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PERIODIC POINTS AND ROTATION NUMBERS FOR
AREA PRESERVING DIFFEOMORPHISMS OF THE PLANE

by JOHN FRANKS

Abstract. — Let f be an orientation preserving diffeomorphism ofR2 which preserves area. We prove the exis-
tence of infinitely many periodic points with distinct rotation numbers around a fixed poinf of/, provided only
that / has two fixed points whose infinitesimal rotation numbers are not both 0.

We also show that if a fixed point z of/is enclosed in a "simple heteroclinic cycle " and has a non-zero
infinitesimal rotation number r, then for every non-zero rational number p / q in an interval with endpoints 0 and r,
there is a periodic orbit inside the heteroclinic cycle with rotation number pfq around z.

In this paper we investigate area preserving diffeomorphisms of R2 and the
existence of periodic points with prescribed rotation number around a given fixed
point. A motivating question for this investigation deals with a diffeomorphismy: R2 -> R2

which has two hyperbolic fixed points j&i, j&g, with a double saddle connection and an
elliptic fixed point between the saddle connections (see Fig. la). The classical fixed
point theorem of Poincar^ and Birkhoff can be used to show that in this case for each
rational pfq between 0 and the infinitesimal rotation at z there is a periodic orbit with
rotation number pfq around z which lies inside the disk bounded by the saddle connections.
This is done by " blowing up " the point z to obtain a homeomorphism of the annulus
bounded by the saddle connections and the blow up of z, and applying the theorem of
Poincar^ and Birkhoff to this annulus homeomorphism.

Fig. \a
14
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If the heteroclinic connections between the points p^ and p^ are more complicated
(see Fig. Ib) this approach does not work, because there may be no invariant disk of
finite area containing z, but one can ask if the result is still true. With rather modest
assumptions on the hyperbolic points in this more complicated case (see the definition
of " simple heteroclinic cycle" in (3.2)), we show that it remains true that there is
a periodic point with rotation number p\q. This result is Theorem (3.4) below.

Fig. \b

In § 2 we consider an even more general setting: any area preserving diffeomorphism
f: R2 ->R2 which preserves orientation and has two fixed points ZQ and z-^. In (2.2)
and (2.5) we show there are intervals with the property that for any non-zero p\q in
their interior, there is a periodic point x such that pfq is the difference of the rotation
numbers of x around z^ and ZQ. Such an interval can be chosen with endpoints the
infinitesimal rotation number of z^ and minus the infinitesimal rotation number of ZQ
or with endpoints 0 and one of these numbers. In any case, unless the infinitesimal
rotation numbers of ZQ and z-^ are both 0, there are infinitely many periodic orbits with
distinct rotation numbers about at least one of the two fixed points.

I would like to thank Robert MacKay for posing the motivating question to me
and for several valuable conversations on the possibility of its resolution.

1. Background and definitions

We are interested in investigating the existence of periodic orbits for area preserving
difieomorphisms ofR2 and measuring their rotation around a given fixed point. We begin
by recalling the definition of rotation number for a homeomorphism of the annulus.
Suppose /: B -^B is a homeomorphism of the annulus B which is homotopic to the
identity map (we consider B == T1 X I, where I is [0, I], or (0, 1), or [0, oo)). Let
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TC : B -> B be the universal cover and let F : B -> B be a lift off. Ifx e B, then the rotation
number of x relative to F is defined to be

R,W . lî  ""M-"-
Fx / n^°o %

if this limit exists. Here ( )i denotes projection on the first factor o f B = = R x L (The
identification of B with R X I requires the choice of a generator of Hi(B) to specify
the orientation of R, or equivalently the choice of a generator T of the deck transfor-
mations of the cover TT.)

If Rp(-v) exists and n{x) ==y eB then the fractional part of Rp(A:) is independent
of the choice of the lift F and is the same for all points of Tr""1^). Hence it is referred
to as the rotation number of y eB and will be denoted R(jQ. The number R(jQ is well
defined only mod 1 and is properly thought of as an element ofT1 rather than a " number "
as its name suggests.

We shall also want to consider an invariant which is a real number as opposed to
an element of T1. To obtain a well defined element of R we need to specify a choice of
the lift F : S -^ S. A natural way to do this is by choosing a continuous path y : [0, 1] -> B
such that/(y(0)) = y(1) and ^^g the lift F satisfying F(F(0)) == F(l), for some (and
hence any) lift F of y to B. To distinguish the two <( numbers " we use the term total
rotation number relative to y for this invariant. More formally we have the following
definition.

(1.1) Definition. — Suppose /: B ->B is a homeomorphism of the annulus B which is
homotopic to the identity map. Let F : [0, 1] -> B be a lift </y and let F : § -> S be the unique
lift of f such that F(r(0)) == F(l). The total rotation number of x eB relative to y, denoted
^(x,/), is defined to be Rp(^o)? iflt exists, where n{xo) == x.

