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EQUATIONS DEFINING SCHUBERT VARIETIES
AND FROBENIUS SPLITTING OF DIAGONALS

by A. RAMANATHAN

Let Gy(V) be the Grassmannian of r-dimensional linear subspaces of a vector
space V. We can identify Gy(V) with the decomposable vectors in P A1' V, the projective
space of lines in the r-th exterior power of V. Thus Gy(V) is a projective variety with
a natural embedding in PA^'V. A basis e^ ..., e^ of V gives the basis ^ A ... A ^ ,
i^< i^< ... < i^ of A^^V. The coordinates of a vector in A^V with respect to this
basis are called its Piticker coordinates. For a vector in A*" V to be decomposable its
Piticker coordinates should satisfy certain quadratic relations. For example when n = 4
and r == 2 (the case of projective lines in projective 3-space) the Grassmannian is actually
a quadric surface in P5. Hodge gave certain natural quadratic relations in the Pliicker
coordinates which define the Grassmannian in PA''V (see [5]). In other words, if I
is the homogeneous ideal ofGy(V) in the homogeneous coordinate ring of PA1' V then I
is generated by certain quadrics.

In developing the theory of spinors, Cartan observed that there is a natural
bijection between " pure " spinors and the maximal isotropic spaces of the basic quadratic
form. He obtained quadratic relations defining pure spinors in the space of all spinors
(see [20]). These results are analogous to the results of Hodge when one deals with the
orthogonal group instead of the general linear group.

The Grassmannian has a natural decomposition into affine spaces. Let
0 == VoC V^C ... C V^ = V be a full flag of linear subspaces with dim V, == i. Let
1 < i\<^ i^ < ... < iy ^ n be a sequence of integers. Then

S == S(^, ..., ̂ ) == { W e G,(V) | dim W n V^ = j }

is isomorphic to an affine space and Gy(V) is the disjoint union of these as (i\, .. .3 iy)
varies. The Zariski closure S of S is called a Schubert variety. Hodge also proved that
the homogeneous ideal of S in the homogeneous coordinate ring of Gy(V) (in the
embedding in PA^'V) is generated by all those Piticker coordinates vanishing on S.

The cohomology group ofGy(V) is generated by the cohomology classes of Schubert
varieties and the problems of enumerative geometry studied by Schubert involve the
computation of the structure of the cohomology ring of Gy(V) (see [8]).
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Hodge also computed the dimensions of the homogeneous components of the
homogeneous coordinate rings of Schubert varieties. He proved that Gy(V) and the
Schubert varieties are arithmetically normal in the embedding P A1' V. These results
suggested the vanishing of higher cohomology groups H^S, 0(m)) which was proved
independently by several authors including Hochster, Kempfand Musili (see [9], [17]).

This theory for the Grassmannian naturally suggests analogous questions for other
flag varieties and more generally for projective homogeneous varieties under algebraic
groups.

Let G be a simply connected semisimple algebraic group over an algebraically
closed field of arbitrary characteristic. Let B be a Borel subgroup and Q^DB a parabolic
subgroup. A (generalized) Schubert variety in G/Q^ is the closure of a B-orbit in G/Q^.
Let L be an effective line bundle on G/Q. Kempf proved the vanishing theorem
H^G/Q, L) = 0, i > 0. In his first paper he did this for the case G == SL(^) by using
a sequence of nonsingular Schubert varieties S()G S^C ... C G/Q, one in each dimension
and proving H^Sj^, L | S^) = 0 for each S^ by induction on k. His method was generalized
by Seshadri, Musili and Lakshmibai to the other classical groups S0(n) and Sp(n) and
to the exceptional group Gg. Later Kempf succeeded in extending this method to prove
the result for general G.

In [3] Demazure gave a proof for the vanishing H^S, L | S) = 0 for S any Schubert
variety in G/Q, L an effective line bundle on G/Q and i > 0, when the base field is of
characteristic zero. He also obtained a character formula for the action of the maximal
torus on H°(S, L | S) and conjectured that the same results should hold for base fields
of arbitrary characteristic. Unfortunately his proof contained a gap which was pointed
out by V. Kac much later (in 1983).

Seshadri, Musili and Lakshmibai developed in a series of papers the theory of
standard monomials aimed at giving explicit bases for H°(G/Q^, L) and obtaining the
vanishing theorem as part of this theory. They succeeded in doing this for all the classical
groups G (or more generally when G is arbitrary but Q, is restricted to be of classical
type). For classical groups the theory of standard monomials also enables them to prove
that the homogeneous ideal ofG/Q^in any embedding given by a very ample line bundle
is generated by quadrics and that the homogeneous ideal of any Schubert variety in
the homogeneous coordinate ring ofG/Qis generated by linear homogeneous polynomials
vanishing on it. They conjectured this result to be valid for general G/Q (see [9]). The
main result of this paper proves their conjecture (over fields of arbitrary characteristic).

In another line of development Haboush [21] working over a base field of charac-
teristic p > 0 gave a short and beautiful proof of the vanishing theorem H^G/Q,, L) = 0
of Kempf, by exploiting the Frobenius morphism and Steinberg representations in
characteristic p. Later Andersen also used characteristic p methods to prove Kempf's
theorem. It should be noted that thanks to Chevalley the group G and the varieties G/Q
can be defined over Z and one can use semicontinuity theorems to conclude vanishing



EQUATIONS DEFINING SCHUBERT VARIETIES 63

theorems in characteristic 0 from the corresponding theorem in characteristic p. So
proving these results in characteristic p in fact proves them for all fields.

