©. The three box
operations are shown schematicaly in Figure 2.3, for a convex marked box.

FIG. 2.3



PAPPUS'S THEOREM AND THE MODULAR GROUP 193

The box operations may be applied iteratively, to form a semigroup G of box
operations. We will use the notation ab to mean: <( first apply b, then apply a 9?. It is
clear that i and T, commute with projective transformations. Two simple computations,
one for i and one for (say) T^, show that dualities commute with these box operations
as well. Hence the semigroup of box operations commutes with projective symmetries.

Lemma 2.3. — The following relations always hold:

12 == 1 ^ T! ̂ 2 == ^ ^ ZT! = ^ ^1 ̂ i = ^2; T2 Ha = TI .

Proo/*. — The first relation is obvious. By symmetry, we only have to verify the
third and fourth relations. We compute:

^(©) = ((PS, QR,^, q, {qs) {pr), t), (qs,pr, Q, P; (QR) (PS), T)).
TI^(©) = ((PS,QR,(^r)Q,(^)P;(QR) (PS),(?(QR)) (^(PS))),( . . .)) .
T,zTi(©) = (((^) Q, (^) P, y,^; ((PS)^) ((QR) y), ^, ( . . . ) ) .

Looking at Figure 2.2, we see that

(pr) Q. = r; (^) P == s; (?(QR)) (^(PS)) = RS = &.

Substituting these identities in, we see that the 6 points of TI Hi(©) match the 6 points
ofr2(©), and the 6 points of ̂  n-i(©) match those ofz(©). To complete the proof, we
note that the 6 points of a marked box clearly determine the entire marked box. •

The relations in Lemma 2.3 imply that the semigroup G is in fact a group. Clearly
G is generated by a == i and (B == n-i. Note that

P3 = Z'TI HI Z'TI == Z'TI z'Tg = 1.

Looking at the nesting properties of the convex interiors of the marked boxes in the
orbit of ©, in the case © is convex, we see that the two elements a(B == T^ and oc(B2 = Tg
generate a free semigroup. This is enough to identify G as the modular group:

G == < a, P : a2 = 1, ̂  = 1 >.

2.4. Two COMMUTING GROUP ACTIONS

Let Q = Q(©) be the orbit of © under G. It is not hard to see, particularly in
the convex case, that G acts freely, faithfully, and transitively on Q.

The structure ofO. can be expressed by an incidence graph F. The edges of F correspond
to marked boxes in 0., the vertices correspond to tops and bottoms of boxes, and each
edge is directed from the top to the bottom. Vertices on distinct edges are identified
if the corresponding distinguished sides coincide. A picture of F is shown in Figure 3.1.1.
Technically, F is just an abstract graph, but we will always embed F in the hyperbolic
plane, as the tiling associated to the hyperbolic reflection group generated by reflections
in an ideal hyperbolic triangle.

25
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The group G of box operations has a concrete description as a permutation
subgroup of edges of F. The operation i reverses the orientations on each edge. The
element T^ "rotates" each edge counterclockwise one "click55 about the tail point.
The element T^ c< rotates 55 each edge one " click 55 clockwise about the head point.
Note that G is not a group of homeomorphisms of the hyperbolic plane. Each marked
box induces a faithful representation G of G into the permutation subgroup of marked
boxes in the orbit 0.

Besides G, there is a second, commuting, modular group action M on F. This
action M is generated by order 2 isometric rotations about centers of edges of F together
with order 3 isometric rotations about centers of triangles in F. The marked box ©
induces a representation M into the Lie Group ^ of projective symmetries of P.

Theorem 2.4. — Let © be a marked box, with orbit Q. There is a faithful representation
M : M -> ̂  which takes isometrics of F to projective symmetries of Q, in a way which is natural
with respect to the labelling of F.

Proof. — We will show that, for each marked box ^V e Q:

1. There is an order 3 projective transformation having the cycle
i(T) ^Ti(Y)-^(T).

2. There is a polarity having the cycle Y —^(Y).

The theorem then follows from the fact that everything in sight commutes.
Let Y = ((61, 63, fl3, fli; flg, &g), ( . . . ) ) . Figure 2.4.1 shows a particular norma-

lization of Y. We compute
^T) = ((^15 ̂  b^ 63; a^ ^), ( . . . ) ) ,

Tl(Y) = (.(^3^1^3; ̂  ̂  (...)),

^W == {(^i, c^ fli, ^3; c^ a^), ( . . . ) ) .