It is easy to check that this value is independent of the choice of F and of the choice
of XQ e S.

Often we will be interested in the case wherej^ is a fixed point of/and y is a constant
path with valuer, i.e. when y(^) ==j for some fixed point y and all t e [0, I], In this
case we will sometimes abuse notation and write y for y so the total rotation number
relative to the fixed point y will be denoted ^y{x,f).

We next recall the process of" blowing up " a fixed point z oto. diffeomorphism/.
Intuitively we remove the fixed point z and replace it with a <( circle of directions " to
which the diffeomorphism can be extended. More precisely, if/: R2 ->R2 is a diffeo-
morphism with fixed point z, let A = T1 X [0, oo) and consider the homeomorphism
h: A — (T1 X { 0 }) -> R2 — { 0 } given by h{x, t) == tx, where we identify T1 with the
unit vectors of R2. Define g : A -> A by

((/(^/II/WIUI/WII) i^>0.
g^' l(D/oW/|iD/o(^||,0) otherwise.
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It is not difficult to see that this defines a continuous function since
!™/(^=D/oW, so

lin, M _ ^f_W t ^ D/oW
^o||/(^)|| <-o t \\f{tx)\\ ||D/oM|r

Clearly g is a homeomorphism of A and if A — (T1 x { 0 }) is identified with R2 — { 0 }
via the homeomorphism h then g =fon this set. We shall refer to g : A -^ A as the homeo-
morphism obtained by blowing up z and generally identify appropriate points of A with
points of R2 via the homeomorphism h. In a similar fashion one can define the homeo-
morphism obtained by blowing up a fixed point of a diffeomorphism of any surface.

Next we define the rotation number of a periodic point x around a fixed point z.

(1.2) Definition. — Suppose/: R2 —^R2 is an orientation preserving diffeomorphism with
fixed point z and a periodic point x, and suppose y : [0, 1] -> R2 is a path withf{^(0)) = = y ( l ) -
Let g : A -> A be the homeomorphism obtained by blowing up z. The total rotation number of x
around z relative to y, denoted ^{x, z,f), is defined to be the total rotation number Sl^x.g),
if it exists. The rotation number ofx around z, denoted SH{x, z^f), is the rotation number R{x, g),
which equals the fractional part of ̂ {x, z,f). Ify is a fixed point off we will use SSy{x, z,f)
to denote Sf^{x, z,f), where y is the constant path with value y and refer to this value as the total
rotation number of x around z relative to y.

We need also to measure the rate at which a fixed point is rotating infinitesimally.

(1.3) Definition. — Suppose f: R2 -> R2 is an orientation preserving dijfeomorphism with
fixed point z and suppose y : [0, 1] -> R2 is a path satisfying /(y(0)) == y(1)- Let g : A -> A
be the homeomorphism obtained by blowing up the fixed point z. The total infinitesimal rotation
number of the fixed point z relative to y, denoted ^{z,f), is defined to be the total rotation number
of any point x e T1 X { 0 } relative to y, i.e., 3S^{x, g). The infinitesimal rotation number of z,
denoted p(-2',/), is R(^, g ) which equals the fractional part of ̂ [z,f).

The value of p(^,/) is easily obtained from D/^. If, for example, z has complex
eigenvalues X and X, then p(^,/) is ± arg(X)/27T. If D/, is hyperbolic, then p(^,/) is 0
if its eigenvalues are positive and 1/2 if they are negative.

Next we briefly review the basic results about Lyapounov functions and chain
recurrence developed by Charles Gonley in [G]. In the following,/: X -> X will denote
a homeomorphism of a compact metric space X.

(1.4) Definition. — An z'chain for f from x to y is a sequence of points x^, A^, .. ., ̂ ,
in X such that

d(AX^ ^i+i) < s for 1 ̂  i^ n — 1,
and d{x, x,) < s/2, d{yj{x^ < s/2.

A point x e X is called chain recurrent if for every s > 0 there is an s-chain from x to itself. The
set R(/) of chain recurrent points is called the chain recurrent set of f.
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The definition of s-chain from x to y is often given requiring the sequence
^15 ^25 • • • ? ^n to satisfy x^ == x, and d{y,f{x^)) < e. The form we give here results
in an equivalent notion of chain recurrence and chain transitivity (see below)
and is symmetric with respect to/and/"1. In particular with the definition given above,
ifx^x^ .. ., ̂  is an s-chain from x toj/for/then/(^),/(^_i), . . ./(^) is an s-chain
fromj/ to x for/"1. The s/2 at the ends is necessary so that the concatenation of a s-chain
from x to y with one from y to z is one from x to z.

