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NON-ARITHMETIC GROUPS IN LOBACHEVSKY SPACES
by M. GROMOV and I. PIATETSKI-SHAPIRO

0. Introduction

In this paper we construct non-arithmetic lattices F (both cocompact and
non-cocompact: see 1.3 for the definition) in the projective orthogonal group
P0(w, 1) = 0(n, !)/{ + 1, - 1 } for all n == 2, 3, .... We obtain our F by "inter-
breeding " two arithmetic subgroups I\ and I^ in P0(^, 1) as follows. Recall that P0(w, 1)
is the isometry group of the Lobachevsky space L" and assume the subgroups r,C P0(^, 1),
for i = 1, 2, have no torsion. Then the quotient spaces V, = I^L" are hyperbolic manifolds
(i.e. complete Riemannian of constant curvature) and I\ is the fundamental group of V^
for i = I , 2. Next, to make the interbreeding possible, we assume there exist connected
submanifolds V^ C V^ and V^" C V^ of dimension n with boundaries (N^ C V^ and
BV^ C V^, such that

a) The hypersurface 8V'^ C V, for i == 1, 2 is totally geodesic in V,. That is, the
universal covering of 8V^ is a hyperplane in the universal covering L" of V,. In
particular, ^V^" is an (n — 1)-dimensional hyperbolic manifold.

b) The manifolds 8V^ and 8V^ are isometric.

Now we produce the hybrid manifold V by gluing together V^ and Vgf" according
to an isometry between aV^ and 8V^. This V carries a natural metric of constant
negative curvature coming from those on V^ and Vgf" and this metric is complete apart
from a few irrelevant exceptional cases (see 2.10). Then the universal covering of V
equals L" and the fundamental group F o f V i s a lattice in PO(TZ, 1) == Is L". Note that
if the subgroups 1̂  and 1̂  are cocompact (i.e. if Vi and V^ are compact) then also F is
cocompact.

Also note that the fundamental group F^ of V,4' injects into I\ for i == 1,2
(see 2.10) and that in the relevant cases I\4' satisfies the following.

0.1. Density property (see 1.7). — The subgroup F^C P0(^, 1) is Zariski dense
in P0(w, 1)° for i === 1, 2, where ° stands for "the identity component of".

This density for i = 1 implies (see 1.2 and 1.6) the following
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0.2. Commensurability property. — If the group T {as well as I\) is arithmetic
then r and 1̂  are commensurable. That is there exists a hyperbolic manifold admitting locally
isometric finite covering maps onto V and onto V^.

Similarly, arithmeticity of F implies commensurability between F and I^ and
hence, commensurability between I\ and I^. Therefore, one obtains a non-arithmetic F
by taking I\ and Fg non-commensurable (compare 2.6, 2.7 and 2.8).

0.3. Historical remarks. — a) Examples of non-arithmetic lattices F in L3 (the
existence of non-arithmetic lattices in L2 is trivial) were first found by Makarov
(see [M]) among reflection groups that are groups generated by reflections in some hyper-
planes. Then non-arithmetic reflection lattices were constructed in L4 and L5. It is yet
unknown for which n there exists a non-arithmetic reflection lattice in L", but one does
know this n cannot be too large. In fact, no reflection lattice exists in 1̂  for n ̂  995
(see [V], [N] and references therein).

b) A famous theorem by Margulis asserts that every lattice in a simple Lie
group G with rank^ G ̂  2 is arithmetic. The remaining non-compact groups (groups
with ranks == 1) are (up to local isomorphism): 0(n, 1), U(n, 1), and their quaternion
and Cayley analogues. Apart from 0(n, 1) where our interbreeding provides non-
arithmetic lattices for all n, the existence of non-arithmetic lattices is only known for
SU(2, 1) and SU(3, 1). Non-arithmetic lattices in these two groups were constructed
by Mostow (see [Mo]) by using reflections in complex hyperplanes.

