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§ 1. Introduction

In this paper, we study a class of central simple algebras of dimension 16 (over a
field F) called biquaternion algebras. These are, by definition, tensor product algebras
of the form B ®p G, where B and G are F-quaternion algebras. For convenience of expo-
sition, we shall assume throughout that the characteristic of the ground field F is not
equal to 2.

There are many examples of biquaternion algebras B ®pG which are cyclic algebras
over F. On the other hand, according to Albert ^3], there are also, over certain fields,
biquaternion division algebras which are not cyclic algebras. (These were, in fact, the
first examples of central division algebras which fail to be cyclic algebras.) It is, therefore,
natural to ask: When is a biquaternion algebra B ®p G cyclic over a field F? Although biqua-
ternion algebras have been considered since the 1930's and are known to be an interesting
source of examples of central simple algebras, a complete answer to the question above
seemed to be unknown. In this work, we shall fill this gap by giving two explicit criteria
for a biquaternion algebra B ®p G to be cyclic. The first criterion is quadratic-form-
theoretic: the condition for B ®p G to be cyclic is expressed in terms of the splitting
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properties of its Albert form, which is a 6-dimensional F-quadratic form associated with
BOOpC (see § 2). The second criterion is, on the other hand, purely algebra-theoretic,
and is expressed in terms of the corestriction of central simple algebras. Of course, these
two criteria are mathematically equivalent; however, the proofs that they characterize
the cyclicity of B ®p G involve different notions and techniques, respectively from the
theory of quadratic forms and the theory of algebras. Therefore, it will be convenient
to present them separately, independently of each other. (For the detailed statements of
these criteria, see (4.13) and (5.11).) Both criteria are simple enough to permit explicit
computations: in a sequel to this work they will be used to give various nontrivial examples
of cyclic as well as noncyclic biquaternion algebras. However, these results are peculiar
to the case of algebras of degree 4, as it can be shown that the would-be analogues of
these results for algebras of higher 2-power degree are all false.

If A is a biquaternion division algebra over F, the smallest splitting fields for A
are of degree 4 over F. Thus the study of biquaternion algebras is closely linked to that
of quartic extensions of F. In fact, a substantial portion of this paper is devoted to the
study of quartic 2-extensions, i.e. those quartic extensions L D F which contain an inter-
mediate quadratic extension of F. In the quadratic-form-theoretic § 3, we shall study
the functorial map of the Witt rings, W(F) ->W(L), for a quartic 2-extension L D F
and compute explicitly the Witt ring kernel W(L/F). This kernel turns out to be a
{ 1, 2 }-Pfister ideal in W(F), i.e. it is generated by the 1-fold and 2-fold Pfister forms
over F which split over L, and these Pfister forms can be explicitly determined. In
general, the Witt ring kernels for finite field extensions seem very hard to determine.
For a general ground field F, the only finite extensions E D F of even degree for which
W(E/F) was known were quadratic extensions [Li: p. 200] and biquadratic extensions (1)
[ELWp (2.12)]. Our result on W(L/F) mentioned above subsumes, of course, that in
the case of biquadratic extensions, and represents a generalization thereof. Using these
results, we can establish necessary and sufficient conditions for a biquaternion algebra
B ®p G to have a splitting field L which is a quartic 2-extension of F with a prescribed
nonsquare discriminant (cf. (4.7), (4.16), (5.10) and (5.12)). The cyclicity criteria
mentioned in the last paragraph are simply obtained as special cases of these results
when we restrict ourselves to Galois splitting fields. Some further applications of the
results of this paper to discriminants of involutions on biquaternion algebras can be
found in [KLST].

In general, for even degree extensions E 3 F, the computation of W(E/F) remains
difficult. For instance, the structure ofW(E/F) when E 3 F is a dihedral or a quaternion
extension of degree 8 seems to be unknown. Hopefully, the computation of W(L/F)
for quartic 2-extensions L D F presented in this paper will have some bearing on the

(1) By a biquadratic extension ofF we mean an extension of the form F('\/o, '\/b), where a, b represent different
square classes in F. This deviates from the usage in the older literature where a biquadratic extension usually meant
any extension of degree 4.
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ultimate solution of these cases. Indeed, in the case when F is a global field, a complete
determination of W(E/F) for several kinds of Galois extensions of degree 8 (including
dihedral extensions) has been obtained in [LLT].

Throughout this paper, we shall use freely the standard terminology and notation
from the theory of quadratic forms and the theory of finite-dimensional algebras. For
these, as well as for other relevant background information, we refer the reader to the
books [LJ and [Pi].

§ 2. Biquatemion Algebras and SAP Fields

In this mainly expository section, we shall set the stage for the present work by
recalling some basic facts in the literature about central simple algebras of dimension 16.
We shall also construct various examples of noncyclic biquaternion division algebras
from the viewpoint of modern quadratic form theory. Most of the results reviewed in
the first half of this section go back to the work of A. A. Albert in the 1930's. More
historical notes on this subject can be found in § 3 of [I-^].

As stated in the Introduction, all fields considered in this paper are assumed to
have characteristic different from 2. Recall that, for any central simple algebra A over
a field F, dim? A is always a perfect square; the positive square root of dim? A is called
the degree of A. Central simple algebras of degree 2 are precisely the (generalized) qua-
ternion algebras {a, b)-p (a, b eF). For central simple algebras of degree 4, we have
the following classical result of Albert ([Ag: Gh. 11, Th. 2], [AJ, [AJ).

Theorem 2.1. — Let A be a central simple F'-algebra of degree 4. Then the following are
equivalent:

(1) A is a biquaternion algebra (i.e. isomorphic to a tensor product of two quaternion algebras
over I 7 } ;

(2) A has an involution which is the identity on F;
(3) exp[A] (the exponent of the class of A) is ^ 2 in the Brauer group B(F).

Independently of these conditions^ if A is a division algebra, then A is always a crossed product
with respect to the Klein 4-group.

Here, (2) and (3) are in fact equivalent without any assumption on the degree
of A. In the case when A has degree 4, the implications (1) => (2) => (3) are obvious,
so the substance of the first part of Theorem (2.1) lies in the implications (3) => (1)
and (2) => (1). We should note, however, that these implications do not generalize to
algebras of degree 8. In fact, Amitsur, Rowen and the third author [ART] have found
examples, over the field F = Q/w, x ^ y , z) (for instance), of central division algebras
of degree 8 and of exponent 2 in B(F) which are not isomorphic to a tensor product of
three F-quaternion algebras. On the other hand, the celebrated result of A. Merkurjev
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[Me] implies that any central simple algebra A of exponent ^ 2 in B(F) (for any field F)
is always similar to a tensor product of a number of F-quaternion algebras.

For a quaternion algebra B == (&i, ^)p over F, let ^ == < 1, — ^, — 63, ̂  63 >
denote its norm form. This is a 2-fold Pfister form over F, usually written as « — b^, — b^ ».
It is well-known that the isomorphism class of B determines, and is determined by, the
isometry class of its norm form ^g; moreover, B is a division algebra if and only if q^ is
anisotropic, if and only if q^ is anisotropic, where q^ := < — b^ — b^ b-^ b^ > denotes
the pure subform of q^. Now consider a biquaternion algebra B®pG where B is as
above, and G == (q, ^)p. Following Albert, we shall associate to B®p G the 6-dimen-
sional form

(2.2) ? B - L < - 1 > ? o ^ <-^-b^b^b^c^c^ -^>

of determinant — 1. Note that, in the Witt ring W(F), this form is equal to the diffe-
rence ?B ~ ?c- ^t turns out that the facts about quaternion algebras recalled above
have the following analogues for biquaternion algebras.

Theorem 2.3 (Albert [Ag: Th. 3]; see also [Pf: p. 123], [Ta]). — Let A = B®p G
and let q be the form defined in (2.2). Then:
(1) B®p C is split if and only if q has Witt index 3 (i.e. q is hyperbolic)',
(2) B ®p G ̂  Mg(H) where H is a quaternion division algebra if and only if q has Witt index 1 ;
(3) B®p C is a division algebra if and only if q has Witt index 0 (i.e. q is anisotropic).

Note that, by Wedderburn's Theorem or by the theory of quadratic forms, for
any pair of quaternion algebras B, C over F, exactly one of the above conditions holds.

Theorem 2.4. — (Jacobson [Ja: Theorem 3.12]). Let B, B*. G, G* be quaternion
algebras over F. Then B ®p G ^ B* ®p G* (as T-algebras) if and only if q^ 1 < — 1 > q^ is
homothetic to q'y 1 < — 1 > q^ (i.e. q^ 1 < — 1 > q^ ̂  a. (qy 1 < — 1 > q^y) for some
constant a e V).

Jacobson's original proof of (2.4) used the theory of Jordan norms on central
simple algebras with involution. Later, a purely quadratic-form-theoretic proof was found
by Mammone and Shapiro [MSh]. More recently, a third proof using the viewpoint of
pfaffians was given by Knus, Parimala and Sridharan [KPS], who also extended this
theorem to the case of biquaternion algebras over commutative rings.

According to Theorem (2.4), if A is a biquaternion algebra, say A ^ B®yC,
then the six-dimensional quadratic form q^ 1 < — 1 > q^ is determined up to homothety
by the isomorphism class of the algebra A. By a slight abuse of notation, we shall write q^
for q^ 1 < — 1 > ̂ , and call this the Albert form of A. This is not liable to cause confusion
as long as we keep in mind that the quadratic form q^ is defined only up to homothety.
(For instance, if we compute the Albert form using the isomorphism A ^ C ®p B instead,
weget^ l<- 1 > ? B ^ <- 1 > ( y B - L < - 1 > yc)-)^^11^111^ Witt ring W(F), ̂
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lies in I2 F, the square of the fundamental ideal IF of W(F); moreover, the image of q^
in I2 F/P F is uniquely determined by A, and its Clifford invariant is exactly the class
of A in the Brauer group of F.

If A is a biquaternion division algebra, A clearly has a splitting field which is a
biquadratic extension of F. It is of interest to ask whether A also has a splitting field
which is a cyclic extension of degree 4 over F; this is equivalent to asking if A is a cyclic
F-algebra. In 1932, Albert [A^] constructed the first example of an A for which this is
not the case. For the purposes of the present work, it will be useful to present a modern
rendition of Albert's construction. Recall that a field F is said to be Pythagorean if
F2 + F2 == F2. We begin with the following elementary quadratic form-theoretic lemma.

Lemma 2.5. — Let q be a quadratic from over a nonpythagorean field F. Then the following
are equivalents

(1) q becomes isotropic over some quadratic extension K DF of the form K == F(Vr2 + s2)
where r, s eF$

(2) 2q is isotropic over F.

Proof. — (1) => (2). Clearly we may assume that q is anisotropic over F. By
[Li: p. 200], (1) implies that q has a binary subform < b > < 1, — (r2 + j2)) where b e F.
Therefore, 2q contains the 4-dimensional form < b > .2 < 1, —-(r2 + j2)), which is easily
seen to be hyperbolic [Li: p. 25, Exer. 6]. Therefore, 2q has in fact Witt index ^ 2
over F. (2) => (1). We may assume again that q is anisotropic over F, for, if otherwise,
we can choose any r2 + s2 ^ F2 and take K to be F(Vr2 + j2). If 2q is isotropic over F,
Proposition 2.2 in [ELg] implies that q contains a subform < < ? , & > such that 2 < a, b >
is hyperbolic. Upon a scaling, this leads to < — ab, — ab > ^ < 1, 1 >, so — ab = r2 + s2

for some r, s e F. Since q is anisotropic over F, we have — ab ^ F2, and q becomes iso-
tropic over the quadratic extension K = F(Vr2 + s2) 3 F, as desired. •

To come up with examples of noncyclic biquaternion algebras, we shall make use
of the notion of a SAP field. There are many equivalent definitions for a SAP field (see
[Lg: §§ 16-17]). The most convenient one for us here is the following: A field F is SAP
if and only if, for any x,y e F, the four dimensional form < 1, x,y, — xy > is weakly
isotropic i.e. there exists a natural number n depending on x, y, such that the n-fold
sum n. < 1, x,y, — xy > is isotropic over F. (For instance, any nonreal field is always SAP.)
The following Proposition shows that there exist noncyclic biquaternion division algebras
over any non-SAP field.

Proposition 2.6. — Let F be a field which is not SAP, say x,y £ F are such that
n. < 1, x,y, — xy > is anisotropic for any n ̂  1. (We say that < 1, x,y, — xy > is cc strongly
anisotropic " . ) Then, for B == (— 1, — l)p and C == [x,y)-p, the biquaternion algebra
A := B ®p G is a noncyclic division 7-algebra.
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Proof. — The Albert form of A is

^ ̂  < 1, 1, 1 > 1 < - 1 > < - x, -y, xy >
^ < 1, 1, 1, x,y, — xy >.