The obvious Euclidean rotation satisfies (1).

FIG. 2.4.1
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FIG. 2.4.2

Now let V = (Q&, q, r, s', t, 6), (P, Q, R, S$ T, B)). Figure 2.4.2 shows a norma-
lization of T in which t and b are at infinity, and | | ^ | [ [ | ^ | | = = | | r | | | | j | | = l i n the
standard norm on the Euclidean plane. The polarity induced by the standard inner
product on R3 satisfies (2). •

All in all, we have produced two different commuting modular group actions G
and M on the orbit Q. As the original marked box varies, the orbit varies, and these
group actions vary as well. Thus we produce two different commuting group actions
on the space of marked boxes.

3. Geometry of Marked Boxes

Henceforth, we make the blanket assumption that all our marked boxes are convex.

3.1. DEPTH OF A Box

The labeling of the incidence graph F is determined by the choice of © in the
orbit Q.. It can be arranged that the edges corresponding to z(©), Ti(©), and T2(©) bound
the hyperbolic triangle which contains the origin 0 C R2. Given this labelling, we make
the following definitions concerning the placement of other boxes in Q with respect to ©.

Let v be a vertex of F. Say that the depth of v is the minimum number of edges
of r which must be crossed by any path from the origin to y. The depths of various
vertices are shown in Figure 3.1.1.

Each directed edge e e F has a half space Hg associated to it. The assignment
e -> Hg is made so that Hg c H^ i^and only if the convex interior of the marked box labelled
by e is contained in the convex interior of the marked box labelled by/. Let H^, H^
and N3 be the three half spaces shown in Figure 3.1.1. Assuming that H^C H^. for some
j e{ 1, 2, 3 }, define the major depth of the edge e to be the maximum depth of the two
vertices bounding e. Define the minor depth of e to be the minimum depth of its two
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0

FIG. 3.1.1

vertices. There are only finitely many edges at every major depth, and infinitely many
at each minor depth.

The directed edges of F are in bijection with the marked boxes of Q, so we can
transfer the notion of major and minor depth to marked boxes. We will use the nota-
tion md^V) and Mrf(Y) to denote the minor, and major depth of Y.

The purpose of this section is to make precise the statements that boxes having high
depth are small and thin.

The projective plane inherits a Riemannian metric p from its description as the
sphere modulo antipodal points. The metric is not very natural with respect to the full
group of projective transformations, but it will nonetheless be useful to us here and
in § 4. Unless otherwise stated, all metric measurements (distances and angles) will be
made with respect to p. On the other hand, when we speak of convexity, we will always
refer to the projective geometric notion, described in § 2.1.

Given a marked box Y e 0., let Y denote the convex interior of Y, let Y denote
the (smaller) convex quadrilateral shown in Figure 3.1.2, and let a(Y) denote the angle
shown in Figure 3.1.2. [ X | will denote the p-diameter of the set XC P.

FIG. 3.1.2
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Depth Lemma. — Let s > 0 be fixed. Then there is a constant N ==; N(s, ©) such that,
for any marked box Y eQ,

1. md^) > N => | T | < £ ;
2. M^Y^ N => | Y | < e;
3. Mrf(Y) > N => a(Y) < s.

Proof. — Without loss of generality, we assume \>V \ e [ Ei |, and we normalize
so that EI is the unit square. The spherical metric p restricted to the unit square is only
boundedly different from the Euclidean metric there, so for ease of computation we
will work with the Euclidean metric. This bounded change, and the original norma-
lization, merely alter the constants in the Lemma.

We may write Y = w(EjJ, where w is a word in the box operations T,.. By throwing
out uniformly small words, and using symmetry (between T^ and T^) we can assume
that w has one of the following properties:

1. The string ... T^ T^ ... occurs n times in w, for large n.
2. w = Tg T^, for large n.
3. w == T^, for large n.

In the first two cases, both W(Y) and Mrf(Y) are large. In the third case, only M^Y)
is large.

Case 1. — Recall that Ei is the unit square. Suppose F eQ is any marked box
with FCEi . We will show that there is a constant T] === T](©) < 1 such that

TI Ta(F) | ̂  TJ | F

FIG. 3.1.3

Consider the diagonal d shown in Figure 3.1.3. If d is chosen correctly,
T! ̂ (F) == \d\. Also, | F | ̂  [ d n F |. All the boxes in Q are equivalent under a

projecdve symmetry, so the cross ratio of the 4 points shown in Figure 3.1.3 takes on
one of finitely many values.

