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PROJECTIVE VARIETIES
WITH NON-RESIDUALLY FINITE FUNDAMENTAL GROUP Q

by DOMINGO TOLEDO

1. Introduction

A well known folklore problem, often attributed to J.-P. Serre, asks whether there
is a complex algebraic variety whose fundamental group is not residually finite. The
purpose of this paper is to construct examples that give an affirmative answer to this
question. These examples are actually smooth projective varieties.

Recall that a group is said to be residually finite if the intersection of all its sub-
groups of finite index consists of the identity element alone. A well known theorem,
going back to Malcev (cf. Theorems VII and VIII of [13]), asserts that a finitely
generated group of matrices (with coefficients in a field, and in fact any commutative
ring) is residually finite. Our examples therefore provide fundamental groups of smooth
projective varieties with no faithful linear representations. No examples with this
property were known before.

Our groups do have plenty of non-faithful linear representations. In fact each
example admits a surjective homomorphism to a lattice in the Lie group S0(2, n) whose
kernel is a free group of infinite rank. From the construction it is clear that this kernel
in turn contains a subgroup of infinite rank that must be mapped trivially by any homo-
morphism to a linear group or a finite group.

There is another well known problem, also attributed to J.-P. Serre, that asks
whether a complex algebraic variety exists whose fundamental group is non-trivial
but has no non-trivial finite quotients. A more specific form of this question, for the
Higman 4-group, is stated in Chapter I, § 1.4 of [19]. Since our examples have plenty
of homomorphisms to finite groups, they shed no light on this more subtle question.
But they show that residual-finitness problems can indeed arise in algebraic geometry.
W. Fulton pointed out to us that, in relation to the fundamental group of the complement
of a plane algebraic curve, Zariski had already posed the question of existence of non-
residually finite groups, cf. § 1 (and Appendix 1) to Chapter VIII of [21] (2). More recently,
residual finiteness questions have appeared in relation to the problem of understanding
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restrictions on fundamental groups of algebraic varieties. Most of the known restrictions
seem to involve linear representations of such groups, and at present Gromov's tech-
niques on Lg-cohomology [8] (and more recent techniques ofGromov and Schoen) seem
to be the only ones that completely avoid linear representations.

The groups we consider are the fundamental groups of the complements of smooth
totally geodesic divisors in locally symmetric varieties for the group SO (2, n) where
n ^ 4. To avoid unnecessary technicalities, we will also assume that n is even. One has
to show that these groups have the desired properties. The fact that they are not residually
finite follows from a theorem of Raghunathan ([18], Main Theorem) in the following
way. From the geometry of the situation it is clear that the fundamental group of the
boundary of a tubular neighborhood of the divisor injects into the fundamental group
of the complement of the divisor. But the fundamental group of the boundary of the
tubular neighborhood is easily seen to be a co-compact lattice in a certain covering group
of SO (2, n — 1). Raghunathan's theorem asserts that any lattice in a related covering
group must contain a certain fixed infinite cyclic subgroup of its center, and this easily
implies the same assertion for our group. From this it follows that the fundamental
group of the complement of the divisor contains a non-residually finite subgroup, hence
it is not residually finite.

A point to be observed here is that the covering groups in question are not linear
groups, hence Malcev's theorem does not apply to their finitely generated subgroups,
and there is no reason to believe that lattices in these covering groups are residually
finite. To produce non-residually finite lattices in specific non-linear Lie groups is more
subtle. Examples have been given by Millson [16] and general criteria, together with
a wider class of examples, have been given by Deligne [5], but Raghunathan's theorem
seems to be the only one that applies to co-compact lattices, which is the situation that
we need.

The fact that these groups are fundamental groups of smooth projective varieties is
proved by first showing the projectivity of identification spaces M/D, where M is a
compact locally symmetric variety and D is a smooth totally geodesic divisor in M with
negative normal bundle. Namely, we prove that M/D has the structure of a projective
variety V with a single singular point p such that M — D is biholomorphic with V — { p }.
We originally proved this fact by first applying Grauert's criterion [7] to blow down D
in the analytic category, and then applying an ampleness criterion to a suitable line
bundle on M/D to show projectivity. The more direct proof presented here was later
shown to us by P. Deligne. Note that the hypotheses on M and D imply that the universal
cover of M is the symmetric space for either SU(1, n) or SO (2, n), n ̂  2 and that the
embedding of the universal cover of D corresponds to the standard embedding of
SU(1, n — 1) or SO (2, n — 1) respectively (otherwise there are no totally geodesic
complex hypersurfaces with negative normal bundle).

The point of proving that V = M/D is a projective variety is that it has hyper-
plane sections. IfZ denotes a generic hyperplane section ofV (in particular not containing
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the singular point p), then the appropriate version of the Lefschetz theorem on hyper-
plane sections implies that the inclusion o f Z in V — { p } == M — D induces an iso-
morphism of fundamental groups if n ̂  3, hence there is a smooth projective variety
with the same fundamental group as M — D. This construction works when the universal
cover of M is the symmetric space for either SU(1, n) or SO (2, n). It seems possible
that in both situations one could obtain non-residually finite groups, provided n is large.
But it is only for SO (2, n) that Raghunathan's theorem is available, hence we give the
details only for this group.

