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CLOSED ORBITS IN HOMOLOGY CLASSES
by Atsusut KATSUDA and Tosuikazu SUNADA

Dedicated to Pr. Akihiko Morimoto for his 60th birthday

0. Introduction

Let { ¢, } be a smooth, transitive and weakly mixing Anosov flow on a compact
manifold X. In this paper, employing an idea in analytic number theory, we count
the number of closed orbits in a homology class. An analogue of Dirichlet L-functions
plays a crucial role in our argument.

Given a surjective homomorphism ¢ of H,(X, Z) onto an abelian group H, we
set, for each « € H and positive number x,

II(x, ) = { p; closed orbits with ¢[p] = « and £(p) < x},
w(x, «) = the cardinality of Il(x, «),

where [p] denotes the homology class and ¢(p) the least period of p. One of the results
in the present paper is concerned with an asymptotic estimate of m(x, ) as x goes to
infinity. The resemblance of our problem to a number theoretic problem suggests that
an analogue of the density theorem for prime numbers holds. The ¢ Galois group ”* H,
however, is possibly of infinite order, so that some extra phenomenon will appear.
Before stating our results, we must introduce several dynamical quantities. We
denote by % the fopological entropy of the flow and by m a (unique) invariant probability
measure on X of maximal entropy. Let Z be the vector field generating the flow. We

define the winding cycle ®, which is a linear functional on the space of closed one-forms
on X, by

®(w) =fx {w,Z>dn.

Since ®(exact forms) = 0, the linear functional @ vyields a homology class in

H,(X, R) = Hom(H*(X, R), R). The ergodicity of the flow leads to the equality

13
O(w) = }Lrg %fo (a,Z ) (p.x)dv a.e.x,
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hence the winding cycle is regarded as the average of the * homological  direction in
which the orbits are traveling. The central limit theorem (cf. Denker and Philipp [5])
guarantees the existence of the limit
3o, @) = lim % _dn() ( f: Co,Z> (o, %) dr — t(D(w))2,

which yields a positive semi-definite quadratic form on H(X, R). We call § the cova-
riance form. As we will see later, & is positive definite on Ker @, and hence gives rise to a
Euclidean metric on Ker ®. Consider the character group H of H. The tangent space T, A
at the trivial character 1 is identified with the dual HY = Hom(H, R), which is also
identified, in a natural manner, with a subspace in H}(X, R). Therefore if ® vanishes
on HY, the covariance form induces a flat metric on the group H. We denote by vol(H)
the volume with respect to the metric.

Theorem 1 (Density theorem). — If © vanishes on the dual HY, then
e}m

x(b/2) +1

(0.1) n(x, a) ~ C as x 1 oo,

where b = rank H and C = (2=)~ "2 vol(H)~! k1.

The above condition on the winding cycle is necessary for the asymptotic
like (0.1). In fact we have the following

Theorem 2. — If ®(HY) £ (0), then for every positive integer N

(%, o) _

P

o(x N as x 1 oo.

An extreme case is given by a perturbation of the suspension flow of an Anosov
diffeomorphism. In fact, we may construct, in this way, a weakly mixing flow (X, ¢,)
such that each homology class « € H,(X, Z) contains only finitely many closed orbits.

The condition in Theorem 1 is valid for a finite group H since Hf = (0). In this
case, the density theorem was established by W. Parry and M. Pollicott [17], and
T. Adachi and T. Sunada [3].

A typical example of Anosov flows with vanishing winding cycle on the full
cohomology group is the geodesic flow on the unit tangent sphere bundle over a nega-
tively curved manifold. Thus Theorem 1 is a refinement of a result in T. Adachi and
T. Sunada [2] on the existence of infinitely many closed geodesics in a fixed homology
class and also a generalization of the density theorem for hyperbolic spaces established
by R. Phillips and P. Sarnak [18], and ourselves [11]. It should be noticed that the
method in [18] and [11] is applied only to symmetric spaces, because, in the general
case, one can not exploit the Selberg zeta function (or trace formula) which enables one
to relate the poles of dynamical L-functions and the spectra of twisted Laplacians.
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One may ask how are closed orbits in a homology class distributed spacially in
the manifold. Let us suppose that they are equidistributed in the sense that, for all f e C*(X),
the following equality holds:

: -1
(0.2) 11{1112 m(® o) p € Iz, ®

S () fpf= | sam.

Then 7(x, «) 00 as x 1 o, and the left hand side of (0.2) equals ®(w) when f = { w, Z ).

If o e HY, thenf (w,Z )y = f o does not depend on p eIl(x, «), so that the right
» »

hand side of (0.2) equals

-1 Z -1
([o)rtsm 2 am
which tends to zero as x } . Therefore ® = 0 on H. We shall prove the converse,
which generalizes a result of W. Parry [15].

Theorem 8 (Equidistribution theorem). — If ® = 0 on HY, then (0.2) holds for all a.

The organization of this paper is as follows. On the whole, we take up a method
parallel to the classical proof of the density theorem for primes in arithmetic progression.
In Section 1, we set down the basic facts about dynamical L-functions. Employing the
perturbation theory of Ruelle operators, we pay close attention to the poles of L-functions
located in a neighborhood of the real axis. In Section 2, we give a criterion on the existence
of poles on the critical line in terms of the covariance form. In Section 3, we examine the
singularities of the integral of higher logarithmic derivative of L-functions over the
character group H. Though a basic idea of computations is already seen in [11], we
are forced, in the general case, to make a careful analysis because of the poles possibly
located off the real axis. If b is even, the singularity has the form to which we can apply
the ordinary Wiener-Ikehara Tauberian theorem. For an odd 4, we need to establish a
modified Tauberian theorem. This and the proof of Theorem 1 are done in Section 4.
Section 5 is devoted to the proof of Theorem 2. The proof of Theorem 3 is outlined in
Section 6 since it is almost the same as the proof of Theorem 1.

It should be pointed out that C. Epstein [6] obtained an asymptotic formula for
the case of non-compact hyperbolic spaces with finite volume, a case not covered by
our results in the present form.