Since this form is anisotropic, (2.3) (3) implies that A is a division algebra. Assume,
for the moment, that A is a cyclic algebra. Then A contains a maximal subfield L which
is a cyclic extension of degree 4 over F. As is well-known [Lp p. 217, Exer. 8], the unique
quadratic extension K 3 F inside L has the form K == F(Vr2 + s2) where T-, s e F. The
K-algebra A^-K^pA) contains K ® y K ^ K x K , so A^B^G^ is not a
division algebra. By (2.3) (3) applied to K, we see that ^ becomes isotropic over K,
so by (2.5), 2^ is isotropic over F. But then 6. < 1, x,y, — xy > is also isotropic over F,
a contradiction. Therefore, A cannot be a cyclic algebra over F. •

In Albert's original construction in [A^], he used the base field F == R(^,j/). This
is a standard non-SAP field: in fact, by going up to the bigger field F' = R((^)) ((j^))
and applying Springer's Theorem [Li: p. 145], it can be seen that < 1, x,y, - xy > is
strongly anisotropic over F', and hence over F. Thus, by (2.6), (— 1, — 1^® [x,y)y
is a noncyclic division algebra over F. Albert's original example was close to ours, but
his proof of its noncyclicity was much more complicated since, not having Springer's
Theorem at his disposal, Albert had to use ad hoc arguments to handle isotropic forms
over R{{x)) ((j/)) (cf. also the proof in [Pi: pp. 290-292]). It may be said, however,
that Albert's ideas in [A^] have, to some extent, anticipated the modern notion of SAP
fields.

Our new rendition of Albert's construction has a second advantage, since it can
be used to give examples of noncyclic biquaternion division algebras over some SAP
fields as well.

Proposition 2.7. — Let F = k{(jy)) where k is afield with an element x which is neither
a sum of two squares nor the negative of a sum of six squares. Then, for B == (— 1, — l)y and
C == (A;,j/)p, the biquaternion F-algebra A == B®p C is a noncyclic division algebra.

Proof. — The proof here follows the same outline as that of (2.6), so we shall use
the same notations as in the earlier proof. With respect to the natural discrete valuation
on F, the Albert form of A, q^ ^ < 1, 1, 1, ̂  — y,y >, has first residue form < 1, 1, 1, x >
and second residue form < 1, — x >. Since both are anisotropic over k, q^ is anisotropic
over F by Springer's Theorem, so A is a division algebra. If A is cyclic, then, as in the
proof of (2.6), we can show that 2q^ is isotropic over F. However, 2q^ has first residue
form 6 < 1 > J L < ^ > and second residue form < 1, 1, — x, — x >, both of which are
anisotropic over k in view of the assumptions on x (and the 2-square identity). This
contradicts Springer's Theorem. Therefore, A cannot be a cyclic algebra. •

Now it is easy to construct examples of noncyclic biquaternion division algebras
over some SAP fields. In fact, take k to be a field with a unique ordering <c > ", and
with an element x > 0 which is not a sum of two squares. (For instance, take k == Q^
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and x to be any prime == 3 (mod 4).) By [ELP: Prop. I], F = k({jy)) is SAP, and (2.7)
above guarantees that A == (— 1, — l)p® (^jOp is a noncyclic biquaternion division
algebra over F. Note that here, 2 < 1, x,jy, — xy > and 2q^ are anisotropic, but, as we
would expect from a SAP field, n < 1, x,y, — xy > is isotropic for sufficiently large n.
This follows, for instance, from the fact that, since " > " is the only ordering on
k,x> 0 =>x e^k2 [Li: p. 227J.

Notice that, in the examples given so far, the noncyclicity proof for the division
algebra A = B ®p G depended only on working with quadratic extensions of F of the
type K = F(VV2 + s2) within A. Of course, a more effective analysis of the cyclicity
of A (or the lack of it) should involve the cyclic maximal subfields L of A and not just
their quadratic subextensions. In later sections, we shall try to explain how these cyclic
maximal subfields of A (if they exist) can be exploited more fully.

§ 3. Witt Kernels for Quartic 2-Extensions

In order to study quartic splitting fields for biquaternion algebras, it will be useful
to study first in this section the behavior of quadratic forms under a quartic 2-extension.
By a quartic 2-extension of a field F, we mean a field L which is a quadratic extension
of some quadratic extension K of F. Since we are assuming that F has characteristic

not 2, we can write K = F^\/a) where a e F — F2 and L = K { ^ J b + 2c \/a\ where
6, c e F, b + 2c -\/~a ^ K2. Notice that we can always arrange the notation so that c =)= 0.
Indeed, if L/F is not a biquadratic extension, this is automatic, and if L/F is a biqua-
dratic extension, say L == 'F('\/a, -\/c\ then, since (1 + ^/a)2 c == (^ + a) c + 2c-\/d,
we can write

(3.1) L == F(V^)(\A) == F(y^) (^(1 + a ) c + 2 c ^ / a ) = F ( J b + 2 c ^ ~ d )

with b := (1 -}- a) c and c =t= 0. Thus, whenever we deal with a quartic 2-extension L 3 F,
we shall fix the notations

(3.2) K = F(V^), L = T [ J b +2c^a), with c + 0.

In the biquadratic case, we shall always use the representation (3.1). Note, however,
that in (3.1) and (3.2), the element b e F may be zero. For instance, in (3.1), the case
b = 0 corresponds to L == F("\/—- 1, V^). And in general, the case b =- 0 in (3.2)

corresponds to L == F[j2c '\/a\\ we shall refer to the latter as a < c pure 53 quartic exten-

sion of F, since j2c ^/a satisfies the pure equation t^ — 4ac2 == 0. An important special
case of this is L === V(^/a) when we take c == 1/2.

The primitive element 6 :== I b + 2c ^/a for the extension L/F in (3.2) has the
minimal polynomial

m{t) == ^4 _ 2^2 + ^2 _ 4^2 g F[^
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Using this, the field discriminant ^(L/F) can be computed via the well-known formula
^(L/F) == N^p(w'(6)). We shall leave it to the reader to verify that, up to a square
in F, we have ^(L/F) = b2 — 4ac2. Alternatively, we can also compute ^(L/F) by
using a (c transitivity formula 9? for the discriminant which can be read off, for instance,
from [Sch: Th. (5.12), p. 51]. Since L/K is of even degree here, this transitivity formula
gives directly

^(L/F) = N^(WK)) = N^(& + 2c^/a) = b2 - 4ac2.

Depending on the square class of the discriminant ^(L/F) in the field F, we have the
three possibilities described in the Proposition below for the extension L/F.

Proposition 3.3.

(1) If b2 — 4ac2 e F2, then L/F is a biquadratic extension;

(2) If b2 — 4ac2 e aF2, then L/F is a cyclic extension of degree 4 (and a is a sum of two squares
in F;;

(3) If b2 — 4ac2 (j: F2 u aF2, then L/F is not a Galois extension. In this case, the Galois hull of

L/F is given by E == L(Vb2 — 4ac2), with Gal(E/F) isomorphic to the dihedral group
of order 8.

Proof. — This Proposition is part of the folklore in Galois Theory; for the sake of

completeness, we shall include a proof. The four conjugates of 6 == J b + 2c \/~a are

± 6, ± 6', where 6' == jb - 2c y^, with (66')2 === b2 - 4ac2 e F. Thus, if

b2 — 4ac2 e F2 u aF2,

we have 6' e L and so L/F is Galois. Conversely, if L/F is Galois, then 6' e L and so

b - 2c^/~aei2. Since L = K(Jb + 2c^/a), it follows (cf. [L^: p. 202]) that

b -2c^/aeK2u {b +2c^a) K2.

If b — 2c ^/a e K2, taking the norm from K to F gives b2 — 4ac2 e F2; if

b -2c^/ae{b + 2c ^/a) K2,

multiplication by b + 2c \/a gives b2 — 4ac2 e K2, and so (again from [Li: p. 202])
b2 - 4ac2 G F2 u aF2. Next, we shall compute Gal(L/F). If b2 - 4ac2 e F2, then 66' e F
and so the F-automorphism of L sending 6 to 6' has order 2. Since the automorphism
sending 6 to — 6 also has order 2, we have clearly Gal (L/F) ^ Zg x Z^, i.e. L/F is a
biquadratic extension. On the other hand, if b2 — 4ac2 e dF2, then 66' sy^.F, and the
F-automorphism of L sending 6 to 6' has order 4, and so Gal(L/F) ^ Z^. For the last
part of the proof, we shall now work in the case when d :== b2 — 4ac2 ^ F2 u aF2; by
the above, this is exactly the case when L/F fails to be Galois. Since 66' == ± V<rf,
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E : = L (V^) is clearly the splitting field for the minimal polynomial of 6 over F, so it
is the Galois hull ofL/F. The Galois group Gal(E/F) has order 8 and has a non-normal
subgroup Gal(E/L) of order 2, so it must be (isomorphic to) the dihedral group of
order 8. •

Remarks 3.4. — (a) In Case (3) above, there are five involutions in Gal(E/F).
An easy calculation shows that their respective fixed fields are:

f(Jb±2cVa), F{Va,Vd), and v[J2(b±V~d}},

where d is as defined above. These are therefore the five subfields of codimension 2 in E.
The fact that 2 [b ± V d ) are perfect squares in E can be seen, for instance, from the
equation

[Vd± {b ± 2c Va)]2 =2{b±Vd){b±2c Va),

which can be verified by direct expansion of the left side.
(b) By elementary Galois theory, it is easy to see that any dihedral extension of

degree 8 over a field F arises exactly in the above fashion (as the field E in (3.3) (3)).
Frohlich's criterion in [Fr: (7.7)] for the embeddability of a biquadratic extension into
a dihedral extension of degree 8 can also be deduced easily from Theorem 3.3 (3).

For a given element d e F, when does there exist a quartic 2-extension L/F of discrimi-
minant d? (In the following, we shall often confuse a nonzero element with its square
class.) If d e F2, such an L must be a biquadratic extension by (3.3), so it exists if and
only if F has at least four square classes. In the following, we shall tackle the more
interesting case when d ^ F2. In this case, the answer to the above question is again:
(< almost always ".

Theorem 3.5. — Let d e F\F2. Then F has no quartic 2-extension L/F of discriminant d

if and only if'F is formally real Pythagorean and d e — F2.

Proof. — For the "if" part, suppose F is formally real pythagorean and d e — F2.
If there exists a quartic 2-extension L/F as in (3.2) with discriminant d, then

^2 _ 4^2 e ̂ F2 - - F2.

But then 4ac2 e b2 + F2 c F2, contradicting the fact that a is a nonsquare.
For the (c only if" part, suppose we are not in the special case when F is formally

real pythagorean and d e — F2. We shall construct a quartic 2-extension L/F of discriminant d.
First suppose d ^ — F2. Writing a := — d f F2, we note that ^/a is not a square in F(y/fl)
since it has norm — a which is not a square. Therefore, the quartic 2-extension L : ==. F(-A^)
has discriminant — a == d, as desired. Finally, assume that d e — F2. (In particular,
F =h — F2.) Then, by assumption, F cannot be pythagorean (for, if it is, it must be
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formally real [Lp p. 234], since F + F2). Fix a nonsquare element a == r2 + s2 in F.
Then r + ^/a is a nonsquare in F(-\/a), since its norm is r2 — a = — s2 ff: F2. Now

L ̂  ^(y7' + V^) ls a quartic 2-extension of discriminant — s2 e ̂ F2, as desired. •
Before we move on, let us record a consequence of (3.5). A familiar result in the

literature of field theory (usually attributed to Diller and Dress [DD: Satz I], but known
much earlier to Garver and Albert) states the following: A field F has no cyclic quartic
extension if and only ifF is Pythagorean. This fact is easy to prove using the general notations
for quartic 2-extensions set up above. The following is some kind of a twin to the Diller-
Dress Theorem, which does not seem to have appeared in the literature before.

Corollary 3.6. — A field F has no quartic 2-extension of discriminant — 1 if and only if

either F is formally real Pythagorean, or — 1 e F2 and \ F/F2 | ̂  2.

Proof. — For the c( if53 part, first assume F is formally real pythagorean. Then (3.5)
applies to d == — 1 to show that F has no quartic 2-extension of discriminant — 1.
If — 1 e F2 and | F/F2 | ̂  2, the same conclusion also holds, for F will not have any
biquadratic extensions. For the (( only if55 part, assume that (*) F has no quartic 2-exten-
sion of discriminant — 1. If — 1 ^ F2, then (3.5) applies to d == — 1, and we conclude
that F is formally real pythagorean. Finally, assume that — 1 e F2. Then, by (*), F has
no quartic 2-extension of discriminant 1, so we must have | F/F2 | ̂  2. •

To any quartic 2-extension L D F expressed as in (3.2), we shall associate the
following quadratic polynomial

f(t) ==at2+bt+c2eF[t].

Note that this polynomial has discriminant b2 — 4ac2, which is exactly the field discri-
minant of L/F. From (3.3), we see that

f{t) is reducible over F o L/F is biquadratic.

In this case, it will be particularly convenient to use the expression (3.1) for L, for then
b2 — 4ac2 = (1 + a)2 c2 — 4ac2 == [(1 — a) c]2,

Sindf(t) has the simple factorization:
(3.7) at2 + bt + c2 == at2 + (1 + a) ct + c2 == (t + c) {at + c),

with the two distinct roots — c and — cfa in F. The role played byf(t) in the investiga-
tion of the behavior of quadratic forms under the extension L/F will become clear shortly.

We shall now begin our computation of W(L/F), the kernel of the natural Witt
ring map W(F) -^W(L), where L/F is a quartic 2-extension expressed as in (3.2).
The first step in this computation is to determine the 2-fold Pfister forms over F which
lie in this kernel. In the following, we shall use the standard notation
(3-8) «<zi, ...,^»
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for the n-fold Pfister forms over F. When all the a^s are nonzero, (3.8) means the n-fo\d
tensor product < 1, a^ > ® . .. ® < 1, a^ >; when some of the a,'s are zero, (3.8) is taken
to mean the hyperbolic n-fold Pfister form.

