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A FOLIATION OF R3 AND OTHER PUNCTURED
3-MANIFOLDS BY CIRCLES

by ELMAR VOGT

1. Introduction

In the proceedings of the 1976 Rio de Janeiro conference on Gelfand-Fuks Goho-
mology and Foliations P. Schweitzer published a list of problems which he had collected
during the conference and the time prior to the publication of the proceedings [Sch],
The very last problem, Problem 36 of this list, is the following question ofD. B. A. Epstein:
Can R3 be foliated by circles?

A comment (attributed to L. Markus) is added, saying that decompositions of R3

into smooth circles are known but they fail to be foliations.
In this paper we construct a relatively simple foliation of R3 by circles and use this

to prove that M\{ point} admits a foliation by circles if M is a 3-manifold which admits
one. At the end of the paper we give some examples. The foliations in this paper are
not C1. They are only differentiable in the sense that coordinate changes of foliation
charts are homeomorphisms which have a derivative at each point. Whether R3 admits
a exfoliation by circles remains an open question.

The problem of filling R3 by circles which form the leaves of a foliation should be
seen, apart from its natural appeal, as part of a program to understand the geometric
possibilities and complexities of foliations in which all leaves are compact or, for short,
compact foliations.

In a remarkable paper [Epi] D. B. A. Epstein showed that foliations by circles of
compact 3-manifolds are quite well behaved: their leaves are the fibres of a Seifert
fibre bundle (in a mildly more general sense than the usual one: passing to an orientable
double cover gives a Seifert fibre bundle in the usual sense). Using Epstein5 s rather
delicate arguments this result was later [EMS], [Vol] generalized to arbitrary compact
foliations of codimension 2 on compact manifolds. Here a foliation of arbitrary dimen-
sions with all leaves compact is called a Seifert fibration if every leaf has a saturated
neighborhood N (i.e. a union of leaves) such that the induced foliation on some finite
regular cover of N is trivial (i.e. the leaves are the fibres of a product bundle).

A similar result is true in codimension 1 even on non-compact manifolds: after
passage to a double covering the leaves of any compact foliation of codimension 1 are
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the fibres of a locally trivial bundle over the circle or an interval. This statement is a
direct consequence of the notion ofholonomy and a proof is already in Reeb's thesis [Re].
There one also finds an example of a compact codimension 2 foliation on a non-compact
manifold with the property that the volume-of-leaf function (with regard to any Rieman-
nian metric) is not locally bounded. Thus it is not a Seifert fibration. In fact a compact
foliation has a locally bounded volume-of-leaf function if and only if it is a Seifert fibra-
tion. This is also true for more general foliated sets. (A proof of this and a discussion of
other equivalent conditions can be found in [Ep2].)

Thus given a compact foliation ^ on a manifold Bo and a volume-of-leaf function V
the set BI of points where V is not locally bounded is bad in the sense that it is exactly
at the leaves of Bi where y fails to be a Seifert fibration. Bi is the first in a whole series
of bad sets, one for each ordinal a. Given B<, one obtains B^i as the union of leaves
where y restricted to B^ fails to be a Seifert fibration, i.e. B<,+i is the set of points of B
where V restricted to B<, is not locally bounded. If a is a limit ordinal one defines B^
to be the intersection of the preceding bad sets. Each B^ is clearly saturated. It is a
closed set, in general not a submanifold, and B^ is nowhere dense in B,. Thus BQ
is partitioned into sets B^\B^^i where the foliation is nice while something drastic
happens when one moves from B<,\B^ to B^i. The family B i D B ^ D . . . of bad
sets was introduced (in a slightly different form) by D. B. A. Epstein in [Epi] and is
called the Epstein hierarchy of^". How many of the B^ actually appear is a first measure
of complexity of the foliation. Because Bo has a countable base the Epstein hierarchy
always ends at a countable ordinal.

Epstein9 s proof ruled out the appearance ofB^ in the codimension 2 case on compact
manifolds. That there was no replacement for Epstein's intricate arguments in higher
codimensions was demonstrated by D. Sullivan [Su] who described a smooth circle
foliation on a compact 5-manifold with Bi a 3-sphere fibred by the Hopf fibration. Later
an analytic example of a circle foliation with a non-trivial bad set was found on a compact
4-manifold [Ep — Vo].