Acknowledgements: This work originated in 1986 during a visit of one of the
authors (T. S.) to the Institut Henri Poincaré. The density theorem for geodesic flows
was announced in [10]. The work for the general cases was accomplished during a visit
of T. S. to the Institut des Hautes Etudes Scientifiques in 1987/1988. We would like
to thank the IHP and the IHES for their hospitality. We also wish to thank T. Adachi
and K. Tanaka for various enlightening remarks during the development of this work.

Recently the authors learned that M. Pollicott (for geodesic flows over negatively
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curved surfaces or manifolds with the even first betti number) and S. P. Lalley (for

geodesic flows on negatively curved manifolds) obtained independently the density
theorem.

1. Dynamical L-functions

The (dynamical) L-function associated with a unitary character y : H,(X, Z) — U(1)
is defined by

Ls, x) = E[ (1 — x([p]) e )~

It is known (W. Parry and M. Pollicott [17], T. Adachi and T. Sunada [2]) that L(s, %)
converges absolutely and is holomorphic in Re s> £, and has a nowhere vanishing
meromorphic extension to an open neighborhood 2 (not depending on y) of the closed
region Re s > . Our primary concern in this section is in the location of poles of L(s, %)

near s = k, which turns out to be closely related to distribution of closed orbits in a fixed
homology class.

Proposition 1.1. — There exists a smooth function s = s(y) defined on an open neighborhood
of the trivial character 1 in the character group of H,(X, Z) such that s(1) = h and s(y) is a
unique (simple) pole of L(s, y) around s = h. Furthermore

(1.1) V.-1Res(y) =0,

(1.2) Vet Ims(y) = @,

(1.3) (Hess,_4 Res(y)) = — 4n?3,
(1.4) (Hess, _y Im s(y)) = 0.

Proof. — For a real valued smooth function F on X, define
— —1
L(s, F) = H(l — exp(—— st(p) +V — lf F)) ,
» »
i
where f F =f F(o. %) dr, x€p.
p 0

If we put F =2n<0,Z), do =0, we find that L(s, F) = L(s, x,), where y, is the
character defined by

1o(2) =exp2nV—1] o, aeH(X,Z),
Ca
C, being a closed curve representing the homology class «. Note that every character in

the identity component of the character group has the form y,, for some o € H}(X, R).
Using a perturbation technique for Ruelle operators (see the discussion below),
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we observe that L(s, F) has a unique pole s = s(F) in a neighborhood of s = s(0) = £

if F is sufficiently closed to 0, and that Re s(F) < &. Since L(s, F) = L(5, — F), we obtain
(1.5) s(F) = s(— F).

The equalities (1.1) — (1.4) in Proposition 1.1 are special cases of the following.

Proposition 1.2. — (1) %[ Re s(¢2F) = 0.

t=0

d
@) 4| ImseF) = f F dm.
L li=o X
d2 1 ¢ 2
(3) pr Re s(tF) = — lim — | dm(x) (f F(p, x) dv — tj de) .
A t=0 t—>ow } X 0 x
(4) @ Im s(¢tF 0
— m s(tF) = 0.
|,

Proof. — (1) and (4) are clear from (1.5). From now on, we take up the notation
used in M. Pollicott [21]. Due to R. Bowen [4], there exist a suspended flow ¢} : =7 — Zf
and a Lipschitz surjective bounded-one map p : Z* — X such that p o 6] = ¢, o p. Further-
more, if m is the measure of maximal entropy on XZ*, then p* m is the measure of maximal
entropy on X and p is an isomorphism with respect to these two measures.

Define L(s, ) for (27, 6}) in the same way as for (X, ¢,). Using a routine tech-
nique in symbolic dynamics, we observe that L(s, F o p)/L(s, F) is a non-vanishing
holomorphic function in Res> k& — ¢, ¢ > 0, so that the problem reduces to the case
of suspended flows. We set

flx) = f:x)F(x, W) di, xeX, tel0,r()].

We denote by p the equilibrium state for the function — k7. Then

m=u X r/fzrdp..

Let 7+ and f* be functions in Fy, 0 < 6 < 1, which are cohomologous to 7, f respectively.
Consider the (complex) Ruelle operator £, , (s,t € C) defined by

&, 0x) = Y W+ V1w o( ).
v
cty=z
The Ruelle-Perron-Frobenius theorem says that for (s,¢) = (&, 0), &, , has a simple
eigenvalue 1 with positive eigenfunction. Applying the perturbation theory, we can find
a function A(s, t) and ¢, , € Fy such that &, , @, , = A(s,?) 9, ,, Ak, 0) =1, ¢, > O,
and A(s, ¢) is holomorphic in s and #. Furthermore

O\

(1.6) <.

8=h,t=0



10 ATSUSHI KATSUDA AND TOSHIKAZU SUNADA

It should be noted that if P(x) denotes the pressure of u, then
(1.7) Er i —\(h, — AV — 1y).

From (1.6), the equation A(s,¢) = 1 can be solved by the variable s around (%, 0),
that is, there exists a function s = s(¢) such that
As(2),t) =1, 5(0) = h.
It is obvious that s(tF) = s(¢).
We now prove (2). Taking the first derivative of A(s(¢), t), we have

ads o

os dt o

Using the analyticity of A and the fact (D. Ruelle [22]) that
2
— P(—hr++gf+)=f f+dp,+=frdp.f F dm,
ot |, o E+ X

we have
O\
— ='V——ljrdp.f F dm.
ot 8=h,t=0 X

On the other hand, we have

N
— = — r+dy.+=——-f rdp.,
05 |4=ni=0 =+ z

hence we get (2).
We now proceed to (3). For simplicity, we put F= f F dm. Then
X
Lis —V—1F,F - F) = L(s, F),

so that s(F) = s(F — ﬁ) + V= 1F. Thus we may assume F = 0. An easy calculation
shows

d? 1 o

— st) = —— — Ak, 0).

die |, _ or?

t=0 fxrdp.
Using [22] again, we find

02 dz .