Motivated by the results of this paper, M. Nori, and independently F. Gatanese
and J. Kollar, found another way of using Raghunathan's theorem to produce pro-
jective varieties with non-residually finite fundamental group (as branched covers of
locally symmetric varieties, branched over ample divisors). A description of these
examples appears in [1]. The fundamental groups they obtain are quite different in
nature from ours, in that the intersection of all subgroups of finite index is a finite cyclic
group, while in our examples this intersection is a free group of infinite rank.

We would like to point out that the main technique used here, already used in [20],
of taking non-singular hyperplane sections of singular projective varieties, appears to
be a powerful way of constructing smooth projective varieties with interesting funda-
mental groups. More precisely, it gives a way of showing that the fundamental groups
of certain smooth quasi-projective varieties are also fundamental groups of smooth
projective varieties.

This technique also gives a way of constructing new smooth varieties with more
standard fundamental groups. We came to this construction from a different consi-
deration, namely showing the projectivity of the analytic space obtained by blowing
down a codimension two complex geodesic subvariety in quotients of the three ball.
This was motivated by a question raised by M. Gromov, whether a smooth projective
surface with fundamental group a co-compact lattice in SU(1, 3) must be birationally
equivalent to a hyperplane section of the corresponding quotient of the three-ball. Non-
singular hyperplane sections of these blown-down spaces show that there are more pos-
sibilities. This is discussed in the last section of this paper.

It is a pleasure to thank S. M. Gersten, M. Gromov, J. Kollar, andj. Millson for
very enlightening conversations, and J.-P. Serre and P. Deligne for comments, cor-
rections and improvements on earlier versions of this paper.

2. Projectivity of identification spaces

Let X^ denote the symmetric space for the group S0(2, n). As a homogeneous
space, X^ = SO(2,7?)/S(0(2) X 0(n)) = SO-^2, ^)/SO(2) X SO (%), where S0+(2, n)
denotes the component of the identity of (the two-component group) SO (2,^).
To obtain concrete realizations of X^ corresponding to these homogeneous space
descriptions, choose a quadratic form q of signature (2,^) on R^2, for instance

14
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x^ + x^ — x^ — ... — ^+2- Then X^ can be identified with the open subset of the
Grassmannian of (unoriented) two planes in R^2 on which the restriction of q is positive
definite. Its pre-image in the Grassmannian of oriented two planes splits into two compo-
nents, S0(2, n) acts transitively on this pre-image, and SO4^, n) preserves these com-
ponents and acts transitively on each. We fix one component and use it as our model of X^.

The center of SO'^2, n) is trivial if n is odd and consists of ± id if n is even. Let
PSO^, n) denote the quotient of SO4'(2, n) by its center. This group then acts effec-
tively on X^.

The symmetric space X^ is actually hermitian symmetric, and its invariant complex
structure can be described as follows. Let b denote the real bilinear form associated
to the quadratic form q. Given a point in X^, let x,jy be a positively oriented basis for
the corresponding two-plane, where x and y are ^-orthogonal and of the same length,
and let z = x -}- ijy e Cn+2. Denote also by b the complex-bilinear extension of b to C^2.
Then it is easy to see that the complex line determined by z depends only on the oriented
two-plane determined by x and j, and thus there is a well defined map of X^ into the
subset ofP^^2) defined by the conditions

(2.1) b{z,z) =0, b{z,z)>0.

The latter is the open subset of the quadric hypersurface Q^CP714'1 with equation
b{z, z) =0 defined by the inequality b{z, z ) > 0. Again one sees that this open set splits
into two connected components (which are interchanged by complex conjugation),
and that we obtain an SO4'(2, ^)-equivariant identification of X^ with one of these
components. This identification gives the invariant complex structure on X^.

The goal of this section is to prove the projectivity of certain spaces obtained from
embeddings of compact quotients of X^_i into compact quotients of X^. To this end
we need to recall certain simple identities for equivariant line bundles on X^. Let S
denote the tautological line sub-bundle of the trivial bundle X^ x C^2, and let K
denote the canonical bundle of X^.

Lemma (2.2). — 2. K w S^ as SO^ {2, unbundles on X^.
2. With its SO" ,̂ n)-invariant hermitian metric, S is a positive line bundle on X•n*

Proof. — The first part follows from the fact that S and K are homogeneous line
bundles which extend to Q^, and the corresponding fact over Q^. An alternative argu-
ment would be the following.

Let S1 denote the 6-orthogonal complement ofS in X^ x C^2, and let T denote
the holomorphic tangent bundle of X^. Then T is the holomorphic sub-bundle of the
tangent bundle ofP'14'1 on which the first equation (2.1) is infinitesimally preserved,
therefore there is an isomorphism of holomorphic S0(2, n) "^-bundles

T « Hom(S, S^S).
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From the exact sequences of holomorphic SO4" (2, ^)-bundles
O-^S1-^ x Ci^-^-^O, O-^S-^S1-^1^ ^0,

one obtains easily (tensoring with S* and computing top exterior powers) the isomorphism
asserted in the first part of the lemma.

The second assertion is well-known, cf. [12]; alternatively, the line bundle S
over Q^ is the negative line bundle ^(— 1), thus, by the usual change of sign in
Hirzebruch proportionality [10], S is a positive line bundle over X^. The proof is complete.