It is easily seen that R(/) is compact and invariant under/ If we define a rela-
tion ^/ on R(/) by x ^jy if for every s > 0 there is an s-chain from x to jy and another
fromjy to x, then it is clear that ^ is an equivalence relation.

(1.5) Definition. — The equivalence classes in R(/) for the equivalence relation r^ above
are called the chain transitive components </R(/). A compact invariant set A is called chain tran-
sitive if it is a subset of a single chain transitive component.

The following result is well known and easy. A proof can be found in (1.2) of [F1J.

(1.6) Proposition. — If X is connected and R(/) = X then X is chain transitive.

(1.7) Definition. — A complete Lyapounov function for f: X -> X is a continuous function
g : X -> R satisfying:

a) z/^R(/), then g{f(x)) < g{x),
b) if x,y e R(/), then g{x) = g{y} if and only if x r^jy (i.e., x and y are in the same chain

transitive component);
c ) ^(R(/)) is a compact nowhere dense subset of R.

The following theorem is a result of C. Conley [C]. We have changed the setting
from flows to homeomorphisms. For a proof in this setting see [F2]. For the smoothness
see [W].

(1.8) Theorem [G]. — Iff: X -> X is a homeomorphism of a compact metric space, then
there is a complete Lyapounov function g : X -> Rforf. If X is a manifold then g can be chosen C00.

The main tool we use in proving the existence of periodic points with prescribed
rational rotation numbers is the following theorem (see (2.2) and (2.4) of [Fl]).

(1.9) Theorem [Fl]. — Suppose / :B->B is a homeomorphism of the annulus
B = T1 X [0, 1] which is homotopic to the identity map and A C B is a chain transitive compact
invariant set. Let n : B -^ B be the universal cover and let F : B -> B be a lift off. Ifx.ye TT'^A)
and

. (F^) - x)^ p ,. (F^j/) -v)i
hm mf -—'-————/1 ̂  ' ^ hm sup -v—-J-1——Jn,

n->co ^ q n-9-oo- ^

then f has a periodic point z with Rp(^o) = Ply f^ ^J ^o e n~l{z)'
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2. Periodic points and rotation numbers

In this section we prove results about rotation numbers for diffeomorphisms of
the plane with two fixed points. Given such a diffeomorphism f we can construct a
homeomorphism of the annulus by first extending^lo S2, the one-point compactification
ofR2, setting y*( oo) == oo, and then blowing up the two fixed points. We can then apply
(1.9) to this annulus homeomorphism to obtain results about the original f. The fact
that the annulus homeomorphism satisfies the hypothesis of (1.9) follows from the sur-
prising result that the one-point compactification of an area preserving homeomorphism
gives a homeomorphism with every point chain recurrent.

(2.1) Proposition. — Suppose M is a non-compact connected manifold and f: M -^ M is
a homeomorphism leaving invariant a measure [L which is positive on open sets and finite on compact
sets. Let X = M U { oo } be the one point compactification of M and extend f to X by letting
y(oo) == oo. Then every point of X is in the chain recurrent set R(./) of f'' X -> X.

Proof. — Let x be a point of X. We must show that x is chain recurrent. Suppose e is
given and let U be a disk of radius e/2 centered at x. If there is n e Z, n 4= 0, such that
/"(U) n U + 0, then there is an orbit segment ̂  x^ ..., x^ with d{x, x^) < e/2 and
d{x, x^) < s/2. Hence in this case we have the desired s-chain. If there is no such n then
the sets /"(U), n ^ 0, are mutually disjoint, so

(X( U /-(U)) = 03.
n^O

It follows that this union is not contained in any compact subset of M and hence there
is a s-chain fromx to oo in X. In a similar manner, considering the homeomorphismy"1,
one shows that x is chain recurrent or there is a e-chain from oo to x. Hence in all cases x
is chain recurrent. •

We remark that the result above does not imply that points x e M are chain recur-
rent for y :M-> M. Chain recurrence is not a topological property on non-compact
spaces, as it depends on the particular metric. This problem does not occur on compact
metric spaces and in this paper we will only speak of chain recurrence for homeomor-
phisms of such spaces.