— _ — — T

o |yen t=0 de? z:oP( )
= - 3, [0 e 5 duto).

Thus it suffices to show that the last term is equal to

_ f rdu x Jim ; fx dm(x) ( f: F(g, %) dr)z.
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If we put
exlt) = [ Fx) Flg, ») d()

then we have

f: ep(t) dt = lim % fx dm(x) ( fo' F(o. ) dr)z.

Note the following identity
r(c" )

Fo!(x, u) = ”)g.z Fe"%,0)3(u+t—ov—r*(x)) dv
(cf. [21]), where
™(x) =r(x) +riex) + ... +7(c" %) n=>0

r*x) = — (r(c™*x) + ... +r(c™"x)) n>1.
Therefore

fjw pp(t) dt =Ji°m dtfzr F(y) F(c!y) dm(y) (9 = (x, 1))

~ ( f rdp.)_l bj f du(%) ( :Z) F(x, ) du) ( f:""“) F(o"#, 0) dv)

=([ra) " =, [£09 Ao 5) dmis.

This completes the proof.

Let =: X — M be the unit tangent sphere bundle over a compact Riemannian
manifold M, and (X, ¢,) be the geodesic flow. Assume that { ¢, } is of Anosov type.
It should be noted that closed orbits correspond to prime closed geodesics in M, and the
least period is just the length of closed geodesics. We shall show that ® = 0 on H(X, R).
In fact, a much stronger assertion can be verified. That is, s(y) is real for all characters
near the trivial one. From (1.5), we have

(1.8) s(x) = s(x)-
On the other hand, by reversing the orientation of closed geodesics, we obtain
an involution p — p’ acting in the set of closed orbits. Since the character ¥

near the trivial one comes from a character of H,(M, Z) via the induced homomorphism
=, : Hy(X, Z) - H,;(M, Z), one has

2([p]) = 2(— [p]) = x([¥'D)

(note that, if dim M > 2, then =, is an isomorphism, and if dim M = 2, then the kernel
of =, is isomorphic to Z[x(M) Z, where y(M) is the Euler number of M). Therefore

L(“) i) = L(J’ X),
and s(x) = s(x) = s().
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Suppose now that M is a locally symmetric space of negative curvature. Let A(x)
denote the first eigenvalue of the twisted Laplacian A, acting on sections of the flat
line bundle associated with the character y of H;(M, Z). In view of the relationships
between the L-function L(s, x) and the Selberg zeta function, we get

h h? 12
s(x) = 2 + (71-— - 7\0()()) .
Thus, employing the result in [11], we obtain

Proposition 1.3. — Let v be a harmonic 1-form on M. Then

* * _ 1
3(x* 4, 7" ) —WLMP-

It should be noted, in this special case, that the measure m coincides with the
Liouville measure on the unit tangent sphere bundle.

2. Singularities of L-functions on the critical line

In this section, we are concerned with poles of L(s, x) on the line Res = k.

We denote by E’ (resp. E*) the contracting subbundle (resp. the expanding
subbundle) of TX.

Proposition 2.1. — The following three conditions are equivalent.

(1) There exists a non-trivial character y, such that L(s, x) has a pole on the line Re s = h.
(2) The covariance form 8 is degenerate.

(3) E*® E* is integrable in the sense that it is the tangent bundle of a G foliation.
The following lemma is frequently used in the proof of Proposition 2.1.

Lemma 2.2. — (1) (V. Guillemin and D. Kazhdan [8]). — Given a smooth function f
on X, satisfying

=
P
Jor all closed orbits p, there exists a function u € GY(X) such that, for t> 0
¢
o) —uls) = [ flo.s) dn.
(2) Given a smooth function f on X, satisfying
exp 2nV — lff=l
»
Jor all closed orbits p, there exists a function u € CX(X) suck that | u(x)| = 1 and, for t> 0,
i
u(p, x) = u(x) exp (21:\/ —1 f flo, %) d‘r).
0
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See [8] for the proof of (1). As for (2), it is a multiplicative version of (1) and can
be proven in much the same way. We omit the proof.

Proof of Proposition 2.1. — We prove (1) — (2). Suppose that L(s, %) has a
pole on the line Re s = / for some non-trivial character y. It is known ([3]) that L(s, x)

has a pole at s =% 4+ vV — la if and only if y([p]) = exp V — laf(p) for all closed
orbits p. Note that a+ 0 and x*+ 1 for every nonzero integer £ (if ¥* =1, then
kat(p) € 2nZ for all p, and hence the flow is isomorphic to the suspension of an Anosov
diffeomorphism; this contradicts the assumption that the flow is weakly mixing). Hence
we may assume, without loss of generality, that the character y is in the identity compo-
nent of the character group of H,(X, Z) and is non-trivial, so that

D) = exp2x V=1 o

for some closed (non-exact) l-form «. The function g defined by
a
g = o — <0, Z) (3
Y13
satisfies the condition in Lemma 2.2 (2). Hence there exists a C! function # such that
Zu=2-n:\/_—_—_l-u<i— (w,Z)).
2n

We now put

1
p=m+—-———:~_—_—u"ldu.
2nv —1

Then the continuous real 1-form p satisfies

a
{p, Z» = — = constant,
2n

and is closed in the sense that for every C! immersed two-disc ¢ with piecewise G! boun-

dary 0o,
f o= 0.
oo

Take a smooth closed l-form «’ which is cohomologous to p, so that

[o=]e=5em

for all closed orbits p. On the other hand, we observe that 21 = f ('sZ>dn. In
T X

fact, applying Lemma 2.2 (1), we may find a C! function # such that

’ a_
(w,Z)—Q——n—Zu.
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Integrating both sides, we obtain the desired identity. To show that «’ lies in the null
space of 8, we shall prove that 3(v, ) = 0 if and only if

[2=ew o
)
for all closed orbits p. Let F = (%, Z ). By [22],

2.1) lim —}J‘de(x) (f: F(o, %) dr — th dm)2= 0

t—>o®

if and only if there exists # € G%(X) such that
¢

.2) f F(o, x) dr — thdm — u(p, %) — u(x).
[}

Hence, for all closed orbits p,

(2.3) fF—[(p)dem=O.
P

Conversely, if f F ={(p) f F dm for every closed orbit p, then again by Lemma 2.2 (2),
P

the equality (2.2) holds for some u € C}(X), from which (2.1) follows. This completes
the proof of (1) — (2).