If rCSO^,^) is a discrete, torsion-free subgroup, and M = F\X^, then S
and K descend to line bundles on M which will be denoted by S^ and K^, and the
assertions of Lemma (2.2) hold for these line bundles.

Let v e J^n+2 be a negative vector for q, i.e. q(v) < 0. For example, if q is as above,
then v == (0, . . ., 0, 1) is negative. If v1 denotes the 6-orthogonal complement of v,
then the restriction of q to v1 has signature (2, n — 1). The subgroup of SO4'(2, n) that
fixes v is isomorphic to SO4'(2, n — 1), leaves v1 invariant, and its action there is equi-
valent to the standard action of SO4'(2, n — 1) on R"4^1. We will denote this subgroup
by SO ,̂, n - 1),.

The choice of a negative vector v gives an embedding of X^_i in X^ as the set
of positive and oriented two-planes contained in y1. In the above embedding of X^ in
the quadric Q^CP^4'1, X^_i corresponds to the points lying in the hyperplane with
equation b(v, ) = 0. Thus X^_i is a complex analytic hypersurface in X^. The following
lemma is easily verified:

Lemma (2.3). — If n is even, SO" ,̂ n — !)„ injects into PSO ,̂ n) under the natural
projection n : SO4'(2, n) -> PSO ,̂ n) and its image coincides with the subgroup of PSO^, n)
that leaves the image of the corresponding embedding of X.n-i invariant.

Let v eR'14'2 be a negative vector, and X^^C X^ the corresponding embedding.
Then v defines a section ^ of S* by the formula

s^w) = b(v,w).

It is clear that Sy is an SO" ,̂ n — 1) ̂ -invariant section of S* which vanishes precisely
on X^_i and (being a linear function in affine coordinates) it is clear that it vanishes
to first order.

This observation can be applied to the following situation. Suppose that n is even
and that F C SO4'(2, n) is a discrete, torsion-free, co-compact subgroup. Since the kernel
of the natural projection TT : SO" ,̂ n) -> PSO^, n) is a torsion group, the restriction
of TC is an isomorphism of F with 7r(r). Thus F acts effectively on X^, and if we let
M == r\X^, then M is a compact manifold with universal cover X^ and fundamental
group isomorphic to F. Let f == n~\n{r)) C SO- ,̂ n).

Suppose M contains a compact, non-singular, totally geodesic complex hyper-
surface D obtained in the following way. Take a negative vector y, let X^^C X^ be
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the corresponding embedding, and let Fg = r" n SO^, n — !)„. From Lemma (2.3)
we see that 7r(ro) is the subgroup of 7r(r) that leaves X^_i invariant, hence the map
ro\X^_i -> M induced by the inclusion X ^ _ i C X ^ is a totally geodesic immersion
which is generically one to one. Our assumptions will be that this immersion is actually
an embedding, and that FQ is co-compact in SO" ,̂ n — !)„. Let D denote the image
of this embedding. Then D will be a smooth totally geodesic divisor in M such that
7Ti(D) w FQ. Examples of such embeddings will be given at the end of this section.
Observe that from the construction of Fo the natural injection Fp -> F is not necessarily
that given as subgroups of SO4'(2, n), but rather the injection of their isomorphic pro-
jections to PSO^,^).

Lemma (2.4). — Let D C M be as in the previous paragraph. Then there is a neighborhood U
of D in M so that ^P(D) ] U is isomorphic to S^ | U.

Proof. — There is a neighborhood V of X^_i in X^ so that Fo\V embeds in M.
Let U denote the image ofthie embedding. Then S* | V has the SO4'(2, n — 1 ̂ -invariant
hence I^-invariant section s^ which vanishes precisely on X^_i and to first order. This
section descends to a section s^ of S^ | U that vanishes precisely on D and to first order.
It follows that ^(D) | U is isomorphic to S^ [ U. In fact, ^(D) is the line bundle obtained
from S^ | U and the trivial line bundle over M — D by identifying these two bundles
over U — D by the isomorphism that takes Jp into the constant section 1.

The main technical point of this section is contained in the following proposition,
which is an immediate consequence of the last two lemmas:

Proposition (2.5). — Let M and 'D be as in Lemma (2.4). Then the line bundle K (̂nD)
is trivial in a neighborhood of D in M.

Observe that the normal bundle ofD in M is negative, hence by Grauert's criterion
(Satz 8, § 3 of [7]) D can be blown down analytically, i.e. the identification space M/D
is an analytic space. The proposition means that K(nD) descends to a line bundle L
on M/D (i.e., the direct image sheaf is locally trivial). Our original proof of the pro-
jectivity of M/D was to start from its analytic structure and use Grauert's criterion for
projectivity (Satz 2, § 3 of [7]) to show that L is an ample line bundle on M/D. P. Deligne
then showed us a more direct approach that avoids analytic arguments. The following
proposition, and its proof, are due to Deligne.

Proposition (2.6). — Let M be a smooth protective variety, let D be a smooth irreducible
divisor on M, let H be a positive line bundle on M, and suppose that there exists a positive integer t
so that the line bundle H(/D) is trivial in a neighborhood of D.

Then there is a positive integer k so that H^D)0^ is base-point free and so that the corns'
ponding map from M to a projective space is a bijection of the identification space M/D to the image
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of M, and is an embedding on M — D. Thus, if\ denotes the image of M and p e V the image
of D, then M/D ̂  be given the structure of a projective variety V such that M — D is bihilo-
morphic to V — {p }.