(2.2) Theorem. — Suppose f: R2 -> R2 is an orientation preserving dijfeomorphism
leaving invariant a measure (JL which is positive on open sets and finite on bounded sets and suppose
ZQ, z^ are fixed points off. Let y : [0, 1] -> R2 — { ZQ, z^} be a path with /(y(0)) == y(l).
Ifplq is a non-integer rational number in the interval with endpoints — p^o) a^ Py^i)? then f
possesses a periodic point x such that

^{x,z^) ~^(^o) =^/?.
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Alternatively, if for some UQ.U^C R2, ̂ (^, z,) exists, then for any non-integer pfq in the interval
with endpoints — 3i^(u^ Zo) and ^(u^ ^), there exists a periodic point with

^r( î) -^(^o) =Plq'

Proof. — We prove the theorem for the interval with endpoints — py(^o) and
p^(^); the other case has a nearly identical but slightly easier proof. We obtain a homeo-
morphism g : A -> A of the annulus A = T1 x [0, 1] as follows. First blow up the two
fixed points ZQ and ^ to obtain a self diffeomorphism g of the plane with two open disks
removed. The measure on R2 lifts to a measure invariant under g. Next observe that
the one-point compactification of this space is A. We extend g to A by setting g(oo) == oo.
By (2.1) the chain recurrent set of g is all of A. Hence, by (1.7), g is chain transitive
on A. Let n: A -> A be the universal cover of A and let G : X -> S be the lift of g for
which G(F(0)) == F(l), where F is a lift of the path y. If C, is the circle added when z,
was blown up equipped with the orientation inherited from the plane (counterclockwise),
then Go and G^ both represent generators of H^(A), but with opposite sign. We will
use the orientation of G^ to pick a generator of the deck transformations of n for the
purpose of defining rotation numbers Ro(^) forjy e X. Ifj/, is a point of X with Tr(j^) e G,,
then it follows from the definitions that

Pr(^l) = RG(^I).

and p^o) == - RG(^O),

because p^(^) is defined relative to the orientation of C,.
By (1.9) there is a periodic point x eA such that Ro(w) = pfq for any point

w en~l(x). Equivalently, all points of rc"1^) are fixed points of T'^oG9 , where T
is the generator of the deck transformations of TC consistent with the orientation of C^.
Since pjq is not an integer we know that x 4= oo eA.

Choose XQ e rc"1^) and let a : [0, 1] -> A be a path from x to g(x) formed as follows.
Choose a path cp in the interior of A — { oo } from n(xo) == x to y(0); follow it by y
to y(l) , and then follow that by g o <p parameterized backwards from y(l) to g(x).
Reparameterize the resulting path and call it a. Let ao : [0, 1] -> X be the lift of a satis-
fying ao(0) = XQ. It is easy to see from standard covering space theory that

G(ao(0)) = G(x,) = ao(l).

Form a path po : [0, 1] —>A by connecting the paths G1 o ao, for i = 0, 1, .. ., q — 1 and
reparameterizing. Then (Bo is a path from XQ to G3^) and T^po^)) == (Bo(l).
If (B : [0, 1] -> A is defined to be TT o Po, then (B is a closed loop in A and its homology
class [p] in Hi(A) is equal to ^[GJ, where [CJ is the homology class of G^.

Let AQ = A - { oo }. Then H^A^) == Z^ith generators [Co] and [G^]. In Hi(Ao)
the class [p] is equal to r[Gi] + ^[Co] for some integers r and s satisfying r — s == p.
If we form the space BQ by starting with A^ and collapsing Go to a point which we call ZQ,
then in Hi(Bo) the class [(S] is equal to r[Gi]. Clearly g : BQ ->Bo can be identified with
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the homeomorphism obtained by blowing up z-^ for f\ R2 —^R2. Let (B^, I\ and 9^ be
lifts of (3, r and 9 respectively to the universal covering space ofB^, which are chosen to
satisfy cp^O) == (^(0) and 9i(l) = I\(0). By the construction of (3, if Go is the lift of
g : BQ —>- BQ to this universal covering space which satisfies Go(^'i(0)) = ^'1(1)5 ^hen
W,W) == (Bi(l).

Thus
^ z^f) = R(J(BI(O)) == rfq.

In a similar fashion one shows that St^{x^ ZQ^f} = sfq. So

^ ̂ iJ) - ̂  ̂ /) = (r - ̂ )/? = P^' •

(2.3) Definition. — Let f: R2 ->R2 6^ a dijfeomorphism with a hyperbolic fixed point z.
A branch of the stable (or unstable) manifold of z is z together with one component of W3^) — { z }
(or W"^) — { z } } . We say a branch is properly embedded provided for some parameterization
9 : [0, oo) ->X, 9(0) == z, we have lim 9^) = oo.

t -> oo

(2.4) Corollary. — Letf: R2 ->R2 be a dijfeomorphism satisfying the hypothesis of (2.2)
with fixed points ^, i == 0, 1. Suppose ZQ is hyperbolic with positive eigenvalues and one branch of
either its stable or unstable manifold is properly embedded. If ply is any non-integer rational number
between 0 and pg (z-^yf), the total infinitesimal rotation number of z^ relative to ZQ, then there is a
periodic point x whose total rotation number St^(x^ z-^yf) equals pfq.