0.4. Questions. — Call a discrete subgroup FoCPC^,!) subarithmetic if TQ is
Zariski dense and if there exists an arithmetic subgroup I\CPO(^,1) such that
FO n I\ has finite index in FQ. Does every lattice F in P0(%, 1) (maybe for large n)
contain a subarithmetic subgroup? Is F generated by (finitely many) such subgroups?
If so, does V = r\L" admit a "nice59 partition into "subarithmetic pieces"?

Acknowledgements. — While preparing this paper the authors much benefited
from discussions with Ofer Gabber, Ron Livney, John Morgan and George Mostow.
We are especially thankful to Jacques Tits who read the first version of the manuscript
and suggested a variety of improvements and corrections.

1. Rudiments of arithmetic groups

1.1. Integral points in linear reductive groups. — A connected Lie group G is called
reductive if the center of G is compact and G/Genter is semisimple. Such a G obviously
contains a unique maximal compact normal subgroup KCG. The quotient group
G' = G/K, clearly is of adjoint type. That is the adjoint representation ad : G' -> Aut L'
is injective, where L' denotes the Lie algebra of G' and Aut is the group of linear auto-
morphisms ofL'. Our basic example is G' = P0(w, 1)°.
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Sufficiently dense subgroups. — Gall FCG sufficiently dense if the image
of r in G' C Aut L' is Zariski dense in G'.

Let G C GL^ R be a reductive subgroup and let F C G be the subgroup of integral
matrices in G with det = d= 1. That is

r == G n GL^ Z.

Property A. — We say that G satisfies A if F is sufficiently dense in G.

1.2. Basic Theorem. — A reductive subgroup GCGL^R satisfies A if and only
if r is a lattice in G, that is, Vol G/F < oo.

Proof. — The implication
Vol G/r < oo => Zariski density of F' in G'

holds true for all discrete subgroups r C G and is called Borel density theorem. A short
proof of this can be found in [Z] and [Gjg.

Let us indicate the (well-known, see [B]i) proof of the implication
Vol G/r < oo ^ A.

Step 1. — By elementary properties of reductive groups (see [B^)? G equals the
identity component of the Zariski closure GCGL^R. Therefore, G contains the
identity component 1̂  of the Zariski closure F C GLy R.

Note that the inclusion FQ C G is automatic in all our cases and so Step 1 can be
omitted.

Step 2. — Property A immediately implies that the homomorphism G -> G'
maps FO onto G'. It follows that FQ is reductive.

Step 2. — The Zariski density of integral points in F implies that F is defined
over Q^. In fact one only needs Zariski density of rational points in F. This easily follows
from the very definition of the Zariski closure.

Step 4. — Since F is reductive, there exists a polynomial map P: (R^ -^R^
for some k and /', such that

a) The set of linear transformations of R1^ fixing P equals F.
Furthermore, since F is defined over Q^one can choose the above P integral. That is

b) P^Z^) C Z<

The existence of P is easy (see [B]i) and follows directly from Step 2. (We
included Step 3 only to bring our discussion nearer to the standard language.)

Step 5. — The orbit F{Z^) is closed in GL^ R/GL^ Z, where the quotient
space GL^ R/GL^ Z is identified in a natural way with the space of lattices in R^.
(Note that this step brings us from algebra to geometry.)
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Proof of step 5. — Observe that for each lattice L C R^ there exists a finite subset
F C L, such that the values of P on F^ uniquely determine P among the polynomials
of the same degree on (R^. Thus the inequality Pog == P on F6 implies g e F for
all g e GL.N R and the diagonal action of GL^ R on (R^)*.

IfL lies in the closure of the orbit I^Z^, then there exists a sequence g^ converging
to 1 in GL^R and a sequence y, in F such that ^L == Y» ̂ N f01' ^1 z = ^ 2, ....
This follows from the very definition of the topology in the space of lattices, that
is GL^R/GL^Z.

Since P is integer valued (i.e. Z^-valued) on (Z^ and F-invariant, the equality
g^ L = Yi ̂ N shows that P o ̂  is integer valued on F .̂

Since P o g is continuous in g and F is finite, we have P o g^ == P on F^ for almost
all i. This implies P o g^ == P on all of (R^ by our choice of F. Therefore, g^ e F and
L^-^Z^enZ^. Q.E.D.