Proo/; — Let s-^ denote the canonical section of <?(D). Then the map t \-> t®s^
defines an embedding H0^ -^H^D)0^ and under the assumption that H(/D) is trivial
in a neighborhood of D we see that the quotient sheaf is ^/^(— ^D). Thus we have
an exact sequence of sheaves

(2.7) 0-^H@fc->H(m)0fc->^(-^D) -^0.

Since M is projective and H is positive, we can choose k large enough so that for all
P,QeM,

IP(M, H0^ ® J^ Q) == 0, H^M, H0^ ® J^p) = 0,

where J^p, J^p Q denote the ideal of functions vanishing at P, respectively P and Q.
These conditions in turn imply that

Hi(M, H0^ == 0

and that H0^ is base-point free and embeds M in a projective space.
From this we first see that H^D)0^ is base-point free: using the image ofH°(M, H0^

in H°(M, H^D)0^ it is clear that given any P e M — D there is a section of H^D)0^
not vanishing at P, i.e., H^D)0^ is base point free in M — D. From the exact cohomology
sequence of (2.7) and the vanishing of H^M, H0^ it follows that

H°(M, H^D)0^ -̂  H°(M, (9\Q{- k^D))

is surjective. In particular, given any P eD there is a section ofH^D)0^ not vanishing
at P, and therefore H^D)0^ is base-point free.

To prove the bijectivity mod D of the corresponding map to projective space,
observe that if P, Qe M — D, there is an exact sequence
(2.8) 0 -> H0^ ® J^ Q -^ H^D)0^ -> (5/^(- k£D)

©H^D)0^^)0^®^?^) ->0.

From the corresponding cohomology sequence and the vanishing of H^M, H0^®^ ^)
we obtain the surjectivity of the evaluation map

H°(M, H^D)0^ -> H°(M, 0f0{- k^D)) @ H(^D)^e H^D)^,

where the subscripts P, Q^ denote the fibers at P, Q of the indicated line bundle. This in
turn implies the bijectivity of the map from M/D to the image of M. Repeating this
argument with ^instead of J^Q we see that the map in an embedding on M — D
(i.e., its differential is injective), and the proof is complete.

Remark. — If instead of assuming that D is irreducible we allow it to have several
components (necessarily disjoint), then the above argument embeds the space obtained



110 DOMINGO TOLEDO

by identifying each component separately to a point in a projective space, and a suitable
subspace of the space of all sections embeds M/D in a projective space.

From this proposition we obtain the main theorem of this section:

Theorem (2.9). — Let M and D be as in Proposition (2.5). Let V == M/D be the space
obtained from M by identifying D to a point. Then V is a projective variety.

Proof. — Let H == K^ and i == n. Then by Proposition (2.5) the assumption of
Proposition (2.6) is satisfied, and V is a projective variety.

Corollary (2.10). — Let M and D be as in Proposition (2.5), and let n ̂  4. Then
TC^(M — D) is the fundamental group of a smooth projective variety.

Proof. — Fix a projective embedding of V == M/D and let Z be a generic hyper-
plane section of V, disjoint from the unique singular point p of V. Then Z is a smooth
projective variety and the standard Morse-theoretic proof of the Lefschetz theorem on
hyperplane sections gives that V — { p } is homotopy equivalent to a space obtained
from Z by attaching cells of dimension at least n. This is very easy to check in the present
situation of an open variety V — { p }, where V is a projective variety with a unique
singular point p, cf. the Proposition in § 2 of [20]. It also follows from the Lefschetz
theorem for open, non-singular varieties proved by Goresky and MacPherson in [6]
(stated on p. 24).

Thus we get an isomorphism on fundamental groups as soon as n ̂  3. Since we
are assuming n even, we need n ̂  4. Since V — { p } is biholomorphic to M — D, the
corollary follows.

Remark. — It is important to realize that in the present situation the Lefschetz
theorem gives an isomorphism TT^(Z) » 7^i(V — { p } ) rather than TCi(Z) w 7ri(V). If V
were non-singular then both isomorphisms are of course equivalent and well-known.
But if V has a unique singular point p, then the first is always true but the second is
false in general. In fact, for V as in Theorem (2.9), it is easy to see that ^(V) is a finite
group. Namely by Van Kampen's theorem, 7Ti(V) is isomorphic to the quotient of F by
the normal closure of FQ. Since F is a lattice in a higher-rank simple Lie group, by a
well-known theorem of Margulis (Theorem 2.3.2 of [14]), any infinite normal sub-
group of r has finite index, hence ^(V) is finite. If one examines what the Morse-
theoretic proof of the Lefschetz theorem would say when applied to V, it is easy to see
where the difference lies. The " last " attaching map (meaning the one corresponding
to the maximum value of the distance function used in § 2 of [20]), which would be
that of a cell in the non-singular case, becomes that of the cone on a non-simply connected
space in our situation, thus TCi(Z) and ^i(V) need not be isomorphic. But if the same
argument is applied to V — { ? } , this last attaching map does not come up, and one
obtains the desired isomorphism of fundamental groups.
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Finally we need to give examples of manifolds M, D to which Theorem (2.9)
applies. We review briefly the standard examples.