R. Edwards, K. Millett, and D. Sullivan in their work on compact foliations [EMS]
which dates back to 1974 gave a homological reinterpretation of Epstein's argument
in [Epi]. Their approach, based on deep geometrical insight and intuition, has the
advantage to work in all dimensions and codimensions. Their main result says that under
certain homological conditions the bad set of a compact foliation on a compact manifold
must be empty, thus relating global algebraic properties of the manifold with the local
behaviour of the foliation. This brought up the question of examples on homologically
trivial or even contractible manifolds, and R3 is the first case that comes in mind (by
Poincar^-Bendixson R2 does not even admit a non-singular vector field with one bounded
semi-orbit, and circle foliations on R3 immediately give examples on R" for n > 3).

From the outset it was clear that a circle foliation ofR3 has to be somewhat compli-
cated. First of all it cannot be a fibration. More generally, A. Borel andj. P. Serre [Bo-Se]
and A. Shapiro [Sh] proved that the only locally trivial fibration with an acyclic mani-
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fold as total space and a compact fibre is the fibration by points. It also cannot be a
Seifert fibration: no Euclidean space admits a 1-dimensional Seifert fibration because the
leaves of a Seifert fibration on a simply connected n-manifold are the orbits of a fixed
point free S^action. By Smith theory, any S^action on acyclic manifolds has fixed
points.

Therefore, if there exists a circle foliation on R3 it has to have a non-empty bad
set BI. Let W be a component of R^Bi. Then W is the complement of a torus knot
in S3 and each leaf in W represents a non-trivial element of H^W) ^ Z. Thus each
component of R^B^ carries homology which has to disappear when various components
ofR^Bi are glued together along parts ofB^. Exactly at these parts, where the closure
of two (or more) components of the complement of B^ meet, the circle foliation exhibits
its most interesting features.

At the heart of our example is a circle foliation on a solid torus V from whose
boundary 8V the complement of two disjoint open annuli A^ and Ag has been removed.
Restricted to the sets V\^V, A^, and A^, the foliation is the product fibration with
fiber S1. This is easy to achieve if Ai and A^ are tubular neighborhoods of longitudinal
curves. The example of Reeb mentioned above is one in which A^ and A^ are neigh-
borhoods of meridians. The novel feature of our example is that A^ is the tubular
neighborhood of a contractible curve in 8V while Ag is the neighborhood of a longitu-
dinal curve. The bad set of our example is A^. A foliation ofR3 is obtained by taking
copies V^, i eZ, of the above example and attaching V, to V^i by identifying the
annulus corresponding to A^ in V^ to the one corresponding to Ag in V^i.

Our example is simple in the sense that the Epstein hierarchy is as short as pos-
sible: BI is a disjoint discrete union of countably many open annuli, and thus Bg = 0.
But it is more complicated than Reeb's example in the way the bad set is approached
by saturated 2-tori. To give this statement some content, assume that B^ is a manifold,
which it is in our example. If the circle foliation is defined on a connected 3-manifold M
with H^M) = 0, then each component of M\Bi is of the form C u T2 x [0, oo),
where G is a compact Seifert fibre space with boundary 8G == T2 X { 0 } and T2 X [0, oo)
is trivially fibred with each T2 X { t } , t e [0, oo), a union of leaves. Thus we have a
family of saturated tori, T2 x { t}, going to infinity as t goes to infinity. In Reeb's example
one can choose such a family and a tubular neighborhood p : U -> B^ of Bi such that p
restricted to T2 X { t } n U is locally a diffeomorphism. In our example, for any choice
of family and tubular neighborhood, the 2-manifolds T2 X { t } n U wobble terribly
in the sense that this projection property no longer holds when they approach B^.
(See fig. 7 in Section 2 and the accompanying text.) That such wobbling always occurs
for circle foliations on acyclic 3-manifolds with B^ == 0 is one result of a forthcoming
paper [Vo2] where the size of the homology groups of open 3-manifolds which admit
circle foliations is investigated.

From a different point of view decompositions of R3 into compact sets have been
intensively studied by geometric topologists (see for example [Bi]). Their motivation

28
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comes from studying maps from R3 into a reasonable space, and thus they consider
upper semicontinuous (u.s.c.) decompositions. The decomposition into leaves of a
compact foliation is u.s.c. if and only if it is a Seifert fibration, and the space of leaves
of a foliation which is not a Seifert fibration cannot be Hausdorff.

Acknowledgement. — The research for this paper was done during an extended
stay at the <c Mathematisches Forschungsinstitut Oberwolfach ". The author thanks
the institute for its kind hospitality and financial support. He owes much to its quiet,
friendly, and peaceful atmosphere. Further thanks go to N. Kuiper and K. Millett for
discussions on an earlier version of the paper.