Here is a useful trick: Let a^ < & „ < < ? „ < d^ C R be an infinite sequence of4-tuples
of points. Then the ratio | c^ — b^ |/| a^ — d^ \ cannot converge to 1 if the cross ratio
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Sn == [̂  ^n? ^n? ^J ^kes values in a finite set. This trick bounds the diameter of the
smaller quadrilateral away from the diameter of the bigger one. Thus | (Y) | ̂  | Y | ^ T)".

The argument for (^(Y) is similar: one uses a similar trick to show that
a(ri T^F)) ^ T}' a(F), for some other constant T]' < 1.

Case 2. — From Theorem 2.4, there is a projective transformation T which has
the infinite orbit Ei ->r T^(Ei) -^ T^E^) ... This map T fixes the distinguished point p
at the top of Ei, and takes the open unit square into itself. It follows easily that T has
no fixed points in the open unit square. Since T preserves the two lines x andj/ shown
in Figure 3.1.4,^ r^(Ei) = T^T^E^)) shrinks as a set to the point/? as k grows. Hence
Y and Y are shrinking to points as well.

FIG. 3.1.4

The lines /„ and m^, shown in Figure 3.1.4, converge to the top line ofEi, squeezing
the angle a down to zero.

Case 3. — The argument here is the similar to that in Case 2, except that the top
edge of T^(Ei) does not shrink to a point. The only difference in this case is that | Y [
remains large.

Stringing the three cases together proves the Lemma. •

3.2. THE PAPPUS CURVE

The marked box © determines a natural map X from vertices of the incidence
graph r into the projective plane. The rule is that \(v) is the common distinguished
point on all the marked boxes labelled by edges in F emanating from v. Part of the image
of X is " hinted at " in Figure 1.2. Recall from § 2.4 that M is the representation of the
hyperbolic isometry (modular) group M into the Lie Group of projective symmetries.
The index 2 subgroup of M' C M consisting of those group elements taken to projective
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transformations preserves the image A of X. Furthermore, the vertices of F are dense in S1,
and it is natural to ask whether or not X extends continuously. If this is true, then the
whole image A == X(S1) is invariant under M'.

Theorem 3.2. — The map extends to give a continuous homeomorphism from S1 onto its
M'f-equivariant image A C P. This homeomorphism conjugates the action of M' to that of M'.

Proof. — Recall that Y is the small convex quadrilateral shown in Figure 3.1.2.
The image vertices ofX are arranged according to Figure 3.2. Since the nesting properties
of the edges of F exactly reflect the nesting properties of the convex interiors of boxes
in D, the following fact is sufficient to prove the theorem: let ^, e^, ... be any infinite
sequence of nested edges in F. (This means that Hg.DH^.^ . ) Let Y^ be the corres-
ponding marked box. Then | Tj; | — ^ O a s j — ^ oo. But this is an immediate consequence
of the Depth Lemma. •

FIG. 3.2

3.3. CURVE AND LINEFIELD

The dualities of M — M' take the curve A to a curve of lines L, which contains
the tops and bottoms of the marked boxes in the orbit Q. The curve L is <( hinted at "
in Figure 1.2.

The two objects L and A not only are dual to each other, but also have a special
geometric relationship. A transverse linefield to A is a continuous curve X of lines such
that each line ofX intersects A in exactly one point, and that each point of A is contained
in some line ofX. Dually, a section of L is a curve X such that each point ofX is contained
in exactly one line of L, and each line of L contains exactly one point of X.

From the nesting properties of the marked boxes in the orbit 0, it follows that
L is a transverse linefield to A, and dually A is a section to L.
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Theorem 3.3. — IfA is not a straight line, then L is the unique transverse linefield to A.
Dually, if L is not a curve of coincident lines, then A is the unique section to L.

Proof. — We will prove the first statement. By Theorem 3.2, the continuous
extension X o f X conjugates the action of M' on S1 to the action of M' on A. In particular,
M' has a dense set of fixed points in A. By continuity, we just have to produce a single
point p e A at which any two transverse linefields must agree.

Say that a pair of points (p, q) e A x A is a hyperbolic pair if there is a nontrivial
element T e M' which fixes both p and q. Such pairs are dense in A x A because the
hyperbolic translations of M' have fixed points which are dense in S1 X S1. Such an
element T attracts about one of the fixed points, sayj^, and expands around the other one.