We now proceed to the proof of (2) — (3). Let @ be an element in the null space
of the quadratic form 3. Then there exists a continuous closed 1-form p cohomologous
to o such that

{p, Z ) = constant (= ®(w)).
Moreover the one-form p is uniquely determined. To see this, take a function u € G(X)

such that
(o, Z) — O(w) = Zu.

Putting p = & — du, we find (p, Z ) = ®(w). To show the uniqueness of p, it suffices
to prove that if {(du, Z ) = ¢ (= const), then du = 0. But this is clear from the fact
that ¢ = f( du,Z > dm = 0, and Zu = {du, Z ) = 0. Transitivity of the flow implies

that # = constant.

The l-form p constructed above is closed. Therefore the subbundle Ker pC TX
is integrable (see J. Plante [19]). To complete the proof of (2) — (3), we shall show
that Ker p = E*® E* Since ¢; o = ¢; p + d(¢; #) and ¢; @ = o + df for some smooth
function f, the form ¢} p is cohomologous to w. We find that

<or o, 2> (x) = (97 p) (%), Z(x)>
= < p(e; %) (@1 Z) (%))
= {p(p, %), Z(9, x)>,
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from which it follows that < ¢} p, Z » = constant, and hence ¢} p = p. Now let » be an
element in E’. Then

[<po>| =< ;e 0]

= | <p(P %), 9 v |

< const || g, v || =0,

as t goes to + oo. Thus we get {p,2 ) = 0. In a similar way, we get {(p,v » = 0 for v
in E* Therefore Ker p = E*® E*.

Finally we prove (3) — (1). By [19], Proposition 2.3, one can find a closed 1-form p
such that Ker p = E*® E* and

t
f(p,Z)((pTx)d‘rzt—s, s;teR; xeX.

In particular,

Lp —¢(3)

for all closed orbits p. Since there exists a character y satisfying
xwlp]) =exp2rV — lf p = exp2nV — 1{(p)
»

for all closed orbits p, L(s, x) has a pole s =k + 2V — 1. This completes the
proof.

We do not know whether there exists a weakly mixing Anosov flow satisfying the
conditions in Theorem 2.1. We propose

Conjecture. — If an Anosov flow is weakly mixing, then the quadratic form & is
non-degenerate.

In view Proposition 2.1, this conjecture is equivalent to the following one proposed
by J. Plante in [19].

~ Conjecture. — If (X, @,) is an Anosov flow such that E*® E¥ is integrable, then it is
(modulo change of time scale by a constant factor) the suspension of an Anosov diffeo-
morphism of a C! compact submanifold of codimension one in X.

In his paper [19], Plante showed that a flow satisfying the above condition is
topologically conjugate to the suspension of an Anosov diffeomorphism. Especially,
each «a € H (X, Z) contains only finitely many closed orbits.

We now relate the non-eixstence of poles on the critical line and the vanishing of
the winding cycle.
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Lemma 2.3. — If ®(H") = (0) and y(+ 1) € H, then L(s, y) has no poles on
Res =h.

Proof. — The arguments in the proof of Proposition 2.1 says that if L(s, ) has
a pole on Re s = / for a non-trivial character y in H, then there exists a closed, non-exact
lform o in HY such that

Lw — ®(w) #(p) =0

for all closed orbits p. Since closed orbits span the homology group H,;(X, R) ([20]),
the form o must be exact. This is a contradiction.

Remark. — The above argument says that the quadratic form § is positive definite
on Ker ®.

Proposition 2.4. — Suppose ®(H') = (0). Then there exists an open domain D containing
{Res> h} suck that, for all y e H, L(s, y) has no pole in D except for s(x).

Proof. — Suppose the contrary. Then there exist convergent sequences Y, el
and s, € G such that Relim s, = 4, s, is a pole of L(s, x,), and s, % s(x,). Put

5o = lim s, Yo = lim .

By T. Adachi [1], 1 is an eigenvalue of the twisted Ruelle operator &, ,, . The pertur-
bation theory leads to the conclusion that 1 is also an eigenvalue of &, , , so that s,
is a pole of L(s, xo). From Lemma 2.3, it follows that y, = 1 and s, = k. Since s(y) is
a unique pole of L(s, x) around s = k for y near 1, one has s, = s(y,), thus yielding a

contradiction.

3. Integrals of higher logarithmic derivatives
of L-functions over the character group

Throughout this section, we assume that ®(H') = (0), so that the hessian of
Re s(y) at y =1 is negative definite.
Our approach to Theorem 1 is to analyze the following function.

d\? L'(s, )
F,(s) = fﬁx<— %) (— %—) T

where dy denotes the normalized Haar measure on the character group H and g = [5/2].
We shall take up the method developed in [11], where we treated a special case corres-
ponding to the situation that Ims(y) = 0 and & is even.

To avoid the repeated use of a lengthy statement, we make

dy, «eH,
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Definition 3.1. — A holomorphic function F(s) defined in Re s > £ is said to satisfy
the property *,; (resp. #,) if the limit lj&l F(h + € +V/— 1t) exists almost everywhere

on R ={t}, and is in L (R) (resp. Wi!(R), the Sobolev space consisting of locally
integrable functions with locally integrable derivatives), and there exists a locally inte-
grable function k() such that

|F(s)| < h(t), s=h+ec+V— 1t
In what follows, we put, for brevity,
¢ = (2r)~ "2 vol(H)~! = Ch,
where C is the constant given in the statement of Theorem 1.

Proposition 8.2. — Assume that ® vanishes on HT.