Proof, — Suppose that a branch of W"(-2;o) is properly embedded; the other case
is similar. Choose a path Y : [O? ^] ~>^8{zo9f) such that f{^{0)) = y( l )- This gua-
rantees that ^{zQyf) = 0 and that ^(z-^yf) = p^(-2'i,./). We now proceed as in the
proof of (2.2) but choose the path 9 : [0, 1] -> A so that it misses the compact embedded
interval J C A made up of the properly embedded branch of W"^) together with the
point oo. It follows from the construction of (B that no point of the image of (B is in the
interval J. It is then clear that if [|B] = r[Cy] + s[Co} in Hi(Ag), it must be the case that
s = 0 and r == p. The remainder of the proof of (2.2) then shows that

^(^ ^iJ) = ̂  z^f) == piq. m

(2.5) Corollary. — Suppose y:R2->R2 is an orientation preserving dijfeomorphism
leaving invariant a measure [L which is positive on open sets and finite on bounded sets and suppose
ZQ^ z^ are fixed points off. At least one of the two intervals ofT1 with endpoints — p(^o) and p(-^)
has the property that ifplq is a non-zero rational point in its interior, then f possesses a periodic point x
such that

3Kx,z^ -^(^o) =plq.

The same is true for at least one of the intervals with endpoints 0 and — p(^o) an^ a^ ^eas^ one

of the intervals with endpoints 0 and p(^i).

Proof.— The first statement (using the endpoints — p(-?o) ^d p(^i)) ls an immediate
corollary of (2.2) obtained by reducing modulo 1 all the rotation numbers in (2.2).
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To deal with the other cases we proceed as follows. Construct g : A -> A as in (2.2)
by compactifying and blowing up ^ and ^. Let G : X -^A be the lift ofg which fixes
the^points of TT-^OO). Choose a path F : [0, 1] -> A whose image lies in the interior
of A and is disjoint from TT-^OO), and which satisfies G(F(0)) = r(l). Let y : [0, 1] -> A
be T C O r. Observe that if w e TT-^OO), then G{w) === w, so R^w) == 0. As in {2.2), ify,
is a point of X with ^{y^ e Gi, then

Pr(^i) = RG Î).

It then follows from (1.9) that if^o/?o is in the interval with endpoints 0 and p (^),
there is a point x eA with R^) =A)/<7o. i! ^o) - x. We then proceed exactly as
in (2.2) to show that

^ ̂ f) - ̂  ̂ f) = A)/?O.

Reducing this modulo 1 gives the desired result. The case of p / q in the interval with
endpoints 0 and — p^(^o) is handled similarly. •

Remark. — In (2.2), (2.4) and (2.5), the hypothesis that/is area preserving is
used only to prove that the fixed points z^ ^ are in the same chain transitive component.
Or equivalently, that for any s > 0 there are e-chains in both directions between the
two circles added when these fixed points are blown up. Hence the area preserving hypo-
thesis can be replaced by the hypothesis that z^ and ^ are in the same chain transitive
component. For example, if they are both part of the same heteroclinic cycle (see (3.1)
below) that would suffice.

3« Heteroclinic cycles

(3.1) Definition. — A heteroclinic cycle for a diffeomorphism /rR2-^2 is a
set of hyperbolic fixed points {p,}^^ for f together with heteroclinic points {^.}^i with
x, e W"(A) n W^A+i) (where p^, = pj.

We do not exclude the possibility that n = 1 in the above definition. While such
a cycle might more properly be called homoclinic rather than heteroclinic, we will
use the term heteroclinic in this case too, for simplicity of expression.

(3.2) Definition. — A simple heteroclinic cycle for a diffeomorphism f'.R2 -^R2 is a
heteroclinic cycle as above such that
a) the eigenvalues of Df at p, are positive,
b) the segments o/W^A) bounded by p, and x, and the segments of W'(A^i) bounded by x,

and j&^i form a Jordan curve in R2,
c ) ifD is the disk bounded by this Jordan curve, then the points {p, }^i are in the closure of the

unbounded component of the complement of D u/(D).

Note that condition c ) will always be satisfied if D u F(D) is a topological disk.
Also condition a) implies that / must be orientation preserving.

15
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We next investigate the chain transitive components for the one-point compacti-
fication of a surface diffeomorphism on a non-compact surface M2 (but which may have
non-empty compact boundary). Suppose f: M2 -> M2 is a difieomorphism which pos-
sesses a heteroclinic cycle with hyperbolic fixed points {A}JLi and heteroclinic points
{-^ }?== i • Let X = M2 u { oo } be the one-point compactification of M2 and extend f
to X by letting ./(oo) == oo.