Our method in this paper is also to work over fields of positive characteristic.
We introduced in [12] the notion of Frobenius split varieties (see below). It turns out,
greatly simplifying life with Schubert varieties, that Schubert varieties are compatibly
Frobenius split in G/Q^. A systematic use of this fact has given the cohomology vanishing
theorems, projective normality and arithmetic Gohen-Macaulay property for Schubert
varieties (see [12], [15], [16]). For our present purpose also Frobenius splitting proves
no less useful.

For a variety X over a base field k of characteristic p > 0 we have the absolute
Frobenius morphism F : X -> X given by the ring homomorphism a \-> a^ of any
A-algebra A. The variety X is called Frobenius split if the p-th power map 0^ —> F, 0^
has a section (a S^-module homomorphism) 9 : F^ 0^ —^ O^. A closed subvariety YC X
is called compatibly Frobenius split in X if <p(F,. I) == I where I is the ideal sheaf of Y in X,
The point of this definition is the trivially proved fact that if X is a projective variety.
L an ample line bundle on X and Y C X compatibly Frobenius split then
H^X, L) == tf(Y, L) = 0 for i > 0 and the restriction map H°(X, L) -^ H°(Y, L) is
surjective.

Now suppose that the diagonal A in X X X is compatibly Frobenius split/Then
for any ample line bundle L on X, L"1 X L is ample on X x X and hence
H°(X X X, L^ X L) -> H°(A, L^ X L) is surjective. But this restriction map is iso-
morphic to the multiplication map H°(X, L"1) ® H°(X, L) ->HO(X,Lm+l), by Kun-
neth. It follows that the map H°(X, L)07"->H°(X, L"1) is surjective. Thus if X is
normal and A is split in X X X then X is projectively normal in the embedding given
by any ample L.

Let Xy = X X ... X X, r factors, Ly the line bundle L X . . . X L on Xy and
Ay ^ X the diagonal in Xy. Towards proving that X is defined by quadrics in the
embedding given by L one would like to have that the kernel K.3 of the restriction map
H°(X, L)®3 ^ H°(X3, La) -> H°(A3, L3) is the sum Kg ® H°(X, L) + H°(X, L) ® Kg
where Kg is the kernel of H°(X, L)02 ^ H°(Xg, Lg) ->H°(Ag, L2).

Now K, = H°(X,, I,®L,) where I, is the ideal sheaf of A, in X,, j = 2, 3.
Let I^g be the ideal sheaf of A^ = A^ X X in X3 and Igg that of X x Ag. Then
Kg ® H°(X, L) == H°(X3, Iig ® L3) and H°(X, L) ® Kg = H°{X^ 1^ ® L^. Further
^12 + ^23 ls ^e ideal sheaf 13 of A3 in X3, I^g n I^ that of A^g u Ag3 and we have the
Mayer-Vietoris sequence

0 -> I^ n Ig3 -> I^C 1^3 -> Ii2 + 123 -> 0.

Tensoring this with L3 and taking cohomology we see that what we wish to prove is
the surjectivity of H^, I^ ® L3) ® H^, 1̂  ® L3) -> H°(X^ 1^ ® L3). The sur-
jectivity follows ifHl(X3,1^ n Ig3®L3) = 0. Now using the exact sequence

0 -> 1̂  n 123 -^ ^x. -^ ̂  A.. -^ 0
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we need only prove H^Xg, 1*3) = 0 and the surjectivity ofH^Xg, 1,3) ->H°{^ u A^, 1.3).
But this will be so if A^g u A^ is Frobenius split in Xg.

The above argument gives the essential point in the proof of the result that if X
is a projective variety such that (a) the diagonal A^ in Xg is compatibly Frobenius split
and (b) A^ u ^23 ls compatibly Frobenius split in X3 then in any projective embedding
of X given by an ample line bundle the homogeneous ideal of X is generated by quadrics.

Now suppose that Y is a Cartier divisor in X. Then from

0 -> ̂ (- Y) -> Cx -> ^Y -^ °

we see that K^, the kernel of H°(X, L"1) -^H°(Y, L"1), is H°(X, L^- Y)). To prove
that Y is defined by linear equations in X in the embedding given by L we should show
that the multiplication map H°(X, L"1) ®H°(X, L) -> H^X,^4-1) mapsK^®H°(X,L)
onto K^. That is H°(Xa, L^- Y) X L) ^H°(Aa, L^- Y) X L) should be sur-
jective. So we need H^Xg, L^L^- Y) X L) == 0.

Since Y is a Gartier divisor I^® ^x ("~ Y x ^) ls isomorphic to the ideal sheaf
of Ag U Y X X. Tensoring the exact sequence

0 - > I , ® ^ ( - Y X X ) ^XXX-^A.UYXX-^0

by I/" X L we see that the required surjectivity follows if A^ u Y X X is compatibly
Frobenius split in Xg.

Thus to have generation by quadrics or linear functions one has criteria in terms
of compatible Frobenius splitting of diagonal subvarieties of X X X and X X X X X.
To check the conditions of these criteria for Schubert varieties one proceeds as follows.