Theorem 3.9. — Any 2-fold 7-Pfister form in the family V == {« e, —f(e) » : e e F }
becomes hyperbolic over L. Conversely., let a be any 2-fold 7-Pfister form in W(L/F).

(1) If L/F is not biquadratic, then a e ̂ . (In particular, «— ^-Oe^V^eF^ I .
(2) 7/' L/F ^ biquadratic, say L = F(-\/a, -y/c) (̂  ^ (3.1)^, to ^fcr CT e ̂ , or

a ̂  « — c, * », or CT ̂  « — flc, * ».

Proo/. — Write f(e) = ^2 + be + c2 == {e ^a - c)2 + (b + 2c y^) e. Since
b + 2c -\/a is a square in L, we see that/(<?) is represented by < 1, e > over L. Therefore,
«^ —/M» eW(L/F) for any e e F. Conversely, let a = « x,y » be any 2-fold
F-Pfister form in W(L/F). We may assume that cr is anisotropic over F (for otherwise
CT is hyperbolic and we have a ^ « — 1, —/(— 1)»). Since the K-form G^ splits

over L = ̂ [^b + 2c /\/c^\, its pure subform o^ ^ < x,y, xy \ represents — (b + 2c -\/~a)
over K (by [Li: p. 200]). Thus we have an equation
(3.10) x(u^ + v^d)2 +y{u^ + v^Y + xy{u^ + ̂ 3^)2 = - {b + 2c^/a),

where u,, v, eF. Letting u = (^, u^, u^) and v = (^3 v^, v^) in the F-quadratic space
(F3, </), we can express the left-hand side above as a{u) + ac(v) + 2 ̂ /~a&^(u, v)
where Eg. is the associated symmetric bilinear form of c-'. Comparing rational and irra-
tional parts in (3.10), we have therefore

a(u) + a^(v) == — b and B^(%, v) == — c.

Since c =t= 0, we see that u =)= 0 =f= v in F3; thus, e :== G'(v) =)= 0 (since cr' is anisotropic).
The inner product matrix of the two vectors u, v has determinant

a(u) B ,̂ v) - b - ae -c
(3 .11) - = - fb+ae^e-c2^ -f(e).

T » / \ / / \ \ ' / « / \ /B^, y) CT'(y) — c ^

We now go into the following two cases.

Case 1. — L/F is not biquadratic. In this case,/(^) has no root over F, sof{e) =)= 0.
This guarantees, in particular, that the two vectors u, v are linearly independent in F3.
Since the binary quadratic subspace F .^®F.y of (F3, CT') represents e and has deter-
minant —f[e) by (3.11), it has a diagonalization < <?, — ef(e)), and therefore

a ^ « x,y » ̂  < 1, ,, - ,/(,), -/(^)> ^ « ,, -/(,)» e ̂ .

Case 2. — L/F ^ biquadratic, as in (3.1). If/(<?) =1= 0, we proceed as above and get
(T e <^. If, instead,/^) == 0, we have e e { — c, — cfa} in view of (3.7). Since e == a ( v ) ,
this implies that a ^ « — c, * » or CT ^ « — ̂ , * » ̂  « — ̂  ^ » (i.e. c splits
already over F(-\/^) or over F(y^)). •

10
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In Case (2) above, the 2-fold Pfister forms in the family ^ are of the shape
« ^ — {e + c) {ae + <')» (in view of (3.7)) where L == F(v^, ̂ ). This expression
for the forms in ^ can be further simplified if we use the more natural representation

for L as K(y?) (rather than as K-(Jb + 2c y^))- Indeed, repeating the same argument
in the proof of (3.9) (assuming, as before, that a is anisotropic over F), we get an
equation

^1 + Vl V^)2 +J^2 + ^2 V^)2 + ̂ 3 + ^3 V^)2 = - C,

and hence B^, ^) = 0, </(%) + a(T'(y) == - c. If y = 0, then a[u) == - c and so
CT ^ «—<: ,*» . If ^ == 0, then o-'(y) = — cfa and so (T ^ « — ^, * ». If u + 0 =h y,
then, since </ is anisotropic, B^(^, ^) = 0 implies that { u, v } are linearly independent.
Now (F3, CT') contains the binary subspace F.u@F.v which has a diagonalization
< a ( u ) , a{v)> ̂  < — c — ae, e > where e :== a ( v ) =t= 0, and hence a ^ « e, — {ae + ̂ )».

Corollary 3.12. — T^L = F(y ,̂ y^), the 2-fold Pfister forms in W(L/F) are precisely
the following:

« e, - {ae + ,)» (^ + - ̂ ), « - ̂ , * », « - ac, * ».

^// of these Pfister forms belong to the ideal « — a » W(F) + « — <: » W(F).

Proof. — For e =(= — <;/<?, « ^ , — ( ^ + ^ ) » does split in L since, over L,
ae + c = (v^)2 + (V^)2 ^ is represented by < 1, e \. The last statement of the Corollary
is seen from the following straightforward Witt ring calculations:

« - ac » = < 1, - a, a, - ac > = « - a »1 < a > « - c » e W(F),
« e, - {ae + <;)» = < 1, - {ae + ,)> 1 < e > < 1, - , > 1 < ec, - e{ae + c)y

== < 1, - {ae + c)y 1 < e > < 1, - c > 1 < - a, ac{ae + c)>
= - < ae + c > « - ac »1 « - a »1 < , > « - Q> e W(F).

•
Next, we shall refine the method of proof of Theorem 3.9 to give a complete

determination of the Witt ring kernel W(L/F) for an arbitrary quartic 2-extension L/F.
Recall that, for any set N of natural numbers, an N-Pfister ideal in W(F) means an ideal
of the shape S<p^ W(F) where each 9, is an 7^-fold Pfister form with ^ e N. In the special
case when N is a singleton, say { n}, we shall speak of such an ideal as an yz-Pfister ideal
(instead of an { n }-Pfister ideal). The theory of Pfister ideals in Witt rings was developed
in [ELWJ; however, the results in [ELWg] will not be needed here.

Theorem 3.13. — Let L/F be a quartic ^.-extension (represented as in (3.2)). Then
W(L/F) is a { 1 , 2 }-Pfister ideal in W(F). To be more precise, we have the following:
(1) If L/F is not biquadratic, then W(L/F) = « - <z»W(F) + S^<rW(F), where

^ is as defined in (3.9);
(2) If L == F(y^ \A), then W(L/F) = « - a » W(F) + « - c » W(F). (In this

case, W(L/F) is in fact a l-Pfister ideal in W(F).;
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Proof. — First note that, ifL/F is not biquadratic, then F(y^z) is the only quadratic
extension of F in L, while if L = F(y^, y^), then F(v^), F(y^) and F(y^)
are the only quadratic extensions of F in L. From this, it follows that the 1-fold
F-Pfister forms splitting in L are {« - 1 », « - a »} in the former case, and
{« — 1 », « — a », « — c », « — ac »} in the latter case. Therefore, once we
know that W(L/F) is a { 1, 2 }-Pfister ideal, (1) and (2) in the Theorem will follow
from (3.9) and (3.12). Note that (2) here recovers the earlier result of Elman-Lam-
Wadsworth in [ELWp (2.12)], with a substantially different proof.

For any F-form or e W(L/F), let us now show, by induction on dim G-, that a belongs
to the ideal ofW(F) generated by the 1-fold and 2-fold Pfister forms splitting in L. We
may assume that c is anisotropic over any quadratic extension of F in L (for otherwise
a contains a binary subform splitting in some quadratic extension o fF inL [Lp p. 200],
and we are done by induction). We first work over K == F(^/a) C L. Since o^ is aniso^
tropic and splits over L, we have o^ ^ T « - {b + 2^Vfl)» for some K-form
Y ^ < ̂ , ..., ̂  >. Let 9 be the K-form « - (b + 2c V^)», so

OK ̂  < ̂  > 9 I ... 1 < ̂  > 9.

After a scaling, we may assume that or represents 1 over F, so there exists an equation
1 == x^ + ... + x ^ y ^ , where, say, y^, .. .,j^(w^ n) are elements of K represented
by 9, and the remaining^ are zero. From this, we have an isometry

< Vl, . • ., ^^m > ̂  < 1^2. • • .. <>

for suitable ^, ..., x^ e K. Using the fact that <p ^ <j, > <p for i^ m, we have

^K^ <^i>?l •• • i<^^><pl<^+i>9i ...
^ < î, ...,^^>?l<^+i>9l ...
^ < 1,^, . . . , A ^ > ( p l ...

^ < ! , - (&+2^V^ )> i - - • •

Wridng o- ̂  < 1 > 1 </ over F, and cancelling < 1 >, we see that a^ represents — (b + 2c -\/~a\
over K. Arguing as in the proof of (3.9), we can find F-vectors u, v such that

CT'(^) + aa(v) = — b, and B ,̂ v) = — c.

Writing e = ^ { v ) as before, we have

a\u) B^u,v)
= — fie)

B^,y) G'^)

as in (3.11). If/(^) == 0, we must be in the situation L == F(^, y?) (as in (3.1)) with
e e { — c , — c f a } . But then o- ̂  < 1, e > 1 ... becomes isotropic over F(y^) or F(y^),
contrary to our assumption. Thus, f(e) 4= 0, and our earlier argument in the proof
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of (3.9) gives a decomposition CT' ^ < e, — ef(e)^ 1 a" over F. Calculating in W(F), we
then have

(3.14) a ̂  < 1 > 1 < e, - ef{e)> 1 ̂  = « ,, -/(<0» 1 </(<0> 1 o"

where dim«/(^)> 1 CT") = dim (T - 2. Since </(^)> 1 o" = (T - «<?, -/(<?)» eW(L/F),
we are done by induction.

Remark 3.15. — Let I/ == F(^ — 2c^/a). Then clearly L and L' have the same
associated quadratic polynomial f(t) 3 and therefore the Theorem above implies that
W(L/F) = W(L'/F). This fact is to be expected since L and L' are quardc extensions
which are isomorphic over F. (In the case when L is biquadratic, we have, of course,
L == L'.)

Corollary 3.16.— Let L/F be as above. Then W(L/F) n P F is a 2-Pfister ideal in W(F).
In fact, ifLIF is not biquadratic, then W(L/F) n I2 F = S^y <rW(F); ifL = F(y ,̂ ̂ /c),
then W(L/F) n I2 F = « — a » IF + « — c » IF.

Proof. — This follows by a standard determinant argument from the explicit
computation of W(L/F) as a { 1, 2 }-Pfister ideal in W(F). •

It seems plausible that, for any r ^ 2, W(L/F) n V F is an r-Pfister ideal. Unfor-
tunately, we do not have a proof of this. We can, however, prove the following nice
fact about the r-fold F-Pfister forms splitting in L.

Corollary 3.17. — Let L/F be as above, and let r ^ 2. Then every r-fold F-Pfisfer form
c e W(L/F) can be written as « ̂ , ^g, ..., Zy », where « ̂ , z^ » e W(L/F).

Proof. — If a becomes isotropic over a quadratic extension of F in L, we can
choose the z^s such that « ̂  » splits in this quadratic extension. If otherwise, the
argument in the proof of the Theorem shows that o' (the pure part of a) has a subform
<^, — ef(e)^. By [EL]; p. 192, Remark (1)], we can write a as

«€,-ef{e),^ ...,*»^ «,,-/(,), *,...,*». •

In view of the last two Corollaries, it can be easily seen that the statement that
W(L/F) n I1' F is an r-Pfister ideal (r ^ 2) is equivalent to the equation

(3.18) W(L/F) n r F == (W(L/F) n I2 F) .P-2 F.

To conclude this section, let us record a special case of (3.13) (1) for the class of
fields known as <e excellent fields ". Recall that a field F is called excellent [ELW^: § 4]
if every anisotropic 4-dimensional form over F has determinant 1 (in F/F2). For instance,
local fields are excellent, by [Li: p. 149].
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Proposition 3.19. — Let L/F be as in (3.2), but assume this is not a biquadratic extension.
IfF is an excellent field, then we have W(L/F) == « — a » W(F).

Proof. — For any two elements x, y in F, the 4-dimensional form < x,y, xy, a >
has determinant a and therefore must be isotropic over F. Thus, < x,y, xy > represents
— a, so we can write « x,y » as « — a, z » for some z e F. This fact and (3.13) (1)
clearly imply that W(L/F) = « - a » W(F). •

In the special case when F is a global field, the results in this section can be used
to determine the Witt ring kernel W(E/F) for a Galois extension E/F of degree 8 with
Gal(E/F) isomorphic to the dihedral group, or Z^Zg, or Z^QZgQZa. For global
fields, it also turns out that one can prove equations such as (3.18), and their analogues
for the degree 8 extensions mentioned above [LLT].

