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INTRODUCTION

1. The principal aim of this paper is to give a 3-dimensional computation and
interpretation of the Jones polynomial of links in the 3-sphere S3. The original definition
of Jones [J] is 2-dimensional in the sense that it is based on the link projections in the
plane. A 3-dimensional interpretation of the Jones polynomial was first given by Witten
[Wl] using Feynman path integrals. This interpretation is simple and beautiful, but
its rigorous mathematical treatment calls for considerable efforts. In this paper I use
quantum 6j-symbols to give a rigorous and essentially self-contained computation of
the Jones polynomial of a (framed) link in terms of the link exterior. Though the main
ideas of the paper are independent of Witten's approach one may view this paper as
an attempt to understand his work.
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122 VLADIMIR TURAEV

The classical Gj-symbols naturally appear in the representation theory of the
Lie algebra sf^(C). These symbols together with more familiar Clebsch-Gordan coef-
ficients play a fundamental role in the study of tensor products of irreducible finite-
dimensional ^(C) -modules. The 6;-symbols ensure the compatibility of the splittings
of the tensor products in the direct sum of irreducible modules on the one hand, and
the associativity of the tensor product on the other hand. The Gj-symbols have been
extensively studied by physicists in the frameworks of the quantum theory of angular
momentum (for more information and references see [BL]). A one-parameter defor-
mation of the classical G^-symbols was introduced by Askey and Wilson [AW] in connec-
tion with their study of ^-orthogonal polynomials. Here q may be treated either as a
variable or as a complex deformation parameter. The resulting q — 6j-symbols (they are
also called quantum 6j-symbols) were shown by Kirillov and Reshetikhin [KR] to
play the same role in the representation theory of the quantum group U^j^C!)) as
the classical 6j-symbols play in the representation theory of ^(C). (The classical theory
corresponds to q == 1.)

Kirillov and Reshetikhin [KR] used the quantum Gj-symbols to compute the
Jones polynomial of a link in S3 via a 2-dimensional state sum model. More exactly,
they constructed a face model on any plane link diagram and showed that plugging
in this model the quantum 6j-symbols we get the Jones polynomial (and its generaliza-
tions for colored links).

A crucial step in creating a 3-dimensional state sum model for Jones-type invariants
of 3-manifolds was made in the paper of Viro and the author [TV]. There we introduced
a state sum model based on triangulations of 3-manifolds. As the main algebraic
ingredient this model involves q — 6j-symbols where q is a complex root of unity of
a certain degree r ^ 3. The model is defined on an arbitrary triangulation X of
a compact 3-manifold. Assume for simplicity that the manifold has no boundary. We
consider c < colorings" of X which assign to edges of X elements of the set
{ 0, 1/2, 1, . .., (r — 2)12 }. Having a coloring of X we associate with each 3-simplex
of X the q — 6j-symbol

i j k
eC

I m n

where (z, /), (j, m), (A, n) are the pairs of colors of the opposite edges of this simplex.
We multiply these symbols overs all 3-simplices of X and sum up the resulting products
(with certain weights) over the colorings of X. According to [TV] this model yields a
topological invariant of compact 3-manifolds. (This invariant does not depend on the
orientation of the manifold.) Later on it was shown in [T3], [T4] and independently
by Walker [Wa] that for any closed oriented 3-manifold this invariant coincides with
the square of the absolute value of the invariant defined in [RT2].

The technique of [TV] is not sufficient to recover the Jones polynomial of links
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from the link exteriors. One may already see this from the fact that the Jones polynomial
of a link in S3 and of its mirror image may differ whereas the exteriors of these two links
are homeomorphic and therefore can not be distinguished by the invariants of [TV].

2. In this paper we compute the Jones polynomial of a link in S3 in terms of the
exterior, say, M of this link. More exactly, we express the values of this polynomial
in the roots of unity as certain state sums on an arbitrary triangulation of M. On the
algebraic part these state sums are based on the q — 6j-symbols where q is a root of unity.
On the geometric part our model refines the one of [TV]: we take into account the geo-
metric picture on the boundary SM of M. On 8M we have quite a number of objects
involved in the model. Among them are the meridians and the longitudes of the link,
the orientation of BM induced by that of S3, and the triangulation of 8M induced by
the one in M.

The properties of the classical and quantum 6^-symbols associated with s^(C)
are especially simple since the representation theory of^C) is multiplicity-free. There-
fore the associated 3-dimensional state sum models are simplest models of this kind.
In particular, they yield invariants of unoriented links. In more general models corres-
ponding to other simple Lie algebras (or modular Hopf algebras, or modular tensor
categories) one has to consider generalized Gj-symbols depending on 6 irreducible modules
which may be geometrically viewed as sitting on the edges of a tetrahedron and on
4 intertwiners which sit on the faces of the tetrahedron. Such models will be treated
in [T5]. In this paper we consider only multiplicity-free models.

To make the paper more independent from the theory of quantum groups we
construct our models on the ground of axiomatically defined algebraic initial data.
The definition of the initial data axiomatizes the properties of the quantum 6;-symbols
associated with U^^C)). Following a suggestion of the referee one may call our
algebraic initial data a (multiplicity-free) " tetrahedral interaction ".

3. On the geometric part the constructions of the paper are actually more general
and extend to links in arbitrary compact 3-manifolds. The constructions apply also to

Fig. 1
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colored fat graphs in these manifolds. By a fat graph in a 3-manifold N we mean a finite
graph in N whose vertices and edges are extended to small 2-disks and narrow bands
respectively (see, for example, Fig. 1). We will consider only 3-valent fat graphs which
means that every 2-disk is incident either to 2 or 3 bands counted with multiplicities.
In particular, fat graphs may consist of annuli, as in Fig. 2. This enables us to treat
(framed) links as fat graphs and to include in this way the theory of links in the theory
of fat graphs. (The fat graphs should not be confused with ribbon graphs used in [RT2] $
the vertices of ribbon graphs have a more complicated structure: they are oriented
rectangles with preferred opposite bases.)

Fig. 2

Fix an integer r ^ 3. A coloring of a fat graph associates to each of its band a
non-negative integer or half-integer lying between 0 and (r — 2)/2. For such a colored
fat graph in a compact 3-manifold we define a state sum model on the graph exterior.
(In fact we need an orientability assumption: a regular neighborhood of the graph
in the 3-manifold must be oriented.) The model is shown to produce isotopy invariants
of the graph depending of the choice of a primitive complex root of unity of degree 4r.
In the case of colored fat graphs in S3 these invariants coincide with the values of the
generalized Jones polynomial in the corresponding roots of unity. For the empty graph
in a compact 3-manifold our invariants coincide with the invariants of this manifold
introduced in [TV],

4. Besides the state sum models on the graph exteriors in 3-manifolds we develop
another, so to say diagrammatical approach to the invariants of the fat graphs. With
this view we generalize the classical Reidemeister theory of plane link diagrams and
Reidemeister moves to the case of links and fat graphs in arbitrary 3-manifolds. The
corresponding graph diagrams live on special spines of the manifolds. We construct a
certain <( face " model on these diagrams generalizing the model ofKirillov and Reshe-
tikhin [KR] on S2. Our face model is necessarily more complicated since in general
the special spines are not locally flat but rather have local singularities. The resulting
partition functions are shown to be essentially the same as the invariants obtained from
the 3-dimensional models on the graph exteriors. It is in this way that we establish
equivalence of our invariants with the generalized Jones polynomial for links in S3.
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Note, however, that the diagrammatical approach applies only to graphs in oriented
3-manifolds.

In the Appendix to the paper we show how to compute the invariants of fat graphs
in 3-manifolds in terms of Heegaard decompositions of these manifolds.

5. This paper should be viewed in the broader frameworks of topological quantum
field theory (TQFT; see [At]). Our results extend the non-oriented 3-dimensional
TQFT introduced in [TV]. Namely, in generalization of 3-cobordisms one may consider
3-cobordisms with fat graphs sitting inside. (The graphs should be equipped with
oriented regular neighborhoods.) We remark that this TQFT differs from the oriented
3-dimensional TQFT which was introduced in [RT2] and which is currently considered
as the mathematical version of the Witten's physical TQFT. There are arguments
suggesting that the TQFT developed here is related to 2 + 1-dimensional quantum
gravity.

One may further extend our invariants to include fat graphs with free ends lying
on the boundary of the ambient 3-manifold but we do not pursue this line here.

6. The paper is divided into three parts and an Appendix. Part I is purely algebraic.
It is concerned with the algebraic initial data used in our state models. In Section 1
we give axiomatic definition of the initial data and formulate some algebraic conditions
on the data (Conditions I-IV). In Section 2 the quantum 6j-symbols associated with
the quantum group U^^C)) are recalled and shown to yield initial data satisfying
Conditions I-IV (the (( quantum initial data "). Part II deals with fat graphs and the
state sums on their exteriors. Section 3 presents a summary of the results of [TV] used
in the present paper. In Section 4 we define certain auxiliary state sum invariants for
fat graphs lying in the product of a surface and a segment. In Section 5 we introduce
the state sum models on the triangulated exteriors of fat graphs and show indepen-
dence of the associated partition functions of the choice of triangulation. In Section 6
the invariants corresponding to the quantum initial data are discussed in more detail.
Part III is concerned with the diagrammatical approach to the invariants. In Section 7
we define graph diagrams on simple spines of 3-manifolds and discuss the analogues of
the Reidemeister moves. In Section 8 we introduce the relevant face model on the graph
diagrams and verify invariance of the partition function under the moves. In
Section 9 we establish equivalence of this approach to the one introduced in Part II
and prove several theorems stated in Sections 5 and 6. The Appendix presents a compu-
tation of the graph invariants in terms of the Heegaard splittings.

7. A part of this paper was written while the author was visiting Ohio State
University. The support of this university is gratefully acknowledged. The author thanks
the referee for suggestions to improve the exposition and valuable remarks.



PART I

INITIAL DATA

1. Abstract initial data

l.a. Definition of initial data. — Following the lines of [T2], [TV] we introduce
axioms for <( algebraic initial data 9?. The data will be used below to construct our state
sum models. The definition of initial data essentially axiomatizes quantum 6j-symbols
(cf. [KR] and Section 2).

Fix a commutative associative ring K with unit. Denote by K* the group of inver-
tible elements of K. Assume that we are given a finite set I, an element w e K* and two
functions I -^ K* which associate with each i e I elements ^, w^ e K*. Assume that we
have distinguished a set adm of unordered triples of elements of I. The triples belonging
to this set will be called admissible triples. Note that we put no conditions on the set adm;
in particular, elements of an admissible triple may coincide.

An ordered 6-tuple {i,j, k, I, m, n) e I6 will be called admissible if the triples (z,j, k),
(k^ Z, m), {m, n, i) and (j, /, n) are admissible. Assume that with each admissible 6-tuple
(?,j, k, /5 m, n) one associates an element of K, called the symbol of this tuple and
denoted by

J k\
(l.a.l)

I m n

Note that if the 6-tuple (i,j, k, I, m, n) is admissible then the 6-tuples (j, i, k, m, I, n),
(z, k,j, I, n, m) and (z, m, n, l,j, k) are also admissible. We assume the following symmetry
identities of the symbol:

(l.a.2)
i j k

I m n

J

m

i k j

I n m

i m n

I J k

(These identities generate a group of permutations of the tuple (i,j, k, I, m, n) consisting
of 24 elements.) This completes the definition of the initial data.

We extend the symbol to non-admissible 6-tuples by assuming the symbol (l.a.l)
corresponding to any non-admissible tuple {i,j, k, I, m, n) to be equal to zero. The
identities (l .a.2) obviously extend to all 6-tuples.

The initial data is called irreducible if for any j\ k e I there exists a sequence
/i, /2, ..., /,. with /i ==7, /,. = k such that the triple (^, / (+i , If +2) ls admissible for
all t== 1,2, . . . ,r-2.
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1. b. Conditions I-IV. — Here we formulate some algebraic conditions on the
initial data. The geometric meaning of these conditions will be clear in Sections 4, 5
and 8. An example of initial data satisfying these conditions will be given in Section 2.