One knows from [12] that G/B has a Frobenius splitting 9 which compatibly
splits all the Schubert varieties in G/B. If we take the product splitting 9 X <p on
G/B X G/B it will compatibly split the factor G/B x 0 since the point Schubert variety 0
is compatibly split in G/B. If we could find an automorphism of G/B X G/B which
pulled the factor into the diagonal we would be through. One cannot quite do this.
However the unipotent radical LJ of the opposite Borel subgroup is embedded as an
open subset of G/B and we do have such an automorphism a of U X U, given by
y.[x,y) = {x,y~~1 x). One then shows that a"^ X 9), which is a splitting of the diagonal
in 0 X U, extends to the whole of G/B X G/B. Similarly one uses the automorphism
{x,y, z) i-> [x,y~^1 x, z^^y) of U X U X U to prove that A^ u ^3 is compatibly split
in G/B x G/B x G/B.

One then uses semicontinuity to go from characteristic p to characteristic 0.
The result on the linear definition of Schubert varieties in G/Q together with

the fact (proved in [16]) that the intersection of any set of Schubert varieties is reduced
can be used to study the singularities of Schubert varieties. See [10], where for the
classical groups standard monomial theory is invoked to give these results. I owe this
remark to Seshadri.

The results of this paper have been announced in [15] and [16].
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It seems that the methods of this paper could be applied to get the relations and
higher syzygies too.

See the last section for further remarks.

1. Preliminaries on Frobenius splitting

Throughout this section the base field k will be an algebraically closed field of
characteristic p > 0. By a variety we mean a reduced but not necessarily irreducible scheme
over k.

Let X be a variety over k and F : X -> X the absolute Frobenius morphism. F is
the identity on the underlying set of X and on functions it is the p-th power map. We
also use the same letter F to denote the p-th power map F: Q^ -> F, 0^. Note that
for any coherent sheaf ^ on X the direct image F^ ^ is the same as ^ as an abelian
group; only its (!}^-mod.\ile structure changes to fog ==/p^, f e 0^ g e ^S.

We give below some basic results on Frobenius splitting. Most of it is essentially
contained in [12], [15] and [16]. We have given them here in a more explicit form.

1.1. Definition (Cf. [12], Definitions 2, 3). — a) We call X Frobenius split if the
p-th power map F : 0^ -> F^ O^ has a splitting i.e. an 0^-module morphism 9 : F,6^ -> ^x
such that the composite <pF : 0^ -> F^ (0^ -> O^ is the identity.

b) If Y is a closed subvariety of X with ideal sheaf I such that 9(F, I) = I then
we say that Y is compatibly split in X.

c ) If Y^, .. ., Y,. are closed subvarieties of X which are all compatibly split by
the same Frobenius splitting ofX then we say that Y^, . . . , Yy are simultaneously compatibly
split in X.

1.2. Definition (Cf. [15], Lemma 1). — a) Let L be a line bundle on X and
s : 0^ —> L be a nonzero section of L with zeroes precisely on the divisor D. We call X
Frobenius 'D-split (or less precisely Frobenius 'L-split) if there exists ^ : F^ L -> 0^ such
that the composite 9 = ^F^)

is a Frobenius splitting of X.
b) If Y is a closed subvariety of X such that (i) no irreducible component of Y

is contained in supp D and (ii) 9 gives a compatible splitting of Y in X then we say
that Y is compatibly D-split (or compatibly 'L-split) in X by ^.

c) If all the closed subvarieties Y^, . . . , Yy are compatibly D-split by the same
D-splitting of X then we say that Y^, . . . , Y,. are simultaneously compatibly 'D-split in X.
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1.3. Remarks. — (i) If X is a scheme and F : 0^ -> F, ̂  ^s a splitting then X is
necessarily reduced. For, ifX is not reduced we can find a function/on an open subset
of X such that for some v > l,f^~1 + 0 and /pv == 0. This implies that F '̂"1) = 0
so that F is not injective. Hence F then cannot have a splitting.

(ii) Suppose D' is another (Gartier) divisor such that 0 ̂  D' ̂  D. Then if X is
D-split it is also D'-split. Let L' be the line bundle ^(D') and s ' : G^ -> L' the section
corresponding to D'. The divisor D — D' gives a section 0^ ->L®L'-1 and hence
a map T) : L' -> L and we have the commutative diagram

It follows that ̂  T] gives a D'-splitting of X.
(iii) Consider the composite F,(^) F : Q^ -> F^ (9^ -> F, L. The L-splitting ^ gives

a splitting of this since ^F,(^) F == <pF which is the identity by assumption.
Since I is the ideal sheaf of Y we have an exact sequence 0-^I®L->L—^L|Y-^0 .

Moreover, since F^(J) F maps I into F,(I®L) we have the commutative diagram of
exact sequences

\ <p f ^ F(S)P ^

0—^F,(I® L)——-F, L ——»-F,(L | Y) ——-O

Note that the last vertical map (B^ -> F^(L | Y) induced by F(^) F is also the map
FY^ | Y) Fy where Fy is the Frobenius of Y.

1.4. Proposition. — If Y is compatibly L'split in X by ^ then in the above diagram
<KF,(I ® L)) = I and ^ goes down to ̂  : F,(L | Y) -> 0^ giving a (L | Y)-splifting o/Y.