2. A Circle Foliation of R8

We begin by replacing the standard Euclidean 3-space R3 by an open
submanifold diffeomorphic to R3. This will simplify the analytic description of the
foliation considerably. Let X : [0, 1] -> [0, 1] be given by \{t) = 0 for 0< ^< 1/4, and
\{t) == (4/3) t - 1/3 for 1/4 < t < 1, and fix a e (0, 1). Let N be the infinite open cylinder

N=={(^ ,0 eR^^+y^ 1}.

For i e Z consider the piecewise linear half-open arc

^ == {(^ ^) e N : x = 0, i < z ̂  i + 1, y = X(i + 1 — z)}

z=l

z=0

z=-l
' X

FIG. 1
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in N, and denote by N^ the half-open annulus in N given by

N< = {(^, z) e N : a2 < ^2 +Y < 1, z == i }.

The complement of U (N, u L() in N is diffeomorphic to R3 and will be our model
<ez

for R3. We denote it by M. (See Fig. 1.)
Our next step will be a decomposition of M into smooth circles which just misses

to be a foliation. For this, note that M intersects each horizontal plane of R3 in a punc-
tured disk and thus M is smoothly foliated by open annuli

A<={(^J^) eU:z==t}, teV..

Also note that M with this foliation is invariant under the Z-action generated by the
translation T defined by T(A?,J, z) == (;c,j, z + 1). For i eZ set

W< = {(^, z) e M : i < z^ i + 1 }.

Then W^ is diffeomorphic to a solid torus from whose boundary the complement of
an open longitudinal annulus (corresponding to A,^i) has been removed. We now fill
each annulus A( , t e R, by circles to obtain a decomposition Q of M which is required
to have the following properties:

(2.1) the decomposition Q is invariant under the action of Z generated by T,

(2.2) the restriction of Of to each W,, i eZ, defines a smooth (i.e. C00) foliation,

(2.3) for each i eZ and each t e [i — (1/8), i} the restriction of Q to A( consists of
round circles with center on the -?-axis.

A decomposition with these properties is easy to construct. One may even assume
that each element of Q is a true circle with center on the half plane { x == 0, y ^ 0 },
and such a decomposition would be sufficient to carry out the next and final step. But
to facilitate calculations we make one further assumption.

First orient the leaves of Q such that the projection to the A^-plane induces the
standard orientation there. Then we require in addition:

(2.4) for each i e Z, t e (z, i + (1 — ^W^ Ae curves of Of cross the horizontal disk

D(:={(;C,J^) e M : ^ + y < a\ z = t }

in lines parallel to the ^?-axis in positive ^-direction. (See Fig. 2.)

Again it is clear that such a decomposition of M exists. It fails to be a foliation
exactly in the points of A^, i eZ.

In the final step of our construction we apply for each i e Z a diffeomorphism A,
of W< to the restriction & \W^ of Q to W<. The diffeomorphisms will he chosen so
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L, n A,

y

x

FIG. 2

that the decompositions (A^), [Q \ W,) fit together to form a fbliation of M. Since every-
thing we do will be invariant under the Z-action (i.e. A, == T1 ho T""1) it suffices to
consider W := Wo and h :== Ao- By abuse of language we call the restriction of Q to Wo
again 2. By (2.2) Q is a G^-foliation on Wo. Close to Ai the leaves of Of are round
circles and we do not want to change this. Therefore by Z-invariance near points of Ao
we have to transform 2 such that tangentially the curves of the new foliation approximate
the circular flow around 0 which is given on Ao.

The diffeomorphism of W which is going to achieve this is the composition g of
of two diffeomorphisms. The first one, /, will introduce a vertical component into our
hitherto strictly horizontal flow. The second one, ^, will pick up this vertical component
and force it to rotate so violently that the rotation will completely dominate the behaviour
of the curves.

We begin with the analytic description of the diffeomorphisms. Fix b with a < b < 1.
The support of y will be in

Gi={(^OeW:0<^3/4},

the support of g in

(^-{(^O e W : ^ + y < A 2 , 0<z^ (1-&)/2}.

Note that the closure of G^ in N does not meet LQ.
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We require f to have the following properties:
(2.5) /(^, z) = (x,^,Ux, z)),
(2.6) /has support in Gi,
(2.7) A(0,z)=z i f (0 ,^z )€W,
(2.8) fa{x, z) = z-e-" for 0< z< 1/4.

One can construct/as the time-1-map of a flow given by a smooth vector field of
8

the form — x-k{z} —, with k{z) == 0 for z > 3/4 and Jfe(z) = z for 0< z< c/4. (See
Fig. 3.)

Zi

z-V4

z=l/2

2=1/4

z=l/8

i

———————^

1 t »
t i

———————————————

t
1

—i-r—'—in-,̂^-T

Vec

FIG. 3

Thus f tilts and bends every horizontal annulus A(, 0<t^ 1/4, a little. (See
Fig. 4 for the projection of\/(A() to the A^-plane.)