Step 6. — If the orbit G(Z^) is precompact in GLy R/GL^ Z, then by the previous
step G/F = G(ZN) is compact. That is, F is a cocompact lattice in G. Note that this case
is sufficient for our examples of compact hybrids V.

If G(ZN) is not precompact the proof of the lattice property
Vol G(ZN) < oo

is more complicated (see § 16 in [B]i and § 10 in [R]). Yet, in the cases needed for our
purpose the proof is relatively simple (see § 2).

1.3. Arithmetic groups. — A discrete subgroup F in a reductive group G is called
arithmetic if there exists a reductive subgroup GCGL^R for some N = 1, 2, ... satis-
fying A and a continuous surjective homomorphism p : G -> G such that
(i) the kernel of p is a compact subgroup in G;

(ii) the p-image of G n GLj^ Z is commensurable with F. That is, the intersection
F n p(G n GL^ Z)

has finite index in F as well as in p(G n GL^Z).

Remarks. — a) Since G is reductive and Ker p is compact, the group G is
necessarily reductive.

b) Since G n GL^ZCG is a lattice by 1.2, the subgroup F n p(G n GL^Z)
has finite index in F. Thus, it is enough to assume in (ii) that this subgroup has finite
index in p(G n GL^ Z).

c ) For our applications, we only need G = f0{n, 1) and PO(TZ, 1) x P0(w, 1).

1.4. Criterion for non-arithmeticity. — Let H C G be a reductive subgroup.
Then the intersection of H with an arithmetic subgroup F C G is arithmetic in H if and only if
this intersection H n F is sufficiently dense in H.

proof. — Use H = p-^G) CGCGL^R and 1.2.
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1.4. A. Corollary. — If Y C G is arithmetic and H n F is sufficiently dense in H then
H n F is a lattice in H. That is, Vol H/H n F < oo.

Proof. — Apply 1.2 again.

1.5. Remarks. — a) If F is cocompact in G, then 1.4. A obviously implies that
r n H is cocompact in H, provided r is arithmetic.

b) The above corollary can be used as a criterion of non-arithmeticity for F.
For example, let H be isomorphic to SLg R or PSLg R. Then an elementary argument
shows that a discrete subgroup F C H is either sufficiently dense (here it is equivalent
to Zariski dense) or virtually cyclic (i.e. contains a cyclic subgroup of finite index).
Therefore, the intersection of an arithmetic subgroup F C G with every H isomorphic
to SL.2 R or PSLg R is either a lattice in H or a virtually cyclic group. (This observation
is due to D. Toledo.)

1.6. Commensurability criterion. — Let T and I\ be arithmetic subgroups in G
such that r n Pi is sufficiently dense in G. Then F n I\ has finite index in F as well as in I\.

Proof. — Observe that F X I\ is an arithmetic subgroup in G X G and that
r n I\ C G equals G n (F x I\) for the diagonal embedding G C G x G. Hence,
r n I\ is a lattice in G by 1.4. A which implies the desired Commensurability.

1.6. A. Example : Commensurability of hyperbolic manifolds (compare 0.2). _ Let V
and Vi be ^-dimensional hyperbolic manifolds whose fundamental groups F and I,
are arithmetic subgroups in P0(^ 1). Let V + C V and V^+CV be connected mutually
isometric submanifolds with sufficiently dense fundamental groups F4- and F^. That
is, the images of F+ and I^ in F and I\ respectively are Zariski dense in the ambient
group P0(n, 1). Then there exists a hyperbolic manifold V which admits a finite locally isometric
covering map onto V and onto V^.

Proof. — Since V4- is isometric to Vi4- the image of F4- in P0(w, 1) is conjugate to
that of r^. Therefore, we way assume that the intersection F = F n I\ in P0(%, 1)
contains the image of F+. According to 1.6 this F has finite index in F as well as in I\.
Hence, the manifold V = F^L" finitely covers V and Vi.