Proof. — LetJ = +(F^(I ® L)). ThenJ is an ideal sheaf and since ^ is a splitting J
contains I. We only have to prove that J = I; the other assertions of the proposition
follow easily from this. Let U be the dense open set X — supp D. Then s \ U is an iso-
morphism and by the condition (ii) of Definition 1.2, ^F^ s \ U is a compatible splitting
of Y n U in U. This implies that J | U = I | U. Since, by the condition (i) of Defi-
nition 1.2, U meets all the irreducible components of Y this implies that J = I by the
following lemma (which is merely an algebraic formulation of the fact that any function
g ej, since it vanishes on the dense open subset Y n U ofY, should also vanish on the
whole of Y and thus belong to I).

1.5. Lemma. — Let J 3 I be ideals in a noetherian ring R. Suppose that I, = J, in the
localisation Ry/or some f not contained in any associated prime of I. Then J = I.
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Proof. — Since ly = J,, for any x ej there is an ^ such that /n x e I. Since/does
not belong to any associated prime of I this implies that x e I.

1.6. Remark. — Note that the condition (i) of Definition 1.2 is essential for the
proof of Proposition 1.4.

1.7. Proposition (Cf. [12], Lemma 1). — Let U be a dense open subset of the variety X
which intersects nontrivially all the irreducible components of the closed subvariety Y. Let L = 6v-(D)
and ^ : F^ L -> 0^ be such that ^ \ U is a compatible D | V-splitting of Y n U t» U. Then ̂  is
a compatible D-splitting of Y in X.

Proof. — By assumption the composite ^F,(^) F : 0^ -> ̂  ls ^e identity on U
and hence it must be the identity on the whole of X. Therefore ^ gives a D-splitting
ofX. Let I be the ideal sheaf of Y i n X a n d J = ^F,(^) (I). ThenJ D I a n d J | U = I | U .
By Lemma 1.5 this implies that J = I. Moreover since no irreducible component of
Y n U is contained in supp(D | U) and U intersects all the irreducible components
of Y none of the latter can be contained in supp D. Therefore ^ gives a compatible
D-splitting of Y in X.

1.8. Proposition (Cf. [12], Proposition 4). — Let f: Z -> X be a proper morphism
of varieties such thatf^ (9^ = 0^. Let D ^ 0 be a (Cartier) divisor in X and Y a closed subvariety
ofZ such that no irreducible component off(Y) is contained in supp D. If^ : F,/* (P-^(D) -> (5^
is a compatible f* D-splitting of Y in Z, then f^ ^ gives a compatible D-splitting off(Y) in X.

Proof. — Since the Frobenius morphism commutes with any morphism we have
/. F./* ̂ (D) == F,/,/' ̂ (D). Sy the projection formula, since /, ̂  == ^x» w have
/*/* ^x(D) = ^x(D). Therefore/, + is a map from F, ^(D) to 0^.

Let I be the ideal sheaf of Y in X. Using /, 0^ = 0^ it is easy to see that /„ I is
the ideal of/(Y) in X (Cf. [12], Lemma 2). It is then straightforward to check that
/» ^ gives a compatible D-splitting of/(Y) in X.

1.9. Proposition. — Let Yi, Yg be closed subvarieties ofX. Suppose that there is a Frobenius
^'splitting ^: F^ Cs^0) -> ̂ x °f x which S1^ a compatible 'D-splitting of both Y^ and Yg.
Then ^ gives a compatible 'D-splitting of any irreducible component of Y^ or Y^ and the union
YI U Y^ (taken with the reduced sub scheme structure).

Moreover^ ifs: 0^ -> ^x(D) is the section corresponding to D then ^F^(^) gives a compatible
splitting of the scheme theoretic intersection Y^ n Yg in X so that if no irreducible component of
YI n Y^ is contained in supp D then ^ gives a compatible D-splitting of Y^ n Y^ in X.

Proof. — Let Y' be an irreducible component of Y^ and U the complement in X
of the union of all the other irreducible components of Yr Then clearly ^ | U gives
a compatible D | U-splitting of Y' n U. By Proposition 1.7 Y' is compatibly D-split X.

Let Ii, Ig be the ideal sheaves of Y^, Y^ respectively. Then the ideal sheaf of
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YI u Yg is I^ n Ig and that of Y^ n Yg is I^ + ̂  Since 9 = ^F^(^) is a compatible
splitting of YI and Yg we have 9(F, I,) = !„ i == 1, 2. Therefore <p(F,(Ii n Ig)) == I^ n Ig
and <P,(F,(II +12)) == Ii + Ig (note that if we consider <p merely as a morphism of
sheaves of abelian groups, ignoring the (P^-modnie structure, then we can forget the F,
in front of 1̂  n Ig etc.). From this the other assertions of the proposition follow at once.

1.10. Corollary (Cf. [16], Section 2). — If Y^ and Yg are simultaneously compatibly
split subuarieties of X then their scheme theoretic intersection is reduced.

Proof. — This follows from the above proposition and Remark 1.3 (i).

1 . 1 1 . Corollary. — Suppose that Y^, ..., Yy are simultaneously compatibly split sub varieties
of X. Then, if Y is a subvariety obtained from the Y^ by repeatedly taking unions^ intersections
and irreducible components then Y is also compatibly split in X, simultaneously with the Y,5.?. If
further the Y^s are simultaneously compatibly 'D-split in X and no irreducible component of Y is
contained in supp D then Y is also compatibly 'D-split in X, simultaneously with the Y^J.