Condition I. — For any j\,j,,j,J,J, el with Ui,J\J^), C^Js) e adm we have

(l.b.l) ^ S^ Js Jl J '=1,
iel JS J2 J\

and for anfj\,j^, .. .Jg e I withj^ +jg

(l.b.2)

(l.b.3)

s w2
iei

s^
<»ei

Condition III.

(l.b.4)

J& Ji J

Js Ja J^

7W ^V a. b. c, e,f,ji,j\,js,j^ e I

J2 a d

Ji c b

For any j e I

O-j2 S ^Wf.

•

Js d e

Ji f c

J\ Ji J

Js Ji Je

==

J3

a

0.

Jt J23

e d

J23 a e

Ji f b

Js J2 J23

b f c

k.ie'1
U,k,l)esidm

Conditions I-III were used in [TV] to construct state sum invariants of compact
3-manifolds.

Conditions I and II axiomatize respectively the orthogonality relation and the
Biedenham-Eliott identity for Gj-symbols (see [BL], [KR, § 6] and references therein).

For irreducible initial data satisfying Condition I the right hand side of (l.b.4)
is known to be independent of the choice ofj (see [TV, Lemma 1.1. A]). Therefore in
this case Condition III together with the inclusion w e K* mean exactly that the right
hand side of (1 .b.4) presents an invertible element of K with a preferred square root w.

To define state models for invariants of links generalizing the Jones polynomial
we need one more condition involving the function i M- ^,. This condition is an analog
of the Racah identity for (y-symbols.

Condition IV. — For any j , j^, j\,js,j^ ,Jw e I we have

(l.b.5) ^-^Aiisei

Js Ji Jis

J2 J J12

Js Js Jss

Ji J Jis
= ̂  q^ q^ ?,3 <7,J q^

Js Ji «/23

Jl J Jl2

Note that only even powers of {w^}. appear in these conditions. However, the
invariants of graphs in 3-manifolds defined below depend on the choice of{w.}.. The
signs of { w,}. are used when the boundary of the manifold is non-empty: in* a sense
the factor w? is divided between the manifold under consideration and a hypothetical
manifold with the same boundary which one might glue to the other side.



128 VLADIMIR TURAEV

1. c. Corollaries of Conditions I-IV.

Lemma 1 . 1 . — If the initial data satisfy Conditions I-IV, then for c m y j ^ j ^ j ^ j ^ . j ^ j ^ e I
we have

(I.C.I) sw^1
313^1

Js Jl Jl3 J2 JQ J23

J2 J Jl2 Jl J Jl3

==clTl^l^lcl7,19^y^ JQ J2 J23

J'l J Jl2

Proof. — Condition I implies that

J3 J2 J22

J'l J Jl2

Ji3, fee I

kei^

(^•13 ̂ <3^

-1 T.,2
•12 ̂

Js Ji k

J2 J Jl2

Js J2 J23

J'l J J13

^^^
Jis G1

•
Js Ji k

j2 J Jl3

J'3 J J13

Jl Jz J23

•

•

J'3 J'l k >

J2 J Jl2 i

Jl J'3 k

J J2 Jl3

In view of Condition IV the latter expression is equal to

^ ?,-! ?^3 ̂  ̂ î ^1

This implies the claim of the lemma.

J'3 J'l k

J'2 J Jl2

19 1*^ 791J & */ 0 «/ ju0

J'l J ^

Lemma 1.2. — If the initial data satisfy Conditions I, II and IV then for any
a, b, c, d, c,./i,,J'2,j3 e I and s = ± 1 we have

|j'3 a f
1^

= S w^q,q,q,Y
»ei

J2 ^ ^

Jl ^ ^

•
J'3 g e

Jl d c

J'3 ^ .?

J'2 ^ ^

•

J'3 a f

J'2 ^ 5

. J'3 «• f

Ji g b
. J'2 / e

Ji ^ .?

S ^(?» 9s q/ q,Y(l.c.2)
sei

A similar formula is well known in the theory of 6^-symbols; it is a counterpart of
the Yang-Baxter equation (without spectral parameter).

Proof of Lemma 1.2. — Condition IV and Lemma 1.1 imply that

(l.c.3) J'3 S e

Ji d c

= S w^^^^^1^1?^1)
^13 e i

J'l C g

J'3 e d.
Jl J3 Jl3

c e d
•

C Jl g

J'3 e J'i3
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Condition II implies that

s^
aei

j2 a g

Ji c b

Js a f

Jz e g

= S w2

c Ji g

Js e Ji3

Jz a g
»ei Ji c b

e § Js

Ji Jis c

e Js f
a Js g

f o- Js

Ji Jis b

e J\ f
b Jis c

Therefore substituting the expression (I.e. 3) for

Js g e

Jl d c

into the left hand side of (1. c. 2) one obtains that the left hand side of (1. c. 2) equals

e J'2 /

b J13 C
(1 •c-4) ,̂ 1"^ qc qt qf ̂  ̂  ̂ y'

Jl JS J13\ \f «• J3

c e d Ji Ji3 b

Similarly, substituting in the right hand side of (I.e. 2) the following expression

J3

Ji

= . ̂ "^ if ih ih fi197197^Y3136!

a f
g b

Ji b a

Js f g
Jl JS Ji3

b f g
o Ji a

J3 f JI3

and applying the formula

/, b es ̂  J3 g
ff^i j\ d c

Jl 8 f Jl J3 J\3

jz e d b f g

J\3 b f\ \j\ j\ j^

j2 e c c e d

one easily obtains that the right hand side of (1 .c.2) also equals (1 .c.4). This completes
the proof of the Lemma.

Lemma 1.3. — If the initial data satisfy conditions I, II, IV then for any admissible triple
(?, a, b) e adm and for any s == ± 1 we have

(l.c.5) ^^a^-T

i b j

i b a
=^.

The equality (l.c.5) is the Markov relation for R-matrices rewritten in terms
of 6j-symbols (cf. [KR], [Tl], [T2]).

17
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Proof of Lemma 1.3. — Let/ e I. Applying Condition II with a, b, c, d, e.fj^j^j^j^
replaced respectively by b, a, f, d, j, b, i, a, b, i we get

[^^a^fir

i b j b a i

i b a\] \a b f

a b d b d j b a i
-2)6 . .S w^w^q^q^Y

s.dei i f a i b f b j d

a b d b i j | [ d b a
S ̂== s K^-T

i f a | ^'eidel d b f\ \i b j

a b d b d a
== S w^q.q^Y

i f a i b fdel

where the latter equality follows from Condition IV and Lemma 1.1. The latter expres-
sion equals

q^q-J6 S w^q^
dei

f i d a f a

a b b i b d -€
f a a

i b b
-€

a i

a b f

Here we have again used Condition IV and Lemma 1.1. Combining all these equalities
together, multiplying by

b a i

a b f '
w^w^

summing up over all/el, and taking into account Condition I, we get (I.e. 5).

1. d. Remark. — The proofs of Lemmas 1.1, 1.2 and 1.3 given above have simple
visual interpretation (see Section 7.e).

2. Quantum initial data

2. a. Definition of the quantum initial data. — Following the lines of [T2], [TV] we
introduce here c( quantum 5? initial data over C, which satisfy the conditions I-IV
formulated in Section 1. The main ingredient of the data are the q — 6j-symbols associated
with the quantum group Ug(^(C)) and a complex root of unity q (see [KR]). These
symbols play an important role in the representation theory ofU^j/^C)). Here we treat
these symbols in a rather formal way addressing the reader to [KR] for a conceptual
definition.
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Fix an integer r ^ 3 and denote by I the set { 0, 1/2, 1, ..., (r — 3)/2, (r — 2)/2 }.
Fix a primitive complex root of unity t of degree 4r so that t = exp(7T;V— lA/2r) with
h e Z. (The number t is related to q by the formula q == ^). For each integer n ̂  1 put

^2n _ ^-2n

M-Trr-pr6^
and M ! = M [ ^ - 1 ] ... [2][1].

In particular [1]! =[!]==!. Put also [OJ! == [0] = 1. Note that [n]\ == 0 for
n ̂  r and [^]! 4= 0 for ^ < r.

A triple (z,j, ^) e I3 is admissible if i +j + k is an integer, i +j + ^ < r — 2,
and i^ j + k, j ̂  i + k, k ^ z + y. For each admissible triple z, j, ^ set

fP +J - k]! [z ~j + k]! [- z +j + k] iV72

A(z/%) =
P + J + ^ + 1]!

Here by the square root of a real number a we mean a112 ̂  0 if fl ^ 0 and A/— 1 | a [1/2

i fa< 0.
Recall the notion of admissible 6-tuple (see Sect. 1. a). For any admissible 6-tuple

(z,j, k, I, m, n) el6 one defines the Racah-Wigner 6j-symbol which is computed as
follows:

( i j k}^
== A(y%) A(mTz) A(^) Mimk) S(- 1)' [^ + 1 ] !

[ / w n j e

X {[2' — i —j — k]! [z — i — m — n]! [z — I —j — n]! [z — I — m — k]\

[i +J + I + m - z\\ [i +k + I + n - z]\ [ j +k + m + n - z]\}-\

Here z runs over non-negative integers such that all expressions in the square brackets
are non-negative.

Set
i J k ———_2(z+,+fc+!+m+n)p' J k ^Bw

I m n [ I m n j

This complex number is either real or purely imaginary. The identities ( l . a . l ) are
straightforward.

For j el put

y, = expinV^U -JU + 1) Ar-1)),

^•-v^'pj+ir,
w == V2r/| t2 - r21 or w == - V2r/| t2 - t-2 |.

This completes the description of the quantum initial data.
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Theorem 2.1. — The initial data described above are irreducible and satisfy Conditions I-IV.

Proof. — Irreducibility is obvious: for any j, k e I the triple (j, \j' — k |, k) is
admissible. Conditions I-III have been verified in [TV], using the results of [KR].
The formula (l .b.5) follows from the formula 6.17 of [KRJ:

(2.a.l) S(-1)^,-^P3 j l ^IP2 J3 j23}
hs [J2 J J12) [Jl J J13)

= (_ l)^^+^+^-^-^3^^3+c^-cy-cy,-cy.-cy3 )/2 r3 J2 J^ ).
Ui 3 J i 2 )

Here q == /4, ^ == z'(z +1) so that
(_ 1)^/2 „(„ i^r^^^^f t ,
f z j ^ fi j A)^ i j k

and J \=w,w^-l)l+m+k——3-n\J -w,w J .
^ / 771 n j [I m n j I m n

Substituting these formulas in (2.a. l) we get (l.b.5).

2. b. Remarks. —It is easy to see that for the quantum initial data the formula ( I . C . I )
may be obtained from (l.b.5) by the complex conjugation. Similarly, the formulas
(I .e . 2, I.e. 5) with e == — 1 are conjugated to the same formulas with s == 1.

Restricting the quantum initial data to I n Z one gets another example of initial
data satisfying Conditions I-IV.



PART II

THREE-DIMENSIONAL STATE SUM MODELS
FOR LINK AND GRAPH INVARIANTS

Throughout Part II we will use initial data (K, I, w, . . .) as defined in Section 1. a.
We will always assume that the data satisfy Conditions I-IV of Section l.b.

3. Summary of the results of [TV]

3. a. Colorings of manifolds. — Let M be a triangulated manifold of dimension ^ 2.
By a coloring (or I-coloring) of M we mean a function which assigns to each edge of M
an element of I (the color) such that for every 2-simplex of M the colors of its three
edges form an admissible triple. Denote the set of colorings of M by col(M). This set,
of course, strongly depends on the triangulation of M. For compact M this set is finite.

3. b. An invariant of colored 3-manifolds. — Let M be a compact triangulated 3-manifold
and let [i e col(M). With each 3-simplex T of (the triangulation of) M we associate an
element ] T |^ of the ground ring K as follows. If z,j, k are (i-colors of the edges of a
2-face of T and /, m, n are {jL-colors of the opposite edges of T then

i j k
T I — eK.- In — , t:: iv-

I m n

The validity of this definition follows from the symmetry relations (1 .a. 2). One defines
an invariant [ M |^ e K. of the colored 3-manifold (M, pi) by the formula

I M |, - ̂ -^n^n^ni T ]„
e e' T

where: a is the number of vertices of M, (B is the number of vertices of ^M, e runs over
edges of M which do not lie on ^M, e ' runs over edges of ^M, and T runs over all 3-sim-
plices of M. (Note that the triangulation of ^M in question is the one induced by the
triangulation of M.)