1.7. Density criterion for hyperbolic manifolds with boundary. — Let V4- be a connected
^-dimensional manifold of constant negative curvature with non-empty totally geodesic
boundary aV^" having finitely many connected components. Assume V'1" is complete
as a metric space and Vol V4' < oo.

1.7. A. Lemma. — Let the (image of the) fundamental group of every component of 9V +

have finite index in the fundamental group of V4-. Then n = 2 and V4- is simply connected. It
follows that V4' is isometric to a k-gon in L2 with vertices at infinity.

13
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Proof. — The finite index condition shows that the universal covering ^+ also
has finitely many boundary components. Then one may assume without loss of generality
that the deck transformation group F maps every component into itself. Let QQ be one
of the components of 8V+ and let ^,C ̂  be the normal projections of the remaining

k
components ^, i = 1, ..., k, to ^o. The condition Vol V-^ < oo implies that U ^C ̂

is a subset of full measure. Hence, n == 2, and the action of deck transformations is
trivial. Q^.E.D.

1.7.B. Corollary (compare 0 .1) .— If Vol BV4" < oo, then the fundamental group ̂ +

o/V4- is Zariski dense in P0(%, 1)°.

Proof. — Since Vol BV4'< oo the Zariski closure J^CPO^, 1) of F4- contains
P0(% — 1, 1) by Borel density theorem (see 1.2), where f0{n — 1, 1) C P0(w, 1) is
identified with the isometry group of the space L""1 serving as the universal covering
of each component of BV4'. By the above lemma, dim T^ > dim P0(^, 1) because the
(algebraic!) group F^ has at most finitely many connected components. It follows that
F = S0(n, 1), since 0(n — 1, 1)° is a maximal connected subgroup in S0(w, 1).

2. Arithmetic subgroups in 0(/z, 1).

2.1. Orthogonal groups. — Let K.C R be a number field and F be a non-singular
quadratic form in n + 1 variable with coefficient in K. Denote by r(F)CGL^+iR
the group of K'integral automorphisms of F. That is the group of F-orthogonal matrices
with entries from the ring of integers in K. If the form F has real type {p, y), then F(F)
is contained in (some conjugate of) the orthogonal group 0{p, q). We are mainly
interested in the case p == n and q == 1.

Suppose K is totally real of degree d + 1 and let 1^: K C R, i = 0, ..., d be the
various embeddings where IQ is the original embedding K C R. For our applications
we shall only need the fields Q^ and Q,(V2). Note that the embedding I^ : Q,(V2) CR
is obtained from Io by applying the automorphism I: a + p A/2H- a — p A/2 to (^(V^).

The following classical theorem (see [B]i, for example) provides a variety of
arithmetic subgroups in 0{n, 1).

2.2. Arithmedcity of r(F). — If the forms I,F are positive definite for i = 1, .. .,d,
then the subgroup r(F)CO(^,y) is arithmetic. In particular, F(F) is discrete and
Vol 0( ,̂ ?)/F(F) < oo.

Proof. — The pertinent group G here (compare 1.3) for G = 0(p, q) is
the Cartesian product of the real orthogonal groups 0(I,F), i = 0, 1, ..., d (where
O(IoF) = 0(F) == OQ&, q)). Thus GCGL^R for N == {n + 1) {d + 1), where R1^
is given a K-rational basis, that is, a basic of vectors whose projections to the copies of
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R^1 lie in KCR^, where K embeds into R^1 by x^{W, ...,I^)) for all
x e K. Then the verification of the A-property ofG and arithmeticity of F(F) is straight-
forward (see [B]i).

2.3. Cocoxnpactness of r(F). — The above arithmetic group F(F) is cocompact
in 0{p, q) if and only tfT? has no non-trivial zero in K.

This is a simple corollary of Mahler compactness theorem for lattices in R1^
(see [B]i, [R]).