§ 4. Quartic Splitting Fields for Pfister Forms and Biquatemion Algebras

In this section, we shall study quartic splitting fields of the kind (3.2) for Pfister
forms, quaternion and biquaternion algebras over a given field F. Here, we think of
the quaternion or biquaternion algebra (s) as given, and study the problem of finding
quartic 2-extensions L/F with a given discriminant which are splitting fields for the
given algebra (s). Recall that, for any quartic extension L/F, L is a splitting field for a
biquaternion algebra B ®p G if and only if L embeds (as a maximal subfield) in B ®p C,
and L is a splitting field for a quaternion algebra S if and only ifL embeds (as a maximal
subfield) in the matrix algebra M^S). Thus, the problem we proposed to study above
may also be described as that of finding quadratic field extension towers F C K C L
with a given discriminant ^(L/F), inside the central simple algebras B ®p G and M^S).
In this section, however, we shall carry out our investigations using the terminology
and the techniques of quadratic form theory. Thus, we shall replace the quaternion
algebra S = (— x, —y)^ by its associated 2-fold Pfister form cr = « x,y », and replace
the biquaternion algebra A == B®p G by its associated six-dimensional Albert form q^.
The beginning point of our investigations in this section is the following important
observation on Witt ring kernels.

Proposition 4.1. — Let L/F be a quartic ^-extension represented as in (3.2), with dis'
criminant d == b2 — 4ac2. Then W(L/F).« — d » = 0.

Proof. — Since 6 = J b + 2c \/a is a primitive element for the extension L/F,
a known result on transfers of quadratic forms ([Li: p. 197]) implies that W(L/F) is
annihilated by the 1-fold Pfister form « — N^p(6)». By the transitivity of norm maps,

N^(6) = N^(N^(6)) == N^p(- [b + 2c y^)) == b2 - 4ac2 = d.
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Hence, « — rf» annihilates W(L/F). Alternatively, we can also give a proof of this
fact strictly within the context of this paper, thus avoiding the transfer result quoted
above. First, we may assume that d ^ F2 (for otherwise « — d » = 0 e W(F) already).
By (3.13) (1), W(L/F) is then generated (as an ideal) by « — a » and « e, —/(<?)»
for all e e F. Since a == {b2 — d)f4c2 and

/(,)^^+^+,^^^+^+^^^^_^^2

are both represented by « — d », it follows that

« - a, - d » = 0 and « -/(,), - d » = 0.

Thus, W(L/F) .«- r f»=0. •
Using the last Proposition, we shall now try to study quartic splitting fields (as

in (3.2)) for Tz-fold Pfister forms. In the case n = 2, this corresponds to the study of
quartic splitting fields for quaternion algebras. In fact, our results were first obtained
for the splitting of quaternion algebras, but a careful look at the proof showed that these
results also hold for the splitting of n-fold Pfister forms when n ̂  2. Therefore, we shall
present our results in the more general setting of Pfister forms. Later in this section,
we shall also study quartic splitting fields (as in (3.2)) for a (( difference " of two n-fold
Pfister forms {n ^ 2). In the case n = 2, such a (< difference " is simply the Albert form
of a biquaternion algebra, so our work will give results on quartic splitting fields of
biquaternion algebras.

Theorem 4.2. — Let a, d be nonsquares in a field F, and let K == F(-0z). For any given
n-fold Pfister form a over F {n ^ 2), the following are equivalent:
(1) a splits over some quadratic extension L 3 K with ^(L/F) == rf;
(2) « - a, - d » = o « - d » == 0 e W(F) (i).

Proof. — (1) => (2) Let L be as represented in (3.2). Then d == b2 — 4ac2 implies
that < a, d > represents 1 over F, and by (4.1), (T e W(L/F) implies that

cr« -rf» == 0 eW(F).

(2) => (1) Since < a, d > represents 1, there exists an equation a = r2 — ds2 where r, s e F.
Here, s =)= 0 since a (j= F2. Let [3 be the binary F-quadratic form associated with the sym-

metric matrix , and let CT' ^ < ̂ ^3, • . ., ^» > be the pure subform of (T. Then\— r a j
(3 has the diagonalization < 1, <z — r2 > ^ < 1, — a? >, and we have CT' ® (B ^ a ' ® « — d ».
Since n ̂  2, the dimension of c ® « — d » is more than half the dimension of its
ambient form ( y ® « — ^ » ^ 2 n H . Hence CT' ® (3 is isotropic. This implies that there

(1) Recall that, for a Pfister form o, cr« —-<Q> = 0 means that CT represents d', also «—a, —rf» = 0
simply means that (a, d^ represents 1.
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is an equation S,̂  ^(^2 — 2r^ y, + au2) == 0, where the M,, y/s are not all zero.
Regrouping the terms in this equation, we get

(4.3) a(u) + aa{v) - 2rB^, v) = 0,

where B^ is the symmetric bilinear form associated to a ' , and u == (^, . .., u^n),
v == (^, ..., ^n). Writing b :== — (a{u) + aa^v)) and c := — B^, v), we have the
following two cases.

Case 1. — c+ 0. From (4.3), we have r = bftc and so ^ === (6/2^)2 — A2. Thus,

^/F^ + 2c y^) == b2 - 4ac2 = d{2csY e dF2.

Since fl? ^ F2, this implies that b + 2c -\/~a ^ K2 and so L == K ( / & + 2c ̂ /a\ is a qua-
dratic extension of K, with ^(L/F) e dF2. Over K, CT' represents

o'^ + V^^) - ̂ W + ̂ 'W + 2 VaK^,{u, v) == - (b +2c y^).

Thus, over L, a represents — 1, and this implies that a eW(L/F), as desired.

Case 2. — c == 0. In this case a(u) == — aa\v). We claim that a splits over K. We
may assume that a ( u ) =j= 0 4= ^ ( v ) (for otherwise a already splits over F). Then {u,v}
must be linearly independent, and hence a has the binary subform

< a{u), </(y)> ̂  < - aa{v), a^v^ ^ < (T'(^> < 1 , - a >.

This implies that a' is isotropic over K, and hence a splits over K. Thus, all we need
to show is that K has a quadratic extension L with ^(L/F) e dF2. But

NK/F^+V^) =r2-ae^F2 ,

so, just as in Case (1), we see that L = K ( / ^ + V ^ ) is quadratic over K with
^(L/F) e^F2. •

Remark. — The implication (1) => (2) above remains valid for n == 1, since the
proof did not make use of the hypothesis that n ̂  2. However, (2) => (1) is false in
general for TX == 1, as the following example shows. Let F = Q ^ , a = d = 2, and
or = « - 7 ». Since « - d » == < 1, - 2 > represents both 2 and 7(= 32 - 2), we
have « — a, — d » == cr « — d » = 0. But a cannot split in a quadratic extension
L D Q,(V2) with ^(L/F) == d, for otherwise %(V7) would be a subfield of L, but L/F
is a cyclic quartic extension with a ^m^ quadratic subfield Q^('\/2).

Using the Theorem, we can deduce in the following a new characterization for
the values represented by a (non-hyperbolic) Pfister form. Fortunately, in spite of the
above remark, we do not need to exclude the case of 1-fold Pfister forms.
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Corollary 4.4. — Let a be a non-hyperbolic n-fold Pfister form over F (n ̂  1), and let
d e F\F2. Then a represents d over F if and only if a splits over some quartic 2-extension L/F of
discriminant d,

Proof. — The "if" part follows from (1) => (2) in (4.2) (recalling that n ̂  2
was not needed in that proof). For the < c only if55 part, we first work in the case n ̂  2.
Assume that a represents d. We are done if we can show that < 1, — d > represents some
nonsquare element a e F, for then < ^ , ^ > represents 1 and we can apply (2) => (1)
in (4.2). If d ^ — F2, we can choose a = — d, so we may assume that d e — F2. In this
case, < ! , — f l ? > ^ < l , l > . I f this represents only squares, F would be a pythagorean
field, and it must be formally real since F 4= F2. But then W(F) is torsion-free ([Li:
p. 236]), and 0 == a « — d » = 2a e W(F) would imply that a ==. 0 e W(F), which
is not the case. This completes the proof that < 1, — d y always represents some non-
square. Finally, i f ^ = l , write a == « — x » (x ^ F2). The assumption that o- represents
d means that < x, d > represents 1. In this case, we can embed F(y^) in a quartic exten-
sion L/F with discriminant d, and, since F{-\/x) splits CT, L also does. •

Using the well-known fact that the values of (T form a group under multiplication
[Li: p. 2 79], it follows that, if the form a in (4.4) splits in two quartic 2-extensions with discri-
minants df2 =+= d ' F2, then a also splits in some quartic 2-extension of discriminant id' F2. This
fact does not seem easy to prove without the Corollary above. An analogous result for
nonsplit Albert forms will be given later in (4.18).

What happens in the case when cr is the hyperbolic Pfister form? If we exclude
the case when F is a formally real pythagorean field and d e — F2, then by (3.5) F does
have quartic 2-extensions of discriminant d; in this case both conditions in the main
statement of the Corollary hold, and the Corollary survives. But if F is formally real
pythagorean and d e — F2, then the Corollary fails (more or less as a cc freak accident3?),
for or would represent all elements of F, but by (3.5) F has no quartic 2-extension of
discriminant d.

In the proof of Theorem 4.2, we have used only rather lightly the assumption
that o- there was a Pfister form. In fact, we have the following c( analogue " of (4.2)
which holds for arbitrary forms cr of dimension ^ 3.

Theorem 4.2'. — Let a, d be nonsquares in F such that < a, d > represents 1, and let
K == F(^/a). If a form a of dimension > 3 represents both 1 and d over F, then a becomes isotropic
over some quadratic extension L D K with ^(L/F) = d.

Proof. — Fix a diagonalization < 1, x,y, ... > for a such that < 1, x > represents d.
Then « x,y » represents d, so by (4.2) it splits over some quadratic extension L D K
with ^(L/F) == rf. It follows that < 1, x,y >, and hence (T, are isotropic over L. •
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Theorem 4.2' is essentially the special case of (2) => (1) in Theorem 4.2 for 2-fold
Pfister forms. On the other hand, if we known (2) => (1) in (4.2) for 2-fold Pfister forms,
the general case also follows in view of the well-known factorization theory of Pfister
forms. Thus, for all intents and purposes, (4.2') is equivalent to (2) => (1) in (4.2).
For this reason, it is of interest to give below a direct proof of (4.2').

Write cr ^ < 1, x,jy, ... > as before such that we have an equation
d==s2 + x t 2 { s , t e ' F ) .

Here, t =4= 0 since d ^ F2. Using the assumption that < a, d > represents 1 over F, we have
also an equation d == b2 — 4-ac2 for some 6, c e F. In K, let a = b + 2c y^,
a' = b — 2c -\/a. Then aa' = d and

(4.5) (a + ̂ )2 + xt2 == a2 + 2^s + d == a(a + 2s + a') == 2(6 + s) a.

If b + s + 0, let L := K(V-2(6 +^a). Then, by (4.5), < 1, x > represents -y
over L, and hence cr becomes isotropic over L. This completes the proof since

^(L/F) = N^(2(6 + ̂ a) e N^(a) .F^ = dV\

If b + s == 0, (4.5) implies that the subform < 1, x > of a is already isotropic over K.
In this case, we can simply choose L to be K(-\/a).

(The key idea in the proof above is that, if < 1, x > represents N^a) over F,
then < 1, x > represents some element in a.F over K. This is a well-known Norm Prin-
ciple for quadratic extensions (cf. [EL.3: (2.13)]). We have, however, managed to avoid
a reference to this Norm Principle by using a direct computation.)

We can now get results on the existence of cyclic quartic splitting fields of n-fold
Pfister forms by simply specializing Theorem 4.2 to the case when aF2 == dF2. In this
case, the condition that < a, d > represents 1 simply means that a is a sum of two squares
in F. Thus, we obtain the following special case of (4.2):

Corollary 4.6. — Let a e F\F2 be a sum of two squares in F, and let K == F(y^). Then,
for n ̂  2, an n-fold Pfister form a over F has a cyclic quartic splitting field containing K if and
only if a represents a over F. In particular, o has a cyclic quartic splitting field if and only if it repre-
sents a sum of two squares which is not a square in F. (For instance, if'F is not a Pythagorean field,
then any a ̂  « 1, a^, . . ., a^ » (n ̂  2) has a cyclic quartic splitting field.)

Note that, in the special case when o- is the hyperbolic n-fold Pfister form, the last
statement in the Corollary recaptures the Diller-Dress Theorem (mentioned in the
paragraph preceding (3.6)).

Now let us try to get a partial extension of the above results to a pair of n-fold
F-Pfister forms [3, y, with n ̂  2. We shall write q == y 1 < — 1 > y' where [3', y' denote
the pure subforms of (3 and y. Recall that (B and y are said to be linked over Fif(3 ^ 8«J/»
and Y ^ S « z » for some (n — l)-fold Pfister form 8 over F, and suitable elements
y, z eF (see [ELp p. 197]).

n
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Theorem 4.7. — Let a, d be nonsquares in afield F, and let K == F(v/fl). For [3, y and
q as above, consider the following statements:
(1) q splits over some quadratic extension L D K with ^(L/F) e ̂ F2;
(2) « - a, - d » = q « - d » == 0 e W(F), W (3, y ̂  ^W o^r K.

In general, (2) => (1), and (1) => the first part of (2). 7/^ = 2, then we have (1) o (2).

Remark 4.8. — If (B ^ « - 61, . . ., - b, » and y ^ « - c^ . . ., - c, », the
condition q « — rf » = 0 in (2) above is, of course, equivalent to

«-^, ...,-^, -^»^ «-^i, ..., -^, -<0>
over F.