/(A,)

FIG. 4

Important for us is the fact that for x2 +J2 < fl2 and 0 < z < (1/4) ^"a the vector
8 8

— — ;?•— is a positive tangent vector tof^Q) at the point (A:,V, ^).^ oz
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So far we have not made much progress towards obtaining a fbliation on M. The
map f has changed the qualitative picture of Q very little. The really drastic move is
caused by the second diffeomorphism, gy which is best described in partial polar coordi-
nates (r, cp, z), where (r, 9) are polar coordinates of the .v-j-plane, and z is as before. We
require g to be a diffeomorphism of W such that
(2.9) g has support in G^
(2.10) g(r, 9, z) == (r, 9 + G(r, z), z}, and

(2.11) G(r,z) = llz2 for 0< z< (1 - 6)/4, (K r^ a.

Remark. — The function l [ z 2 in (2.11) can be replaced by any function of the
form \lh{z) where h: (- 1, 1) ->R is a G^map with A(0) = A'(0) == 0 and h\z) > 0
for 0< z< 1.

Under g every annulus A(, 0 < ^ < 1, is mapped to itself, and g rotates
the diskD(CA( by the angle l/^2 if 0 < ^ < ( l — i ) / 4 . It fixes each point of
A(\D^ == {(r, 9, t) e A( : r > b} while it performs some twist map of the annulus
D;\D< = {(r, ̂ t) e A,: a < r ̂  b} (see Fig. 5).

FIG. 5

The essential feature of g is the drastic increase of the angle by which D( is rotated
as t goes to 0. Thus the image of any curve in W which approaches a point of AQ ver-
tically gets whisked around the ^-axis at an ever increasing rate as it approaches AQ
and gets stretched to become infinitely long. On the other hand, horizontal curves in
each D( are simply rotated and do not change in length.

To see what g does to the foliation f^(Q) on W near Ag we first investigate the
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tangent field of gJ^Q}. At g~~\x,y, z) with x2 +Y< a, (1 - &)/4> z> 0, the vector
8 9

— — -? — is a positive tangent vector tof(^). Thus
<w ^

cos(l/,.)|;+.in(l/,.)^(-^+,^-^

is a positive tangent vector to the foliation g^f^Qi) at {x,jy, z). Near A^, to be exact,
at every point {x,y, z) eW with 7/8< z ^ , 1, a positive tangent vector to g^f^Q) is
a 9 9

— ==—.^_ + ^ — . Therefore we can define g^f^Q) on W by a nowhere vanishing G00

vector field V which is given by
9 z2 { 9 9 9\

— + - cos(l/^2) — + sin(1^2) - - z —\
9y 2 \ v / 9x v / / 9y 9z)

r»

on {[x,y, z) eW:^2 +^^ a2, 0< z< (1 - &)/4} and by — on {[x,y,z) eW: 7/8^^ 1}.
</9

Transporting ^/,(^) and V with the translation 1̂  to W^ = T^W) (remember:
W = Wo), we obtain a new decomposition—which we call ^r—of M by circles and a
continuous non-singular vector field U tangent to < .̂ Clearly, the vector field U has
unique solutions and therefore ^ is a G°-foliation. We are done.

In the next section we will show that ^ is differentiable. At the moment we only
note that the vector field U is differentiable but not G1. The derivative of the horizontal
components of U are not locally bounded at any point of A^, ie Z.

To obtain a picture of the foliation 3F as it approaches the annulus AQ from above
we stretch the cylinder

{ x,y, z : x2 +y < 1, 0 < z < 1 } u AI

which contains W to the infinite cylinder
{(^, z ) : x2 +y< i, o> z> - oo} u Ao

^ (̂  z) -^{^y,\ogz).
The diffeomorphism / corresponds on this cylinder to a diffeomorphism which

maps {x,y, z) to {x,y, z — x) if z < — log 4, while g corresponds to a diffeomorphism
which transforms (r, 9, z) to (r, 9 + ^~2^ z ) for r^ a, z< log(l — ^)/4. Thus for
small z {z close to — oo, this is the interesting part) the foliation corresponding to y
on the cylinder Z = { x,y, z : x2 4-J^2 ̂  fl2, 0 > z } is equal to the foliation (3, o o^(^)
on the doubly infinite cylinder {{x,y, z) : x2 4-J^2 ̂  ^5 — °° <^ z < oo }, where ^ is
the foliation given by lines parallel to the A:-axis and

oc(^, z) = {x,y, z— x), (A;,J, z) e Z

P(r, 9, 2:) === (r, 9 + <?-22, z), (r, 9, 2;) e Z,

with (r, 9) polar coordinates of R2.
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Q r\