Since A is not a straight line (and not convex either) there are two points p, q e A
such that any line sufficiently close to pq, emanating from p, intersects A in some point
other than p. By density, we can assume that [p, q) is a hyperbolic pair. The situation
is shown in Figure 3.3.

FIG. 3.3

Let Zp be the line of L through p and let ^ be the line of L through q. Then T
preserves pq, /p, l^ and fixes the point ^ n ^. Let m be any fourth line through^. We
will prove below (Lemma 3.3) that T^m) converges to l y .

Now, if m is sufficiently close to pq, then m will intersect A elsewhere. By equi-
variance, T^m) will intersect A elsewhere as well. By continuity, all lines containing p
between m and T^w) will intersect A elsewhere. Letting n -> oo, and m->pq, we see
that all lines between pq and /p which contain p will intersect A elsewhere. The same
argument may be repeated for lines m' on the other side ofpq. Hence, every line through^
except ly intersects A in at least two points. •
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Lemma 3.3. — Suppose T e M' fixes two distinct points p, q eA, and attracts about p.
Suppose m is a line through p distinct from ly andpq. Then T^m) converges to ly.

Proof. — The line m intersects ly at a point x e l^. This intersection point is neither q
or ^ n l^ If T^w) failed to converge to l y , then T would fix x. Fixing three distinct
points on ^, T would be the identity on ly. By looking at the conjugated action of T
back on S1, we observe the following fact: if Y is any marked box such that q e Y, then
the open convex interior of T^) contains the closure of the convex interior of V. This
is not consistent with T fixing Lg pointwise. •

4. The Three-Manifold

4.1. THE PROJECTIVE TANGENT BUNDLE

The projective tangent bundle ^ to the projective plane is the closed analytic
3-manifold of pairs (p, ̂ ), such that p eP, P eP*, and p e P. We will call points of
8^ flags. The Lie Group ^ of projective symmetries acts as a group of analytic diffeo-
morphisms of^, as follows: T((^, P)) = (T(^), T(P)) for a projective transformation T,
and A((^, P)) = (A*(P), A(^)) for a duality A.

We will say that a pencil of ̂  is a set of flags, such that one of the two coordinates
varies while the other one takes on all possible values. The objects with which we will
deal, in § 4.3 below, are ruled surfaces in the sense that they can be expressed as the union
of continuously varying disjoint pencils.

4.2. DOMAIN OF DISCONTINUITY

The representation M constructed in Theorem 2.4 gives an action on 8ft by
analytic diffeomorphisms. Let ̂  C ̂  denote the set of pairs {p, P) such that p ^ A and
P ^ L. The representation M preserves both ^T and its complement.

Lemma 4.2.1. — The fixed points (flags) ofM are dense in, and contained in, the complement
of^.

Proof. — We will prove density first, then containment. Consider the set Jl of
pairs {p, P), such that P e L. This set makes up essentially c< half" of the complement
of^T. It is sufficient to show that the fixed flags are dense in^. There is a continuous map

9 : A x A — Diagonal ->^

defined as follows. Let ly and ly be the lines ofL which contain the two points p, q eA.
Define 9(A 9)= (^n^Z,).

A proof very similar to the one given in Theorem 3.3 implies that the image of <p
contains the pencil determined by ^ provided q is part of a hyperbolic pair (p, q). These

26
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pencils are dense in ^t\ hence so is the image of cp. Since the hyperbolic pairs are dense
in the domain of <p, their image is dense in the range as well, which is to say that fixed
flags are dense in e .̂

Now for containment. Recall that M is the modular group of hyperbolic isometrics
acting on F. There are four possibilities for elements of M: order 2, order 3, parabolic
and hyperbolic. Consider the corresponding elements of M.

1. By the proof of Theorem 2.4, these are polarities, and have no fixed flags.
2. By the proof of Theorem 2.4, these are conjugate to a Euclidean rotation.

Again, no fixed flags.
3. The fourth power of such an element fixes pointwise the distinguished line of

some marked box, and also has infinite order. By duality, this fourth power preserves
all the lines through the distinguished point of the same marked box. All of these fixed
points and lines give rise to two fixed pencils, both of which belong to the complement
of^F. These are the only fixed flags: any more would make the element trivial.