(1) If b is even, then F (s) — satisfies the property *..

¢
s—h

(2) If b is odd, then F,(s) —

Ve
satisfies the property *,.
m p p Ly *g
An easy calculation yields the following technical lemma, which we shall use
repeatedly in the proof of Proposition 3.2.

Lemma 3.3. — Let u, a> 0, and let b be a real number. If m, n > 0 and min{m, n}> 1,
then
1

|erara—mrra®

— O(a—z(m+n)+l) as a¢0_

Proof of Proposition 3.2. — By Proposition 2.4, we find that F,(s) is holomorphic

in 2\{s(x); x €U}, and hence the limit lei&l F(k 4+ ¢ + V/— 11) exists and is smooth
except for ¢t = 0. We may write

d\¢ 1
R0 = [ 2= (— E) g )

where U is a (small) open neighborhood of y =1 in A, and A,(s) is a holomorphic
function in 2. Identifying U with a neighborhood of 0 in Hf, we transform the integral
into

1 d\’ 1
vol(ﬁ) fUXﬁ(— & (— E) s — $(Xw) o

where do denotes the Lebesgue measure on H' induced from the metric 8. We apply
the following refinement of the Morse lemma to the even function Re s(y,).
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Lemma 3.4. — Let f(x) be an even smooth function in a neighborkood of 0 in R*, with
J(0) = 0. If O is a non-degenerate critical point for f, then there exists a local coordinate system
D= (D1, -++>0,) in a neighborhood of O with y(0) = O and suck that y(— x) = — y(x) and

SO) =R+ ... +r =i — - — I

The proof is carried out by a careful choice of the coordinate in the usual proof
of the Morse lemma.

Thus one can find a local coordinate x(w) = { x;,(w)}}_, such that ¥(— ©) = — x(®)
and

Res(e) =k — [l #[ (%] = Z ).

By Proposition 1.1, the integral is transformed into

1 ~ d\’ 1 4 P(x)
3.1 — (2n?) b2 —_—— dx,
(8-1) vol(H)( ) L( ds)s—h+l|xI|2+V—1Q(x) )

where P(x) is a complex valued function with P(0) = 0 and Q (x) is a real valued odd
function (remember that Im s(y) is an odd function). Hence, Q (0) = Hess Q (0) = 0.
From the assumption that ® = 0 on H, we have VQ (0) = 0. We may assume that
U ={x;|| || < a}. Changing to the polar coordinate, we find that (3.1) is equal to

1 B ¢ d\’ 1 + P(rQ) B
0n2)— b2 40 _ 2 b=1dy,
vol(H) (2r) L,,_l J ( ¢;) s—h+724+V—1Q(rQ) o

0

which we write Y(s).
We first show (1). In this case, g = 4/2, and Y(s) equals

1 “ d\’ Pt
(3.2) — (2n?) b2 (Q,,_IJ (—— —) ——dr
vol(H) 0 ds)] s —h+1r*
¢ R,(rQ)
aQ 2
+Lb-1 L (s —h + 2ot r
g+1 a
4+ 3 J dQJ . R dr),
=g o (S—hE) (s — k4P +V—1Q Q)"
where Q,_, = dQ denotes the volume of the unit () — 1)-sphere, and

R,(r2) = g! =1 P(rQ),
R,(rQ) = g! P11 + P(rQ)) 1) (V= 1Q(rQ))" for i> 1.

Note that | Ry(rQ)| < Cr?, | Ry(rQ)| < Cr*~1*% (7> 1). By a straightforward compu-
tation, we find that the first term of (3.2) equals ¢/(s — &) + (a holomorphic function
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in Re s > k). To show that the other terms of (3.2) converge to locally integrable func-
tions as ¢ tends to zero, we set

a Tb
hz(t) = J;) W dr,

; o yo—1+8i .
s = J E+ 7 (€ + Q@) + e Priz b

which, up to multiplication by a constant, dominate the second and third terms respec-
tively. By Lemma 3.3, we have

ru b

(t2 _|_ r()(ﬂ +1)/2

n _ :
fb 1+8i

(t2 + r4)i/2 ((t + Q(rQ))2 + r4)(a+1)/2

dt = 0(1)

dt = 0(r'™ 1),

J—u

pa pR b
r
J‘ (t2 __I_ rl)(a+1)/2 dt dT <
—u

hence

ra _ .
Tb 1+8i

Jlu (tz + 74)1/2 ((t _|_ Q_(TQ))Z + r4)(a+1)/2

w
By Fubini’s theorem (P. R. Halmos [9], p. 147, Theorem B), the integrals hy(2) dt
-

dt dr < oo.

J0

®
and K(t) dt are finite. Thus Y(s) — ¢/(s — h) satisfies the property *,. This proves (1).
-

We now proceed to the proof of (2). In this case, g = (b — 1)/2. We write

Y(5) = — (2057 (Y1(s) 4 Y2(s) + Y2(s) + Y¥(s)),

vol(H)
where
1 A}
Y(3)=“ ( Ir)s—-h—{—]lxllz
2 [ d\’
Y(S.)=dU :I.S)s—h+||x||2
. [ d\’ P(x) — VP(0
Y(J‘)=“U E) S—h+”xn2 )
[ d\’ 1 4+ P(x) 1 + P(x) )
Yi(s) = _ = — dx
¥ Ju df) (f—ﬁ-l-llxllz-l-'\/—-lQ(x) s—k+ || x]?
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The first term Y(s) is equal to

@ ro—1
1Q
k4 b—-lJ; (S _ h + 7,2)‘;-|-1 df

=88 2% J;(s—-k—l-fz)” r—[m]:)

b—-21[* 1 .
=g'Q_, 9 g1 A dr + (a holomorphic
& b g function in Re s > &)

a

1 r
¢ tan—! -+ (the same one
[ V S — h \/ S — h]o (

as above)
1 (1: _1'\/3-—/1)
Vs—h\2

= 2(2m)®=12 9=

= 2(2r)®-1i2 90

+ (the same one

a as above)