1.12. Proposition (Cf. [12], Proposition 3; [15], Lemma \). — Let X be a Frobenius
"Li-split projective variety and M a line bundle on X. Then

(i) If for some v ^ 1, H^X, L^"1-^"24--4-1® M )̂ == 0 then H^X, M) === 0.

(ii) If Y is a compatibly 'L-split subvariety of X and for some v ^ 1 the restriction
map H^X,!^'1^"24-'-^1®:^) -> H°(Y, L^"14-^'"^-^1® M )̂ is surjective then
H°(X, M) -> H°(Y, M) is surjective.

Proof. — (i) We use the notation of Definition 1.2. The map F^s) F : 0^ -> F* L

has a splitting (Remark 1.3 (iii)). Hence, by tensoring with M and taking cohomology,
the map H^X, M) -> H^X, M ® F^ L) is injective. Now by the projection formula
F^(L®F*M) = M ® F ^ L . Moreover F being affine it commutes with cohomology.
Therefore we have IT(X,M®F,L) == H^X, L0F* M). But F'M = M^ (Cf. [12],
Section 1). Thus we have for any line bundle M an injection H^X, M) -> H^X, L ® M^).
Replacing M by L^M^ we have an injection H^X.L^M^) -^H^X, L^4-1 0 M^2).
Iterating this process and composing all the resulting injections we get an injection
H^X.M) ^H i(X,LPV ' l+-+ l®M2?v) for every v ^ 1. Therefore if the latter is zero
for some v ^ 1 so is H^X, M).

(ii) Since Y is compatibly L-split we have a commutative diagram (Cf. Remark 1.3
(iii) and Proposition 1.4):

^x . W

I 1
^ . F.(L/Y)
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Tensoring with M and taking global sections we get

H°(X, M) " H°(X, L €) M9)) _ i
H°(Y, M) . H°(Y, L® M9)

It follows that if H^X.L^M^)->H°(Y, L®!^?) is surjective then so is
H°(X,M) ->H°(Y,M). Replacing M by L®M^ ..., L^"14---4-1® M^ in turn we
see that if H°(X, L^"^ • • • + 1 ® M^) -> H°(Y, L^"14- • • • + 1 ® M^) is surjective for
some v ^ 1 so is H°(X, M) ->H°(Y, M).

1.13. Proposition (Cf. [12], Section 1 ; [15], Section 2). — Let X be a projective variety,
Y a closed subvariety and M a line bundle on X. Then

(i) If X î  Frobenius split and M zj <w aw/^ ̂  AMT^ <w X then H^X, M) = 0 for
i > 0. If further Y î  compatibly split then H^Y, M) = 0 /or i > 0 and the restriction map
H°(X, M) -> H°(Y, M) zj surjective.

(ii) y X ^ Frobenius I^-split with L am^ and M is a line bundle without base points
(i.e. for every x e M there is an s <= H°(X, M) such that s{x) + 0^1 then H*(X, M) === 0 /or
i > 0. If further Y î  compatibly L'split then H'(Y, M) = 0 for i> 0 and the restriction map
H°(X, M) ->H°(Y, M) is surjective.

Proof. — This follows immediately from Proposition 1.12. To prove (i) take 0^
for L in Proposition 1.12 and note that for an ample M, H^X, W) = 0 for i > 0 and
r > 0 and H°(X, M1') -^ H°(Y, M1') is surjective for r > 0. To prove (ii) note that if
L is ample and M is without base points then I/ ® M8 is ample for all r, s ^ 1. Therefore
by (i) just proved H^X, V® M8) = 0 for i> 0 and H°(X, V® M') -^H°(Y, I/® M')
is surjective for r,s^ 1. Now use part (ii) of Proposition 1.12.

1.14. Now we recall the duality theorem for finite morphisms ([4], Exercises III
6.10 and 7.2). Let/: X ->Y be a finite morphism of schemes and ,̂ ^ be coherent
sheaves on X, Y respectively. Since/is affine Y = Spec/, 0^ and a coherent sheaf on X
is equivalent to a coherent sheaf of/ (P^-modules on Y. Let/1 ̂  be the coherent sheaf
on X given by Hom^{f^ G^, ^) where / 0^ acts on the first factor /, 0^ by multipli-
cation. Then it follows easily that the natural map

/ Hom^f- ^) -> Hom^f, ̂  ̂ )

sending T] eHom^[y, Hom^{f^ 0^ <&)) to the morphism ^:/^-^^ defined by
^(s) = 7)(J) (1) where s e/ y, is an isomorphism. This is the duality for/.

1.15. Suppose further that X and Y are smooth projective varieties of the same
dimension n. Let K^, Ky be the canonical line bunles of X, Y respectively. Then by
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using Serre duality for Y and the relative duality forf: X ->Y it follows that for any
locally free sheaf V on X we have

Hom(V,/' Ky) = Hom(/, V, Ky) == H^Y,/ V)* == H^X, V)\

Thus f1 KY satisfies the characterising property for the dualising sheaf of X and hence
must be isomorphic to K^ ([4], Chapter III, § 7). By applying the duality for f to
Hom{f* KY,/' Ky) this then gives/' ̂  = K^®/* Ky1.