4. The proof of Lemma 3.3 implies that the square of this type of element has
exactly 3 fixed points and exactly 3 fixed lines, making 6 flags fixed in all. All of these
flags belong to the complement ofe^. •

One consequence of Lemma 4.2.1 is that M acts freely on ^T. To show that J^
is a domain of discontinuity for M, we need to show that the action here is also proper,
This is to say that the set { T e M : T(JT) n Jf =|= 0 } is finite for any compact JT C ̂ .
Before proving this, we state the following equivalent version, which is easier to prove:

There is a finite subset H e M such that, for any compact jf and infinite S C M there is
some element T e S and two elements h^h^ e H such that h^ Th^[^) does not intersect J .̂

To recover the original statement, one simply applies the new criterion to compact
subsets of the form HJf*. The reason for this restatement is the following Lemma about
the hyperbolic isometry group M. We will refer to the notion of depth used in § 3.1,
and also to the fixed edge e^ described in § 3.1.

Lemma 4.2.2. — There is a finite subset H e M having the following property: let SC M
be an infinite sequence of distinct elements. Then for each integer N > 0 there are elements A] , h^ e H
and an element T e S such that h^ TAg^i) C T^ ^{e-^ and md(h^ TAg^i)) > N.

Proof. — It is an easy exercise in hyperbolic geometry to show that there is a finite
set of elements H^ C M such that all but finitely many elements of S are hyperbolic
after composition with some element in H. In fact, it is easy to guarantee that the fixed
points of these new hyperbolic elements remain far away from each other in the round
metric on the circle. To be more concrete, we can assume that each element of S has
fixed points in regions bounded by distinct and non-adjacent edges shown in Figure 4.2.
Finally, after conjugation with another finite set Hg of elements ofM,we can guarantee
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FIG. 4.2

that the expanding fixed point of every element of S is contained in the region labelled E,
and that the contracting fixed point is contained in the region labelled C. Composing
at most twice on the left and on the right by elements and inverses of elements in H^.,
we can assume that every element in S expands about a point in E and contracts about
a point in C. Most of these elements will have very large translation lengths, and such
elements will clearly satisfy the conclusion of the Lemma. •

Based on Lemma 4.2.2, and the reformulation of the properness criterion, we
can without loss of generality assume for the rest of this section that each transformation
T e M which we consider has the following properties:

1. T has a repelling fixed point in A — Er
2. T has an attracting fixed point in A n TI ^(Ei).
3. T(Ei)CT,T,(Ei).

Recall that p is the (< spherical metric " on P. Let Ng(X) be the s neighborhood
about the set X e P . I f j ^ e A , then ly will denote the line of L which contains p.

Lemma 4.2.3. — Let {T^} be any infinite sequence of distinct projective transformations
in M. For any c > 0 there is some T^ e{ T^ }, and points p, q eA (not necessarily distinct) such
T,(P - N,(^) C N,^) and T,(P - N^)) C N,(y.

Proof. — Since the fixed points of T^ are contained in two disjoint compact subsets,
we can normalize so that

1. p^ is the origin and ^ is at infinity, on thej^-axis;
2. ly is the :v-axis, and / is the line at infinity;
3. the convex interior of TI T^E^) contains a fixed small square centered at the origin,

and is contained in a fixed larger square centered at the origin.
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Under this normalization, a sufficiently large ball about the origin contains the
complement ofNg(y. Likewise, the set of lines having absolute slope less than a suffi-
ciently large (but fixed) number contains the complement of Ng(y). Finally, we have

T̂k

l\ 0 '

lo ^
Let E' == TI T2(Ei). For most values of A, T^(E') will have large minor depth, and hence
by the Depth Lemma of § 3.1, T^(E') will be " small and thin ". Since E' is close in
size and shape to the unit square, \, (JL^, and [JLJ\ are all very close to zero for large n.
In particular, T^ contracts a large ball about the origin into a very small one, and
contracts lines of bounded large absolute slope to lines having very small absolute slope. •

Theorem 4.2. — The set ̂  is the domain of discontinuity for the group action M.

Proof. — Let n^ and n^ be the obvious projections from SP to P and P* respectively.
Let Jf\ denote the set of flags in Jf whose projections under T^ are not contained in
Ng(^) u Ne(^). Dually let Jf^ denote the set of flags in JT whose projections under TC
do not intersect Ng(y) u Ne(^). Since jf is compact and is contained in ^T, the two
sets JT, cover jf once e is small enough. Let { T^ } be an infinite sequence of transfor-
mations which (putatively) does not move jT completely off itself. By Lemma 4.3.3,
^i(TJ^i)) C N,(^) and ^(TJJ^)) C N,(/^). But then Tjjf,) n jT=0. Since these
two sets cover Jf, we have T^(Jf) n jf == 0, a contradiction. We have shown that
the fixed points of M are dense in, and contained in the complement of^*. We have
now just seen that M acts properly and freely on^T. Hence ̂  is a domain of discontinuity
for M. •

We emphasize that this domain ̂  varies with the initial choice of convex marked
box. Usually, it is a set with a c< fractal boundary ".