= (2m)®-V2 Q=0

1
DYy + hy(s)

where k,(s) satisfies the property *,. Therefore

Vo
Vs—h

where fy(s) satisfies the property *,. The second term Y?(s) is zero. Therefore it suffices
to show that Y3(s) and Y4(s) satisfy the property =*,.
Since P(x) — VP(0) x = O(r?), we obtain

1
vol(F1) (2n*)~¥2 Y'(s) is equal to

+ hs(s),

rb+1

| Y3(s)| < conmst J’U (177 A dr

a
< constJ poH1=20+D) gy < o,
(1]

from which it follows that lzi?(’)l Y3(s) exists and is locally integrable. Note that the limit

can be viewed as one in the distribution sense. We also have

a 7‘b+1
< constJ (e + 1) + )oron dr
0

@ po+1
<const| —————dr.
=

. (r* + )oTror

d
Sy
7 (5)
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Using again Lemma 3.3, we find
e rb+l
Liuﬁjﬁmmm&w<w,

so that l‘iﬂ.’)l —:llt Y3(s) exists and is locally integrable. Since, in the distribution sense, we get
d d
1 3 — im — Y3
lim Y3(s) = lim th (5),

we conclude that lim Y3(s) is in Wi;!'(R). Therefore, Y3(s) satisfies the property *,.
As for the fourth term Y%(s), we write

g+1

Y4s) = 3 L),

where
To(x)
IO = d ’
© L C—=k+(=|) =2+ #]*+V—=1Q()** i
Ti(%)
L(s) = ds,
© L C—h+ x| —k+]|2]P+V—-1Q(x)*
for 1> 1.
and

To(x) = (g + D1 V= 1Q,4(#),
Ty®) = (g + D!'V—1(P(x) Q(x) + (Q — Q) (),
Ty(x) =g!(1 + P(x) 1) (V=1Q®)" (i>2).

Here, Q 3(x) denotes the term of degree three in the Taylor expansion of Q (x) at x = 0.
Note that T,(x) = O(||x|])*) and T(x) = O(||x||*) for ¢> 2. We also write

g+1

Io(s) = i§0 I:)(s)a

where

o \ To(x)

=) e r e

ne - Ty (Tyls) + Ty() .

Jo—h+ 2P —k+|l#]|P+V—1Q(x)*"

; [ To(x) Ty(%)

Ii(s) = dz
O TR A G+ 2P VTR

1> 2
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Clearly, I3(s) = 0. We shall show that I(s) and Ii(s), > 1, satisfy the property *,.
Since the proof is almost the same, we treat only Ij(s). It is immediate that

lI(ll(s) l < conStj; (t2 _|_ T‘) ((t + Q_(fQ))2 _|_ 7.4')(04-1)/2

@ rb+5
< const

a
Fo+5
dr

and

d
7 I;(s)

(tz + 7.4) ((t + Q(YQ))Z _|_ 74)(a+1)12

0

1 1
g ((tz (Y )) -

from which, in the same way as above, we conclude that I3(s) satisfies #,.

4. Tauberian theorems and the proof of Theorem 1

We first recall the classical Tauberian theorem due to Wiener and Ikehara
(cf. S. Lang [12]).

Proposition 4.1. — Let ¢(x) be a monotone nondecreasing function with ¢(x) = 0 for
x < 0. Define f(s) via

0

Sis) = j e~ * do(x).
Assume that

(1) f(s) is holomorphic in Res> 1,
1
@ i) — —

Then lim g(x)fe* = 1.

satisfies the property », with b = 1.

We shall prove the following Tauberian theorem, which is required in the proof
of Theorem 1 for an odd b (cf. [26]).

Proposition 4.2. — Let ¢(x) be a monotone nondecreasing function with o(x) = 0 for
x< 0, 6> 0. Put

[

fs) = j \i[ = do(x).
Assume that

(1) f(s) is holomorphic in Re s> 1,

1
(2) f(s) — Vi1 satisfies the property », with h = 1.
S —
Then lim o(x)/¢ = 1/V/x.

- To prove this proposition, we need several lemmas.
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Lemma 4.3. — If we put

Z(s) = SJ:\%; e @(x) dx,

then f(s) — Z(s) satisfies the property *,, and hence so does Z(s) —

[
I
—

Proof. — Integration by parts leads to

© 1 1 ” !
L —\/—J_wadcp(x) = [—ﬁe—“ <x>(x)]o +5£ ——xe""<P(x)dx

1 o]
+ §J‘ x~ B ¢= 5 o(x) dx.

0

From the fact that o(x)/Vze? T2 < f{1 + €) < o, we see that

1
lim — ¢ *¢(x) =0 for Res> 1.

& —>
X

Thus if write F(s) = f x~®? ¢= ¢(x) dx, then we find

(a.1) — $F(5) + 5 F() =)
Z(s) = — sF'(s).

Since li&l f(s) is locally integrable (note that (s — 1)~'2 is locally integrable), by solving
the differential equation (4.1), we find that li&l F(s) is in WLI(R). It is also easy to
see that F(s) is dominated by a locally integrable function.

The rest of our argument will be a modification of the argument used in the proof
of the ordinaty Tauberian theorem. Put H(x) = ¢(x) e~ *.

Lemma 4.4, — lim J-M H( “’) Vo sntw o
mma 4.4. — y—— w = .
v AN Vy—wh w? "

—

Proof. — Put s=1+¢+ VvV — 1t and

&m=§@w—ﬁﬁéi+VCH».




24 ATSUSHI KATSUDA AND TOSHIKAZU SUNADA

We then have )
K.(0) =L ) e — e
=2 : e *" o(v?) dv — \/;1———1 (x = 0%
=2 :o e~V H(v?) do — %L‘” e~V gy

(* ©

=2 ) g~ (H(vz) — \%;) dv.