Let n be even, and let q be the quadratic form V2(^ + x^) — x^ — ... A ; 2 ^ .
Let 0(y), S0+{q), PSO^) denote the corresponding orthogonal, connected component
of special orthogonal and projective special orthogonal group of q. These are isomorphic
respectively to 0(2, n), S0+(2, n), PSO-^,^). Let A denote the subgroup of 0{q)
consisting of matrices with entries in the ring of integers in the field Q^A/2). It is well
known that A is a co-compact subgroup of 0{q) and that A contains a normal, torsion-
free subgroup A' of finite index, cf. § 4.3 of [2]. Let F = A' n SO^y). Then F\X^ is
a compact manifold with universal cover X^ and fundamental group F.

Let (T : R^2 -^R714'2 be the linear transformation defined by

(•^l? ' ' • 9 x n + 1 9 x n - { - 2 ) "^ {xl9 • • • ? -^n+l? — xn+2)9

Then cr e A. Since A' is a normal subgroup of A, cr normalizes F, hence induces a holo-
morphic involution, still denoted by cr, of the quotient manifold M == F\X^. It is clear
that or =(= id^.

Now let v == (0, ..., 0, 1), which is a negative vector for q, let X^.^CX^
be the corresponding embedding, and let 1̂  be the subgroup of F' that fixes y,
i.e., FQ = r' n S0~[~{q)^ where F' == ^"^(r)) is as the paragraph proceeding
Lemma (2.4). Then (using again § 4.3 of [2]) 1̂  is co-compact in SO"^),,, and the
image of the natural map F^X^i -> M is an immersed submanifold of complex
dimension n — 1 contained in the fixed point of set of <r. Since the fixed point set of an
involution is always a smooth submanifold (possibly disconnected), it is clear that each
component of the fixed point set of a is a smooth submanifold of complex dimension at
most n — 1. It follows easily that the image of this map is a smooth submanifold of M,
denoted by D, which must in fact be a component of the fixed point set of <j. Finally,
from Lemma (2.3) we see that the image of Fg in 7r(r) is the subgroup of7r(r) that leaves
X^_i invariant. From this it is clear that the natural map F^X^.i -> D is bijective,
therefore all the hypotheses of Theorem (2.9) are satisfied.

3« Study of the fundamental group

Let n ^ 4 be an even integer, let F, 1 ,̂ M = F\X^, D == r^X^i be as in the
previous section, and let O denote the fundamental group of M — D. In the last section
we saw that O is the fundamental group of a smooth projective variety. The purpose of
this section is to show that 0 is not residually finite.

Let K denote the kernel of the homomorphism 0 -> F w ^(M.) induced by the
inclusion M — D C M, and let n: X^ -> M = F\X^ denote the projection.

Lemma (3.1). — The sequence 1 ->K->0->r->l is exact, and K is isomorphic
tO ^(X^ - TT-^D)).
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Proof. — Since D has real codimension two in M, the natural homomorphism
7Ti(M — D) -> 7Ti(M) is surjective, thus the above sequence is exact. Also from codi-
mension two it follows that X^ — TC'^D) is connected, hence (by the restriction of n)
is a covering space of M — D, and therefore T^(X^ — TC'^D)) maps injectively onto a
subgroup ofO (which will be denoted by the same symbol). Since X^ is simply connected,
it is clear that TT^X^ — TT-^D)) C K.

To show the equality of these two groups, let X = X^ — TT'^D) and let Y denote
the covering space of M — D corresponding to K. Since 7Ti(X) C K, there is a covering
projection X -> Y. From general covering space considerations, the natural map
Y ->- X^ is injective. Since X -> X^ is also injective, it follows that the covering X -> Y is
one-sheeted, hence the two groups in question are equal, as asserted in the lemma.

Now let N denote a tubular neighborhood of D in M, let ^N denote its boundary,
and let $o = ^i(^N).

Lemma (3.2). — The homorphism Og ->$ corresponding to the inclusion ^N -> M — D
is injective.

Proof. — First observe that OQ is a central extension of FQ:
i ^z-x&o-^ro-^i

where Z is an infinite cyclic group that can be described as follows. Choose a
component of TC'^D), let N denote a tubular neighborhood of this component which
projects to N, choose x e ^N, and let y denote the loop in ^N based at x that runs once
along the fibre of <?N through x in a chosen orientation. Then Z is the infinite cyclic
subgroup of 7Ti(^N, -n:{x)) generated by the loop Try. Compute all fundamental groups
using the basepoints x or n(x) as dictated by the context. Then the inclusions
^N C M — D C M and the projection ^N -> D induce a map of the exact sequence

l ^ Z ^ $ o ^ r o ^ l

to the exact sequence
1 _K ->0 ->F —1.

Now it is clear (from Mayer-Vietoris and excision) that Hi(X^ — TC'^D)), the
abelianization of K, is a free abelian group on infinitely many generators, one generator
for each component of TT'^D), and that the image of y in Hi(X^ — n~l{'D)) is one of
these generators, hence the homomorphism Z -> K is injective. Since by construction
the homomorphism FQ -> F is injective, it follows that $o ->0 is injective, as asserted
in the lemma.