(3.3) Lemma. — Let U be any component of the complement in X of the segments (/W"^)
with endpoints p^ and x^ and the segments ofW^p^^) with endpoints x^ andp^^. Suppose there
is a measure ^ on U which is positive on open sets, and satisfies pi(V) = pi(/(V)) whenever
V u/(V) C U. Then, if x e U is a chain recurrent point off: X -> X, it is in the same chain
transitive component as each of the points { p^ }JL i.

Proof, — Clearly the points { p^ }̂ L i are all in the same chain transitive component A
since they lie on a heteroclinic cycle. Suppose x ^A. Then by (1.8) there is a smooth
complete Lyapounov function g : X -> R. We assume that g{x) < g{A) (if g{x) > g{A)
replace/by/"1).

Let c e R be a regular value of g such that g{x) < c < ^(A) and lee Co = .g"1^),
so Go is the boundary of the surface XQ = g'1^— oo, c]) and x e XQ. Since points of Gg
are not in R(/) it follows that/(Xo) is in the interior ofXg. Since A i Go, there is n > 0
such that C ==/"(Co) is disjoint from the segment of W"^) with endpoints p^ and ^
for all i. For any z^ e C we have g{z^) < c< g (A) and for any ^ eW8(^) we have
^(^ ^> 5(^)5 so lt: ls clear that C is disjoint from W8^) for all i as well.

Since G is the boundary of the surface Xi ==/"(Xo) and x e X^, it follows that
Xi C U. But/(Xi) is strictly contained in the interior of X^, which is not possible since
pi(/(Xi)) == pi(Xi). This contradicts the assumption that x ^A. •

We are now prepared for a result on the existence of periodic orbits with prescribed
rotation number when one has a simple homoclinic cycle. Although the hypothesis of
this result is somewhat stronger than the result of § 2, the periodic orbits obtained are
entirely inside the disk bounded by the homoclinic cycle so we obtain much more infor-
mation about their location.

(3.4) Theorem. — Let f: R2 ->R2 be a dijfeomorphism leaving invariant a measure [L
which is positive on open sets and finite on bounded sets. Suppose f possesses a simple heteroclinic cycle
bounding a disk D and z is a fixed point of f contained in D. Let p]q be a rational number between 0
and pp/^,/), the total infinitesimal rotation number relative to p^ for some i. Then D contains
a periodic point x whose total rotation number around z, Sfp.{x, z,f), is equal to pfq. The entire
orbit of x lies in D.

Proof. — Let X denote the one-point compactification R2 u { oo } and extend /
to it by setting/(oo) = oo. Our object is to restrict the diffeomorphism/to D and extend
that to a homeomorphism h of X in such a way that the dynamics of all points outside D
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is easily understood. In particular we will arrange that for h every point outside D has
either a forward orbit limiting on p, for some i, or a backward orbit with limit oo. We
will then prove that h has a periodic orbit (which must necessarily lie in D) with the
desired rotation number.

We proceed with this program. Property (3) of the definition of simple heteroclinic
cycle implies that there is a point q, e W|(A) which is in the component of oo in the
complement ofD U/(D). LetJ, be the arc in W^^) with endpoints q, and x,_^ and
note that p, ej, (see Fig. 2). We can choose embeddings a,: [0, 1] -> X such that
^W = ^i? ^W = °o and a,(^) is disjoint from D u { 00} for other values of /. Clearly
we can choose these embeddings to be disjoint except at oo. The fact that p, is on the
boundary of the component of oo in the complement of D U/(D) also implies that the
same is true for x,. Hence we can find embeddings (^ : [0, 1] -> X with all the properties
of o^ except (B,(0) = x, and we can choose them so that their images are disjoint from
all the alphas, except at oo.

Fig. 2

The embedded arcs J^ a, and (3,_i form a Jordan curve bounding a disk whose
intersection with D U/(D) is the arc J,. Shrinking this disk in along the parts of its
boundary near oo we obtain a closed embedded disk E, (see Fig. 2) with the following
properties:
a) E, is disjoint from E^ if i 4= j;
b) E<n(Du/ (D))=J , ;
c ) D U (U, E») is a closed topological disk disjoint from { oo}.

We will apply the following lemma to this situation.
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(3.5) Lemma. — Suppose E is a topological disk in R2 whose boundary consists of two
embedded arcs I and J. Let ho :J -^J be a one-to-one contraction mapping of J to a subinterval
of itself which preserves orientation and has fixed point p. Then ho extends to an embedding hofE
to a subset of itself with the following properties:

a) A(E) C (A(J) u E°), where E° denotes the interior of E;
b ) lim ^{x) ==pfor all x in E.

Ifho is also defined on neighborhoods of the endpoints ofl and embeds the union of] and
these subintervals in E, then we can arrange that h = ho on (perhaps smaller) neighborhoods of
the endpoints of I.