Thus, we get
13

K, () = Jim 2 J

0

(H(v2) — %) eV gy

T,

uniformly in | ¢|< 2\ when ¢ is fixed. We multiply the last expression by the function

¢
\Ge‘/"—”" (l — %) and integrate over ¢ from — 2\ to 2A. Then, we have

Jn V' e‘/:_“”(l —m)K(t) dt
X > o) &

- 2 VN 1
= lim 2J \/_;e‘/:—””(l - —) (j (H(vz) — —) g V=it dv) dt.
AL o/ \J, V'

Since the convergence is uniform, we can interchange the integral and the limit. Thus the
last expression equals

© 27
2 j (H(vz) - %) e (J \/_;(l - %\_l) ¢V —iv—mt dt) dv

oo

u = t[\).

Replacing the variable v by w = A(y — 2?) (i.c. v=Vy— w/)\), we find that the last
term equals

N o e NS R e

Y .
— QJ ’ H( — l_”) =S —(wA) sin® w Vy dw
A w Vy— (w)

2 j W vy sin® w

Val o Vy— ()

—

e~ ey —(w/A) dw.
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We now take the limit as € — 0. Since the function

H (); — g) e~ &V —(w/A) sin® 2 \/j
A W' Vy— (wA)

is positive, increases as ¢ tends to zero, and Z(s) — satisfies the property *,,

1
Vs—1

we have
2A Ay - .
|t|) ity d 2 J' Vy sin? w
4.2 1 —— ¢ + =
4.2) LxKo(t)( - VyeV—indy Ve I s dw

Y T
A owt Ay —(wp)

where K (f) = lj}lg K,(¢) and we have applied the Lebesgue convergence theorem to

— O

the integral containing K,. The second term in (4.2) is evaluated in

Sub-Lemma 4.5 lHm J‘M‘ '\/‘y— sin? w dw jw sin? w
u =, . « —_—
y—>© w )’ _ (W/)\) w2 -

Proof. — Put w = Ayo. We have

I“’ Vy  sinfw o — r 1 sin® (o) do
Ca Vo — (@) w? wVli—s & »y

Fix ¢ > 0. Take a constant 8 > 0 so that if | ¢ | < §, then
|l——1/‘\/1—c|<e.
Thus, we see that

J‘ 1 sin?(Myo) do r sin?(Ays) do
—w V l—o c? )Ey —8

N J‘“ 1 sin?(yo) do N r 1 sin®(\yo) do
o V1l—06 o2 M s VlI—06 ¢? )9’.

The second term in the right hand side can be estimated as follows.

-3 . P
1 sin?(Ays) do J‘ 1 1
— | g —— do -0 as y — oo.
'I_wvl—a o? Y o N2 V]1 —0 7

The third term is estimated in a similar way. Hence the conclusion follows from

8 ) Ay8 .
A 2
lim j sin®0yo) do _ i I O =

v a? ))}’ v Ay8 i

dw = .

w2

r sin?(\yo) do
<e _
s © N

62 N
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Sub-Lemma 4.6. — If j(t) € Wiil(R), then

2A
lim J ViyeV=1j(t) dt = 0.

Yy—> 0
0

Proof. — This is an easy conclusion from integration by parts.
Applying this lemma to the first term in the left hand side of (4.2) (note that

1
K, (2) (1 — I?)tl) is in WEl(R)), we have Lemma 4.3.

— 1
Lemma 4.7. — lim H(y) € —.
Jim H() Ve
Proof. — Fix A > 0. Note that the integrand is positive. Cutting down the domain
of integration, we get
VA in?
\/n>1imj H(y——g) Vy  sintw

vl _va AN VY — (wh) w?

Using the monotony of ¢ and the corresponding property of H, we have in the interval
[— A, )‘]:

H(y — %) > H(y — 1V3) VA,

Hence

— [VA 1 \f sin? w
V7> lim J. H ( — ——) e 2VA J dw.
eI A VA Vy — win w?

Since A is fixed, » can be replaced by y + 1/4/%. Hence

P \/,,—re—zn\
lim H(y) <
vy ) j VA \/y— sin? w

_ViVy—wh w?
By an argument similar to that of Sub-Lemma 4.5, we get

Vi a2
J \/_;) sin wdw
_ﬁ\/y—wlk w?

dw

lim

A—> ©

Hence, letting A — oo, we have

—— 1
lim H(y) < —.

y-> 0 W

Lemma 4.8. — lim H(y) >

Y—> 0

NS
a‘
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Proof. — By the monotony of ¢, we see that, in the interval [— v/2, V/2],

UViH (y — %) < H(y + 1V3).
By Lemma 4.7, there exists a constant Q> 0 such that H(y) < Q. If we fix A> 0,
we get

Ay .\/_ in2
ﬁ:limj H( _Q) J smwdw
v>® 7 AN VY —wh w?

— 00

< QI—ﬁ@+ lim Jﬁ H(),+_1_) ~IVA Vi sinfw
o WP v | s vV Vy —w/h w?
Ay \/" PP
. y sin? w
+Ql_lmf dw
Vi Vo —wh w?

<2 4 lim H() #V¥r + Q lim r” 1#’*\6 L
S —= 1 € ™ w.
Vo v 4 > ) 2 Vy — wh w?

y—>

Y—> 0

The third term can be estimated as follows.

J«M \/j sin® w 4 J»Mlz + ‘r\v
w =
Vi V) — w/ A w? VA Av/2

Av/2 Y Ay
<J lsmwdw_i_‘l-\/_}J' 1

—_— dw
Vi V2 w? )2 Sy Vi — W]
o0 . 2
< IJ' sin wdw—|—4\/§.
V2 Vi WP Y

Therefore, if we let A tend to infinity, we get

Ao \/;_'n:'\/;\_ T\ Vo
1

[ . 2
lim H(») > lim e—z/«/i(L Q 4v2Q QJ sin? w )
y-> ,\/X w2

V.
The proof of Proposition 4.2 is complete.

We are now in a position to prove Theorem 1. Put

Pu(%) = ’El ‘é RY2 ¢ (p)L+e2,

Kp) <z
kipl=a
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By the orthogonal relation of the characters, we obtain

Fﬁ“ﬁ§§ﬁﬂ“@xwmwwm”wWMa
H
= § Zkal(p)a+l o~ ®

k=1 p
Kpl =«

SJ €% de,(x) when b is even

0

® 1
——e¢ “do,(x) when b is odd.
)L\/; Pu(%)

Applying the Tauberian theorem (Proposition 4.1 and 4.2), we get
Po(r) ~ Ce*,

where the constant C is the same one as in the statement of Theorem 1. By the same
argument as in [11], the proof of Theorem 1 is now complete.