Proo/. — Assume (1) and let L = ̂ {Jb + 2c y^). Then the first part of (2)
follows as in the proof of (4.2). The last part of (2) can be seen as follows. Ifq is aniso-
tropic over K, then, since dim q == 2(2n — 1) and q is hyperbolic over L, we have a
K-isometry q ^ < 1, — (b + 2^V^)>.y for some (271 — 1)-dimensional form 9 over K
[Li: p. 200]. Taking determinants, we get — {b + 2c -\/a) e — K2, a contradiction to
[L : K] = 2. Thus, q is isotropic over K, which means that (B^ ^d YK can be written
with a common 1-fold Pfister factor [Lp p. 278]. In the case when n = 2, this simply
says that (B and y are linked over K.

(2) => (1) (for any n ̂  2). Since (B, y are linked over K, a straightforward calcula-
tion shows that p l < — 1 > y ^ 2W-1H1^.T for some j/ e K and some %-fold Pfister
form T over K. This isometry implies thatj/.r eim(W(F) -^W(K)), so by [ELg: (2.2)],•
J^.T ^ (x.a)^ for some ;v e F and some 77-fold Pfister form a over F. Thus,

? l < - ^ > ( r e W ( K / F ) = « - ̂  » W(F).

By the assumptions in (2), we see from this that a « — d » == 0. Thus, by Theorem 4.2,
or splits over some quadratic extension L 3 K with ^(L/F) e </F2. Since

? l < - ^ > o - e W(K/F) c W(L/F),

it follows that q also splits over L. •
Specializing Theorem 4.7 to the case when aF2 == dF2, and using some results

from the theory of transfers of quadratic forms, we shall now prove the following theorem
about cyclic splitting fields of higher dimension for the form q == (B' 1 < — 1 > y'.

Theorem 4.9. — Letq be as above, a e F\F2 be a sum of two squares in F, and let K = F(V^).
Assuming that (3 and y are linked over K, the following statements are equivalent:
(1) ?«-^»=OeW(F) ;
(2) q has a cyclic quartic splitting field L containing K$
(3) q has a cyclic splitting field K^ containing K, of degree 2^ ̂  4 over F.
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Proof. — (1) => (2) follows from Theorem 4.7. (2) => (3) is easy as we can take
m = 2 and Kg = L in (3). Now assume (3), and let F = K() C K = Ki C Kg C .. . C K^
be the chain ofsubfields between F and K^, and let K,+i == K,(v^), where ̂  e K, — Kf
(and OQ == a). Then a^^ has the form &, + 2^V^ for some 6,, c, e K,. Since K^g/K,
is a cyclic quartic extension, we know by (3.3) that

NK,^/K,(^I) = ^2 - 4^ ci = ^(K^/K,) E ̂  F2.

Applying (4.7) to the cyclic quartic extension K^/K^_g, we have an equation

(4.10) ^-^-^-OeW^.,).

If w ^ 3, let J'be the K^_g-linear functional on K^_ 2 defined byj( l) == 0,s{-\/a^Z^) == 1,
and let ^ : W(K^_g) ->W(K^_3) be the transfer map on Witt rings induced by s.
Then, by [ELg: (2.4)], we know that ^(« — a^_^ ») is a scalar multiple of

« - ̂ .̂ .3(^-2) >> ̂  « - ̂ -3 ».

Thus, applying ^ to (4.10), we get q « — a^_^ » = 0 eW(K^_3) (using (< Frobe-
nius Reciprocity" [Li: p. 192] and the fact that q is defined over F). Repeating this
transfer argument, we'll get at the end: q « — ^ » == 0 e W(F) (where OQ = a).
Thus (3) => (1). •

Remarks 4.11. — (a) In the proof of (3) •=> (1) above, we have not made full use
of the fact that K^/F is a cyclic extension. All we needed was the existence of a chain
of fields F = KoC K = K^C KgC .. . C K^ such that each subextension K^JK, is
a cyclic quartic extension, (b) If y in (4.9) is chosen to be the hyperbolic Pfister form,
then of course (B and y are linked over any field containing F. In this case, (4.9) implies
that the three conditions (1), (2) and (3) above are equivalent if q there is replaced by the n-fold
Pfister form (B (n ̂  2). However, starting with a cyclic splitting field K^ (of degree 2m > 4)
for (3, with the chain of subfields K^ 3 .. . D Kg 3 K 3 F, the Theorem does not imply
that Kg is a splitting field for p. For instance, over the rational field %, a classical
construction of Brauer and Noether showed that the quaternion division algebra
(— 1, — l)q has cyclic splitting fields K^ with arbitrarily large degree V^ over %,
such that no proper subfield K, =(= K^ splits the quaternion algebra (see [Pi: p. 242]).

Applying the (b) part of the Remark above to the norm form of a quaternion
algebra, we obtain

Corollary 4.12. — Let S be a quaternion algebra over F, and let r ^ 1. yM^S) is a
cyclic algebra, then Mg(S) is a cyclic algebra.

For convenience of reference, we also restate here the n = 2 case of the results (4.7)
and (4.9) in the form of a cyclicity criterion for a biquaternion algebra. Recall that a
biquaternion algebra is cyclic if and only if it has a cyclic quartic splitting field.
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Corollary 4.13. — Let K == F(y^) be a quadratic extension off. Then an 7-biquaternion
algebra A has a cyclic quartic splitting field containing K if and only if a is a sum of two squares
in F, <^« — a » == 0 e W(F), and q^ is isotropic over K. In particular, A is a cyclic algebra
if and only if q^ has a nonsquare similarity factor (1) x2 -}-y2 such that q^ is isotropic over
F((^2 _^i/^

To prepare ourselves for the last main result in this section, we now prove the
following lemma on the transfer of 2-fold Pfister forms under a quadratic extension.

Lemma 4.14. — Let M = F {Vd} be a quadratic extension o/F, and let ̂  : W(M) -> W(F)

be the transfer map associated with the 7-linear functional on M defined by s(\) ==0, ^(V^) = 1.
a) For any x,y e M, there exist /, g e F such that

(4.15^) ^« - x, -y » = ̂ « -/, - x » + ̂ « - g, -y » eW(F).

b) For any /, g e F, and u, v e M, there exist h, k e F such that:

(4.156) ^^«-/,-^»l/^^«-^-y»=^«-/^-^»eW(F).

A particular, s,« -/, - ̂  » + ̂  « - g, - v » =E= ^ « - ̂  -j/ » (mod I3 F) for
suitable x,y e M.

Pro(/. — a) If x eF, we are done by choosing/= 1, g = x. We may, therefore,• •
assume that x ^ F, and similarly y ^ F. The elements 1, x,y are linearly dependent over F
so there exist/, g e F, not both zero, such that gx +fy e { 0, 1 }. Clearly, neither g nor/
can be zero, and « — gx, —fy » = 0. Multiplying^ « — gx » = « — x » — « — g »
with/« -fy » = « -y » - « -/», we get the equation

« - x, -V » - « -/ - x » - « - g, -y » + « -/, - g »
= O e W ( M ) .

Since « -/, - g » is defined over F, j,« -/, ~ g » = 0 [Li: p. 201]. (4.15^) now
follows by applying ^ to the above equation.

Recall that ^ : W(M) -> W(F) is a homomorphism of W(F)-modules. This implies
that ^ « -/, - x » = « -/» ̂  « - x » = « -/» ̂  < - ̂  > e P F, and simi-
larly, ^« - g, -y » e 12 F. Therefore, (4.15^) implies that ^(I2 M) c 12 p.

6; If ^ e F, then « —/, — u » is defined over F, so ^« —/, — u » == 0. In
this case, (4.156) holds trivially by choosing h = u~1 and k =/~1 in F. We may, there-
fore, assume that u ^ F, and similarly v ^ F. As above, we can find h, k e F such that
hu + kv e { 1, 0}, and so « — hu, — kv » == 0 e W(M). Using this and the identity
« - xy » = « - x » + x « -y » in W(M), we get easily:

« -fkv, - ghu » = « -/, - g » + 5 « -/, - A »
+/« - k, - g » + ̂ « -/ - ̂  » +/^ « - g, - v ».

(x) A similarity factor of a quadratic form q is a nonzero scalar e such that q ̂  e.q.
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Noting that the first three forms on the right-hand side are defined over F, (4.15b) fol-
lows by applying the W(F)-module homomorphism s,. The congruence in the last
statement of b) now follows by using the fact that ^(P M) c 12 p. •

We are now ready to prove the following result describing the discriminants of
the quartic 2-extensions of F which split a given biquaternion algebra A. (Notice that,
unlike the situation in (4.2), no intermediate quadratic extension of F is given before-
hand.) This result can also be interpreted as a characterization theorem for the similarity
factors of the Albert form of such a biquaternion algebra A.

Theorem 4.16. — Let M = F(V^) and s^ be as above, and let A be a non-split F-biqua-
ternion algebra. Then the following statements are equivalent:

(1) A splits over some quartic 2-extension L/F of discriminant i\
(2) yA«-^»=OeW(F) ;
(3) ^e^(W(M));
(4) ^e^(W(M)) +PF;

(5) ?A = <$*« — ^ —V » (mod I3 F) for some x,y e M;
(6) A ^ (/i, a^ ® (^, ̂ , where « - ̂ , - d » == 0 e W(F) for i = 1, 2.

(There is, of course, no loss in restricting our attention to the non-split case. If
A is split, then (2) through (6) are trivially true, and (1) holds if and only ifF has some
quartic 2-extension of discriminant d, which is true except in the special case when F is
formally real pythagorean and d e — F2: see (3.5).)

Proof. — First, (2) o (3) holds (even when q^ is replaced by any quadratic form
over F) by [EI^: (2.5)]. Next, we shall show (5) => (4) => (2) => (6) => (5). The first
implication here is trivial. For (4) => (2), multiply the relation in (4) by « — ^ »
to get q^(^—dW eI^F. Since ^ A « — ^ » has dimension 12, the Hauptsatz of
Arason-Pfister [Li: p. 289] yields (2). Next, assume (2). By the (B-decomposition Theorem
[EL^: (2.3)], we can write

(4.17) ?A ^ ^1< 1, - ̂ 1 > 1 ^2< 1, - ̂ 2 > i ^3< 1, - ̂ 3 >,

where « — ^, — d » == 0 for all i. Here, we have a^ a^ a^ e F2 since det q^ = — 1.
Scaling (4.17) by —^3, we get

— a! ^3- ?A ^ < — a! ^1 ^3? e! €^ — ^1 ^2 e^ a! ^2 ^2 €^ — ̂  ̂ 2 >

^ «^€^ -^»'1<- 1 >«^^^3, -^2»'.

Thus, the Albert forms of the biquaternion algebras

A and (- ̂  e^ a^ ® (- ̂  ̂  e^ a^

are homothetic. By (2.4), we have then A ^ (- ̂ 3, a^® (- ̂  ̂  e^ a^, pro-
ving (6). Finally, we have to show (6) =>• (5). Given (6), we can write a, = N^p(^)
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for suitable elements u, e M. Since ^ « - u, » == « - a, » (mod I2 F) (cf. [EI^:
(2.4)]), we have

?A == « -/I, - ^1 » - « -/2, - ̂  »

= « -/I » ̂  « - ^1 » - « -/2 » ̂  « - ^2 »

^«-/i, -^i»+^«-/2, -^»(modPF).

By the last part of (4.14) b ) , this implies (5).
Having now proved the equivalence of (2) through (6), we finish by proving

(1) => (2) = > ( ! ) . The first implication follows from (1) => (2) of (4.7) (for n = 2). For
the second implication, assume (2). By the (B-decomposition Theorem, we can write q^
as in (4.17), where « — ^, — d » = 0 for all i. Since q^ is not hyperbolic, some a,
(say a^) is not a square in F. Then q^ is isotropic over the quadratic extension F(^/^).
It follows by (4.7) (for n == 2 and K:== Ff^/a^)} that q^ splits over some quadratic
extension L 3 K with ^(L/F) e dF2. •

Corollary 4.18. — Let A 6^ ̂  a&o^. 7/'A ̂ /^ m two quartic ^-extensions of discriminants d
and d\ then A splits in some quartic 2-extension of discriminant dd\

Proof. — If dF2 =[= d ' F2, the Corollary follows from the Theorem since the simi-
larity factors of q^ form a group under multiplication. Now assume dF2 = d1 F2. In
this case, our job is to find a biquadratic extension L/F which splits A. If A is a division
algebra, this is easy, so the remaining case is when A ^ Mg(B) where B == (b, b ' ) y is
a division algebra. It suffices to show in this case that | F/F2 | ̂  4, for then we can choose
L = F(V^, V^), where c is any element outside of F2 u &F2. If F is formally real, the
desired inequality is certainly true, for otherwise F would have to be an Euclidean
field (1), but such a field cannot have a quartic 2-extension to begin with (see [Li: p. 254,
Exer. 18]). Finally, if F is nonreal, the desired inequality follows (for instance) from
Kneser's Lemma [Li: p. 318], since the (anisotropic) norm form ofB already represents
at least four square classes. •

Using some of the ideas in the proof of (4.16), we can also get information on
abelian Galois splitting fields of biquaternion algebras in some cases.

Corollary 4.19. — Let a ^ F2 be a sum of two squares in F, and A be an F-biquaternion
algebra. If ̂ « — a» == 0 eW(F), then A has a Galois splitting field T containing
K == F(^/a) such that Gal(T/F) ^ Z^ or Z^CZ^.