Remark. — The group K itself is free on infinitely many generators, one for each
component of TC^D). This follows from the appropriate Morse theory applied to
/: X,, -^R, where/is the square of the distance from a generic point in X^ — TT'^D).
It is clear that/has a unique critical point on X^, and the restriction of/to each compo-
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nent ofrc-^D) has a unique critical point. An immediate application of Theorem 10.8
(p. 122) of [6] gives that X^ — TC'^D) has the homotopy type of a bouquet of circles,
one for each component of TC-^D). This last statement also follows from § 4 of [15],
where the Torelli group in genus 2 is studied in the same way (in fact it corresponds to
the inclusions S0(2, 2) C S0(2, 3)).

For simplicity of notation, let m == n — 1, which by assumption is odd and at
least three. The group SO4'(2, m) is centerless and acts effectively on X^. Also SO4-(2, m)
is homotopy equivalent to its maximal compact subgroup SO (2) X S0(w), hence its
fundamental group is isomorphic to Z X Z/2, where the splitting into factors corres-
ponds to the splitting into factors of the maximal compact subgroup. We will denote
by SO (2, m) the covering group of SO-^, m) corresponding to the infinite cyclic factor
in this decomposition of the fundamental group. Observe that SO (2, m) is not a linear
group.

Lemma (3.3). — The group OQ is a co-compact lattice in S0(2,w).

Proof. — We have seen in § 2 that the normal bundle of D in M is S*, but it is
more convenient to state this in terms of real bundles, namely the normal bundle of X^
in X^ is isomorphic, as a homogeneous SO^, ^-bundle, to the tautological 2-plane
sub-bundle E of X^ x R"14'2. For any fixed positive constant c, the set of vectors in E
of length c is isomorphic, as a homogeneous SO^, w)-bundle, to the bundle
SO-^^/SO^) ->S04-(2,77z)/SO(2) X S0(m) == X^. Dividing by the discrete
group FO we see that BN = I^SO-^, w)/SO(w), and the projection BN -> D
corresponds to the natural projection of this double coset space to the space
Fo\SO+(2,w)/SO(2) x S0(w).

Let Y denote the pre-image of Fg in SO (2, w), which is a discrete subgroup
of S0(2,w). The natural map Y\SO(2, m) -> I^SO^, m) is bijective, thus Y is
co-compact in S0(2,w). From the definition of S0(2, m) it is clear that there is a
unique homomorphism S0(w) ->SO(2,^) covering the inclusion S0(m) C SO" ,̂ m),
and we regard S0(m) as a subgroup of S0(2, m) via this homomorphism. Therefore
we obtain a natural surjective map of double coset spaces

Y\SO(2, m)/SO(m) -> Î SO ,̂ m)/SO(m).

Using the fact that the kernel of the projection SO (2, m) -> SO-^, m) is central, one
checks that this map is also injective.

Finally, from the definition of S0(2, m) it also follows that S0(2, m)/SO(m) is
simply connected, hence it is the universal cover of BN w ^Q\SO+{2, m)/SO{m), and
Y w 7Ti(3N) w <S>Q.Hence Oo is a co-compact lattice in S0(2, m) as asserted in the
lemma.

15
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Remark. — It follows from the proof of Lemma (3.3) that the kernel Z of the
central extension Z -> Og -> Fg is isomorphic to the kernel, also denoted by Z, of the
central extension Z -^ SO (2, m) -> SO4'(2, m), and that the first extension is isomorphic
to the restriction to Fg of the second extension.

Lemma (3.4). — Let Z denote the kernel of the natural homomorphism <S>Q —>• FQ. Let A be
a subgroup of finite index in OQ. Then A contains the subgroup 8Z.

Proof. — Let Spin (2, m) denote the Spin group of the quadratic form used to
define SO (2, m). It is the double-cover of SO"^, m) corresponding to the homomor-
phism Z x Z/2 -> Z/2 which is non-zero on the generators of each factor. This can
be checked, say, as follows. The covering Spin(2, m) —SO4-(2,7^) is the restriction
to SO4'(2, m) of the corresponding covering Spin(2 + m, C) -> S0(2 + m, C) of the comple-
xifications of these groups. The homomorphism of fundamental groups can be computed
by passing to the corresponding homotopy-equivalent maximal compact subgroups,
and the homomorphism of fundamental groups corresponding to the inclusion
S0(2) X S0(m) —S0(2 + m} is the asserted homomorphism Z x Z/2 -> Z/2.

Let Spin(2, m)^ denote the universal cover of Spin(2, m), which is also the
universal cover of SO" ,̂ m) and SO (2, m). Since the center of S0+(2,m) is
trivial, the center of Spin(2, m)^ is naturally isomorphic to ^(SO4^, m)), which
we continue to identify with Z x Z/2 as before. Then the kernel Z^ of the projection
Spin(2, m}^ -> Spin(2, m} is the subgroup {{x, s) e Z X Z/2 : x + s == 0 }, where x
denotes the mod 2 reduction of x. Also SO (2, m) == Spin(2, w)^/(Z/2), and the homo-
morphism Zi -> Z = ker(SCT(2, m) -> SO4-(2, m)) w (Z X Z/2)/(Z/2) corresponds to the
composition Z^ C Z X Z/2 -> Z. Therefore Z^ maps isomorphically to Z under the
projection Spin(2, m)^ -> S0(2, m).

Finally, let A be as in the lemma. Then the pre-image of A in Spin(2, m)^ is a
co-compact lattice, and the Main Theorem in [18] asserts that it must contain the sub-
group 8Zi. Since Z^ projects isomorphically to Z, it follows that A contains 8Z, and
the proof is complete.