2.3. A. If d + 1 ^ 2, then F(F) is cocompact.

proof. — If F{x, x) == 0, then also I(F(I^), l,{x)) = 0 for i > 0, as I, is an iso-
morphism. Since I, F is positive definite for i > 0, we have I, (A;) = 0 and thus x = 0.

2.4. Remark. — If K = %, then F(F) may be both cocompact and non-
cocompact for n == 2, 3, 4. But F(F) is not cocompact for n ̂  5 as every indefinite rational
quadratic form in five variables has a non-trivial rational zero by the Minkovski-Hasse
theorem.

2.5. Action of F(F) on L". — Let F be of signature {n, 1) and consider the
(pseudo)-sphere S = Sp = {^ e R"4'11 F{x, x) == — 1} C R*14-1. This S has two connected
components isometric to L" for the metric induced from the pseudo-Euclidean metric F
on R"-^. Thus S/{ + 1, — 1 } == I/1 and P0(n, 1) == PO(F) acts isometrically on L^.
If r C F(F) is a subgroup of finite index without torsion, then r /{ + 1, — 1 } sicts freely
on L" and the quotient space I^L" is a hyperbolic manifold such that, according to 1.2,

Vol^I/*) < oo.

2.5. A. Congruence subgroups in F(F). — Take a prime ideal/? in the ring of integers
of K and define the congruence subgroup Fy(F) C F(F) by

r , ( F ) = = { T e r ( F ) | Y = I d ( m o d ^ ) } .

If | p | is sufficiently large, then I\(F) has no torsion and the action of I\(F) on L^ is
free (see [B]i, [R]).

2.6. Commensurable manifolds. — Let Fi and Fg be two forms over K of type {n, 1)
for n > 2, such that the corresponding groups F(Fi) and Î Fg) are commensurable (we stick to
the assumptions in 2.2 so that these groups are arithmetic) in the following sense. There exists an
isometry a of the (Lobachevsky) space Li === S^/{ + 1, — 1 } onto Lg = Syj{ + 1, — 1 }
which sends some subgroup of finite index I\C F(Fi)/{ + 1, — 1 } {acting on L^) into
r(Fg) /{ + 1, — 1 } {acting on La). Then the forms Fi and F^ are similar over K. That is there
exists a linear ^.-isomorphism R"4-1 ^ R"4'1 sending Fi to XFa/or some X e K.
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Proof. — There obviously exists a unique (up to { + I? — 1 }) linear map
a : R^ +1 -^ R71 +1 sending F^ to Fg such that the induced map Li -^ L^ is a. Denote by
FiC F(Fi) the { + 1, — 1 }-extension of Fi. Since Fi is Zariski dense in 0(w, 1) and
the action of 0(%, 1) on R"4"1 is C-irreducible for n ^ 2, the K-linear span of F^ in
EndR"-^ equals End K^C End R"4-1. Since a sends Fi in F(F2), the K-span of Fi
goes to that of F(Fg) and then the equality Spang; F^ == End K^4"1 implies that a = piao,
where a^ is defined over K and ^ e R^. Now, ao sends F^ to (A""2 Fg and since F^ 4= 0,
the factor p.-2 lies in K. d.E.D.

2.7. Corollary. — Z^ F^ fl/zflf Fg &^ diagonal,
n+l n+1

Fi == S a, x2, and Fg = S ^ ̂ 2

<=1 »==!

/or a, <zwrf i, iw K. Then/or n + 1 even the ratio of the discriminants
n + l n + l

n aA n *, lies in (K^2.
< = i < = i

pyoo^ — A linear transformation over K with determinant D multiplies discri-
minants by D2 and similarity Fh>XF multiplies the discriminant of F by V^1.

2.7.A. Example. — a) Let K == % and

F , = ^ + ^ + ... +^-i-^

F ,=2^+^+ ... +^-i-^.

Then for w + 1 even the groups F(Fi) and F(F2) are not commensurable as 2 is not a
square in %. Also note that these groups are not cocompact as F^A:, x) ===0 for
x == (0, 0, ..., 0, 1, 1) and i = 1, 2 (compare 2.4).

b) Let K == %(V2) and

F,-^+^+ ... +^-i-V2^

F, == 3^ + ̂  + ... + ̂ n-i - V2^.