Proof. — By (2) => (6) in (4.16), we can write A ^ (/^, a^y® (j^, ̂ F. where

« — a^ — a » = 0. By (4.6), (j^, ^)p has a cyclic quartic splitting field

(1) An Euclidean field is a formally real field wih exactly two square classes.
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L^DK {i == 1, 2). Then A splits over the compositum T :== Li.Lg, which is an abelian
extension over F of degree 4 or 8. An easy Galois-theoretic argument shows that
Gal(T/F) ^ Z^ or Z^OZg accordingly. •

§ 5. Algebra-theoretic Approach

In this section, we shall present new proofs for some of the results in § 4 by using
techniques from the theory of algebras. This section is, therefore, aimed at readers who
are more familiar with the theory of algebras than with the theory of quadratic forms.
One principal tool we need from the theory of (finite dimensional) central simple alge-
bras is the corestriction of such algebras from a field M to a subfield F of finite codi-
mension in M. We shall write Cor^/p for this corestriction, and shall suppress the
subscripts M/F whenever the fields involved are clear from the context. (The case of
main interest to us here is when [M : F] = 2.) For details concerning the corestriction
of central simple algebras, we refer the reader to [Dr: § 8] and [Tg].

We shall write B(F) for the Brauer group of a field F, and identify B(F) with the
cohomology group H^Gp, F^), where Fg denotes the separable closure of F and Gp
denotes the profinite Galois group Gal(FJF). We shall write B ̂  G to refer to the fact
that the central simple algebras B, G are similar. If B is an F-quaternion algebra, we
shall write B' to denote the subspace of pure quaternions in B. As is well-known,
B ' = = { 0 } u { & e B\F : b2 e F } [Lp p. 53]. We shall also need the following Proposition
concerning the descent of quaternion algebras; a self-contained proof of it can be found
in [Ti: (2.6)].

Proposition 5.0. — Let K be a quadratic extension of F, and let w e K, b e F. Then

(NK/F(W), ^F ̂  M^F) if and only if {w, b)^ ̂  (g, b)^for some g e F.

If A is any (finite dimensional) central simple F-algebra with an F-involution,
and E c A is any simple F-subalgebra, a theorem of M. Kneser says that any F-involution
of E can be extended to an F-involution of A. The proof of this is not easy, but can be
found in [Sch: p. 311]. The following is a variation ofKneser's result, which will suffice
for our purposes, and for which we can offer a very simple proof, following an idea of
Racine [Ra].

Proposition 5.1. — Let A be a central simple 'F-algebra with an F-involution o, and let
E c A be any simple 'F-subalgebra such that its centralizer C^(E) is a division algebra (1). Then
any F-involution T of E extends to an F-involution 9 of A.

(1) This assumption is automatic, for instance, when A itself is a division algebra. On the other hand, this
assumption is also satisfied when E is a strictly maximal subfield of A in the sense that (dim? E)2 == dimp A, for i n
this case CA(E) == E.
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Proof. — By the Skolem-Noether Theorem there exists a unit a eA such that

(1) ae == w{e) a V e e E.

Replacing ^ by T((?), we get ar(^) == a{e) a. Applying or to this, we get

(2) a(fl) e = (TT(<O CT(^) V e e E.

We may assume that a(a) 4= — a for otherwise <p(.y) :== a~1 a(x) a (V x e A) gives the
desired involution. Adding (1), (2) and writing a' == a + (r(fl) + 0, we get

(3) a9 e == (TT(<?) a' V ^ e E.

Writing further a' = ab(b eA\{0}), we have abe == a^e) ab = aeb by (1). This shows
that b eG^(E). Since C^(E) is a division ring, 6 and hence a' are z/m^ in A. Using
or(ff') == a ' , we see that 9^) = a'-1 a(A:) ^/ defines an F-involution on A, and by (3),
(p(r(^)) = e{\/ e e E), so 9 \^ = T, as desired. •

The next Proposition deals with the problem of decomposing a biquaternion
algebra as a tensor product of two quaternion algebras. Part (2) of this Proposition is a
folklore result, while part (1) is a special case of the " Pg(2) property 9? of a field esta-
blished in [TI: Cor. 2.8]. For the convenience of the reader, we shall include uniform
proofs for both parts, avoiding the P,(%) terminology of [TJ. Our arguments below are
again modelled upon those of Racine in [Ra].

Proposition 5.2. — Let E == F(V^, Vb) be a biquadratic extension of F, and let K be
the quadratic extension F (Va). Let A be any V-biquaternion algebra. Then:
(1) E can be embedded (as an 7-algebra) into A if and only if A can be written in the form

(/. ^)p ®F (^ ^)p w^ /. <? e F;
(2) K can be embedded into A if and only if A can be written in the form (/, a)y OOp (^, ^)p where

f.g.ce F.

Pn?o/*. — We need only prove the cc only if" parts.
(1) Assume that E c A, and let a, [B e E be such that a2 = a and (B2 == 6. Since

E is a strictly maximal subfield of A, (5.1) applies, so there is an F-involution 9 on A
such that 9(0) == — a, and (say) 9((B) = [B. Let B == C^(K). Since dim^B = 4, B is
a K-quaternion algebra. The restriction of 9 to B is then an involution of the second
kind on B. Since (B e B and (B2 = ^, we can write B ̂  (ze;, 6)^ for some w e K. Using
the well-known fact that B ̂ / A^ we have

Cor^ B - Cor^A^ - A2 - 1.

On the other hand, by the projection formula for the corestriction (see [Tg: (3.2)]),
Gor^pB = Gor^, &)^ = (N^(^), b)^. Thus, (N^(^), &)p- 1, so by (5.0),
B ̂  (^, b)^ ^ C?, ^K for some g e F. From A^ ̂  B ̂  (5, 6)^, we see that A ®p (^, &)p
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is split by K. Hence A®? {g, b)-p r^ (y, a)-p for some fe F, and by dimension conside-
rations we conclude that A ^ (/, a)y®y (^ ^)p, as desired.

(2) Here we assume K == F(a) c A (but there is no given E). We may assume
that A is a division algebra for, if otherwise, A has a tensor factor Mg(F) ^ (1, a)y and
we are done. By (5.1) again, we can find an F-involution <p on A such that 9 (a) = — a.
The fixed points of9 inB:== C^(K) form a 4-dimensional F-space Bo (see [Sch: (7.5) (ii),
p. 303]), while, in the K-quaternion algebra B, the pure quaternions form a 6-dimensional
F-space B'. Since dim? B = 8, there exists a nonzero y G Bo n B'. Let c == y2 ^ K.
Then B ̂  {w, c)-^ for some w e K. But <^{c) == c implies that c e F, so we can finish the
argument as before. •

Remark. — The fact that the existence of an involution of the second kind on B
implies that B is defined over F is Theorem 21 in Chapter 10 of [AJ. In the argument
above, we have avoided a reference to this result by using the more modern tool of
corestriction.

As a consequence of (5.2) (2), we have the following explicit description of the
exponent two part of the relative Brauer group B(L/F) :== ker(B(F) ->B(L)) for any
quartic 2-extension L/F.

Corollary 5.3. — Let L/F be a quartic 2-extension containing K == F(^/a). Then a central
simple T-algebra A of exponent 2 lies in B(L/F) if and only if A^ (/, a)y® {g, c)y where

f, g, c e F and (g, c)y splits over L. (Recall that the family of quaternion algebras (g, c)-p splitting
over L has been completely determined in (3.9).^

Proof. — It suffices to prove the (< only if55 part, so suppose A splits over L. Without
loss of generality, we may assume that A is a division algebra. By [Pi: Lemma, p. 242],
we know that deg A divides [L : F] == 4, so it is either 2 or 4. If deg A == 2, then
A ^ {g, c)-p and we are done. If, instead, deg A == 4, then (by (2.1)) A is a biquaternion
algebra. By [Pi: Lemma, p. 242] again, A^ cannot remain a division algebra. This
implies that K can be embedded into A (see [Pi: Cor., p. 243]), so by (5.2) (2),
A ^ (/, a)y ® (g, c)y for some /, g, c e F. Since A and (/, a)p both split over L, (^, c)y
also does. •

In the rest of this section, we shall not be working with a fixed quartic 2-exten-
sion L/F. Instead, we shall fix a biquaternion (or quaternion) algebra A, and investigate
the possible quartic 2-extensions L/F splitting A. We first handle the case of quaternion
algebras.

Proposition 5.4. — Let a, d be nonsquares in F, and let K == F(Vfl), M = F(Va).
For any ^-quaternion algebra C, the following are equivalent'.

(1) C splits over some quadratic extension L of K with ^(L/F) e^F2;
(2) d. is a norm from K and a reduced norm from C;
(3) d is a norm from K, and C ̂  (g, N^/p(y))p/or some g e F and v e M.

12
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Proof. — (3) is just a slight reformulation of (2).
(3) => (1) Write d = N^w), where w e K. Then

(N^(w), N^)),, s (</, N^)), s M^F).

By (5.0), we have (w, N^(o))g a (/, N^)^ for some/eF. Thus,
CK s (5, N^(»))K s {gfw, N^(y))^

and they split over L:= K{Vgfw). Since

NK/F^/W) =g^N^w) edF2,

we have [L: K] = 2, and ^(L/F) e rfF2.
(1) => (3) Let L = K(-v/i), where 2' is a nonsquare in K. Then ^(L/F) is given

by the square class ofN^(^), so we have N^p(z) e^F2, proving the first part of (3).
Since C^ splits over L = K(y^), there exists an element y e GF such thatjy2 = z. Write
j ,=^®l+^®^/oeG K where jr. e G, and let y, = e, +jy;, where c.eF, and
jy.' e C'. With respect to the decomposition C^ = (1 ®p K) C (G' ®p K), the element y
has component 2(^ + ̂ j,) ® 1 + 2(^^ + e,^) ®Va in C'®? K. (This follows
from a direct computation, using the fact thatj^ +^2^ e F.) Since jc2 e K = 1 ®, K,
it follows that

(5-5) eiJ'i + aesYs = 0, and ^ + e^ = 0.

Here,^ andjg are not both zero. For, \£y[ = y'^ == 0, then
j = ̂  ® 1 -)- ^ ® ya = 1 ® (^ + ̂  ̂ /a) e 1 ® K

and hence z =jy2 e K2, in contradiction to [L : K] = 2. Thus, (5.5) implies that
e! <^2

0 = = e\ — <a2 = N^(^1 + ^ ̂ /a).
^2 e!

Therefore, e^= e^= 0, so jy, e C' and y^ e F. Using the latter, we have

(JC1J2 +^Ji)2 - (AJa -^Ji)2 = 2ĵ J»'2j'l + 2^^^^ == 4 .̂

Applying Ng^ to the element

z =f =^® 1 +^®a + (^^ +J'2J»'i) ®Va

= 1 ® [(j^ + <^) + (^j, +^^) ^a\,
we S^ N^(^) = (j2 + ^2)2 - a(^^ +^ A)2

= (^ + <yl)2 - <4j2^ + (̂ j,, -ĵ i)2]
= (J'2 - ̂ J'2)2 - <^2 -AJ'i)2.

Let w =j>'ij>'2 —j'2ji, which is easily seen to be in C'. Since Ng/p^) edF2, the above
equations imply that aw2 e Ny^(M), and since a e Ny,p(M) also, we have w2 == N^(0)
for some v e M. It follows that G = {g, N^(0))? for some g e F. •
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Remark. — Of course, the above result is just the algebra-theoretic analogue of
Theorem 4.2 (in the case of2-fold Pfister forms). In fact, using basic facts about 2-fold
Pfister forms, it is also easy to see directly that the condition (2) above is equivalent to
the condition (2) in (4.2) (for n == 2).

Lemma 5.6. — Let M == F (V^) be a quadratic extension of F. Then a Brauer class

in B(F) can be written in the form Gor(x,jy)^for some x^y e M if and only if it can be written

in the form Cor(jf, u)^.Cor(g, v)-^ for some f, g e F and u, v e M.

Proof. — This follows by exactly the same < c linearization 5? procedure as used in
the proof of (4.14), noting that the corestriction of an M-quaternion algebra defined
over F is a split algebra. To avoid repetition, we shall suppress the details here. (In
fact, the lemma may also be deduced directly from (4.14) by applying the Clifford
invariant map: see the commutative diagram in the proof of (A6) in the Appendix.) •

Before we come to the main theorems of this section, we need to develop one more
result on biquaternion algebras. Let B and C be F-quaternion algebras, and let
A == B ®p C. The direct sum decompositions B == F ® B' and C == F @ C' yield the
equation A == F © (B' ® 1) ® (1 ® C') ® (B' ® G'). With respect to this decomposition
of A, the following Proposition gives a useful description of the elements z e A with
reduced trace zero and with square in F. Since this Proposition is of independent
interest, and does not seem to have appeared in the literature before, we shall include
a detailed proof below.

Proposition 5.7. — Let z e A be an element of reduced trace zero. Then z has the form
bQ ® 1 + 1 ® CQ + z' where bo e B', CQ e C' and z' e B' ® G'. Assume moreover that z2 e F.
Then:

(1) z' (and hence z) commutes with bo®Co',
(2) if bo == CQ = 0, then z == z' == b ® c for some b e B' and c e C\

Proof. — For the proof of the first assertion, we consider the reduced trace maps Trd^,
Trdg and Trd^ on A, B and G respectively. These maps are related by the following
property, which can be proved by the same argument as in [Dr: Th. 3, p. 149]:

Trd^b ® c) == Trd^b) Trd^c) (V b e B, c e C).