Theorem (3.5). — The group O is not residually finite, and it is the fundamental group of
a smooth projective variety.

Proof. — Since by Lemma (3.3) O contains Oo as a subgroup, and by Lemma (3.4)
QO is not residually finite, we see that 0 is not residually finite. We proved in the previous
section that 0 is the fundamental group of a smooth projective variety, hence the proof
of the theorem is complete.

Remark. — We have used the assumption that n is even to simplify various technical
considerations of components, center and fundamental group of the various Lie groups
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involved. The arguments of§2 remain valid, with more care, as long as n ̂  3, regardless
of parity. The Main Theorem of [18] is also true for lattices that project to an arithmetic
group in S0(2, m) defined by a quadratic form, cf. Theorem 3.4 of [18]. Thus the argu-
ments of this section can be made to work as long as n ̂  4, regardless of parity.

4. An application to ball quotients

We consider another application of the technique of proving projectivity of blown-
down spaces and taking hyperplane sections. The motivation comes from the following
problem. Suppose that F is a torsion-free co-compact lattice in SU(1, 3), and that X is
a smooth projective surface with fundamental group F. The problem is to classify all
(minimal models of) such surfaces.

Let M == r\B3, where B3 denotes the unit ball in C3, which, with its Bergmann
metric, is the symmetric space for SU(1, 3). Then M is a smooth projective variety
which is a classifying space for the discrete group F. Let X be as above. It is not hard
to see that there is a (essentially unique) holomorphic mapping y:X -> M inducing
an isomorphism on fundamental groups and whose image is a divisor on M. This follows
from the theory of harmonic mappings (existence and Siu's rigidity), and can be proved,
say, along the lines of Theorems (7. 2b) and (8.1) of [4]. Now the obvious way to construct
such X and the associated map X -> M is to take smooth hyperplane sections of pro-
jective embeddings ofM, and M. Gromov raised the question of whether this it the only
way. We proceed to construct some examples that show that the class of such surfaces
is at least somewhat larger.

We start with F and M constructed in analogy with the standard examples of § 2.
Let h be the Hermitian form A/2 | ^o I 2 — I ^i I 2 — I ^2 I 2 — I ^3 I 2 on C4, and let U(A),
SU(A) denote the corresponding unitary and special unitary groups, which act naturally
on B3 when the latter is identifyied with the set of lines in C4 on which h is positive.
Let R denote the subring of C obtained by adjoining V— 1 to the ring of integers in
0^(^/2), and let A denote the subgroup of V(h) consisting of matrices with entries
in R. It is known that A is discrete and co-compact in U(A) and that it contains a normal
torsion-free subgroup A' of finite index, cf. § 4.3 of [2]. Let F = A' n SU(A). Then F
operates freely on B3 and M = F\B3 is a compact manifold.

Let o-i and erg denote the involutions of C4 defined respectively by

(^, ̂ , ^3, ^) -> (^, Z^ — Z^ Z^)

and (^i 3 2:2? ^3 ? ^4) ~" (^i? Z29 <^'3? ~~ z ^ ' Then c^, (jg e A and therefore induce invo-
lutions of M which will be denoted by the same symbol. Let ^ == (0, 0, 1,0) and
^2 == (°? °3 °3 1)? an(! let r,, i == 1, 2 denote the subgroup of F that leaves invariant
the line determined by y,. Then 1̂  is the subgroup of F that leaves invariant the lines
in C4 contained in the ^-orthogonal complement of z^. Each such set of lines of iso-



116 DOMINGO TOLEDO

morphic to the two-dimensional ball B2, thus we obtain corresponding immersions
of r,\B2 in M.

Arguing as at the end of§2 with the involutions a^ we see that these immersions
are embeddings. Let D,, i = 1, 2 denote the images of these embeddings. Then D, is
a smooth totally geodesic divisor on M which is isomorphic to the complex
surface r,\B2.

The elements of F, need only fix v, up to a multiple. Each such multiple must
be an element a of the ring R defined above satisfying | a [2 = 1. One checks that a
must be a fourth root of unity, thus an eigenvalue of an element of F which is a root
of unity. Thus, passing to a neat subgroup of finite index in F (cf. § 17.1, 17.4 and 17.7
of [3]), we may (and do) assume that F, actually fixes v,.

Let S denote the restriction to B3 of the tautological line sub-bundle of P3 X C4.
Then S is a homogeneous SU(1, 3) line bundle, hence it descends to a line bundle,
still denoted by S, one any quotient of B3 (or of an invariant subset of B3) by a subgroup
of r. The formula

s,{w) == h(w, v,)

defines a section s, of S* over F,\B3 which vanishes precisely on r,\B2 and to first order.
Since r,\B2 has a neighborhood in F,\B3 that projects bijectively to a neighborhood U,
of D^ in M, the following lemma is clear:

Lemma (4.1). — Let M and D, be as above. Then D, has a neighborhood U. such that
(P{D,) | U, » S-1 U,.

The proportionality statements for S.U(1, 3) analogous to Lemma (2.2) are easily
proved and are as follows:

Lemma (4.2). — The line bundle S over M is positive. IfK denotes the canonical bundle
of M, then K w S04.