Here again the corresponding groups are not commensurable for n + 1 even, but now
these groups are cocompact (see 2.3. A).

2.8. Totally geodesic submanifolds in hyperbolic manifolds. Take a (k + 1)-dimensional
linear subspace RoC R"-^1 which meets the sphere S == S(F) C R"4-1. Then the inter-
section So = S n Kg is a totally geodesic submanifold in S of dimension k. For a
subgroup FC F(F) denote by FgC F the subgroup stabilizing RQ. If the subspace RQ
is K-rational and FQ has finite index in F, then Fo is arithmetic. That is, the image of FQ
in the full isometry group Is So = 0(^, 1) gives ^.proper immersion Fo\So-> F\S (by Step 5
in 1.2).
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2.8. A. Embedding criterion. — Denote by Ioe0(n, 1) the orthogonal reflection
of R^1 in Ro.

I/IQ normalizes F, then the canonical map ro\So -^ r\S is a proper embedding, provided Y
has no torsion.

Proof. — Suppose two distinct points s and s ' from So go to the same point in r\S.
That is s ' = y(^) for some y e r. Since s and s ' are fixed by Io, the commutator
S = Y~1 IoT^(T1 ^xes ss Since Ig normalizes F this 8 is contained in F and as F has no
torsion and acts freely on So, we obtain 8 == Id. Since So equals the fixed point set oflo,
the equality [y, Io] = Id implies that y e FQ. Q^.E.D.

2.8.B. Remark. — If ro\So -> F\S is an embedding, then, obviously, the corres-
ponding map ro\So -> r"\S also is an embedding for every subgroup F'C F.

Corollary. — If the group generated by F and Io rij"1 is discrete without torsion^ then
the map Fo\So -> F\S is an embedding.

2.8.C. Example. — Let Fo be a quadratic form in variables x^ ..., x^ over KC R
of type (n — 1, 1) and F = ax^ + FQ for a > 0 in K. Then the reflection Io in the
hyperplane Ro = { XQ = 0 } C R"-^1,

I-O : (XO 9 x! 9 • • • 5 ^n) 1->> (— ^0 3 ^1 ? • • • 5 ^n)

lies in r(F) and the previous discussion applies to the congruence subgroups
Fy(F) C F(F) with | p | sufficiently large. Therefore the hyperbolic manifold

vcFo.^^r^Fo^L"-1

(where we identify L""1 with So/{+ 1, — 1}) isometrically embeds into V(F,^) = r^F^IA
Note that for p prime to 2 both manifolds V(F,/?) and V(Fo,^) are orientable.

In fact, if - 1 + 1 (mod^), then I\(F) C S0(w, 1) and r^(Fo) CSO{n - 1, 1).
The hypersurface V(FQ,^) does not necessarily bound in V(F,^). (In fact for

large \p \ it does not bound). However, there exists an obvious double covering \^(F,^)
ofV(F, p), such that the lift ofV(Fo,^) to ̂ (F,^) consists of two disjoint copies ofV(Fo,j&)
which do bound some connected submanifold V^CV^F,/?). That is the boundary ^V~1"
is the union of two copies of V(FQ,^).

2.9. Interbreeding hyperbolic manifolds. — Take the forms F, = a^ x^ + FQ as in the
previous example for i == 1, 2, and assume for the uniformity of notation that V(FQ,J&)
does not bound in either of the two manifolds V(F^,^). (As we mentioned earlier, this
is the case for large \p\.) Then we take the corresponding manifolds V^CV^F^,^)
for i = 1, 2 and recall that V^ and V^" have isometric boundaries equal to 2V(Fo,/»).

If n + 1 is even and a^a^ is not a square in K then the forms F^ and Fg are not
similar over K (compare 2.7) and the groups F(Fi) and I^Fg) are not commensurable
(see 2.6). In this case the manifold V obtained by gluing V^ to V^ along the boundary
is non-arithmetic (i.e. the fundamental group is not arithmetic: compare 0.2, 1.6. A).
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If (n + 1) is odd, we consider a K-rational hyperplane R'C R"4'1 normal to RQ.
n

For example, let F^ == S b^x^y where ^i> 0 and take

R'^^^OCR^1.