In § 5 we will need a more general invariant | M, F |^ e K where F is a certain
union of components of ^M. We put

I M, F |, == w-20^' n^ n^, n | T |,,
e e" T

where: a is the number of vertices of M, (3' is the number of vertices of 3M\F, e runs
over edges of M not lying on 3M, e" runs over edges of 5M\F, and T runs over all
3-simplicies of M.
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3. c. A combinatorial invariant of 3-manifolds. — For simplicity I first state the result
of [TV] pertaining to closed 3-manifolds.

Theorem 3.1 (theorem 1 . 3 . A of [TV]}. — Let M be a closed 3-manifold. Provide M
with a triangulation and put

M | == S | M |^ e K.
(A e COKM)

Then | M [ does not depend on the choice of the triangulation of M.

Thus | M | is a topological invariant of M. (Note that every 3-manifold may be
triangulated and any two triangulations of a 3-manifold are combinatorially equivalent
up to ambient isotopy.)

The following theorem generalizes Theorem 3.1 to the case of compact 3-manifolds.

Theorem 3.2 (theorem 1.4. A of [TV]}. — Let M be a compact 3-manifold with trian-
gulated boundary. Let X e col(^M). Extend the triangulation of 8M to a triangulation ofM (this
is always possible} and put

< M | X > = S | M [^ E K.
(A G col(M)
^1^==^

Then < M | X > does not depend on the extension of the triangulation of ̂ M to M.

Thus < M | X > is a topological invariant of the triple (M, the triangulation
of ^M, X). Note that < M | X > is defined for non-oriented (and even non-orientable) M.

4. Fat graphs

4. a. Graphs and fat graphs. — By a graph we mean a finite graph with unoriented
edges and, possibly, with loops. A graph will be called 3-valent if each vertex of the
graph is incident either to 3 or to 2 edges of the graph counted with multiplicities. A
coloring (or I-coloring) of a 3-valent graph 9 is a function which associates with each
edge of <p an element of the set I (the color) such that for any vertex of <p incident to 3
(resp. 2) edges of 9 the colors of these edges form an admissible triple (resp. are equal
to each other).

By an (abstract)/^ graph we mean a finite collection of disjoint 2-disks and disjoint
bands which meet the disks along their bases lying on the boundaries of the disks (and
otherwise do not meet the disks). Examples of fat graphs are given in Fig. 1, 2.

Each fat graph F has a core c{F) which is an ordinary graph. The vertices of c(F)
are the centers of the 2-disks of F, and the edges of^(F) are the cores of the bands of F
extended slightly to meet the vertices. The fat graph F is called 3-valent if the graph c{F)
is 3-valent, i.e. if each 2-disk of F is incident to either 2 or 3 bands counted with muT-
tiplicities. By abuse of language the vertices, edges, and colorings of^(r) will be called
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resp. vertices, edges, and colorings of F. The set of all colorings of F will be denoted
by col(r). A colored 3-valent fat graph is a 3-valent fat graph provided with a coloring.

The union of disks and bands of a fat graph F is, obviously, a compact surface
with boundary, called the surface of F. A fat graph with oriented surface will be called
an oriented fat graph. (These orientations of fat graphs should not be confused with
orientations of the edges of the graphs.)

4. b. Fat graphs and links in 3-manifolds. — By a fat graph in a 3-manifold N we
mean a fat graph smoothly embedded in N. Two fat graphs in N are isotopic if they
may be smoothly deformed into each other in the class of fat graphs in N. (Its is under-
stood that the splitting into 2-discs and bands is preserved in the course of deformation.)
By an isotopy of colored fat graphs we mean a color-preserving isotopy.

In the context of state model topology the colored 3-valent fat graphs in 3-manifolds
present a convenient and natural generalization of colored framed links in 3-manifolds.
Recall that a link in a 3-manifold N is a finite collection of disjoint (unoriented) circles
smoothly embedded in N. A coloring of a link L is a function associating with each
component of L an element of the set I. A framed link in N is a link LC N provided
with a non-singular normal vector field (a framing) on L. The notion of isotopy readily
extends to colored framed links in N.

Every ^-component framed link L in a 3-manifold N gives rise to a fat graph
r^ C N consisting of m annuli and Mobius bands which contain the components of L
as their cores and which are orthogonal to the framing. (If N is orientable, then F^
consists of annuli.) Each of the annuli and Mobius bands of F^ is treated as a union
of a 2-disk and a band. Thus, F^ has m vertices and m edges, which all are loops.

Each coloring of L induces a coloring of F^: the color of an edge of F^ is defined
to be equal to the color of the corresponding component of L. It is easy to see that the
formula L \-> F^ yields an injective mapping of the set of isotopy types of colored framed
links in N into the set of isotopy types of colored fat graphs in N. Using this mapping
one may view colored framed links in N as (rather special) colored fat graphs in N.

4. c. Graphs in cylinders and their diagrams. — Let F be a surface. Fat graphs in the
cylinder F X [— 1, 1] may be presented by graph diagrams on F in the way similar
to the usual presentation of framed links in R3 by plane link diagrams. By a graph
diagram on F we mean a graph immersed in F with only double transversal crossings
(of edges), each crossing being provided with the following additional structure: one of
the two edges traversing the crossing is cut out at the crossing and considered to be the
locally lower edge (undercrossing), the second edge being considered as the locally
upper one (overcrossing). (Of course, two branches of a graph diagram traversing a
crossing may actually lie on the same edge.) Each graph diagram D on F determines
a fat graph F(D) in F X [— 1, 1]: the disks of F(D) are small disk neighborhoods of
the vertices of D in F = F X 0, the bands of F(D) are narrow neighborhoods of the
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edges of D where at each crossing of the diagram the band corresponding to the over-
crossing is slightly pushed into F x (0, 1].

It is easy to show that two graph diagrams on F present isotopic fat graphs in
F x [0, 1] if and only if they may be obtained from each other by the local Reidemeister
type moves

(4. C.I) Qo,Q2?°33 (x)!? ̂  <°-l5 ^-2

and their inverses. The first five moves are pictured in Fig. 3. The symbols
J i ^ J ' 2 9 ' • - 5 ̂  b, c, . . . which appear in Fig. 3 should be ignored at the moment, they

Ho ^
J3 J4 J5

Jl J2

0,

(x)i

0)2

Fig. 3
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will be used in Section 4.e. The pictures of (o_i, (o.g are obtained from those of 0)1, co^
by the mirror reflection with respect to the plane of the page.

If the surface F is oriented then the orientation of F induces an orientation in the
surface of the fat graph presented by any graph diagram on F. It is easy to see that each
oriented fat graph in F x [— 1, 1] may be presented in this way by a graph diagram
on F. In particular, oriented 3-valent fat graphs i n F x [ — 1 , 1 ] are presented by
3-valent graph diagrams on F.

One easily transfers the results of this subsection into the setting of colored fat
graphs and their colored diagrams. Note that the color of a branch of a colored graph
diagram is preserved when this branch traverses a crossing point of the diagram or a
vertex of valence 2.

4. d. A state model associated with graphs in a cylinder. — Let F be an oriented compact
surface. Let 9 and ^ be two colored 3-valent graphs embedded in F. (Possibly, 9 and ^
intersect each other.) Let F be an oriented colored 3-valent fat graph in F X [— 1, 1].
We present here a state sum model which produces an element < 9 | F [ ^ > of the ground
ring K. The main properties of this construction are given below in Theorems 4.1 and 4.2.

Let D be a colored graph diagram of F on F. Deforming 9 by an ambient isotopy
of F and deforming ^ by another ambient isotopy of F we may assume that 9, ^S D lie
in general position so that all crossings of 9 u ^ u D are double transversal crossings
of edges. We form a graph diagram from 9 u ^ u D assuming that 9 lies everywhere
over ^ u D, and ^ lies under 9 u D. Denote the resulting 3-valent graph diagram on F
by cr. Equip a with the coloring induced by the (given) colorings of 9, ^, and D.

Denote by 2 the graph in F obtained from or by forgetting the over/under-crossing
information. In other words, 2 is the union of 9 u ^ with the vertices and underlying
edges of D. The set of vertices of 2 may be split into five disjoint subsets: (i) the 2-valent
vertices of 9, ^, D; (ii) the 3-valent vertices of 9, ^, D; (iii) crossings of 9 with ^; (iv) cros-
sings ofD with 9 or ^; (v) self-crossings ofD. The vertices of 2 of types (iii-v) are 4-valent.
Note that each edge e of 2 is contained in an edge of either 9, or ^5 or D. By the color
of e we will mean the (given) color of this latter edge.

By a region of D (with respect to 9 and ^O we will mean a connected component
ofF\2. By an area-coloring ofD (with respect to 9 and ^) we mean an arbitrary mapping
from the set of regions of D into the set I. An area-coloring T] of D is called admissible
if for each edge e of the graph 2 the color of e together with the -^-colors of the 2 regions
ofD adjacent to e form an admissible triple. Denote the set of admissible area-colorings
of D by adm(D, 9, ^) or, briefly, by adm(D).

With each T] e adm(D) we will associate an element | D [^ of the ring K. First,
we associate certain elements of K with vertices of 2 and regions of D. For a region y
of D put
(4.d.i) bk=^
where T\{y} and ^(j/) are respectively the 7]-color and the Euler characteristic ofjy.

18
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Let a be a vertex of S. We distinguish five cases in accordance with the five
possible types (i-v) of the vertex a. In case (i) put | a ^ = 1. In case (ii), denote by i,j, k
the colors of the three edges of S incident to a. Let /, m, n be the 7]-colors of the opposite
regions (see Fig. 4). Put

(4.d.2)
i j k

I m n

In cases (iii-v), a is a crossing of two branches of either <p, or ^, or D. Let / be the color
of the upper branch and i be the color of the lower branch. Letj, k, m, n be the -/^-colors
of the 4 regions of D incident to a: see Fig. 5 where the given orientation of F is the
counterclockwise one. In the case (iii) we define | a \^ by the formula (4.d.2). In the
case (iv) put

i j k\
n | — ^1/2 ffl/2 -1/2 ff-1/2u IT] — yfc y» ^ j yw

I m n

Here the symbols ^/2, q^112 should be understood as formal expressions whose product
is equal to 1 and whose squares are equal respectively to ̂  and q^1. In the final formula
for the invariant, only integer powers of q^ actually appear.

Fig. 5
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In the case (v) put
i j k

a\^^(lk(ln(l71(lml ,
I m n

Finally, put
< < p | D | ^ = n b | , . n M ,

V a

where y runs over all regions ofD with respect to 9, ^, and a runs over all vertices ofS.
Put

< 9 I F | + > = S < 9 | D [ ^ \ e K.
T] G adm(D)

Theorem 4.1. — For any 9, ^, F as above < 9 | r | ̂  > zj invariant under ambient iso-
topies of 9 and ^ in F ^W ^Ar isotopies of F m F X [— 1, 1].

Theorem 4.1 provides a large stock of isotopy invariants of oriented colored
3-valent fat graphs i n F x [ — 1,1]. These invariants are nontrivial even when 9
and ^ are empty graphs: 9 = ^ = 0. For example, when F is the 2-disc, the invariant
< 0 | r [ 0 > generalizes the Jones polynomial of links in R3 to the graphs in R3.

Remark that if F is a disjoint union ofn surfaces F^, ..., F^ then

< 9 1 r [ ^ > = n < 9.1 rj ̂  >fc= i
where 9^, ^ are the parts of 9, ^ lying on F^, and I\ is the part of F lying
in F^ x [— 1, 1].

It is important to trace the behavior of the invariant < 9 | F | ^ > under the local
operations T^ — ^^ on F shown in Fig. 6. It is understood that the product orientation
in F X [— 1, 1] corresponds to the right-hand orientation of the ambient space R3 in
Fig. 6. The symbols j\j\, ^3, j^ denote the colors of the corresponding bands. Note
that TI is just the positive twist of the band around its core. The operations T^, ..., T4 are
inverrible up to isotopy.