1.16. Let Z be a smooth projective variety and K its canonical line bundle. Let L
be a line bundle on X. Then for the Frobenius morphism F : Z -> Z we have
F ̂  == K® F* K-1 = K® K-^ == K1-^ The duality for F gives

^Hom(L,F^)=Hom^L,^);

using the above expression for F 0^ we get F^(L*®K1-P) w (F, L)*.
Therefore a section o eH°(Z, K1""® (D^{— D)) gives by duality ?: F, ̂ (B) -> ̂ z-

For 3' to be a D-splitting of Z we further need that the composite ST .̂?), where
j : O^ -> ̂ z(D) is the section determined by D, is the identity. Note that Z being complete
any map (9^ -> Q^ is constant hence it is enough if S'F(^) is nonzero at a single point
of Z. Moreover using the inclusion K1 - p ® (P{ — D) -> K1 ~ p we can think of cr as a section
of K1""^ vanishing on the divisor D.

Thus to give a D-splitting of Z we should look for a section <r of K1"~p vanishing
on D and such that ST^) is nonzero. Of course ifZ is not Frobenius split ST will always
be zero for any <y eH°(Z, K^).

If Z is Frobenius split then it follows that it is K1 ~ ̂ -split, since any section of K1 - p

which gives a splitting vanishes on a divisor whose associated line bundle is K1^^.
However, since not all the sections of K1"~p give rise to a splitting, if D is a divisor
belonging to K1 ~p we cannot say that Z is D-split. This is true only for an open subset
of such D.

We recall the following criterion for compatible splitting from [12].

1.17. Proposition. — Let Z be a smooth projective variety of dimension n. Let Z^, ..., Z^
he smooth irreducible subvarieties of codimension 1 such that the scheme theoretic intersection
Z, n ... n Z, is smooth irreducible and of dimension n — r for all 1 < ij < ... < iy ^ n.
If there exists a section j eH°(Z, K"1) such that divj, the divisor of zeroes of s, is
Z^ + • • • + Z^ + D where D is an effective divisor not passing through the point
P = Zi n ... n Z^ then the section a = s9-1 e H°(Z, K1-^) gives, by duality (§ 1 .16 ) , a
Frobenius {p — 1 ) 'D-splitting of Z which makes all the intersections Z^ n ... n Z^ compa-
tibility {p — 1) D-split in Z.

We sketch below a proof somewhat different from the one given in [12]. We need
he following two simple lemmas.
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1.18. Lemma. — Let X = Spec R be an qffine scheme over k. Let a e R and a e F' 0^.
Then a 9 " 1 cr, considered as a map F^ O^ "> ^x? takes F^(Rfl) into Rfl.

Proo/. — Let ab e Ra. Then fl^-1 a{ab) == a^ b) by the definition of the
^•multiplication in F 0^ == Hom(F^ 0^, (B^, see § 1.14. But a^ b) is <z(<r(6)) by
the definition of the (P^-module structure on F^x-

1.19. Lemma. — Let X = Spec k[[t]] where k[[t]] is the power series ring in one variable.
Then F' 0^ is locally free of rank 1. If (T e F1 0^ is of order? — 1 {i.e. a is in tp~lF' 0^ but
not in y F' fly, considering a as a map F, 0^ -> 0^ the composite a¥ : (9^ -> F^ 0^ -> 0^
is nonzero.

proof. — F, k[[t]] is free overk[[t]] with basis 1, t, . . . , ̂ -1. Let (TQ : F, k[[t]] -^k[[t]]
be the map defined by Oo(f) == 0 for 0 ̂  i< p — 2 and ^(^"^ = 1- Then it is easy
to see that F' 0^ is free with basis GQ . Moreover if n = ap + b, a, b e N, b ̂  p — \ it
follows that Go(^) = 0 i f & 4 = ^ — 1 and fifb = p — 1. Since by assumption a = ̂ -1 A^
where A is a unit it is then easy to see that the constant term of cr(l) is A(0). This prove
the lemma.

To prove the above proposition let 9 : F^ 0^ -> Q^ be the morphism corresponding
to or under duality. Let Q e Zi n ... n Z, and Q, ̂  Z, for i > r. To show that <p(F, I) = I
where I is the ideal o f Z ^ n . . . n Zy in Z it is enough to show that 9(F^ I) = I where ^
denotes the corresponding objects in the completion at Q. (Use Proposition 1.6 and
faithful flatness of completion.) It is easy to see that the duality for the Frobenius morphism
commutes with completion and hence y is obtained from 8 by duality. Choose local
parameters x^ .. ., x^ .. .5 x^ in O^ such that Z^ is defined by x^ i = 1, ..., r. Then
we can write $ as (^ ... X y ) ^ ' 1 h\(dx^ . .. d x ^ ) ^ ' 1 where A is a unit in (0^. It is now
easy to deduce using Lemma 1.18 that 9(F^ I) = I.

We will prove that <pF : Q^ -> F^ 0^ -> (9^ is nonzero at P. In (Pp we have as
above $ == (^ ... ^J^""1 hl{dx^ . .. dx^~1. Since duality commutes with products we
can reduce to the one variable case. Then apply Lemma 1.19.

1.20. Proposition. — Let Z be a smooth projective variety and s eH°(X, K^1) be such
that the section a == j^"1 ofK]^9 gives a Frobenius splitting ofZ (under the duality of^ IA6).
Then if\ is a prime divisor ofZ on which s vanishes with multiplicity 1 then a gives a compatible
splitting of Y in Z.