Then the corresponding hypersurfaces V<CV(F,,^) are normal to V(FQ,^). Therefore,
their <( halfs " V^ n V^ and V^ n V^ glue together to a totally geodesic hypersurface
V'CV. If V is arithmetic, then so is V (see 1.4). But V is non-arithmetic for
n -— 1 = dimV > 2 by the previous argument and thus the non-arithmeticity of V
(i.e. of the fundamental group F ofV) is established for all n ̂  3. We leave the (trivial)
case where n = 2 to the reader.

2.10. Final hyperbolic remarks. — To complete our discussion we need two simple
facts from hyperbolic geometry.

2.10. A. The fundamental group of V4' injects into that of V.

Proof. — The submanifold V4' C V has convex (in fact, totally geodesic) boundary
and so every class in 7i;i(V4') is represented by a geodesic loop in V4'. Such a loop is not
contractible in V, as V is complete of negative curvature. Q^.E.D.

2.10.B. The manifold V obtained by gluing V^ and V^ (see § 0) is complete provided
these manifolds as well as their (totally geodesic) boundaries have finite volumes.

Proof. — The claim is obvious if V^ = V^ is compact.
If V^ is non-compact then the geometry at infinity is described with the following

notion.

2.10.C. Cusps. — An ^-dimensional cusp with boundary is a Riemannian manifold
C4" = F4' X R+, where F4' is a compact flat manifold with totally geodesic boundary
and where the metric in G4' is dt2 + e^t g, where t e R^_ and g is the flat metric on F4'.

Observe that a compact connected flat manifold F4" with a non-empty boundary
either is isometric to a product Fo X [— a, a] for some compact flat manifold Fo without
boundary, or has a double covering isometric to Fo X [— a, d\. In both cases the
connected components of the levels of the distance function dist(A:, ^F4") foliate F4' into
closed connected totally geodesic submanifolds FQ for 9 e [0, a\. It follows that a connected
cusp with non-empty boundary is canonically foliated into leaves CQ = FQ X R+. Note
that this splitting of CQ is unique. In fact, for each x e CQ, there exists a unique closed
connected (n — 2) -dimensional hypersurface F(;v)CCe passing through x, such that
a) the induced metric in F(^) is flat;
b) also the induced metrics in the parallel hypersurfaces (which are defined as the level

of the distance function to T{x) in Ge) are flat.

Since the hypersurfaces FQ X I^-CQ have these properties, the hypersurface F{x)
for x == (/, t) equals F^ x t.
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The {n — 2)-dimensional volume of F@ x t is obviously const exp(w — 2) t. Hence,
if n ̂  3, the parameter t = t{x) for x == (/, t) can be recaptured (up to an additive
constant) by taking logVolF(A:), for those x, for which the hypersurface is normally
orientable and log 2 Vol F(A;) for the others.

Now it is clear that a manifold C, obtained by gluing together two cusps
C!,4' = F,4" X R+ by isometries along their boundary cusps 8F,4" X R+, is again a cusp.
In fact, the foliations on C^~ define a geodesic foliation of G into {n — 1)-dimensional
cusps GQ without boundary and the cusp structure in G is seen with t = log Vol T{x).

Finally, we conclude the proof of 2.10. B by invoking the following.

2.10.D. Proposition. — Let V'1' be a complete hyperbolic manifold with totally geodesic
boundary. If\o\ V4' < oo, then the complement to a compact subset in V4' is isometric to a (possibly
disconnected) cusp.

Proof. — IfV+ has no boundary, this is standard (see [B]i, [R], [G]i), and the case
with boundary follows by taking the double of V4".

This proposition and the above discussion show that the glued manifold V is
cuspidal at infinity. Since cusps are complete, V is complete. Q.E.D.
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