Theorem 4.2. — If the oriented colored fat graphs I\, ..., Î  are obtained from F res-
pectively by TI, ..., T4 as in Fig. 6, then

(4.d.3) < ? | I \ | ^ > = y 7 2 < 9 | ^ | ^ > ,

(4.d.4) < 9 | ^ 2 K > = ^ 2 < 9 | ^ | + > ,
(4.d.5) < 9 | F, | + > = (^ ̂  q^-1 < 9 I r | ̂  >,
(4.d.6) < 9 | ^ 4 | + > = ^ ^ ^ 1 < 9 | ^ | + > .

Note that the formulas (4.d.4), (4.d.5) follow from the formulas (4. d. 3), (4.d.6)
and the isotopy invariance of < 9 [ F ( ^ >. Indeed, ^ is a composition of TI and an
isotopy; T3 is a composition ofr4, two ^ (applied to the upper tails) and an isotopy.
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^

TS

T"4

J23

Fig. 6

Corollary 4.3.
^ ̂  surface of F.

7^ element < 9 | F | 41 > .̂y no^ depend on the choice of orientation

Proof. — Let F' be a connected component of F. Applying Tg, Tg to all 2-disks
of r' and T^1 to all bands of F' we get from F just the same colored fat graph but with
the opposite orientation in the surface of I" (and the same orientation in other compo-
nents). Since each band of F" is incident to two (possibly coinciding) 2-disks of F', the
formulas (4.d.3 -4.d.5) imply that these operations do not change < <p | F | ^ >. This
yields our claim.

4.e. Proof of Theorems 4.1 and 4.2. — Let us first prove (4.d.3). One positive
(resp. negative) twist of a band of F amounts to applying the Reidemeister move Q^
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(resp. ^_i) to the corresponding edge of a graph diagram of F on F (see Fig. 7). It is
easy to see that the equality (I.e. 5) with e = — 1 (resp. s = 1) implies that this twist
of a band of color i leads to multiplication of < 9 | F | ̂  > by q^~2 (resp. q^). A convenient
notation for the colors of regions establishing a correspondence with (I .e. 5) is specified
in Fig. 7.

H,

Fig. 7

Fig. 8

Similarly, the formula (4.d.6) follows from (l.b.5). For notation establishing
the correspondence between (l.b.5) and (4.d.6) see Fig. 8. As it is explained after
the statement of Theorem 4.2, the formulas (4.d.3, 4.d.6) imply (4.d.4, 4.d.5)
modulo Theorem 4.1.

To prove Theorem 4.1, present F by a colored graph diagram D on F, and form
a colored graph diagram a on F as in Sect. 4.d. It is easy to trace the effect ofisotopies
of 9, ^, r on the diagram cr. Namely, (T is changed by the Reidemeister moves (4.c. 1)
and their inverses. Here Q,o may be applied only to those edges of a which correspond
to bands of F. Since O.Q is a composition ofQi and Q_i the results of the first paragraph
of this subsection imply invariance of < (p [ F [ ^ > under O.Q. Invariance under Qg
and 0)1, (o_i directly follows from Conditions I and II respectively. For notation esta-
blishing these implications see Fig. 3. Invariance of < 9 | F | ̂  > under cog, co.g is straight-
forward.
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Let us prove invariance of < <p | F | ̂  > under ^3. Among the three branches of a
changed by ^3 one branch is the higher one, another branch is the lower one and the
third branch lies on the medium level. In our setting the higher branch may lie on 9
or D, the medium branch always lies on D, and the lower branch may lie on ^ or D.
This gives us four cases which should be considered separately. It is straightforward to
see that in all these cases the equality (I .e . 2) with s == 1 ensures the invariance. (For
notation establishing the correspondence between (I .e . 2) and invariance under ^3
see Fig. 3). This completes the proof of Theorems 4.1 and 4.2.

4.f. Triangulated surfaces and graphs. — Let F be a closed triangulated surface. The
triangulation ofF canonically gives rise to a graph y? in F dual to the 1-skeleton of the
triangulation. More precisely, the vertices of y? are the barycenters of the 2-simplices
of F. Each edge e of F gives rise to a " dual " edge e* of y? which crosses e once and
connects the barycenters of the two 2-simplices ofF adjacent to e. Clearly, y? is a 3-valent
graph embedded in F (see Fig. 9 where yp is drawn boldface).

Fig. 9

Each coloring X of F induces a coloring of y^ which associates with the edge e "
the color \{e} el. We will denote the resulting colored graph in F by y^;.

5. State sum invariants of graphs in 3-manifolds

Throughout Section 5 the symbol N denotes a compact 3-manifold with trian-
gulated boundary. The symbol F denotes an I-colored 3-valent fat graph lying in Int N.
We assume that a neighborhood of F in N is oriented. (The manifold N may be unoriented
and even non-orientable.)

5. a. The case of orientable F. — In this subsection we assume that the surface of
the fat graph F is orientable. Orient this surface in an arbitrary way.
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Put F = 8\] where U is an oriented closed regular neighborhood of F in N.
Provide F with the orientation induced by that of U (so that the normal vector field
on F directed outwards U together with the orientation of F determine the given orien-
tation of U). Consider a non-singular normal vector field on the surface of F which
together with the fixed orientation of this surface determines the orientation of U.
Shifting r along this vector field we get a parallel copy F' of F lying on F.

Remark that U is a handlebody consisting of 3-balls which are regular neighbor-
hoods of the 2-discs of F and of solid cylinders which are regular neighborhoods of the
bands of F. Choose in each of these cylinders a meridianal disk transversal to the cor-
responding band of F. Let ^, .. ., ̂  be the boundaries of these discs (see Fig. 10).
Here m is the number of edges of F, and ^i, ..., ̂  are simple disjoint loops on the sur-
face F. We will treat each ^ as a graph with one (arbitrarily chosen) vertex and one
edge. For a sequence J == (ji, . . . ,J^) e P1 we denote by ^j the colored graph
^ = ̂  u . . . U ̂  in F whose edges lying on ^i, ..., ̂  are colored respectively with

m

J'^ " - J m - put W J = H W\-
fc== 1

Fig. 10

Let M be the compact 3-manifold N\Int U bounded by BM = F u ^N. Pro-
vide M with an arbitrary triangulation which extends the given triangulation of ^N.
Provide F with the induced triangulation. Denote by s the number of vertices of F.

For each \ e col(^N) we define a <( relative 5? invariant of the pair N, F with
respect to \\

< N, F | \ > == w2-28 S ^. | M, F |^. < y^ | P [ ̂  >.
(xecol(M),(Al^=X

jer"

Here y? is the dual graph of the 1-skeleton of the triangulation of F, and (ip = (JL L
(cf. Sect. 4.f). The colored fat graph F 'CF is embedded into F x [— 1, 1] via the
canonical identification F == F x 0.

Theorem 5.1. — < N , r | X > does not depend on the choice of triangulation in ^extending
the given triangulation of ?N.
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This Theorem is proven in Sect. 5.f using the results of Sect. 5.e.
The factor w2'28 in the definition of < N, F [ X > plays the role of a normalizing

scalar: it ensures exact correspondence with the Jones polynomial (see Theorem 6.1
below) and also guarantees invariance of our state sum under the operations of exclusion
of a redundant 2-valent vertex of a colored fat graph (see Fig. 11; this invariance easily
follows from Theorem 9.2 of Section 9).

Fig. 11

Theorem 5.1 implies that < N, F | X > is a homeomorphism invariant of the
triple (N, F, X) and, in particular, an ambient isotopy invariant of F. It is understood
that the homeomorphisms and isotopies preserve the 2-disks, the bands, and the coloring
of F and also preserve the orientation of a regular neighborhood of F in N and of the
surface of F (the latter condition is in fact redundant; see Corollary 5.3).

In the case ^N = 0 we get an invariant of the pair (N, F) corresponding to the
only coloring of the empty surface. (We accept the convention that there is exactly
one mapping of the empty set into I.) This invariant is defined by the same formula as
above where [L runs over all colorings of M. This invariant of the pair (N, F) with
BN = 0 will be denoted by < N, F >.

The invariant < N, F | X > behaves nicely under the operations T^, ..., ^^ on F
shown in Fig. 6. It is understood that the fixed orientation in a regular neighborhood
of F corresponds to the right-hand orientation of the ambient space R3 in Fig. 6. Note
that the orientation of (the surface of) F induces in the obvious way orientations of
i\,...,r,.

Theorem 5.2. — Let \ ecol(^N). If the oriented colored/at graphs 1 ,̂ . . .. T^ are
obtained from F respectively by TI, ...^4 as in Fig. 6, then

(5.a.l) < N , I \ | X > = ^ 2 < N , ^ | X > ,
(5. a.2) X N . r ^ x y ^ ^ N . r i x ) ,
(5.a.3) < N , ^ 3 | X > = ( ^ y , ^ , J - l < N , ^ | X > ,

(5.a.4) < N, F, | X > = ̂  ̂  q^ < N, F | X >.

This theorem will be proven in Section 9. The same argument as in Section 4
shows that the formulas (5.a.l), (5.a.4) imply the formulas (5. a. 2), (5.a.3).
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The next assertion eliminates dependence of our invariants on the choice of
orientations in the surfaces of fat graphs.

Corollary 5.3. — For each X e col(^N) the element < N, F [ X > of K does not depend
on the choice of orientation in the surface of F.

The proof of this corollary follows the proof of Corollary 4.3 with the obvious
changes.

5.b. The case of non-orientable r. — Assume that the surface of r is non-orientable.
Let ^13 . . ., e^ be the bands of F. For each sequence of integers k-^y . . ., k^ denote by
F(^5 . . .5 k^) the colored fat graph in N obtained from F by applying k^ positive half-
twists to ^ for all i == 1, . . ., m. A picture of a positive half-twist is given in Fig. 6 where
T3 is the composition of three such half-twists.

Let 7^3 . . . , ^ be the colors of ^,...,^. Choose integers ^i,...,^ so
that the fat graph F(^i, . . . ,A,J is orientable. Thus, we may consider the invariant
< N, F(^i, ..., k^) [ X > with X e col(^N). It is easy to deduce from the formula (5. a. 1)
that the product

r i ^ < N , F ( ^ , . . . , ^ ) | X >
i=l

does not depend on the choice of^i, . .., k^. We define < N, F | X > to be the common
value of such products. It follows from the results of Sect. 5. a that < N, F | X > is a
topological invariant of the triple (N, F, X) and, in particular, an ambient isotopy
invariant of F. It is understood that the homeomorphisms and isotopies preserve the
2-disks, the bands, and the coloring of F as well as the orientation in a regular neigh-
borhood of F in N.

The invariant < N, F > defined when ^N == 0 and Theorem 5.2 immediately
extend to non-orientable fat graphs.

5. c. Multiplicativity of the invariant. — Let G be a closed triangulated surface which
lies in Int N\F and splits N into two compact 3-manifolds N1 and N3 so that N]_ n N3 == G,
NI u N2 = N. Let F, be the part of F lying in N,, i == 1, 2. Let X be a coloring of ^N
and let \ be the reduction of X to ^N^\G. It follows directly from definitions that

< N, F | \ > = w-2 S < N, FI | Xi U v >• < N2, F^ | Xg U v >.
v G col(G)

5. d. Invariants of non-fat graphs. The formulas (5. a. 1) - (5. a. 4) show that considered
up to multiplication by { q, \j e I} the invariants < N, F [ X > and < N, F > are deter-
mined by the colored core c(T) C N of F and the orientation of its regular neighborhood.
This observation produces non-trivial invariants of colored 3-valent (non-fat) graphs
in 3-manifolds. A similar observation applies to the invariants < 9 | F | ̂  > considered
in Section 4 and to more general invariants < N, F | cp > introduced in Section 5.g.

19
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5. e. Alexander transformations and their dualization. — To prove Theorem 5.1 we
will use the Alexander transformations (moves) of polyhedra (stellar subdivisions) and
their description in the language of dual cell subdivisions. For simplicity we restrict
ourselves to combinatorial manifolds.