Proof. — As in the proof of Proposition 1.17 we can reduce to working in the
completion 0^ of the local ring at a general point ofY. Then Y is defined by a parameter
and the compatible splitting follows from Lemma 1.18.
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2. Consequences of Frobenius splitting of diagonals

Let X be a projective variety over the algebraically closed base field k of charac-
teristic p > 0. Let X C Pn be a projective embedding given by a very ample line bundle
on X. We shall show in this section how the compatible splitting of the diagonal A
in X X X and the partial diagonals A x X and X x A i n X x X x X give a good
hold on the homogeneous polynomials vanishing on X.

We shall prove some criteria in terms of Frobenius splitting for the projective
normality of X, for X to be defined by quadrics and for subvarieties of X to be defined
by linear equations.

The only application we make of these criteria will be to Schubert varieties.

2.1. Let M, N be line bundles on X. Then we have the natural multiplication
map {JL : H°(X, M) ® H°(X, N) -> H°(X, M ® N) sending s ® t to the section of M ® N
whose value at x e X is s{x) ® t{x). The key fact for us is that this map can be obtained
as a restriction map as follows. Let M X N be the line bundle q\ M ® q\ N on X x X
where ^ are the projections. Let A be the diagonal { (^ x) e X X X | x e X } in X x X.
Then the map H°(X, M) ® H°(X, N) -> H°(X x X, M x N) sending s®t to the
section of M X N whose value at {x,y) is s[x) ® t^y) is an isomorphism. Further
M X N | A is naturally isomorphic to M ® N on X ^ A and we have the commutative
diagram

H°(X, M) ®H°(X, N) ———2——^ H°(X x X, M x N)
V- \ | restrict

H°(X, M®N) ———2——„ H°(A, M x N)

We also have as above a natural multiplication map H°(X, M)0"1 ->H°(X, M"1)
for every integer m ̂  0. This map goes down to the symmetric power

^ : S"1 H°(X, M) -> H°(X, M^).

2.2. Proposition. — Let X be a projective variety and M, N line bundles on X.
Then the natural multiplication maps p.(M, N) : H°(X, M) ®H°(X, N) -^H°(X, M®N)
and vJM) : S^H^X, M) —H°(X, M"1) are surjective in the following two cases:

(i) M, N are ample and the diagonal A is compatibly split in X x X.

(ii) M, N are without base points and A is compatibly X x T)-split m X X X where
D is an ample divisor on X.

Proof. — We will first deal with (Ji(M,N). As explained above pi(M, N) is iso-
morphic to the restriction map H°(X x X, M x N) -> H°(A, M x N) with which we
will identify it.
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Case (i). — (J(.(M, N) is surjective by Proposition 1.13 part (i).

Case (ii). — Let L = ^xQD). By Proposition 1.12 part (ii) it is sufficient to prove
that ^(M*", N^L8) :H°(X x X, M' x (N^L8)) -> H°(A, M' x (N'®!/)) is sur-
jective for r, s ̂  1. Since N is without base points and L is ample N^"®!*8 is ample.
Therefore if M is ample then M*' X (N*" 00 L8) is ample on X X X. Thus if M is ample
then ^(M^ N1'® L8), and hence (J(,(M,N), are surjective. Interchanging M and N we
see that ^.(M, N) is surjective i fN is ample. Applying this to M1', N^®!/ we see that
^(M**, N*'® L8) is surjective since N^®!/ is ample. But this we know implies that
p.(M, N) is surjective.

To prove the surjectivity of v^(M) we use induction on M. We have the commu-
tative diagram

gm-i HO(X, M) ® H°(X, M) ^-i^®^ ̂  H°(X, M"1-1) ® H°(X, M)

^ ^ (JKM^M)

S- H°(X, M) ——^——•> H°(X, M"1)

The top arrow is surjective by induction. ^(M^"1, M) is surjective by what we have
proved above. Hence it follows that v^(M) is surjective.

2.3. Corollary. — Let X be a normal projective variety such that the diagonal in X X X
is compatibly split. Then any very ample line bundle on X embeds X as a projectively normal variety.

Proof. — For the projective embedding X C PH°(X, M)* = P^ given by a very
ample line bundle M, we have S^^M) == H^P^ (P^{m)) and we have the
commutative diagram

S"!̂ , M) ——————^ H°(X, M^),1 j ,
HW^m)) ^^ ' H°(X,^(m))

Therefore, by the above proposition the restriction map H^P^ (!)^n(m)) ->H°(X, O^m))
is surjective for every m ̂  0. This together with the normality of X implies the projective
normality of X in the projective embedding given by M ([4], Exercise II, 5.14 (d)).

2.4. Remark. — It follows from Proposition 2.2 that if the diagonal is compatibly
split in X X X then any ample line bundle on X must be very ample. For, it is easy
to see that S"1 H°(X, M) -^ H°(X, M"1) surjective for large m already implies that M
is very ample. See [14].

2.5. Let Mi, M^, M3 be line bundles on X. Consider the multiplication map
(JL : H°(X, M^) ® H°(X, M^) ® H°(X, Me) -> H°(X, M^ ® M^ ® M^).