Remark 1. — The appearance of Theorem 1 might remind the reader of some
number-theoretic density theorems which could be proved by Landau’s method
(cf. J.-P. Serre [24]). But in order to apply the method, we must prove that (s — k) F(s)
(or Vs — kF,(s)) has an analytic continuation to an open domain containing Re s > &,
which remains to be proved.

Remark 2. — Proposition 4.2 is generalized in the following way: Given a
monotone nondecreasing function ¢(x) with ¢(x) =0 for x< 6, 6> 0, we suppose
thatf x~% ¢~ % do(x) is holomorphic in Re s> 1, andf x e do(x) — (s — 1)1

0 0
satisfies the property #, for some positive 6 < 1. Then ¢(x) ~ I'(1 — 0)~*¢* as x 1 co.

5. Proof of Theorem 2

We first show that the limit

lim X ¢(p)*e*™® (seR)

s{h peEllz,a)

exists for every nonnegative integer zn. In view of the argument in Section 3, it suffices
to show that the following integral

x(— @)
,L@+k—dﬁﬁ“
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is bounded when ¢ tends to zero. Since the winding cycle ® does not vanish, choosing
a suitable coordinate x = { x;}?_, in U, we may assume that

/)
(5.1) %#0 and Ref>0on U,
1

where f(x) = k — s(x). Our assertion reduces to the following one:
Lemma 5.1. — Under the assumption (5.1), for all ¢ € C3°(U) and any n > 0, the limit
: ()
lim | —————
'*"L (e +f(%))"
exists.

Proof. — Integration by parts yields the following equalities:

9(x) (o ((&\ 1
| ) e ZLE((EJT) “’(’“’) O )

r

| A e s

»

9(x) log(e + f(*)) dx = — J a% ((g;) <P(x)) ®(c + f(%)) dx,

2 | 2|
where ®@(z) =j log ©dr = f log tdv +V — 1(arg z)|z|. Then our assertion is
0 0

derived from the fact that the limit

e—>0

limJ o(x) D(e + flx)) dx

exists. In fact, Re(e + f(¥)) > 0, so that | arg(e + f(x))| < =/2. Since the function ®(z)
on the region { z; Re 2> 0} is continuous, it follows that the above limit exists.
We now consider a Dirichlet series

o(s) = E*l @ e M*

with ¢,> 0 and 0< A, <2, < ... } o0, and assume

n(x) := 2 @, < const¢®.
M<le
Theorem 2 is a consequence of the following lemma.

Lemma 5.2. — Suppose that, for every n> 0,

8lh slh k=1

" ©
lim (— (%) @(s) = lim X g AP e

exists. Then w(x)]8® = o(x™~) as xt oo for every positive integer N.
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Proof. — Suppose that the conclusion is not true. Then there exist an integer
M > 0 and a sequence 0< %, < %, < ... 1 o0 such that

n(x) > M i=1,2,....
We put

[+ o]
K =lim X g M+ M,
sk k=1

Then, for all s> k and ¢, we have

K> 2

g — mlog 2, < Ap < @ %,

\%

)\kl!+1 e~ Mt

> (% —mlog x)¥+le %Y

i — milog ;< Mg <; %

> (x‘ —m lOg‘ x‘)M+1 e—z;s(ehz; xi_M — “Mac,-~mlogx,'))

M+1 _ M+1
_ oy (l __mlog x,.) _ ¢(% — mlog x,) s
= 2 —_ .

mh
B X

Letting s ¥ h, we have

M+1 _ M+1
K> x (1 - ’f_l_o_g_x_’.) _ ¢(x, — mlog x,) '

mh
LA x|

1]

If we take m with mk > M + 1, then the right hand side goes to co when x; t oo, whence
a contradiction.

6. Equidistribution theorem
Given fe C*(X) and « € H, we put

n(x, 0 f) = I(v)2<z ff(D)/’(P): £y(p) = Jf
pE Iz, @) »

Theorem 3 is a consequence of Theorem 1 and the following proposition.

Proposition 8.1. — Under the same assumption as in Theorem 3, we have
ehz
n(x,oc:f)NCJ fdm;m—i,
x
where C is the same constant as in Theorem 1.
Proof. — This comes from a combination of the argument in W. Parry [15] and

Theorem 1. We define a modified L-function by
L(s, z, ) = LI(1 — x([p]) e~ @+ =r®)~2,
P
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By differentiating logarithmically with respect to the second variable at z =0, we
obtain

L0, (0,
(6-1) L5, 0,5) 5 — (1)

where s(z, x) is the pole of L(s, 2, x) in a neighborhood of s = £k, s5,(0, x) denotes the
derivative with respect to z at z = 0, and A(s) is a holomorphic function in 2. By [15],
5,(0, x) is written as

5,0, %) = J Sdm 4 k(y),

X

+ h(s),

where k(y) is a function with k(y,) = O(||@||). Thus if we replace L'(s, x)/L(s, x)
by (6.1) in the proof of Theorem 1, then we get

T2 PR (p) Hp) e~ C (j fdm) /=,
v X

Hp<ez
klpl=a

from which the assertion follows.

Remark. — It would be interesting to know whether =(#, «, f) has an asymptotic
expansion. R. Phillips and P. Sarnak [18] (for f = 1) and S. Zelditch [25] (for the
general case) established an asymptotic formula for a compact hyperbolic space. If one

could apply Landau’s method (J.-P. Serre [24]) to L(s, z, x) an asymptotic expansion
could be obtained.
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