Let X be a triangulated combinatorial manifold of dimension n ̂  1 (possibly
with boundary). The Alexander transformation along a simplex e of X changes the
triangulation of X inside the star St(<?) of e. (Recall that St{e) is the union of simplices
ofX containing e\ by simplices we mean closed simplices.) The transformation goes by
subdividing the ball St(^) as a cone over its boundary with the cone point (which is
the only new vertex) inside e. For example, if dim (e) = 1, then this transformation splits
each simplex containing e into two halves and does not change the simplices which do
not contain e. Denote the resulting triangulation by Xg.

Alexander [Al] proved that if X is compact, then any two (combinatorially equi-
valent) triangulations of X may be related by a finite sequence of Alexander transfor-
mations and their inverses. It was remarked in [TV] that if the two triangulations of X
coincide on a union SQ X of several components of ^X, then one may use only those
Alexander transformations (and their inverses) which correspond to simplices not lying
on Bo(X).

Note that if n = dim X = 2, then there are two combinatorial types of Alexander
moves along edges (in accordance with the options eC 8YL and e cj: ^X). If n ̂  3 then
there is an infinite number of combinatorial types of these moves due to the infinite
number of triangulations of spheres and balls of dimension ^ 1. The picture becomes
simpler when one passes to the dual cell subdivision X* of X.

Recall the construction of X*. With each strictly increasing sequence AQ C A^
C . . . C A^ of simplices of X one associates a m-dimensional linear simplex [A^, A^, ..., A^]
whose vertices are the barycenters ofA^A^, . . . , A^. Such simplices corresponding to all
sequences AQ C ... C A^ form a subdivision of X, called the first barycentric subdivision
and denoted by X1. For a simpex A of X one denotes by A* the union of all simplices
[Ao, AI, ..., A,J as above with AQ = A. It is well known that A* is a closed combina-
torial cell of dimension n — dim A. The sphere 8A* is the union of cells B* where B runs
over all simplices ofX containing A and distinct from A.IfAC ^X then one may consider
also the dual cell A^ of A in ^X. It is obvious that Ag == A* n ^X. The two sets of cells
{ A* | A runs over simplices of X } and { A^ | A runs over simplices of 8X.} form the dual
cell subdivision X"6 of X. Clearly, the cells { A ^ } form the dual cell subdivision
B(X*) == (aX)* of the (triangulated) boundary of X.

It is easy to trace the changes in X* which accompany the Alexander trans-
formations. For example, if e is an edge ofX, then (XJ* is obtained from X* by thickening
the {n — l)-cell^*. In other words, e* is replaced by e* X [— 1, 1] with the product
cell structure.

5.f. Proof of Theorem 5.1. — Theorem 5.1 directly follows from the next lemma.
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Lemma 5.3. — Let M be a compact S-manifold whose boundary splits into disjoint union
of closed surfaces F and G. Let the surface G be triangulated and equipped with a coloring X. Let ^
be a colored 3-valent graph in F and let V be an oriented colored 3-valent fat graph in F x [— 1 , 1 ] .
Extend the triangulation of G to a triangulation of M. Then the state sum

(5.f.l) S | M , F | , . < ^ | r ' | ^ >
(A e col(M)
^IG-^

(where pip == [L \y) does not depend on the choice of the extension,

Proof of the Lemma. — It suffices to verify the invariance of (5.f.l) under the
Alexander transformation along a simplex e (of the triangulation of M) not lying in G.

Let us rewrite the sum (5.f.l) in the following form

(5.f.2) S ( 2: |M,F | , .<y ; | r ' | ^» .
v e col(F) IL e col(M)

^ l o ^ X , (x ip -v

If e does not lie on F, then Theorem 3.2 implies that for any v e col(F) the sum staying
in (5.f.2) in the parentheses is invariant under the Alexander move along e. (Note
that | M, F [^ = d \ M |^ where d depends only on the triangulation of F and (JL L.) This
implies our claim.

In the case e C F the proof goes essentially along the same lines as the proof of
Theorem 1.4. A in [TV], The idea is to rewrite the state sum (5.f. 1) as a state sum on
the 2-skeleton of M* (rel. G). Consider first the case of empty F' and ^. The regions
of the graph y? oi1 F ^e exactly the 2-cells of M* lying in F. Each pair ([JL e col(M),
Y] eadm(Yp)) determines a coloring (JLT] of the 2-cells of M* not lying in G. Namely,
ify is a 2-cell of M* lying in F, then (pi7]) [ y ) == f\{y) e I. Ifj/is a 2-cell of M* not lying
in ^M and dual to an edge e' of M, then ([JLY]) {jy) == \i{e') e I. The coloring (JLY] has the
property that the colors of any three 2-cells having a common edge form an admissible
triple. The formula (pi, T]) \—> (JLT) establishes a bijection of the set of pairs ([A, Y]) as above
and the colorings of the relative 2-skeleton of (M*, G) with this property. Now it is
easy to rewrite (5.f.l) as a state sum on the relative 2-skeleton of (M*, G). Here each
vertex of M* (not lying on G) will contribute a 6j-symbol determined by the colors
of the six adjacent 2-cells. Each 2-cell of (M*, G) of color i will also contribute the
factor w^.

Now we may compare the state sums on the 2-skeletons of (M*, G) and ((MJ*, G)
where Mg is the triangulation obtained by the Alexander transformation of M along
eCSM. Let dim(^) === 1. The 2-skeleton of (MJ* is obtained from the 2-skeleton of M,
by gluing one 2-disk e* X 1 along its boundary. The gluing map is homotopic to zero
in e* x ( — 1 ) u ̂  x [— 1, I], The homotopy may be presented as a composition
of standard local deformations of the circle Qe* X 1 in e* X ( — 1 ) u W X [— 1, 1].
There are two types of such local deformations reflecting the polygonal structure of e*.
A deformation of the first type pushes a small piece of the circle through an edge of
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e* x (— 1) inside e* X (— 1). A deformation of the second type pushes the circle
through a vertex of e* X (— 1) inside e* X (— 1). Applying such deformations we may
deform the boundary circle of e* X 1 to a small embedded circle in e* X (— 1). It is
easy to check that Conditions I, II ensure invariance of our state sum under the two
local deformations described above. (For a detailed argument see [TV].) Condition III
ensures invariance of the state sum under elimination of a 2-disc whose boundary lies
inside another 2-disc of M^. Since these operations transform the 2-skeleton of M^
into the 2-skeleton of M* we get the invariance of our state sum under the Alexander
transformation along e. The case dim e == 2 is treated similarly.

In the case of non-empty F' and ^ we may isotop these graphs out of the star of e
in F without changing the sum (5.f.l). (This follows from Theorem 4.1.) Now, F'
and ^ do not interfere with the Alexander transformation along e and its dualization
so that we may apply the same arguments as above.

5. g. Remark. — The colorings of a triangulated closed surface G generate the vector
space Q.(G) introduced in [TV], Denote the generator corresponding to X e col(G)
by | X >. Each colored 3-valent graph 9 embedded in G gives rise to an element [ 9 >
of this vector space:

| 9 > = S w^ <y^| 0 | 9 >•! x)-
XecoKG)

Here 0 is the empty graph in G X [— I? I]? and

(S.g.l) w^==w-^Tlw^
e'

where (3 is the number of vertices of G and e' runs over all edges of G.
Note that the state sum invariant < y I 0 1 9 > myf be defined for any colored

3-valent graphs y? 9 on G without any assumptions on the orientability of G
(cf. Lemma 9.3 below). One may show that the element | 9 > e Q,(G) does not depend
on the choice of triangulation of G up to canonical isomorphisms relating the vector
spaces Q,(G) defined via different triangulations ofG (see [TV]). In particular, one has
an important canonical element [ 0 > of Q,(G). Note also that | y^ > = w^1 \ X >.

If G is the boundary of a compact 3-manifold N and F is a colored 3-valent fat
graph in Int N with oriented neighborhood, then, for a colored 3-valent graph 9 on G,
we define

< N , r | 9 > = s ^ < Y ^ M < p > - < N , r | x > .
X e col(G)

Here one has to fix a triangulation of G, but the result does not depend on the choice
of this triangulation. In particular, one has an (< absolute 5? invariant < N, F > of the
pair (N, F) defined to be < N, F | 0 >. This latter invariant generalizes the invariant
< N, F > introduced in Section 5. a in the case of closed N. The invariant < N, F | 9 >
also generalizes the invariant < 9 ] F [ ^ > considered in Section 4.
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6. Quantum invariants of graphs in 3-manifolds

In this section we consider the invariants of fat graphs introduced in Sec-
tion 5 for the quantum initial data corresponding to a primitive complex root of unity
exp(7c\/— lh[2r) of degree 4r (see Section 2). Note that these invariants of fat graphs
are complex numbers (depending on the choice of the root).

6. a. Comparison with the Jones polynomial. — V. Jones [J] introduced for each
oriented link LCS3 a Laurent polynomial V^(^) eZ[V^V7~1] which is an isotopy
invariant of L. Kauffmann [K] constructed a bracket version < L > {t) eZ[t,t~'1] of
the Jones polynomial which is defined for every framed (unoriented) link LCS3 and
which is invariant under framing preserving isotopies. If the link L is both oriented
and framed then

^x^-^+^^v^4)
where the integer m is determined by the framing and the linking numbers of the compo-
nents of L.

The bracket polynomial is characterized by the following three properties:
(i) if L is a trivial knot lying in R2 with the framing orthogonal to R2, then

< L > = - ( ^ + r 2 ) ;
(ii) if a framed link L' is obtained from a framed link LCS3 by one positive

twist of the framing, then < L ' > = = — ^ < L > ;
(iii) if three framed links L, L^., L_ in S3 are presented by link diagrams in R2

(with the framings orthogonal to R2) such that the diagrams coincide outside some disc
and look as in Fig. 12 inside the disc, then
(6.a.l) < L > = ^ < L ^ > + r l < L _ > .

Note that by the positive twist of the framing we mean the twist which is positive with
respect to the right-hand orientation of S3.

L L^ • L̂ .
Fig. 12

Theorem 6.1. — Let L be a framed link in S3 and let F^ be the corresponding/at graph
in S3 consisting of annuli. Provide all edges of F^ with the color 1/2 el and provide a regular
neighborhood of F^ with the right-hand orientation. Then

< S3, IY > = < L > (exp(^V~=~ih|2r))
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where the left hand side is the state sum invariant of the pair (S3, rj defined in Section 5 and based

on the quantum initial data corresponding to the root of unity exp [n V—-U/2r).

Theorem 6.1 shows that the values of the Jones polynomial of a link in the roots
of unity may be computed as the partition functions of the corresponding state sum
models on the link exterior. This theorem will be proven in Section 9.

6. b. Generalization of the formula (6. a. 1). — The formula (6. a. 1) may be generalized
to quantum invariants of fat graphs in an arbitrary compact 3-manifold N. Let F, F^., F_
be three colored fat graphs in N with oriented regular neighborhoods. We say that these
three graphs form a splitting triple if there exists a ball B C N such that:

(i) F, I\, r_ coincide outside B (together with their colorings and with orien-
tations in their neighborhoods);

(ii) r, I\, r_ look as in Fig. 13 inside B;
(iii) the orientations in the neighborhoods of F, I\, F_ are compatible with the

orientation in B corresponding to the right-hand orientation in Fig. 13;
(iv) the edges of F, I\, F_ meeting B are colored with 1/2 el.

Fig. 13

Theorem 6.2. — For any splitting triple F, F^, F_ as above, for any triangulation of ̂ N
and any \ e col(^N) we have

< N, r | x > = t < N, r+ I x > + r1 < N, r_ | x >

where t == exp{nV— U/2r).

This theorem will be proven in Section 9.

Corollary 6.3. — For any splitting triple F, F^., F_ in a closed 3-manifold N we have

^r^^N^r^+r^^r. .)

where t == exp (re V — l^/2r).