4.3. TREFOIL KNOT COMPLEMENT

Since e/T is a domain of discontinuity for M, the quotient manifold ^ = ̂ /M
is a three dimensional analytic manifold. ^ has a (^, 3^) structure in the sense of [T].
Here S£ is the simply connected cover of the projective tangent bundle. In this section,
we will prove

Theorem 4.3. — The manifold ̂  is homotopy equivalent to the complement of the trefoil knot
in the three sphere.

Before proving Theorem 4.3, we will analyze the bilaterally symmetric case.
The analysis here is related to the classical fact that SL^B^/SL^Z) is homeomorphic
to the trefoil knot complement. To prove the general case, we will show that nothing
on the level of homotopy changes as we deform away from the symmetric case.
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If the marked box has bilateral symmetry, then the curve A will be a line of P,
and the curve L will consist of coincident lines. We can conjugate by a projective
transformation so that A is the line at infinity and L is the set of lines going through
the origin in R2. Then the set ̂  consists of flags (j&, P), where p e R2 — { 0 } and P is
a line through p which misses the origin. Thus ̂  is homeomorphic to R2 X S1.

The modular group M == < a, p : a2 == (B3 == 1 > acts on jV. p is an order three
linear map of R2 and a can be taken as the polarity induced by the standard inner
product on R3. The universal cover ^T has a description as the set of (< flags " [p, P),
where p is a point in the universal cover of the punctured plane, and / is a line through^
missing the origin. Let c denote the covering transformation ofj^. The "rotation"
P e M acts on ̂  by setting p3 = c.

The polarity a has the following concrete description: take the point p on the
unit circle to the tangent line through the antipodal point p ' in the unit circle. From
this description, we can clearly lift a to an action on ^ which satisfies a2 == c. Thus,
the ^-extension of the modular group acts on ^T. The quotient of this lifted action is
the original manifold r. Hence ris the quotient of R3 by the ^-extension of the modular
group, which is the trefoil knot complement fundamental group.

To analyze the general case, we introduce some notions from point set topology.
Let M be a topological 3-manifold. An embedded surface S C M is tamely embedded if
each point on the S has a small neighborhood so that the pair (N n S, N) is homeo-
morphic to the standard pair (B2, B3), where B3 is the open unit j ball. Two tamely
embedded surfaces S, intersect tamely if each point of the intersection has a neighborhood N
such that the triple (Si n N, 82, n N, N) is homeomorphic to the triple (B^, B^, B3),
and if these homeomorphisms are all compatible with the homeomorphisms to standard
pairs which take place away from the intersection. Here B^ and Bj are orthogonal open
unit disks. Here is a technical fact:

Suppose M is a closed topological 3-manifold and A( and B( are two continuous families
of tamely embedded and tamely intersecting closed surfaces. Then the homeomorphism type of
M — A( — B( remains unchanged as t varies.

We omit the proof because it is technical, and would lengthen the exposition
considerably.

Proof of Theorem 4.3. — Let j^C^ consist of those flags whose first coordinate
is contained in A. Let S8 C ffi consist of those flags whose second coordinate is contained
in L. Then ^T = Sfi — ^ — St. The surface ^ is a bundle of projective lines sitting
over A; it is closed, and ruled in the sense of section § 4.1. Dually for 3S. In fact, in
the local coordinates shown in Figure 4.3, the two surfaces are locally both ruled surfaces
ofR3 in the ordinary sense. Furthermore, they intersect exactly in a curve. It is a standard
exercise to show that locally such surfaces are tamely embedded, and intersect tamely,
in R3. Hence the same is true globally, in .̂ Taking a family of marked boxes varying
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FIG. 4.3

continuously from a bilaterally symmetric one to the one under study, we see that c/T
is homeomorphic to S1 X R2, as in the symmetric case. Finally, the two perturbed
elements a and (B may be lifted to the universal cover, since (B is conjugate to a rotation
and a is still a polarity. The identity a2 == (B3 == c cannot change either. Hence the
trefoil knot fundamental group acts on the universal cover of^T, which is just R3. The
quotient is ,̂ as desired. •
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