Orienting leaves of^f in positive ^direction, — - — is the tangent vector field of
8x 8z

a,(Jf). If we follow the image of a leaf Ly, = {{t,y, z — t) : — Va2 —y2 ̂  t < Va2 —jy2}
ofa,(^) under (S we see the following. If we move from {t,y, z — t) to (< + e,j, ^ — (^ +e))
for some small positive s and z close to - oo, the image curve slowly loses height by s
while horizontally it moves from R^-22) (^j/) to R^^-22) {t + e,^), where R(r)
is the rotation ofR2 by the angle T around the origin. Thus the image point while moving
radially very slowly from Vt2 +y2 to V{t + e)2 +^ has a rapid angular movement from

90 === ^~2' to 91 = 9o + ̂ -^(^ - 1) > 9, + ^'•2e/^.

Thus, if we follow ?(L^,) from beginning to end it will, while slowly losing height,
rapidly spiral many times on almost circular trajectories around the ^-axis, first spiraling
in towards the ^axis until it touches the circle of radius y and then spiraling outwards
again (Fig. 6).

(part of a long leaf)

(part of the bad set)

FIG. 6

If one fixes j^o and lets z go to — oo, then, in the limit, (B(L^J, or rather its coun-
terpart in W, will be smeared over the whole subannulus j^ °x2 +^< a2 of AQ for
VQ + 0, and all over AQ forj^ = 0. In the language of [EMS] each 0 ̂  ̂  < a gives rise to a
moving leaf approaching Bi, namely the family {L, ; 0 > z> — oo}, where L, is the
leaf containing (B(L^J. It is interesting to note that for different values ofjo the limits
of the corresponding moving leaves are different subsets of Bi.



A FOLIATION OF R3 AND OTHER PUNCTURED 3-MANIFOLDS BY CIRCLES 225

One obtains a somewhat more global view of the behaviour of y near the bad
set by considering for decreasing t the image of all of D( under p o a. (To the family
poa(D(), t -> — oo, corresponds in W a family of disks, ^o/(D,), s -> 0, (j = ^).
Each g o/(D,) lies in an invariant torus T, of ^ \ W, which bounds as solid torus V,,
and W = U V,. As s goes to 0, the really interesting part of T, is g o/(Int(D,\{ 0 })).

These annuli <( converge " to the bad set. They are not invariant, but the length of the
intersection of a leaf of y with ^o/(Int(D,\{ 0 })) goes to infinity as s goes to 0.) One
way to visualize (3 o OC,(D() is to consider the image of the circle Gy < of radius r around
the center of D( as r grows from 0 to a, i.e. contemplate the curves

G'(r, t) = {(r, <p + <?2(rcos^-<), t - r cos 9) : 0 < <p < 2n }

for 0 ̂  r ̂  a, and for t negative of large absolute value. For very small r the dominant
part of q> + ̂ co^-o will be 9 + e-^ and C'(r, t) is very close to the ellipse a(G^)
rotated by e~^. But as r grows the oscillating factor ^2rcos<p will dictate the behaviour
of the angular component <p + ^cosy.^-^ j^ore and more, and the projection of
P o a(D() to the A:-j/-plane will look like a cusp singularity whose fold lines spiral a large
number of times around the origin as they move outwards away from the cusp point.
In Fig. 7 we indicate this phenomenon for [ t [quite small. As t decreases further, one
should imagine the outward ends of the folds to rotate away from their current positions
in opposite direction (if one ignores the rotation by ^2<), the lower one in positive,
the upper one in negative direction. We also depict two flow lines of 3^ in Fig. 7. One,
called front, is (B(L^() with^o< 0, the other, called back, is K^t) withjo rather
close to a. One notices that the folding over of a large part of the back half
{ {x,y, t) e D( \y > 0} ofD, has two effects. It enables us to stretch D( in angular direction
and at the same time it flips the direction of the flow on the back half of D< around,
so that it also points in positive 9-direction.

fold
Pa(D,)

FIG. 7

29
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3. The Question of Differentiability

We return to the foliation 3F on M C R3 with tangent vector field U of the previous
section. By construction U is G°° in the complement of

Bi== U A,={{x,^z) eU:zeZ}.
i(=Z

Therefore, y is G00 in M\Bi. Since U and y are equivariant with regard to the
translation T:M -> M, T(^,j^ z) = (x,y, z + 1), it remains to investigate y near
Ao == {(x^y^ 0) : 0 < x2 +y2 < a2}. In a neighborhood of Ag the vector field U equals

-y i+ ̂ + z! (cos(w i+ smw ̂  -' £)' for z > 0>
U(W)=^ 8 8

-y^-^ for^o,

or, in partial polar coordinates (r, <p, z),

8 z 2 1 9 8 9\
, + -3 |A(r, <p, z) ̂  + B(r, <p, z) ̂  - z^ , .> 0,

(3.1) U(r,<p,^)==< J v /

^ ^0'

where A, B are smooth in Ao x (o, s), with

(3.2) A(r,9,^+r2.B(r,9,^=l.