6. c. Remarks. — 1. For links in homology 3-spheres one may combine the invariants
considered in this section with linking numbers to get numerical invariants of oriented
(non-framed) links which satisfy the original Jones relation (cf. [J], [K]).
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2. One may generalize Theorem 6.1 to colored 3-valent fat graphs in S3. With
such a graph F one may associate an isotopy invariant < F > which is a rational
function on one variable t (see [KR], [RT1], [W2]). Then the value of this function
at t == e'x.p[nV— U/2r) coincides with the partition function < S3, F > corresponding
to the quantum initial data and the right-hand orientation in a neighborhood of F.
Note that the denominator of < F > is a product of expressions ^+2 — t~^~2 where i
runs over the colors of certain edges of F. Therefore if the colors of all edges of F belong
to the set { 0, 1/2, 1, . . . , (r — 3)/2, (r — 2)/2 }, then t == exp{nV— U/2r) is not a
root of this denominator.

3. One may refine the invariant < N, F > to an invariant < N , r ; A ; > where
x e H^NN^r; Z/2). It is defined along the same lines as < N, F > but with |JL running
over the colorings of M such that the 1-cocycle e h-> [i{e) (mod 2) presents x (cf. [TV]).
Clearly,

< N , r > = 2 ; < N , r ; ^ > .
x

The results of Part III also may be refined to this setting.



PART III

FACE MODELS FOR LINK AND GRAPH INVARIANTS

7. Simple skeletons of 3-manifolds and enriched graph diagrams

7. a. Simple 2-polyhedra. — A 2-dimensional polyhedron X is called a simple polyhe-
dron if each point of X has a neighborhood homeomorphic either to (i) the plane R2,
to (ii) the union of three half-planes in R3 meeting along their common boundary line,
or to (iii) the cone over the 1-skeleton of the 3-dimensional simplex.

The points of a simple 2-polyhedron X which have neighborhoods homeomorphic
to R2 form a two-dimensional manifold denoted by Int X. It is easy to see that the
complement of Int X in X is a graph whose vertices are those points of X which have
neighborhoods of type (iii) and correspond to the cone points of the cones. In particular,
each vertex of the graph X\Int X is incident to four edges (counted with multiplicites).

Note that some components ofX\Int X may be topological circles without vertices.
By an edge of X we will mean either a circle component of X\Int X without vertices
or a honest edge of this graph which connects two (possibly coinciding) vertices. By a
vertex of X we will mean a vertex of the graph X\Int X.

By an orientation of a simple 2-polyhedron X we mean an orientation of Int X.

7. b. Simple 2-skeletons of 3-manifolds, — Let X be a compact simple 2-polyhedron
embedded in a compact 3-manifold N. We say that X is a simple 2-skeleton of N if
X C Int N and the complement in N of an open regular neighborhood of X is a disjoint
union of a closed regular neighborhood of ^N and several closed 3-balls. Note that the
closed regular neighborhood of BN in N is a collar BN X [0, 1] C N of BN = BN X 0.
Thus, for any simple 2-skeleton X of N a regular neighborhood of X in N may be
obtained from N by cutting out a collar of ^N and several disjoint closed 3-balls. Denote
the number of these balls by ff(N\X).

For example, if N is a closed triangulated 3-manifold, then the 2-skeleton of the
dual cell subdivision is a simple 2-skeleton of N. The complement of its regular neigh-
borhood consists of disjoint 3-balls centered in the vertices of the triangulation. To perform
a similar construction for a compact 3-manifold N with non-void boundary we fix a
collar BN X [0, 1] C N ofBN, triangulate N\(BN X [0, 1)) and take the union o f B N x l
with the 2-skeleton of the dual cell subdivision. This union is a simple 2-skeleton of N.
The complement of its regular neighborhood consists of a collar of ON (which is strictly
smaller than the first one) and disjoint 3-balls centered in the vertices of the triangu-
lation of N\(^N X [0, 1)) not lying on the boundary ^N X 1 of this manifold.
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Another example of a simple 2-skeleton of a 3-manifold presents a closed surface
F == F X 0 lying in F X [-- 1, 1].

7. c. Graph diagrams on simple 2-polyhedra. — In this subsection the notion of
graph diagram on a surface is generalized to the notion of graph diagram on a simple
2-polyhedron. We also introduce enriched graph diagrams and show that they present
fat graphs in 3-manifolds.

Let X be a simple 2-polyhedron. By a graph diagram on X we mean a graph d
immersed in X such that: d does not meet vertices of X; d meets the edges of X trans-
versally; all self-crossings and vertices of d lie in Int X; the self-crossings of d are double
transversal crossings of edges of d; each self-crossing is provided with the following
additional structure: one of the two edges of d traversing the crossing is cut out at the
crossing and considered to be the " locally lower edge ", the second edge being considered
as the <( locally upper edge ". The abstract graph d will be called the underlying graph
of the diagram. The vertices and edges of d will be called respectively the vertices and
the edges of the diagram. By abuse of language we will speak of vertices and edges of
the diagram as if they lay on X meaning their images under the immersion d -> X
specified by the diagram.

By an enriched graph diagram on X we mean a pair (a graph diagram on X; a
function which associates with each edge of the diagram an integer or half-integer,
called the pretwist of this edge).

Let X be an oriented simple 2-polyhedron embedded in an oriented 3-manifold N.
Equip Int X with the normal direction which together with the orientation of X deter-
mines the orientation of N.

Each graph diagram d on X gives rise to a fat graph T(d) in X. The 2-disks of F(rf)
are small disk neighborhoods of the vertices of d in Int X. The bands of F{d) contain
the edges of d as the cores and lie in X except in small neighborhoods of the self-crossing
points of d where the bands corresponding to the locally upper edges are slightly pushed
into N\X along the specified normal direction.

Every enriched graph diagram D = (</, the pretwist function on the set of edges
of d) gives rise to a fat graph F(D) in N. It is obtained from F{d) via the twisting of all
bands of F(rf) around their cores as many times as are the pretwists of the corresponding
edges. Here the positive direction of twisting is determined by the orientation of N.
Note that the pretwists 1/2 and — 1/2 correspond to one positive and one negative
half-twist of a band.

It is straightforward to see that if X is a 2-skeleton of N then each fat graph in N
is isotopic to a fat graph presented by some enriched graph diagram on X.

7. d. Moves on enriched graph diagrams. — Let X be an oriented simple 2-polyhedron
embedded in an oriented 3-manifold N. We consider local moves

(7.d.l) £2i — Qg, coi — 004, co_i, <o_2
20
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on the enriched graph diagrams in X. The first twelve moves are drawn in Figures 3, 14,
15a-15c, 16a, and 16&. Here D^ — ^3, <0i, co^ proceed in IntX, whereas Q^ — Qg
and (03, 0)4 proceed in a neighborhood of sing(X). The moves <o_i, co_2 also proceed
in IntX, they are presented by pictures obtained from the pictures of coi, co^ by the
mirror reflection with respect to the plane of the page. The moves ̂  and ^4 decrease

Fig. 14

Fig. 15a

Fig. 15b
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Fig. 15c

the pretwist by 1 and 1/2 respectively; in our figures the pretwists are represented by
numbers located in small boxes. (We assume that in the pictures for D^, ^4 the orienta-
tion of N corresponds to the right-hand orientation in R3.) Other moves do not change
the pretwists. The symbols j,J\,ja, . . . entering into Fig. 15a should be disregarded
at the moment.

Fig. 16a

Fig. 16b
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Note that the move Q.^ is a lifting to the class of enriched diagrams of the classical
Reidemeister move drawn in Fig. 7. One may similarly lift the second transformation
drawn in Fig. 7 to a move on enriched diagrams increasing the pretwist by 1. It is
obvious that Q() may be presented as a composition of the latter move with 0.^.

It is straightforward to see that the moves £1^ — Qg, co^ — 0)4, co_i, co_2 preserve
the isotopy types of the fat graphs in N presented by the enriched graph diagrams in X.

Theorem 7 A. — Let X be an oriented simple 2-skeleton of an oriented compact S-manifold N.
Two enriched graph diagrams on X give rise to isotopicfat graphs in N if and only if these diagrams
may be obtained from each other by the moves (7.d.l) and their inverses.

Proof. — The proof of the theorem is based on standard arguments similar to the
classical arguments of Reidemeister [R] and their well-known extensions to graphs
in R3. First one notes that any isotopy in N between fat graphs presented by enriched
graph diagrams on X may be deformed into a regular neighborhood of X. Then one
splits the isotopy into a composition of" elementary 93 local isotopies. It is easy to describe
all types of elementary local isotopies and to present them as compositions of the moves
(7 .d . l ) and their inverses.

7.e. Remarks. — The isotopy shown in Fig. 17 may be easily presented as a compo-
sition of Q^, tig? ^T1 ^d ^4'1- This presentation motivates the proof of Lemma 1.2
given in Section 1. Similarly, the move ̂  applied near an edge of X to a branch of
a graph diagram traversing this edge may be presented as a composition of two ^4,
^7 and Qg. This decomposition motivates the proof of Lemma 1.3 given in Section 1.
As an exercise the reader may find an analogous visual interpretation of the proof of
Lemma 1.1. Note finally that, if each connected component of X has at least one edge,
then using our moves one may transform any enriched graph diagram on X into a
diagram with zero pretwists of all edges.

Fig. 17
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8. State sum invariants via graph diagrams

In Section 8 and in the next Section 9 we use certain fixed initial data (K, I, w, . . .)
satisfying Conditions I-IV of Section 1.

8. a. Colored graph diagrams. — Let D be an enriched graph diagram on a simple
2-polyhedron X. We say that D is colored if the underlying (abstract) graph of D is
3-valent and I-colored (cf. Sect. 4. a and 7.c).

If X is oriented and embedded into an oriented 3-manifold N, then each coloring
of D in the obvious way determines a coloring of the fat graph F(D) C N. Here and in
the rest of Section 8 we consider only 3-valent graph diagrams.

8.b. The state model. — Let X be an oriented simple 2-polyhedron embedded
in an oriented 3-manifold N. We present here a state sum model which associates with
each colored enriched graph diagram D on X an element « D » of the ground ring K.
This element is invariant under the moves (7.d. l) .

Let D be a colored enriched graph diagram on X. Let D be the graph in X obtained
from D by forgetting the over/under-crossing information (see Fig. 18). Put

S = D u (X\Int X) C X.

The transversality conditions put on graph diagrams in Section 7. c imply that S is a finite
graph whose set of vertices may be split into five disjoint subsets: (i) 2-valent vertices
ofD, (ii) 3-valent vertices ofD, (iii) self-crossings ofD, (iv) crossings ofD with X\Int X,
(v) vertices of X\Int X. The vertices of S of types (iii-v) have valency 4.

Fig. 18

By a region of D we mean a connected component of the 2-manifold X\2. By an
area-coloring of D we mean an arbitrary mapping of the set of regions of D into I. An
area-coloring T] of D is called admissible if for any edge e of 2 the following holds true:
either e lies on an edge of X and the -^-colors of the three adjacent regions ofD form an
admissible triple, or e lies on an edge ofD and then the (fixed) color of this edge together
with the 7]-colors of two regions of D adjacent to e form an admissible triple. Denote
the set of admissible area-colorings of D by adm(D).

With each T) e adm(D) we associate an element « D »^ of K as follows. First
we associate certain elements of K with regions and edges of D and with vertices of S.
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For a region y ofD we define \y [^ e K by the formula (4.d. 1). For an edge e ofD with
color i e I and with the pretwist n we put

e\==gr

(Clearly, | e \ does not depend on the choice of T].)
For a vertex a of S we define | a \^ in accordance with the type (i-v) of a.

In case (i) | a \^ == 1. In case (ii)

(8.b.l)
i j k

I m n

where z, j\ k are the colors of the edges of D incident to a and /, w, n are the Tj-colors
of the opposite regions ofD (see Fig. 4). In case (iii)

i j k\
=?A?n^ ^

I m n

where / and i are the colors of the locally upper and lower edges of D and j, k, m, n are
the 7]-colors of the regions of D as in Fig. 5. In case (iv)

\^-^e^w^w \ j^ J

I m nI 4'M 'M

where i is the color of the edge of D traversing a and j, ky I, m are the ^-colors of the
regions of D shown in Fig. 19 where the orientation of N is assumed to be the right-
hand one. The symbols ^/2, fi112 are understood here as formal expressions as in Sec-
tion 4.d. In the final formula for the partition function each q^ appears in an integer
power. In case (v) | a \^ is defined by the formula (8.b.l) where i, j, k, I, m, n are the
7)-colors of the regions ofD incident to a as in Fig. 20. Note that the inclusion T) e adm(D)
and the definition of colorings of graphs ensure admissibility of the 6-tuple {i,j\ k, /, m, n)
in all cases considered here.