From this, it follows that
(5.8) (B' ® 1) ® (1 ® G') ® (B' ® G') c ker(TrdJ.

Writing z == a + bo ® 1 + 1 ® CQ + z ' where a e F, b^ e B', CQ e G' and z ' e B' ® C',
we get from (5.8) 0 = Trd^(^) = 4oc. Since char F =(= 2, this gives a = 0, so the first
assertion in the Proposition follows.

For part (1), consider the standard involutions a^ and cr^ (which change the signs
of the pure quaternions) on B and G respectively, and let G^ = O'B^^C' ̂ e "^P °A



92 TSIT YUEN LAM, DAVID B. LEEP, JEAN-PIERRE TIGNOL

is then an involution on A. Write z =y + z ' where y = &o® 1 + 1®^. Assuming
that z2 e F, it follows that

{y + ^')2 == ^2 = <r^2) = <^)2 = (-^ + ^')2.
Therefore, j^' + ̂  == 0, and

(5.9) ^2 =y + ^'2 == 62® 1 + 1 ®^ + 2&o®^o + ^'2.

Since z2, 62 and ^ are all in F, (5.9) yields ^o0^ e^(-^ ' /2)5 fr0111 which it follows that
z ' commutes with & o ® C o . This proves part (1).

For part (2), let 1, i,j, k be a standard basis ofB (with z2,^2 e F, ij -{-ji = 0 and
ij == K). The element 2; can then be written as i ® q + J (x) ^2 + ^ ® ^3 ̂ or some ̂ , ̂ , ^3 e C'.
Since z2 e F, a direct computation shows that ^, c^ and ^3 pairwise commute. Now,
the maximal commutative subalgebras in G have dimension 2 over F and contain only
one pure quaternion, up to scalar multiples. Therefore, one can find a pure quaternion
c e C' such that ^ == ^c for some a, e F, for i = 1, 2, 3. Then z == b 00 c with
b == a^ z + ^J^" 0^3 ̂  e B' and the proof is complete. •

Now we come to one of the main results of this section, which is the following
algebra-theoretic analogue of Theorem 4.7 (in the case ofn = 2).

Theorem 5.10. — Let K == F(V^) and M = F(Vfl?) be quadratic extensions of F and
let A be an 7-biquaternion algebra. Then the following are equivalent:

(1) A splits over some quadratic extension L ofK. with ^(L/F) e d¥2',
(2) d is a norm from K, K is embeddable in A, and A ̂  Gor^p(QJ for some quaternion

algebra Q^ over M.

Proof. — (1) => (2) Since L is a splitting field of degree 4 for A, L can be embedded
as a (maximal) subfield in A. In particular, K can be embedded in A. By (5.2) (2),
this implies that A can be written as B ® G where B = {f, a)-p (feV) and C is an
F-quaternion algebra. Going up to L, we have 1 ̂  A1' ̂  B1' ®^ G3' ̂  C1'. Thus, G splits• •
over L, and (5.4) implies that G ^ (^, Nj^p(y))p for some g e F and v e M. Since
^(L/F) e ̂ F2, d is a norm from K = F(A/a), and hence a is a norm from M = 'F^\/~d\
say a == N^p(^) (u e M). Then

A ̂  (/, N^WF ® C?, N^(y))p - Cor^(/, ̂  ® Cor̂ , y)^,

according to the projection formula for the corestriction. But by Lemma 5.6, the right-
hand side above is similar to Cor^yp Q^ for some M-quaternion algebra Q^. Thus,
A^Cor^pQ, and, since A and Gor^p Q^ are both of degree 4, this implies that
A ^ Cor^pQ,.

(2) => (1) We may assume that, in (2), Q^is a division (quaternion) algebra. For other-
wise, Q splits over M and hence A splits over F. Writing d ==• b2 — 4ac2 with 6, c e F,

we have b + 2c-\/a ^K2, and (1) follows by choosing L to be V^(Jb + 2^^).
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We shall identify A with Cor^p Q, and use the definition of the corestriction of
algebras given in [Dr: § 8] and [TJ. Let s be the nontrivial F-automorphism of M,
and let Q* denote the (< conjugate quaternion algebra " of Q^, namely: Q* = { x * : x e QJ,
with x* + y* == ("^ +j0*5 ^ V * == C^)*? ^d s(m).x* = {m.x)* for m e M. Then
A == Cor^p Q^ consists of the elements in Q,®^ Q1' which are invariant under the
<( exchange involution " mapping x ®y* toy ® x*. By assumption, A contains a subfield F(-2')
with z2 == a e F\F2. By the Skolem-Noether Theorem, the nontrivial F-automorphism
of the field F(^) extends to an inner automorphism of A, so there is a unit u in A such
that uzu~1 = — z. Reading this equation in Q,®]^ Q* and letting Trd denote the reduced
trace on this M-algebra, we have — Trd(2') == Trd(— z) = Trd{uzu~1) == Trd(^),
so Trd(2') == 0. Therefore, we can apply Proposition 5.7 to the element z e Q®^ Q*.
Write z in the form bo ® I* + 1 ® ̂  + z ' as in (5.7) (with bo, CQ e Q;, and z ' e Q; ®^ Q").
Since z e A is invariant under the exchange involution, we must have &o == ^o • ̂ e have
the following two cases.

Casel.—IQ == CQ 4= 0. In this case, we let ^ := &o, andj^ := q® q* e A. By (5.7) (1),
y commutes with z\ and hence also with z. Note thatj^ ^ = ' F @Fz, since &o 4= 0.

Case 2.— bo= CQ== 0. By (5.7) (2), z = z ' has the form b 00 ̂  for some 6, c e Q\
By applying the exchange involution, we see further that b = c up to a scalar factor. In
this case, let y = q ® q* e A, where q is any nonzero element in Q' which anticommutes
with b. Thenjyz == zy, and again, it is easy to see thatj^ ^ F © Fz.

In both cases, y : = ^ 2 e M (since Q is a division algebra), and we have

J/2 ̂  y2 ® ̂ y = y 0 y* = y ® ̂ .(^ ^ N^p(y) G F.

IfN^/p(y) is not in F2 u aF2, we see easily that F[j/, 2'] is isomorphic to the biquadratic
extension F(v«, v^wW)' I11 tms case? (5.2) (1) implies that we can write A in the
form (f,a)®(g,^^{v)) (for suitable /, g e F). By (5.4), (g, N^p(y)) splits over a
quadratic extension L of K with ^(L/F) e rfF2, and hence A1'^ 1, as desired. Finally,
we have to deal with the case when N^p(y) e F2 u dF2. After scaling y and/or replacing^
by yz^ we are down to the case when y2 = a. In this case, F[j/, -2:] ^ K X K, and so
A^ contains (K X K) ®p K ^ K X K x K x K. This implies readily that A^ splits
{cf. [Ag: Gh. 4, Th. 2]). Hence A^ (h, a)-p for some A e F, and we can choose L (as
at the beginning of the proof of (2) => (1)) to be any quadratic extension of K with
^(L/F) erfF2. •

Corollary 5 .11. — An F-biquaternion algebra A is a cyclic algebra if and only if A contains
a quadratic extension K of F such that a) — 1 is a norm from K, and b) A ̂  Cor^yp Q for
some quaternion algebra Q over K. Afor^ precisely, given any quadratic extension KofFin A,
A has a maximal subfield containing K which is cyclic quartic over F if and only if a) and b) hold.
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It is worth noting that, if we wish to prove (5.11) directly (without first proving
the general result (5.10)), somewhat shorter arguments are possible. For instance, if
we know that A is a cyclic algebra (L/F, a, x) for some (quartic) cyclic extension L/F
containing K (where a is a generator of Gal (L/F) 5 and x e F), then, since

l-A^^/F,^),

we have x == N^p(j/) for somej e K. Then

A ^ (L/F, (7, N^)) ^ Cor^(L/K, a,^).

This gives a direct construction for the K-quaternion algebra Q, in (5.11).
In the balance of this section, we shall combine the quadratic form-theoretic

results with the algebra-theoretic results. In the mean time, we shall add a couple of
new results of a cohomological nature. For the rest of this paper, we shall write
p4 == {± 1 } c t\ and Gp == Gal(FJF); also, we shall identify A with its class in
K^0^ ^2) ^ B2(F) (the subgroup of elements of order ^ 2 in B(F)), and write (d) to
denote the square class of d in H^Gp, p^) ^ F/F2- Finally, we write " u 3? for the cup
product in the cohomology ring H*(Gp, [jig).

We now come to the algebra-theoretic analogue of (4.16). In fact the first two
conditions in the following theorem are the same as those labeled with the same numbers
in (4.16).

Theorem 5.12. — Let M = F [ y d ) be a quadratic extension of F and A be a non-split
7-biquaternion algebra. Then the following conditions are equivalent:
(1) A splits over some quartic 2-extension L/F of discriminant d;
(6) A ̂  (/i, N^p(^))p ® (/2, N^p(^))p for some f, e F and u, e M;
(7) A ̂  Cor^/p Q^for some quaternion algebra Q over M;
(8) A e im(Gor^p : B^(M) ^B^F));
(9) Au(rf)=OGH3(Gp,^).

Proof. — We shall first prove (1) => (7) => (6) => (1) within the context of this
section. Here, (1) => (7) follows from (5.10), and (7) => (6) follows from (5.6) since
Cor(/,, u,)^^ [f,, NM/R^))?. Now assume A has the form in (6). Since A is non-
split, at least one of the N^/p(^) is not a square in F; say a := N^(^) ^F2. We see
easily that d is a norm from K := F(y^), so (5.4) implies that (/g, N^p(^))p splits
over some quadratic extension L of K with ^(L/F) edF2. Since K splits (/^, d)y, it
follows that L splits A, proving (1).

The equivalence of (8) and (9) with the other conditions is considerably harder.
Of course we have (7) => (8), and (8) => (9) follows from the zero-sequence

B,(M)^B,(F)^H3(Gp,^).
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(This is a part of Arason's long exact sequence for the Galois cohomology of a quadratic
extension M/F [Ar^: Cor. 4.6]. In fact, the exactness of this sequence at B^F) gives
directly the equivalence of (8) and (9).) The difficult point is to go from (9) to one of
the other conditions in order to close the cycle of implications. In the Appendix, we shall
prove that (9) implies ^« - d » == 0 e W(F) (see (A5)). Since the latter is the
condition (2) in (4.16), this will show that all the conditions in (4.16) and (5.12) are
equivalent. •

Corollary 5.13. — For any non-split 'F-biquaternion algebra A, the following statements
are equivalent:

(0) A is a square in the Brauer group B(F) $
(1) A splits over some quartic 2-extension L/F of discriminant — 1 ;
(2) 2^=OeW(F);
(8) A e im(Gor̂ ^ : B, (F (^/="T)) -> B,(F));
(9) Au(- l ) =OeH3(G^).

If — 1 ^ F2, these conditions are further equivalent to:

(7) A ̂  Clorp(^-^)/p Q^for some quaternion algebra Q^over F(V— l).

Proof. — The equivalence of (0) and (9) will be proved in the Appendix (see (A4)).
The other equivalences follow from (5.12) and (4.16) if — 1 ^ F2. If — 1 e F2, (2),
(8) and (9) are tautologies, and (1) also holds by repeating the argument (in the nonreal
case) in the proof of (4.18). •

The Corollary above can be used in conjunction with some results in [J] to give
new information on the structure of the Brauer group of fields F with I2 F torsion-free.
This work will be reported later elsewhere. We conclude this section by recording the
following analogue of (5.13) for the case of a single quaternion algebra.

Corollary 5.14. — For any quaternion division algebra B over F with norm form y, the
following are equivalent:

(0) B is a square in the Brauer group B(F);
(0') B^^for some cyclic F-algebra S of degree 4$
(1) B splits over some quartic 2-extension L/F of discriminant — 1 ;
(2) 2<7=OeW(F) ;
(2') Some element in B has reduced norm — 1 ;
(7) B ̂  ̂ ^(V '̂D/F Q.*/07' some quaternion algebra Q^over F(v—~T) $
(9) B u ( - l ) =OeH3(Gp,^) ;
(10) B splits over some quadratic extension K = F(Vr2 + s2), where r, s e F.

Moreover, any of these conditions implies:

(*) B splits over some cyclic quartic extension T of F.
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Proof. — (2) o (2') is obvious, and (2) o (10) is an easy consequence of (2.5).
The equivalence of (0), (1), (2), (7) and (9) follows by applying (5.13) to the biqua-
ternion algebra A ^ B® (1, l)p ^ Mg(B).

(0') => (10): Represent S as (T/F, a, z), where T/F is a cyclic quartic extension
with Gal(T/F) == < CT > and z e F. It is well-known (see the beginning of § 3) that the
unique quadratic extension K of F in T has the form F (Vr2 + s2) (r, s e F). Since
B /— (T/F, (T, z)2 ̂  (K/F, (T, z), we see that B splits over K.