We already mentioned that U has unique solutions which are pointwise periodic.
Thus U defines a global flow F: R X M -^ M. If U is 0" with r ̂  1, then the flow F
as well as the foliation ^ are CY. In our situation where U is only differentiable a general
theorem which guarantees the differentiability of F and y does not seem to be available.
We give a direct proof covering our example, but the method applies to other situa-
tions where a smooth vector field U+ on N X (0, s) and a smooth vector field U_ on
N X (— s, 0] form together a continuous vector field on N X (— e, s).

Proposition 3.1. — Let F : R X M -> M be the/low defined by the vector field U. Then F
is differentiable.

Proof. — Let 0 < TO < a, 99 e R mod 2w, IQ e R. We have to show that F has a
derivative at (^o, Oo> To? 0))-

(3.3) F(<, (r, <p, z)) == F a F(T, r, <p, 0 <fT + (r, 9, ^)
Jo r̂

•<
== r^F^r.y.^T+^cp^).

Jo
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If we denote the r-, 9- and ^-components of F by Fy, Fy, and F^ and assume that
(^ (^ <P> ^)) is close to (^o, (ro, <Po» 0)) the last expression is equal to

(r, 9+^-2; ) , ifz^O,
and to

(r, <p + t, z) + ̂  F F,(T, r, 9, ^)2 (A o F(r, r, 9, ̂ ),
0 BoF(T,r,9,0,-F,(T,r,9^))rfT

=: (r, 9 + t, z} + F(^ r, 9, z), if 2:> 0,

We claim that for a small neighborhood V\ of (^ ^o? ?o? 0) an equation of the form
(3.4) F(<,r ,9 ,^) =^.G(<,r ,9,0

holds in V == Vi n { z > 0} for some Revalued function C which is continuous
and bounded on V. Therefore, the derivative of F at (^o^Po?0) is S^^ b^
(^r ,9 ,2?) i->(r,9 + t, z).

The equation (3.4) holds for the following reasons:
(i) F^ depends only on T and z and is the solution of F^ == — iF^ with initial value z, i.e.

F,(r, z) = ———==.
Vl + ^ ' z 2

If Vi is small enough, we therefore may assume that F^T, r, 9, z)2 < 2 ' z 2 for
{t, r, 9, z) e V and — 1 1 \ < T < | < |.

(ii) Using (i), (3.1), and (3.3) one obtains |F/T,r, 9, z) - r| < H-^for (^r,9,^)eV
and — 1 1 1 ̂  T < 1 1 1 . This in turn together with (3.2) implies that B o F(r, r, 9, z)
has a global bound for ((, r, 9, <?) e V and — 1 1 \ ̂  T ̂  | 11.

(iii) The absolute value of A is bounded by 1. D

It is an easy consequence of Proposition (3.1) that ^ is differentiable. We cover
M bv flow boxes of F which either lie in the complement of the bad set U \ and are

' i£Z
smooth or are of the form

•'• ° r I (- 8, 8) x S(<p, s) ?

where T*: M -> M is the translation (r, 9, z) -^ (r, 9, z + i), and S(<p, s) is the open
rectangle

S(^ 8) = {(r, 9, ^) e M : 0 < r < a, 9 = +, 1 ^ 1 < s }

which is transverse to ^ if 8 is sufficiently small. These flow boxes form an atlas offolia-
tion charts for ^r. In the complement of U A, coordinate changes are C°°. Therefore
it suffices to show that

^12 == (^ I (- 81, 81) x 8«l/i. ci)) 1 ° ̂  I (- 8,, 8«) x S(<1/., e,)

is differentiable in (t, r, +2) 0) ifFia is defined in (<, r, ̂ , 0). By Proposition (3.1) it suffices
to prove that (F|(_8^xs«p.t))~1 is differentiable in every point of the form ((r, 9), 0)
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which lies in F((— 8, 8) X S(4ss))« By Proposition (3.1) the linear approximation of
F I (- s, 8) x M, e) at (<o, (ro, ̂  0)) is given by {t, r, ̂  z} -> (r^^ + t^ 0) + (r - r^t - t^ z)
and thus the derivative of F|(_^8^s^ ^ at (^o, (to, ^, 0)) can be identified with the
identity. The differentiability of (F|(_^§^g^e))~1 follows then from the next lemma
whose straightforward proof we omit (it probably is well known).