Fig. 19
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Fig. 20

We put

(s.b.2) «D»,==nM.nb| , .nH,
e v a

where e runs over all edges ofD, a runs over all vertices ofDyjy runs over all regions ofD.
Here is the state sum invariant of D:

« D » = = S «D»,.
•n e adm(D)

Theorem 8.1. — For any colored 3-valent enriched graph diagram D the element « D »
of K is invariant under the moves (7.d.l) on D.

Proof. — Invariance under the moves (4.c.l) is proven along the same lines as
Theorem 4.1. Invariance under the remaining moves is proven similarly. Specifically,
invariance under Qg follows from Condition I. Invariance under the moves Dy, Dg, 0)3
follows from Condition II. Invariance under the moves Q^, Q^, ^ follows from
Lemmas 1.3, 1.1, and 1.2 respectively. Invariance under 0)4 is straightforward.

To give a sample argument I will verify invariance of «D » under ^4. Let a
diagram D' be obtained from D by a single application of 04. Fix the colors of all regions
of D' except the one marked byj^g in Fig. 15a and vary the color j^ of this region. In
this way we get a finite set, say, V of admissible area-colorings of D'. (We automatically
exclude non-admissible colorings so it may happen that V = 0.)

I f V + 0 , then all colorings T] e V induce in the obvious way an admissible coloring
7]o of D (see Fig. 15fl). We claim that

(8.b.3) S « D ' » - « D » -^o*TIGV

The numbers « D' »,,, « D »^ are products of certain factors, most of which are
the same. We compare the factors which differ. The edges of D, D' shown in Fig. 15a
contribute ^-2ro to « D' >\ and q^ to « D »^, where j\ is the color of these edges.
The regions ofD, D' contribute the same with only one exception: D' has one additional
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disk region marked by j^ which contributes the factor w2^ to « D' )\. The two ver-
tices of D' shown in Fig. 15a contribute the following factor

^-1/2 . 1/2 .-1 1/2 1/2
^12 ^28 '̂13 ^ ^-2 ^3

j3 Jl Jl3

J2 J Jl2

J2 J3 J23

Jl J Jl3

The vertex of D shown in Fig. l5a contributes the following factor to « D »

- 1 / 2 - 1 / 2 1 / 2 1 / 2 J3 J2 J23

9} y?2 ?jia ^23 . . . •
Jl J Jl2

All other vertices contribute the same to «D' »^ and « D » . Substituting all
these contributions into (8.b.3) we immediately get that (8.b.3) is a direct corollary
of Lemma 1.1.

We need one more remark. Let 7]o be an admissible area-colouring of D shown
in Fig. 15a. In principle, it may happen that 7]o does not extend to an admissible area
colouring of D': there may be no j^ such that both triples Us^Ji^Jis) ^d (j^^Jis)
are admissible. Condition IV shows that if it is the case then

J3 J2 J23

A J J\2
==0

so that « D »^ = 0 and we again have (8.b.3). Summing up equalities (8.b.3)
over all 7]o e adm(D) we get the desired equality « D » = « D' ».

8.c. Invariants of colored fat graphs in 3-manifolds. — Let N be an oriented compact
3-manifold. Let F be a colored 3-valent fat graph in N. We define a state sum invariant

« N , r » e K

as follows. Choose an arbitrary oriented simple 2-skeleton X of N and present F by a
colored enriched graph diagram D on X. Put

« N, F » = ^2(l-ft(N\X)) ̂  J5 ̂

For the definition of the number #(N\X) see Section 7.b. Theorems 7.1 and 8.1 imply
that « N, F » is an isotopy invariant of F.

Theorem 8.2. — The element «N,r»o/'K does not depend on the choice o/*X.

Proof. — First we show that « N, F » does not depend on the orientation of X.
Let A be a connected component of Int X and let X' be the same oriented polyhedron X
with inverted orientation in A. Present F by an enriched diagram D on X. Let D' be
the enriched diagram on X' obtained from D by trading all overcrossings/undercrossings
lying in A respectively for undercrossings/overcrossings. It is easy to see that the dia-
gram D' on X' also presents F. It follows directly from definitions that « D » == « D' ».
Thus « N, F» is independent of the choice of orientation in X.
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Let us show independence of « N, F » of the choice of X. It is known that any
two simple 2-skeletons of N may be related by a finite sequence of local moves shown
in Fig. 21 and the inverse moves. For a proof of this assertion see [TV, Theorem 6.2. A]
where it is deduced from the results of Matveev [M] and Piergallini [P] concerned with
cellular simple spines of 3-manifolds. The proof actually shows that any two orientable
simple 2-skeletons of N may be related by these local moves in the class of orientable
simple 2-skeletons of N. For each of these three moves a certain diagram D of F may be
assumed to lie outside the 3-ball where the move proceeds. Now the same arguments
as in the proof of Theorem 8.1 show that the move does not affect « D ». This implies
the claim of the theorem.

Fig. 21
21
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; &,A. Properties of the invariants.

Theorem 8.3. — Let F be a colored 3-valent fat graph in an oriented compact 3-manifold N.
Let B b e a closed 3-ball lying in IntN\r. Then

, «N\IntB,r»==^^N,r».

Proo/'. — If X is an oriented simple 2-skeleton of N\Int B, then X also is a simple
2-skyeton of N. The state sum « D » associated with a diagram D ofT on X depends
only on X, D and a regular neighborhood ofXin the ambient 3-manifold. Thus « D »
is preserved under the passage from N\Int B to N. This implies the claim.

Theorem 8.4. — Let T be a colored 3-valentfat graph in an oriented compact 3-manifold N.
If colored fat graphs Fi, ..., I\ in N are obtained from F respectively by T^, ..., ̂ ^ (see Sec-
tion 4.d) then

(S.d.l) ^^^^^^N.O,
«N,T,»=?72«N,^»,
«N,^3»=(^^yJ- l«N,^»,
«N,r4»=^^^«N,r» .

Proof. — Present the graphs by graph diagrams in an oriented simple 2-skeleton X
of N which coincide outside a disk in Int X and look as in Fig. 7 inside this disk. Now
the arguments given in the beginning of Section 4.e apply word for word.

Theorem 8.5. — Let F, be the fat graph in S3 shown in Fig. 2 with i e I being the color
of the only edge of I\. Then

« s3, r, »== Q)?.
7 ^ Proof. — Clearly S2 C S3 is a simple 2-skeleton of S3. The graph F, may be pre-

sented by the diagram D on S2 consisting of one simple loop with zero pretwist and the
color i. It follows from the definitions that

i - «n»== s \ w^w\.
k.iei

(».&,l)6adm

In view of Condition III,
k « s3, r,» = w-2« D » == w?.

8.e. Properties of quantum invariants. — In this subsection we assume our initial
data to be the quantum ones described in Section 2,

/
Theorem 8.6. — Let N be an oriented compact 3-manifold. Let F, F^, F_ be a splitting

triple of colored 3-valent fat graphs in N (see Sect. 6.b, the orientations in the regular neighborhoods
of r, r_(_, r_ are assumed to be the ones induced by the orientation ofN). Then

« N, r » = t« N, i\ »,+. r1« N, r_ ».
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Proof. — Present the graphs by graph diagrams in an oriented simple 2-skekton X
of N which coincide outside a disk in Int X and look as in Fig. 12 inside this disk. Now
the arguments given in [T2, proof of Theorem 6.2] apply word for word.

Theorem 8.7. — Under the conditions of Theorem 6.1

« S3, I\, » = < L >(exp(7r^~U/2r)).

Proof. — We will show that the function L h-^ « S3, F^ » satisfies the conditions
(i-iii) of Section 6. a with t == exp(7rV— U/2r). Since these conditions uniquely cha-
racterize the function L (-»- < L > {t) this will imply the claim of the theorem.

The condition (i) follows from Theorem 8.5 since w^ == — {t2 + r2). The
condition (ii) follows from the formula (8.d.l) since

n~2 — /8
</i/2 — — r •

The condition (iii) follows from Theorem 8.6.

9. Comparison of two approaches

9. a. The case of graphs in closed manifolds.

Theorem 9 .1.— Let N be a closed connected oriented 3-manifold. Let T be a colored 3-valent
fat graph in N. Provide a regular neighborhood ofF in N with the orientation induced by that o/*N.
Then

(9.a.i) < N , r > = = « N , r » .
Proof. — Consider first the case where the surface of F is orientable. Orient this

surface in an arbitrary way. Let U, F = ^U, M, F', ^ == 4'i u • • • u 4'w be the same
objects as in Section 5. a. Provide M = N\IntU with an arbitrary triangulation and
provide F == 8M. with the induced triangulation.

It follows from the definitions that for any edge e of M not lying in F the dual
2-cell e* does not meet F. For an edge e C F the dual 2-cell e* intersects F in the segment

^ = = ^ n F C a ^

dual to e in F. The union of such segments is the graph y = TF defined in Section 4.f.
We will assume that the loops ^, ..., ̂  are transversal to the edges of y and do not
cross vertices of y.

Let Z be the 2-skeleton of the dual cell subdivision M* of M. Note that F == 8M C Z.
Let B^, . . . ,B^ be the (embedded disjoint) meridianal disks of the handlebody U
bounded respectively by the loops ^, ..., ̂ . Put

X = Z u U B,CN.
»»i



164 VLADIMIR TURAEV

Clearly X is a simple 2-skeleton ofN whose complement is the disjoint union of s + a
balls where s is the number of vertices of F and a is the number of vertices of M.

Let D == <;(F') be the core of the fat graph T" lying in F. Clearly, D is a colored
3-valent graph embedded in F. Deforming if necessary D in F we may assume that D
lies in general position with respect to y and ^. Let D be the enriched colored graph
diagram on X obtained from D C X by providing all edges of D with zero pretwists.
(This diagram has no self-crossings.) Clearly, D is a graph diagram of F. Thus

(9. a.2) «N, r » = w2-28-201^^^.

Let us compute « D ». It is obvious that the set of regions of D splits into three
subsets:

(i) the disks Int B^, ..., Int B^;
(ii) the interiors of the 2-cells e* where e runs over the edges of M;
(iii) the regions of D in F with respect to y and ^ (see Sect. 4.d).

With each admissible coloring T) of D we associate three objects:

(i) the sequence J(T]) = (j\, .. .JJ with j\ = Y](Int B^), .. .,^ == ^(Int BJ;
(ii) the coloring ^ of M defined by the rule ^{e) = T](^*);
(iii) the area-coloring T] of the diagram D on F (with respect to y^ and ^j^

where ^y = [L |p) which is just the restriction of 73 to the set of regions of D with respect
to Y and ^.

It is easy to compute that

« D », = w2- ̂  | M, F [„ < ̂  | D | ̂  >,

(for definitions of the factors entering the right hand side, see Sect. 3 and 4).
A comparison of definitions shows that the formula

Y] ^(JO^^p7])
establishes a bijection of the set adm(D) onto the set of triples J e I"1, (JL ecol(M),
v e adm(D, y^, ^j). Therefore

« D » = S _ « D » = w2^^-2 < N, F >.
7ieadm(D)

These formulas together with (9. a. 2) imply (9.a.l) in the case of oriented F.
Since « N, F » does not depend on the choice of orientation in (the surface of) F,

the formula (9. a. 1) implies that for orientable F the invariant < N, F > also does not
depend on this choice. The equalities (9.a.l) and (8.d.l) imply (5.a.l) (in the case
of orientable F and 8N = 0). This makes the definitions of Section 5.b consistent (in this
case). These definitions and (8.d.l) imply the equality (9.a.l) for non-orientable F.
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9.b. Proof of Theorem 6.1. — Theorem 6.1 directly follows from Theorems 8.7
and 9.1.

9. c. Graphs in manifolds with boundary.