(10) => (0') and (10) => (*): Since K = F(V^2 + ^2), K can be embedded in a
cyclic quartic extension T of F (see the beginning of § 3); this implies (*). Now, write
B ̂  (K/F, Go, z), where GQ is a generator for Gal (K/F). If G is a generator for Gal (T/F),
then a \ K = ̂  and we have (T/F, G, z)2 — (K/F, (TO, z) — B. •

Remark 5.15. — In general, (*) does not imply the other conditions in (5.14).
For instance, for F = Q,, the quaternion algebra Bo = (— 1, — l)q splits over some
cyclic quartic extension of Q, (see [Pi: p. 242]), but (2') certainly does not hold since
the norm form of Bo is positive definite. On the other hand, if the field F has level 2
(i.e. — 1 is a sum of two squares in F but is not a square), then, in view of (4.2), the
conditions in (5.14) (with the exception of (*)) are all equivalent to:
( 11 ) B splits over some cyclic quartic extension ofF containing F(v— l).

Appendix: Some Cohomological Results

For the convenience of the reader, we shall include here the proofs of two cohomo-
logical results which were used in the main body of this paper. Both results are known
to the experts working in the area of Brauer groups and Galois cohomology; however,
there seems to be no place in the literature where these results are stated explicitly and
proved in a reasonably self-contained manner. It is our hope, therefore, that this Appendix
will help fill this gap. Throughout the Appendix, the main notations used in this paper
will remain in force; in particular, we shall continue to assume char F =|= 2, and
FJF, Gp, pi2,B2(F) c B(F), etc., will have the same meaning as in § 5. To simplify
the notations further, we shall sometimes write ^ u ... u x^ for the cup product
(^) u ... u(^) inIP(Gp, ^).

The first result concerns the cohomology long exact sequence of Gp associated
with the short exact sequence of Gp-modules:

(Al) 1 ->^->F^F^L

Here, e is the squaring map: s(^) = x2 for every x e F,.

Proposition A2. — Let 8 : H^Gp, F,) -> H^Gp, ^2) be the connecting homomorphism from
the second cohomology to the third cohomology associated with (Al). Then, for any B = ̂ (^o J^p?
viewed as an element o/H^Gp, F,), we have 8(B) == S, x, ujy, u (— 1) e H^Gp, [L^).
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Remark A3. — (1) According to the Theorem of Merkurjev [Me], the classes of
quaternion algebras in B(F) == H^Gp, F,) generate the subgroup Bg(F) = H^Gp, ^).
Therefore, the Proposition above implies that the restriction of 8 to H^Gp, p.g) is given
by the cup product with ( — 1 ) . However, we do not need this general result in this
paper. (2) There is another connecting homomorphism, say 8', from H^Gp, ^) to
H^Gp, ^2), arising from the long exact cohomology sequence associated with the
sequence of trivial Gp-modules

0 -^ (^ =) Z/2Z -^ Z/4Z -^ Z/2Z (== ^) -> 0.

However, J.-L. Colliot-Thdene has pointed out to us that 8' is in fact zero; see [MSp
(16.5.1)] or [Se]. (This computation also assumes Merkurjev's Theorem.)

Proof of (A2). — Clearly, it suffices to prove the Proposition in the case when
B is a single quaternion division algebra (A:,j)p. Let G, (resp. Gy) denote the subgroup
of Gp corresponding to the subfield F(v^) (resp. F(v5)) of F,. Then, the class of B
in H^Gp, F,) is given by the 2-cocycle/: Gp x Gp —F, defined by

1 if o e G^orr e G^,
\ y i fc r .T^G, .

In order to calculate 8(B), we must first c< lift"/through the squaring map s. Thus,
we define/': Gp x Gp -> F, by

.,. x l i f o e G ^ o r T e G ^
J (0-, T) ==

^/y i f ( y , T ^ G ^ .

Here, ^/y denotes a fixed square root ofj/ in F,. We have now/'(<T, r)2 =/(o, r) for all
(T, T e Gp$ hence, 8(B) is represented by the 3-cocycle g : Gp X Gp x Gp -> ̂  defined by

^(o, T, v) = a(/'(T, V))/'(OT, v)-1/^^ TV)/'(O, r)-1

for (T, T, v e Gp. If T or v lies in G^ we see easily that g{a, T, v) = 1. If T, v ^ G^, then
TV e G^ (since [Gp : GJ = 2), and we have

^((T, T, V) = ̂ (^/'(aT, V)-1/^^ T)-1 == G(y5)/^

since, for every (T e Gp, exactly one of o-, CTT is outside of G^. Therefore,
~1 i f ( T ^ G ^ , a n d T ^ G , , v ^ G , ,

1 if otherwise.
g{a, T, v) =

But this 3-cocycle also represents the class of the cup-product y u x u x, so
8(B) =J /UA;UA;=J/UA;U(- I )=BU(- I ) ,

as desired. (Another, apparently more complicated, proof of this can be extracted from
the arguments in Lemma 16.5 of [MSJ.) •

We can now deduce the following Corollary which was used in the proof of (5.13).
13
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Corollary A4. — Let B eB(F) be represented by a tensor product of quaternion algebras
®,(^,j^)p. Then B is a square in B(F) if and only if S, x, \Jy, u (— 1) == 0 in H3(Gp, ̂ ).

Proof. — Since the map s*: H^Gp, FJ -—H^Gp, F,) induced by s in cohomo-
logy is just the squaring map, the desired conclusion follows from the Proposition and
the exactness of the cohomology sequence:

... -^ IP(Gp, FJ ̂  H2(Gp, F,) -^ H3(Gp, ̂ ) ->....

The next main result of this Appendix is the following theorem due to A. Mer-
kurjev relating cup products in H^Gp, ^2) to 3-fold Pfister forms over F (see, for ins-
tance, [Ar^: p. 129]). Note that, in the special case when d == d\ this result shows that,
for any F-biquaternion algebra A (viewed as an element in H^Gp, [ig)),

Au{d) =0611^?,^)

implies that ^ « — r f » = O e W ( F ) . This is the missing implication in the proof
of (5.12) in§ 5.

Theorem A5. — If b u c u d = V u c' u d' e H^Gp, (Jig), then

« - 6, ~ c, - d » ̂  « - 6', - ̂  - ̂ ' ».

The converse of this result is true as well (even for higher folds), and was known
quite a bit earlier. It is an easy consequence of the fact that isometric Pfister forms are
always chain ^-equivalent ([ELi: (3.2)]). Also, we should note that Arason's well-
defined homomorphism 9 :13 F/I4 F -> IP(Gp, ^2) (sending « - &, - c, - d » + I4 F
to b U c U d) is now known to be an isomorphism ([Ro], [MSJ), so (A5) is just a special
case of the injectivity of 9 (since any pair of 3-fold Pfister forms congruent modulo I4 F
must be isometric). However, we do not want to assume this much deeper result here.
Instead, we shall offer a reasonably self-contained proof of (A5), using ideas ofArason,
Elman and Jacob. In fact, in [AEJ: Th. I], these authors have proved the analogue
of (A5) for 4-fold Pfister forms, and observed to us that their arguments also work for
3-fold Pfister forms. In the following, we shall give the technical details behind this
observation, in order to complete the proof of (5.12), and also to popularize the nice
ideas in [AEJ: Th. 1].

To begin with, note that (A5) can be reduced to the following special case:

Theorem A5'. — f f b u c u d = = 0 e H^Gp, pig), then « - 6, - c, - d » is a
hyperbolic form.

Indeed, if (A5') is known (for all fields), then (A5) follows by going to the function
field K of « - V, - c\ - d ' », using the fact that 4.H and « - 6', - c ' , - d ' »
are the only 3-fold Pfister forms over F which become hyperbolic over K (see, for
instance, [LJ).
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To prepare ourselves for the proof of (A5'), we first make a notational simplifi-
cation. Instead of writing our cohomology groups as H^Gp, p^), we shall simply
write H1 F. For any field F, we write e-p for the Clifford invariant map from I2 F to H2 F,
and write I2 F for I2 F/P F. Merkurjev's main theorem in [Me] states that the induced
map <Fp : I2 F -> H2 F is an isomorphism, but, as we have said in Remark (A3) 5 we do
not assume this result in this Appendix. Instead, we shall treat the injectivity and surjec-
tivity of iFp as conditions on a field F, and try to get what we want by working around
these conditions. The following lemma makes it clear that if we assumed Merkurjev's
result for all fields, then Theorem A5' would indeed follow immediately.

Lemma A6. — Let b, c, d e F, and M == F \Vd). If ~e^ is injective and ̂  is surjective,
then the statement in (A5') holds for F.

Proof. — We may of course assume that d ^ F2, so M/F is a quadratic extension.
We have the following commutative diagram:

PM _^ PR

'4 [eF

IPM -c0^ H^F

Here, (< Cor 59 is the corestriction in cohomology, and ^ is the transfer map for
quadratic forms induced by the F-linear functional s on M sending 1 to 0, and Vd to 1
By Arason^ exact sequence in cohomology [Ari: (4.6)], b u c u d == 0 implies that
b U c == Gor(x) for some x e H2 M. Since ̂  is assumed surjective, we can write x == ^{jy)
for some y e I2 M. Now b u c = Gor(:v) == Cor(^(^)) = ^.(^(j^)), so the injectivity
of ^ implies that s^y) == « — b, — c » (mod I3 F). Multiplying this by « — d »,
and using the fact that the image of the transfer map is killed by « — d », we get
«-6,-^,-^» E=^(y> «-^» = 0 (modi4 F), so « - & , - ^ , - r f » is hyper-
bolic. •

For a fixed quadratic extension M = F(V^), let us enlarge the above diagram
into the following, where r, is the functorial map, and / and g are maps induced by ^:

PF „ PM „ ^(I^+PF _^
« - d»IF + P F > I3 M > I3 F >

<l 1^ 1"Y y v

0 —————> -HZI- —————> Ha M ——ca—^ H2 F
(rf) uF

Here, the bottom row is well-known to be exact in the context of Brauer groups
(special case of [Ar^: (4.6)]), and the top row is exact except possibly at I2 M/I3 M.
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Lemma A7. — Assume that I4 F == 0. Then:
(1) ^ : P M -> I3 F is surjective\
(2) The diagram above is exact',
(3) If^y is injective, so are ̂  and the map coker ig, -> coker ̂ .

Proo/*. — For any 3-fold Pfister form a over F, « — rf » (T e I4 F is hyperbolic.
From this, it is known that (T == ^ T for some 3-fold Pfister form T over M ([Arp Zusatz,
p. 459]). This gives (1). For (2), we only have to prove the exactness of the top row
at PM/PM. Let xeVM be such that s^x) ePF. By (1), s^x) == s^jy) for some
y e P M. Then x -y e P M n ker(^) == r,(P F) [EL^: Th. 3.3], so x e P M + r,(P F),
as desired. From the exact diagram, we have by the Snake Lemma [Pi: p. 202] the fol-
lowing exact sequence:
(*) ker,(/) ->ker(^) —>-ker(^) — coker(/) -> coker(^) ->coker(^).

If we assume that ^p is injective, it is clear that y and g are also injective, and coker (jf)
is just coker(^p). The kernel-cokernel exact sequence (*) now yields the conclusion (3). •

Corollary AS. — Assume that I4 F == 0, and that ~e^ is injective. Then, for any finite ^-exten-
sion K/F, ̂  is injective, and coker ~e-p -> coker ̂  is injectwe,

Proof. — This follows by repeated application of (A7), in view of the fact that the
property I4 F == 0 (< goes up 35 to 2-extensions of F ([Ar? (3.6)], [ELs: (4.5)]). •

The following lemma is a special case of [AEJ: Lemma 1]. For the sake of comple-
teness, we shall include its proof.

Lemma A9. — For any field F(), there exists an extension field F/F() such that: a) any ani-
sotropic 3-fold Pfister form over FQ remains anisotropic over F, b) F has u-invariant u(F) ^ 8
(i.e, any ^-dimensional quadratic form over F is isotropic), and c ) F has no proper odd degree
extensions.

Proof. — Let F^ be the compositum of the function fields of all 9-dimensional
forms over Fg, and let F^ be a maximal odd extension of Fg (which exists by Zorn's
Lemma). Then, any 9-dimensional form over F() is isotropic over F^, and F^ has no
proper odd extensions. Moreover, by [L^: Cor. 9.11], any anisotropic 3-fold Pfister
form over Fo remains anisotropic over Fy, and hence over F^ by Springer's Theorem
[Li: p. 198]. Repeating this construction, we get a tower of fields FoCFiCFg . . . .
Their union F is the field we want. •

In order to prove (A5') for a field F(), it clearly suffices to prove the same thing
for the extension field F constructed above (in view of the property a}). The following
lemma, therefore, gives the final step.

Lemma A10. — (A5') is true for any field F with u(F) ^ 8 having no proper odd degree
extensions.
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Proof. — The hypothesis u(V) ̂  8 implies that I4 F == 0. By Pfister's classical
result [Pf: Satz 14], it also implies that e-p is injective. Therefore, (A8) applies. To get
the desired conclusion, it suffices (by (A6)) to show that ^ is surjective for any quadratic
extension M/F. Take any cohomology class a e H2 M, and split it by a Galois exten-
sion K/F containing M. By the hypothesis on F, K/F (and hence K/M) must be a
2-extension. Applying (A8) to M, we see that coker ^ -> coker ̂  is injective, so we
have already a == 0 e coker ̂ , i.e. a eim(^). •
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