Lemma 3.2. — Let h: (R", 0) -> (R^ 0) be a local homeomorphism at 0. Assume that h
is dijferentiable at 0 with derivative A. If A is non-singular, then the local inverse of h at 0 is dijfe-
rentiable at 0 with derivative A~1. D

Summarizing Sections 2 and 3 we obtain

Theorem 3.3. — There exists a filiation ^ o/*R3 which has the following properties9.

(i) all leaves of 3^ are smooth simple closed curves^
(ii) ^ is defined by a dijferentiable, but not continuously dijferentiable^ non-singular vector field,
(lii) 3F is differ entiable^
(iv) the bad set Bi(< )̂ of y is a countable union of properly embedded open annuli.

Using arguments similar to those in the proof of Proposition (3.1) one can show
that neither the flow F nor the foliation 3^ constructed in section 2 are G1. Thus we have
the following

Problem 3.4. — For which r, with 1 ^ r < G), does there exist a exfoliation ofR3 by circles?

4. More Circle Foliations

With the help of the foliation 3^ of R3 by circles described in Section 2 many
<c new " circle foliations can be constructed. We will illustrate this by giving some
examples.

All of these examples are obtained by taking 3-manifolds which carry a circle
foliation and glueing them together along parts of their boundaries. Since the foliation y
or variants of ^ will always be involved our examples will at best be as smooth as ^r.
Following a suggestion of N. Kuiper we will call a 1-dimensional foliation ^ of a
G00 3-manifold M a G1--foliation if

(4.1) all leaves of ^ are G^

(4.2) the tangent distribution of ^ is continuous,

(4.3) ^ is differentiable (in the sense of the preceding section).

To prevent a loss of smoothness in the glueing process along parts of 0M,
let 8M X [0, oo) be a smooth outward collar of 8M, and extend ^S to a foliation ^ of
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M u BM X [0, oo) by setting ^ \ BM x { t } = (^ | BM) X { Q, ^ e [0, oo). We then
require in addition:

(4.4) The extension ^' of ^ to M u BM X [0, oo) is G1-.

All examples considered below will satisfy (4.1-4). This is easy to check and we
leave that task to the reader.

For our first example we need a circle foliation which is essentially due to G. Reeb
([Re], A, III, ,, 2).

Example 4.1 (Reeb). — Let S1 be the unit circle in R2 and JC S1 the set of points with
x^ < 0. Then there exists a smooth circle filiation y-^ on

N = [0, 1] x S1 x S1^ 0 } x J X S1

with the following properties'.

(4.5^) on { 1 } X S1 X S1 the leaves are

{ l } x S i x { c p } , ?eSi;

(4.56) on { 0 } x (S^J) X S1 the leaves are

{ 0 } X H } X S 1 , ^eS^J.

Proof. — We modify slightly the example of [Epi], pp. 66, 67. Let g : R -> [0, 1]
be a G^-function such that ^(O) = [3/4, oo) and ^(l) == (— oo, 0]. For t e [0, 1]
let H( C R3 be the image of R2 = R2 x { 0 } under the rotation around the j/-axis of
angle (7r/2)-^(<). Then the translates of H( in ^-direction for t> 0, and in ^-direction
for t < 0 define a foliation oH^xR^y planes, and altogether a foliation of [0, 1] X R3

by planes, where the leaves in { 1 } x R3 are parallel to the ^-plane and the
leaves in { 0 } X R3 are parallel to the j^-plane. This foliation induces a folia-
tion on [0, 1] X S1 X RC[0, 1] X R2 X R == [0, 1] X R3, except in the lines
{ 0 } x { ( ± l , 0 ) } x R where the foliation of { 0 } X R2 X R is not transverse to
{ 0 } X S1 X R. Since (± 1, 0) CJ we obtain a 1-dimensional foliation on

N = (0, 1] x S1 x R u { 0 } X (S^J) X R

and the leaves on { t } X S1 X R are ellipses of slope {-^12).g{t) for 0< ̂  1, and
vertical lines on { 0 } X (S^J) X R. Thus after factoring out the Z-action
{x,j, z) —^ {x,y, z + n)^ n e Z, we obtain a circle foliation 3F^ on N = K/Z with the
required properties. D