Theorem 9.2. — Let N be a compact connected oriented 3-manifold with triangulated
boundary. Let X e col(^N). Let T be a colored 3-valentfat graph in Int N and Y^N ̂  ̂  graph
in ^N dual to the 1-skeleton of the triangulation of (?N and colored via X (cf. Sect. 4.f^. Let ̂  be
the colored fat graph in N obtained from a narrow regular neighborhood of y^ in ^N by a slight
shift ^IntN\r. Then

< N, r | x > - ̂  « N, r u Y'»
where w^ is defined by the formula (5.g.l) applied to G = 3N.

Here it is understood that the invariant in the left hand side corresponds to the
orientation of a regular neighborhood of F induced by the orientation of N.

Theorem 9.2 will be proven in Section 9. f. It is easy to generalize Theorem 9.2
to include invariants < N, F | <p > introduced in Section 5. g. Namely for each colored
3-valent graph 9 in ^N one has

< N , r | < p > = « N , r u 9 » .
9.d. Deduction of Theorems 5.2, 6.2 from Theorem 9.2.

The results of Section 5.c show that it suffices to consider the case when N is the
oriented (closed) regular neighborhood of F. In this case all assertions of Theorem 5.2
directly follow from Theorems 9.2 and 8.4. By a similar reasoning we deduce Theorem 6.2
from Theorems 9.2 and 8.6.

9.e. Preparations to the proof of Theorem 9.2.

Lemma 9.3. — Let X be a simple oriented compact 2-polyhedron embedded in an oriented
3-manifold N. Let ^ be the 4-valent graph X\Int X. Let G be an orientable closed surface contained
in X such that in a neighborhood of G in N the polyhedron X lies on one side of G. Let D be a
colored enriched graph diagram in G with all pretwists equal to zero and without self-intersections.
Let 73 be an admissible area-coloring of D in X. For a vertex a of the graph ^ u D C X
put |[ a ||^ = | a \^ if a is a vertex of ̂  or a vertex ofD (see Sect. 7), and put

i j k
IMI.- ,/ m n

if a is a crossing point of ^ with D where i is the color of the edge of D passing through a and
j , k, l^ m, n are the r\-colors of the regions ofD shown in Fig. 19. Then

(9.e.i) «D»,==n[j|,-n||^|,,
y a

where y runs over the regions ofD in X and a runs over the vertices of^ u D.
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Proof. — Since the pretwists of D are zero, the formula (9. e. 1) differs from the
definition (8.b.2) of « D >\ only in one item: for crossing points a e^ r\D the ele-
ment || a [|^ differs from | a |^. Namely, in the notation of Fig. 19

\^\.-qTqmq7mq^\\^
We prove that the product of the expressions

(9.e.2) q^q^q^q^

corresponding to all a e ^ n D is equal to 1. Each of the factors ^/2, ^/2, ^1/2, ^1/2 is
associated with a connected component of G\(^ u D) adjacent to a. We show that
each component of G\(S u D), say,j^ contributes the same number of q^ and q^2.
Indeed, moving along 8y one goes successfully along D and ^. Clearly, the number of
switches from D to $ is equal to the number of switches from ^ to D. Therefore the points
o f ^ n D lying on a component of Sy contribute the same number of factors q^ and q^
to the product of the expressions (9.e.2). Hence this product is equal to 1. This
implies (9. e.l).

9.f. Proof of Theorem 9.2. — Consider first the case F = 0. Fix a triangulation
of N extending the given triangulation of ^N. Subdividing N, if necessary, we may
assume that M is a full sub-complex of N, i.e. that any simplex of N with vertices in BN
lies in ^N.

Let X be the union of closed 2-cells dual to the edges of N not lying in ^N. It is
well known that X is a simple 2-skeleton of N. The complement N\X consists of open
3-balls and a collar of ^N. More exactly, let G be the union of closed 2-cells e* where e
runs over the edges ofN with one end in 8N and the second in Int N. It is easy to see
that G is a surface in N. The part of N bounded by G u 8N is a collar BN X [0, 1]
ofBN (see [RS, Corollary 3.9]). Clearly GC X and X lies on the side ofG opposite to
the side of this collar.

Denote the 4-valent graph X\Int X by S;. The vertices of ^ are the barycenters
of the 3-simplices of N which either do not meet BN or meet ^N in one vertex. The
vertices of S of the second type are exactly those which lie in G. The edges of^ are either
segments B* where B runs over the 2-faces ofN disjoint from ^N, or unions of segments B*
where B runs over the 2-faces of N meeting ^N exactly in one vertex. The edges of ^
of the second type are exactly those which lie in G. Note that ^ n G is a 3-valent sub-
graph of S, whose vertices and edges are the vertices and edges of ^ lying in G and des-
cribed above.

Let us construct a certain colored 3-valent graph D on G. I will describe the part
ofD lying in each 3-simplex TofN.

If T does not meet 8N than D n T == G n T == 0. If T meets 3N in one vertex
then D n T = 0. (In the last case G n T is a 2-disk.)

Let T be a 3-simplex ofN which meets SN along an edge e. Let B^, B^ be the 2-faces
of T containing e, and let Bg, B4 be the other 2-faces of T. Then D n T is defined to
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be the union of the two segments B^ n T and B^ n T which have the barycenter of T
as a common end-point. Note that D n TC G 0 T, We provide the edge of D contai-
ning B^ n T and B^ n T with the color He). Remark that

^ n T = (B^ n T) u (B: n T).

Therefore, the segment D n T C G intersects the segment S n T C G transversally in
the barycenter of T,

Let T be a 3-simplex of N meeting 8N along a 2-face. Let B^, Bg, B3 be the other
2-faces of T. Then D n T is defined to be the union of three segments B^ n T,
i = 1, 2, 3 which have the barycenter of T as a common end-point. We color the edge
of D containing B,T n T in the color X(^) where e, is the edge B, n BN of B,. Remark
that S n T = 0.

It is straightforward to see that D is a colored 3-valent graph embedded in G. The
vertices of D are the barycenters of the 3-simplices of N meeting BN in 2-faces. The
graph D lies in X in general position and crosses ^ transversally in the barycenters of
the 3-simplices of N meeting BN along one edge.

We extend D to an enriched colored graph diagram on X (without self-crossings)
providing all edges of D with zero pretwists. It is easy to observe that D is a graph
diagram of y\ Looking at intersections with 3-simplices one easily observes that the
regions of D in X are exactly the open 2-cells Int e* where e runs over the edges ofN not
lying on ^N.

Let E be the set of colorings \L e col(N) such that ^ [^ = X. Each coloring (JL e E
gives rise to an area-coloring 7^ of D defined by the formula

T^(Int^) = (JL(O

where e is an edge of N not contained in BN. A comparison of definitions shows that the
formula (A h-> Y]^ yields a bijection of E onto adm(D).

It follows from what was said above that the set of vertices of the graph $ u D
coincides with the set of barycenters of the 3-simplices of N. For each vertex a of ^ u D
which is the barycenter of a 3-simplex T and any [A e E we have

IMk-ITL.
(For the definitions of the right and left hand sides, see respectively Sect. 3.b and 9.e.)
Lemma 9.3 implies that

(o.f.i) «D»^n<^.n|T|,
tA e T

where e runs over the edges of N not lying on ^N and T runs over the 3-simplices of N.
According to the definitions of Sect. 3.b, the right hand side of (9.f. 1) equals

^-^^INI,,
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where a (resp. (B) is the number ofverdces ofN (resp. of ^N). Then

^^^yy^w2-2^-^ S «D»,=z<;2^1 S |N |^
7ieadm(D) neE

= ^ 1 < N , 0 | X > .
This implies the claim of the Theorem in the case F = 0.

The case F =j= 0 is considered along the same lines combining the arguments
above with the arguments used in the proof of Theorem 9.1. As in the latter proof one
first considers the case of oriented F, and then applies the same argument as at the end
of the proof of Theorem 9.1.



APPENDIX

COMPUTATION OF THE INVARIANTS
ON HEEGAARD DIAGRAMS

Let us fix initial data satisfying Conditions I-IV. Let N be a compact connected
oriented 3-manifold. We show how to compute the invariant « N, F » of a colored
fat graph F C N using a diagram of F on a Heegaard surface of N.

a. Heegaard surfaces and Heegaard diagrams. — The notion of Heegaard surface in N
is more common in the case of closed N, and therefore we start with this case. By a
Heegaard surface in the closed (connected oriented) 3-manifold N we mean a closed
connected oriented surface F C N which splits N into the union of two handlebodies U
and V bounded by F. We distinguish these handlebodies assuming that the orientation
of F together with the normal vector field on F directed outwards U determines the
orientation of N. Let 91, ..., <py (resp. ^i? • • • ? ^) be the boundaries of a system of
meridianal disks of V (resp. of U), where g is the genus of F. Clearly, {93.5 ..., ^g}
and { ^3.5 ..., ^g} are two collections of disjoint simple loops on F. The surface F together
with these collections is called a Heegaard diagram of N.

Consider the case ^N =t= 0. In this case by a Heegaard surface in N we mean a closed
connected surface F C Int N which splits N into a handlebody V bounded by F and a
3-manifold U obtained from the cylinder F X [0, 1] (with F X 0 == F) by attaching
several 2-handles to F X 1 along certain disjoint annuli. Clearly 8U == F U <?N. Such
a surface F is always orientable (since F == 8V and V is orientable) and we orient F so
that the orientation of F together with the normal vector field directed outwards U
determines the orientation ofN. Let ^i, ..., ̂  be the cores of the annuli ofU mentioned
above transferred to F via the canonical homeomorphism F X 1 —> F. (Here r is the
number of 2-handles of U.) Let 9^, . . .3 9^ be the boundaries of a system of meridianal
disks of V, where g is the genus of F. As above { 9 ^ 3 . .., 9y } and { ^i, ... 5 ^r} are two

collections of disjoint simple loops on F. The surface F together with these collections
is called a Heegaard diagram of N.

It is well known that each compact connected oriented 3-manifold N has a Heegaard
surface. Here is one of the simplest constructions. Consider a Morse function/: N -^R
such that all critical points of/of index i =0, 1, 2, 3 lie on/""^'). If 8N + 0 assume
additionally that/(8N) == 3 and / has no critical points of index 3. Then/-^^) is a
Heegaard surface of N.

22
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b. Computation of the invariant. — Let F, { ̂ , ..., 9^ }, { ̂ , ..., ̂  } be a Heegaard
diagram ofN. We will treat the loops 91, . . . , ^g, ^i, ..., ^y as graphs on F each having
one vertex and one edge. For a sequence J == (j\, .. .,j'y) e I*' denote by ^j the colored
graph on F obtained from ̂  u ... u ̂  by assigning j\, . .. ,jy to the edges of ̂ , . . ., ^r
respectively. For a sequence H = (Ai, ..., hg) el0 denote by 9^ the colored graph on F
obtained from <pi u ... u 9^ by assigning h^ .. .3 ̂  to the edges of 91, ..., <p^
respectively.

Any colored 3-valent fat graph F C N may be deformed into a colored fat graph F'
lying in a cylindrical neighborhood F X [— 1, 1] C N of F. (It is understood that the
orientation of N induces in this cylinder the product of the orientation of F and the
canonical orientation in [— 1, 1].) According to the results of Section 8

« N, r » = « N, r ».
Theorem A.I. — Let r" be a colored 3-valent fat graph lying in F x [— 1, 1] C N. Then

« N, r » = ̂  s n w\ n < < <pn I r' | ̂  >
J==0'l, ..., ?V) 61'' i-l f c = = l
H=(^i, ....^ei^

where v = — 2 if 8N = 0, and v == 0 yf 0N + 0.

Proof. — We will use the notation of Section a. Deforming 91, .. ., 9^ if necessary
we may assume that these loops are transversal to ^i? • • • ? ^y It ^N = 0 then the union
ofF and the 2g meridianal disks ofU, V bounded by 91, . . ., 9^, ^i, ..., ̂  is obviously
a simple 2-skeleton of N. Its complement consists of two 3-balls. Any diagram of F'
on F in the sense of Section 4 gives rise in the obvious way to a diagram of F' on this
simple 2-skeleton of N. A direct comparison of definitions implies the claim of the
theorem. In the case ^N 4= 0 the argument is the same though instead of the meridianal
disks of U one has to use the cores of the 2-handles of U.
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