Now let Y == DI n Dg C M. Then Y =)= 0 since it contains the projection to M
of the lines contained in the orthogonal complement of{yi , ̂  }. It may be disconnected,
but this will not affect the subsequent arguments. Since D^ and Dg, being distinct,
connected, totally geodesic submanifolds of M, intersect transversally, we see that each
component of Y is a totally geodesic smooth complex curve on M. From the last two
Lemmas we see that the following is true:

Lemma (4.3). — The line bundle K(2Di + 2D2) is trivial in a neighborhood of\ in M.

To prove that M/Y is a projective variety we will also need the following Lemma:

Lemma (4.4). — For i = 1, 2, K(2D,) is an ample line bundle on M.
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Proof. — We use Kleiman's criterion (Theorem 2, § IV. 1 of [11]), as formulated
in Chapter I, § 8 of [9]: A line bundle L on M is ample if and only if there is a positive
constant s such that for all curves G in M, L.G ^ s |[ G |[. Here L.G, respectively || G ||,
denotes the evaluation on the fundamental class of G of the first Ghern class of L, res-
pectively some fixed norm on H^M.R).

Since K is an ample line bundle on M, there exists such a constant, say 2s, for K.
We give a lower bound for

(4.5) (K(2D,)).G = K.G + 2D,.C

by considering two cases. First, if G is not contained in D,, then the second term in (4.5)
is > 0, hence the sum is at least 2s [| G ||. If GC D,, then the second term in (4.5)
is 2(^(D,) | D,).C, which, by Lemmas (4.1) and (4.2) is the same as 2Silt.C = — (K.G)/2,
so (4.5) becomes K.G/2 which by assumption is at least s |[ C ||. Therefore the cons-
tant s works for all G and the proof is complete.

Proposition (4.6). — Let M and Y = D^ n D^ be as above. Then there is a positive
integer k so that the line bundle K(2D^ 4- 2Dg) is base-point free and so that the corresponding
map from M to a projective space is an embedding on M — Y and is a bijection of the identifi-
cation space M/Y to the image ofM. Thus M/Y has the structure of a projective variety V with a
unique singular point p so that M — Y is biholomorphic to V —{?}.

Proof. — We sketch the modification that has to be made to the proof of Pro-
position (2.6) to yield the result. Let ̂  denote the ideal sheaf of D,, and, for k > 0,
let (J^, J^f) denote the sub-sheaf of Q generated by ̂  and J^. Then we replace the
sequence (2.7) by the exact sequence (Koszul resolution of the sheaf ^/(^fc, ^A))

(*) 0->K®fc^K(2Dl)®A®K(2D2)0fc-^K(2Dl+2D2)0fc^^/(^,^)-^0,

where the maps are t -> (— t®s^, t®sf) and (^, ^) -^^®s^+^®s^\ where s,
denotes the canonical section of ^(D,), and the identification of the last term uses
Lemma (4.3). By the ampleness ofK and ofK(2D,) (Lemma (4.4)), for large enough k
one has the vanishing of H^(M, L^® J^) for j == 1,2, all P ,QeM and L any
of the line bundles K, K(2D,). Ghoose k also large enough for the vanishing of the cor-
responding cohomology groups with ^p. Then the resulting vanishing theorems for
hypercohomology of (*) and of the exact sequence analogous to (2.8) (obtained from (*)
by tensoring the first two terms with e^p Q and modifying the last term accordingly) can
be used to prove Proposition (4.6) along the same lines as the proof of Proposition (2.6).
IfY is disconnected we proceed as in the remark following the proof of Proposition (2.6)
to complete the proof.

Theorem (4.7). — Let F, M and V be as above. Choose any projective embedding ofV,
and let X denote the intersection of\ with a hyperplane transversal to V (in particular not containing
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the singular point p). Then X is a smooth projective surface with fundamental group isomorphic
to r but is not homotopy equivalent to any hyperplane section of M.

Proof, — From Morse theory as in the proof of Corollary (2.10) it is clear that X is a
smooth projective surface with the same fundamental group as V — { p } w M — Y.
Since Y has real codimension 4 in M, TC^M — Y) w ^(M), hence TCi(X) w F, thus
proving the first assertion.

To prove the second assertion, observe that the composition of

X C V ~ { p } w M-Y

gives a holomorphic embedding X C M not as a hyperplane section, since it is disjoint
from the complex curve Y. If X were homotopy equivalent to a hyperplane section Z
of M, then the composition of this homotopy equivalence with the inclusion Z C M
would give a second map X -> M inducing an isomorphism on fundamental groups.
Since M = K(F, 1), this two maps X —^ M would differ (up to homotopy) by a self-
homotopy equivalence y of M. By Mostow's rigidity theorem [17], 9 is homotopic to
an isometry ^ of M. But then ± ^(Y) is a complex curve in M and the intersection
number Z.^(Y) = 0, which contradicts the assumption that Z is a hyperplane section.

Remarks. — 1. The divisor X C M constructed in Theorem (4.7) is not ample,
but lies in the boundary of the ample cone in M. Thus the most stringent possible cha-
racterization of the surfaces X as in the first paragraph would be that they are divisors
in the closure of the ample cone in M, and that the only complex curves with which they
have zero intersection number are totally geodesic.

2. It is clear that many similar constructions can be carried out on suitable locally
symmetric varieties for SU(1, n) and S0(2, n) for n ̂  3.
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