Proposition 4.2. — Let V = D2 x S1 be the solid torus and let x be a point in the interior
of V. Then there exists a Gl~-foliation ̂  by circles on V\{ x } such that ̂  restricted to 8V is
the foliation by parallels { z} x S1, z e 8 D2.
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Proof. — By (2.3) the fbliation ^ on M ^ R3 of Section 2 restricted to
{ ( A ? ^ J , , ^ ) : 0 < ^ 2 + ^ 2 < ^ l 5 7 / 8 < z < 1 } consists of round, horizontal circles with centers
on the -?-axis. Thus ^ can be extended to M U G where the open annulus

C ={(^, z) : ̂  +y == 1, 7/8 < z< 1 }

is also foliated by round circles. Now attach M U G to N of Reeb's example (4.1) by
identifying the annulus C with the annulus { 0 } X (S^J) X S1 of N via a foliation
preserving diffeomorphism. The resulting manifold is diffeomorphic to a solid torus with
an interior point removed and the boundary of the solid torus is { 1 } X S1 X S1 C N,
with { 1 } X S1 X { <p }, 9 e S1, corresponding to parallels, and { l } x { < p } x S1 cor-
responding to meridians. By (4.5a) the leaves o^^xS^S1 are parallels. D

Corollary 4.3. — Let M be a 3-manifold which admits a Cl~-circle foliation and let y he
an interior point of M. Then M\{j/} admits a C1"•foliation.

Proof. — Let ^f be a G1 "-circle foliation of M and let L be a typical leaf of the
Seifert fibration ^ \ (M^B^J^)). Also let L and y be in the same component of M.
The leaf L has an invariant neighborhood which is isomorphic in the category of
C^-foliations to V = D2 X S1 with the product circle foliation. Replace V by V\{^}with
the foliation ^r, of (4.2). The resulting manifold is diffeomorphic to M\{j/}. D

N. Kuiper pointed out how one could use the foliation y of M ^ R3 to obtain

Example 4.4. — The filiation by meridians 8 D2 X { 9 }, 9 e S1, of the boundary B D2 X S1

of the solid torus V = D2 X S1 can be extended to a G1^-foliation of V\{ interior point} by circles.

To see this just note that all leaves of the foliation y of M ^ R3 are unknotted
circles in M. Let L be a leaf in M\B^, and let X be a small invariant neighborhood ofL
isomorphic to D2 X S1 with the product foliation. Then M\int X is a solid torus minus
a point, and the curves { z } X S1, z e 8 D2, are meridians of this solid torus. D

Remark. — The foliation by meridians of 8 D2 X S1 cannot be extended to a circle
foliation of D2 X S1 because, by [Epi], the resulting foliation is a Seifert fibration of a
solid torus and these are known to be standard local models of Seifert fibrations [Sei],

Our final example uses a modification of the construction in Section 2. From this
one gets a good idea how one can adjust the construction of Section 2 in order to obtain
(c unexpected " circle foliations on many 3-manifolds.

Example 4.5. — Let V^ be the interior of a handlebody of genus A. Let E C V be a finite
set with at least h — 1 points. Then V^\E admits a C1"-foliation by circles.

Proof. — Consider again the circle foliation f^{Q) of Section 2 on the solid torus
W == {(A?,J^, z) e M : 0 < z < 1 }. The diffeomorphism g deforms f^Q) into a circle
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foliation g^f^Q) which admits a G1 "-extension to W u AQ, where the foliation on AQ
is given by round circles around the origin. The diffeomorphism g has support in the
cylinder

G2=={(^J^) eW^+y^tX^ (&-1)/2}.

Replace g by a diffeomorphism g ' which has support in a disjoint union o f A ~ l cylinders
Zi, . . . , Z^_i in Gg, where Z^ has the form

Z < = = r f , X (0 , (&-1) /2]CW

with d, C {(^) e R2: ̂ 2 +Y ̂  62 } a round disk: d, = {(^) : (x - ̂ )2 + {y -^)2 < &2}.

FIG. 8

Let g' act on each cylinder Z< the way g acts on C^. Then g^f^Q) is a G^-circle
ft-i

foliation on W which extends to a G^-foliation on W u U fl<, where the ^ are round
« = i

open disks punctured in their center and lying in

{{x^ z) : ̂  +^<b\z=0}C R2, G^(^) C rf,,

and the a^ are foliated by round circles around the center of a^.
h-i

If we take two copies of W u U ^ and identify for i == 1, ..., h — 1 the a^ of the
«==!

first copy with the a, of the second copy via the <( identity " we obtain V^ minus h — 1
points with a G1 ""-foliation by circles. D

Remark. — If h > 2 and one a^-pair is identified via a diffeomorphism which
changes the orientation of the circles, we obtain an open solid non-orientable handlebody
with A — 1 points removed together with a G1 '"'-foliation by circles.
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