Proof.—LetEo={{x,y) cR2]^ O.^+j^ 1 }andletJo = {(^) eEob=0}.
Define g : Eo -> Eo by g{x,jy) == (A:/2,jV2). Choose a homeomorphism 9 :J ->Jo which
conjugates^ and h, i.e. choose 9 so that^(9(^)) = 9(A(^)). Extend 9 to a homeomorphism
of the arc I onto the arc {{x^y} e Eo | x2 4-J^2 == 1 }. We now have a homeomorphism
from the boundary of Eo to the boundary of E which we extend to a homeomorphism
9 : Eo -> E. Define h: E -> E by h{y) == pQ^?'"1^)))- Then h ==f on J and A on E is
topologically conjugate to g on Eo.

If ho is defined on neighborhoods of the endpoints of I as well as on J, let Z be the
union of two small intervals in I which contain the endpoints and on which ho is defined.
Starting with 9 defined on J as above we can extend it to J u Z u A(Z) in such a way
that 9(Z) consists of two intervals in the semi-circular segment of the boundary of Eo
which contain the endpoints of this segment, and so that g(^{x)) = 9(A(^)) for x e Z. If
we then extend 9 to all of Eo as above and define h: E -> E by h{y) == pQ^?"1^)))?
we have the desired embedding. •

We now return to the proof of (3.4). Note that the disks E, satisfy the hypothesis
of (3.5) if we take J^ as J. Recall that our object is to restrict the diffeomorphism f to D
and extend that to a homeomorphism A of X in such a way that every point outside D
has either a forward orbit limiting on p^ for some i, or a backward orbit with limit oo.
To do this we define h{x) ==f{x) i f A : e D and let h: E, -> E^ be the extension of h on J^
given by (3.5). By construction, for any x inj, or in a neighborhood of ^_i or p^ in the
boundary ofD^, we have h{x) ==f(x). We have now defined h on D u (U, E^) which
is topologically a closed disk. We need to alter this disk slightly so that h maps its boun-
dary into its interior.

To do this we choose a smooth arc yi from ^ to a point of the arc (B, near to x^
(see Fig. 3). We do this in such a way that Y» is very close to the arcs made up of the
segment ofW^j&J with endpoints ^ and p^ and the segment ofW"(^) with endpoints p^
and ^. These two segments together with y, ^d a short segment of (3, bound a thin
strip we will denote by Y^ (see Fig. 3). If the segment of ^ is sufficiently short then
h ==fon this segment. By choosing y^ properly we can arrange that if x is a point of y^
then f{x) is in the interior of Y, U D U (U, E,). Further we can arrange that if A; is a
point ofy, or in the interior ofY^ then, for some ^./"^A:) ^ Y, (and is also outside of D).
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,W-(P^) W^(P.)

Fig. 3

Let Q denote the topological disk U u (U, E,) u (U,Y,). Extend A to Q by
setting h =f on Y,. Then by construction A(QJ is contained in the interior of Q.

We complete the extension of h to all of X by letting P be the complement ofA(QJ
in X and defining h~'1 on P. Thus, P is a topological disk, h~1 is already defined on its
boundary and, in fact, h~1 carries the boundary into the interior of P. It is well known
and easy to prove by methods similar to those of (3.5) that under these circumstances h~1

can be extended to an embedding of P into its interior with a single attracting fixed
point at oo. We can also arrange that A be smooth in a neighborhood of oo and that
the infinitesimal rotation number at oo be irrational. It is now the case that, if x e E.,
then

Hm^)=A,

and if x e P or x e Y^ — D, then

lim A"'*^) = oo.
f»-^00 ' '

In any case there are no periodic points other than oo outside of D. Since h ==fon D,
the measure (JL is preserved there.

By lemma (3.3) if we blow up the point z e D and ZQ is a chain recurrent point
of the circle added in the blow up, then ZQ and ^ are in the same chain tran-
sitive component. If we further blow up oo to form a homeomorphism h: A -> A, where
A = T1 x [0, I], then ZQ and p^ remain in the same chain transitive component. Let
TT : A -> A be the universal covering space and let F : X -> S be the lift of h which fixes
points of TC"1^). Then, for wen'1^),

^(P^)-^
»^°° n

and forj»o ETC""^^),

r (^(j^p) ——^O)l p /. ^ / r., J"^——„——= Ro^o) - p,,(y).
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Thus by (1.9) there is a periodic point x eA with Rp(jQ = pjq if 7r(j/) == x. From
the definition it is clear that

,̂,(̂ /) -RpOO -Pl^
Since the points on the circle added when oo was blown up all have irrational

rotation number, x is not one of them. Thus it must be the case that x e D. Since the same
argument applies to f\x), the entire orbit of x must be in D. •

4. The rotation number at infinity

Some interesting applications of the results in § 2 and § 3 are obtained by their
direct application to diffeomorphisms of the plane obtained as the lift to the universal
covering space of an area preserving diffeomorphism of a surface (even a non-compact
surface). In this section we deal with a similar setting but add one new ingredient—the
rotation number at infinity.

Let M2 be an oriented connected surface and suppose n: U -> M2 is its universal
covering space. We allow M2 to have compact boundary components and to be non-
compact. If the Euler characteristic of M2 is negative or M2 is T2 or T1 x [0, I], there
is a natural compactification of U which we will denote U, and which is topologically
a closed disk. If M2 has no boundary, then the boundary circle of U consists of " ideal
points " at infinity. Otherwise it contains some such points as well as points whose
images under TT lie in the boundary of M2. If F is the lift to U of a homeomorphism of M2,
it extends to a homeomorphism of all ofU. IfF^ is the lift of an isotopy on M2 and M2

has no boundary, then the extension to the circle at infinity is independent of t (see [Th]
for some of these facts).

(4.1) Definition. — Suppose M2 is a surface as described above and f: M2 -> M2 is
an orientation preserving diffeomorphism with fixed point z and suppose n : U -> M2 is the universal
covering space. Let F : U -> U be a lift of f which fixes a point ZQ e n~l{z). The rotation number
at infinity with respect to the fixed point z is the rotation number ofF restricted to the circle at infinity
o/F:U->U.

It is easy to see that the rotation number at infinity is independent of the choice
of ZQ eTT"1^) since any other choice would result in a different lift but one which is
conjugate to F by a covering transformation. Hence the two lifts extend to conjugate
homeomorphisms on the circle at infinity.

(4.2) Proposition. — Suppose ^(M2) < 0, or M2 = T2, or M2 = T1 X [0, I], and
f: M2 -> M2 is an area preserving, orientation preserving diffeomorphism with fixed point z and
suppose TT : U -> M2 is the universal covering space. Let F : U -> U be a lift off which fixes a
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point ZQ eTT"1^). Then for any piq in the interior of an interval ofT1 with endpoints p(^o)» ̂
infinitesimal rotation number of ZQ, and the rotation number at infinity of f with respect to z, there
is a periodic point x e U of F such that SS{x, ZQ, F) == Rlq.

Proof. — Consider F : U -> U and the invariant (infinite) measure (A on it obtained
from lifting the measure on M2. We first observe that for any x in the interior of U either
x e R(F) or for any e there are e-chains from x to the circle at infinity and from the circle
at infinity to x. The proof of this is almost identical to the proof of (2.1): because of the
invariant measure, a small neighborhood of x must either have points which return
under iteration or points which get outside of any compact set.

To apply (1.6) and conclude that F is chain transitive on U, we need only show
that the points on the circle at infinity are in the chain recurrent set R(F). If the rotation
number at infinity is irrational this is the case since the circle homeomorphism must be
conjugate to an irrational rotation or a Denjoy type example. If the rotation number at
infinity is rational there is a periodic point RQ on the circle at infinity. In this case there
is an isotopy on the circle, which starts with the given homeomorphism on the circle
at infinity and ends with a finite order homeomorphism, and which has the property
that at every stage of the isotopy the action on the orbit ofpo is the same. We now attach
a collar neighborhood S1 X [0, 1] to the boundary of U and extend F to the union
by having it preserve concentric circles of the collar and act on them in the way pres-
cribed by the isotopy.

Denote this union by D and the extended homeomorphism by F : D ->• D. Note
that for this homeomorphism all points in the collar neighborhood are chain recurrent
and that they all have the same rotation number, namely the rotation number at infinity
off with respect to z. (In the irrational case there is no need to add a collar: we let
D = U.) We can now apply (1.6) and conclude that F is chain transitive on D.

Next we blow up the fixed point ZQ of F in D to obtain a homeomorphism of an
annulus. All points of the circle added in blowing up are chain recurrent. This is because
one can lift the measure on U to one on U with ZQ blown up and repeat the argument
of (2.1) mentioned above which shows that every point y in this circle is either chain
recurrent or for any s there are s-chains fromj/ to the circle at infinity in U and from the
circle at infinity toy. But this also implies thatj^ is chain recurrent on D with ZQ blown up.
It is thus clear by (1.6) that the homeomorphism on the annulus is chain transitive.

Hence we can apply (1.9) to obtain a periodic point x with rotation number piq.
This point cannot be in the collar we may have added because all points in the collar
have rotation number equal to an endpoint of the interval we are considering, and pfq
is in the interior. It follows that x, considered as a point of U, is the desired point. •
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