10
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As in § 2.1 this is the restriction map for the line bundle M^ x Mg x Mg on
X X X X X to the diagonal. We also have the partial multiplication maps

3

pi,,: ® H°(X, M,) -•> H°(X, M, ® M,) ® H°(X, MJ

which multiplies the i-th and^-th factors and is the identity on the remaining k-th factor.
It is clear that (A,,, is the restriction map for M^ x Mg X Mg on X X X X X to the
partial diagonal A,, = { {x^, x^y x^) [ ̂  = x ^ } ̂  X x X. If

^ : H°(X, M» ® M,) ® H°(X, MJ -> H°(X, M^ ® Mg ® 1̂ 3)

is the multiplication map then (JL = ̂  (JL^.
We then have the following proposition regarding the kernel of (A. Note that the

essential case of this proposition is when X == Z (see below). We need the slight gene-
ralisation (obtained at the cost of a mild contortion in the proof) for applying to Schubert
varieties embedded in G/B.

2.6. Proposition. — Let X be embedded as a closed subvariety in a projective variety Z.
Let Mj, M^, M3 be line bundles on Z. Then the kernel K of the multiplication map

3

^: ®H°(X,M,)->H°(X,Mi®M2®M3) is the sum K^ + K^ where K,, is the
r== 1

kernel of the partial multiplication ^j (see § 2 . 5 above) if (a) all the line bundles M^ are ample
on Z, (b) X is compatibly split in Z and (c) the subvarieties A^ == { ( ,̂ x, z) \ x e X, z e Z }
and A^ == { {x, z, z) [ x e X, z e Z } of Z x Z x Z ^r^ simultaneously compatibly split in
Z x Z X Z.

Proo/. — Let Z3 = Z x Z x Z, X3 == X x X x X and M = Mi x M^ x M3.
We have the commutative diagram

H°(Z,, M) ——————^ H°(Z, M, ® M^® M,)i ̂  i
H°(X,, M) ———^——^ H°(X, Mi ® M,® M,)

where the top horizontal arrow is the restriction from Z3 to the diagonal Z in Z3 and \s!
is defined to be the composite of this with further restriction to X. Since X is split in Z
and M, are ample H°(Z, MJ -> H°(X, M^) is surjective. Therefore under the restriction
H°(Z3, M) -^H°(X3, M) the kernel K' of ^ maps surjectively onto K.

Similarly let ^: H°{Z^ M) -> H°(X, M^® MJ ®H°(Z, M3) be the multipli-
cation of the first two factors followed by restriction to X and the identity on H°(Z, Mg)
and K^ be its kernel. Then evidently K^ maps into K^g under H^Zg, M) -> H^Xg, M).
In the same way the kernel K^ of the analogous map

l4 : H°(Z3, M) -^ H°(X, M,) ® H°(Z, M, ® M,)

maps into Kgg. Therefore it is enough to show that K' = K^ + K^.
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Let I,, be the ideal sheaf of A^ in Z^. Tensoring the exact sequence
0 -> I,, -> ^3 -^ ^A;y -> 0 with M and taking global sections we see that

K;,==IP(Z3,I,®M).

We have the Mayer-Vietoris sequence
0 -> 1^ n Ig3 -> I^ C Ia3 -> 1̂  +Ig3 -^ 0

where fl e I^ n I^ goes to (a, — a) in I^ ® 1^3 and (<z, b) e I^ © 1̂  goes to a + b
in 1̂  + 1:23. The ideal sheaf I == 1̂  + L^ is clearly the ideal sheaf of the diagonal
A == { [x, x, x) | x e X } in Z^ (use (c) and Corollary 1.10, if needed!) and J == 1̂  n I^
that of A;2 u A^. Therefore ?(23,1 ® M) = K'.

Tensoring the above Mayer-Vietoris sequence by M and taking cohomology we get
0->H°(Z3,J®M) ^K^K^K'-^H^J^M).

Thus it is enough to prove H1(Z3,J® M) == 0.
Now tensoring the exact sequence 0 — ^ J - > ^ z -> ^A' UA' "̂  0 wlt!1 M- and

taking cohomology we get
H°(Z3, M) -^H°(A^ u A^, M) ^H^J^M) ^H1(Z3, M).

Since M is ample and A^ u A^ is compatibly split in Z3 (by (c) and Proposition 1.9)
we have H^, M) == 0 and H^, M) ->H°(A;2 u A^, M) is surjective. Hence from
the above exact sequence it follows that H1 (Z3, J ® M) =0 which proves K' = K^ + K^.
This completes the proof of the proposition.

2.7. Proposition. — Let X be embedded as a closed subvariety of a projective variety Z.
Let L be an ample line bundle on Z. Suppose that (a) X is compatibly split in Z, (b) the diagonal Z
in Z x Z is compatibly split and (c) the subvarieties A^ == { {x, x, z) \ x e X, z e Z } and
A^ == { (A:, z, z) | x e X, z e Z } of Z x Z X Z are compatibility split in Z x Z x Z. Then

00 00

^ natural graded algebra homomorphism © S^^ H°(X, L) -^ © H°(X, L"1) î  surjective and
ni = 0 m = 0

^ ^?w/ zj generated as an ideal by the kernel of S^^X, L) ->H°(X, L2).

Proof. — By (a) H°(Z, L"1) -^H^X,!^) is surjective (Proposition 1.13 (i)) and
by (b) S^^Z.L) -.H^Z,!^) is surjective (Proposition 2.2 (i)). It follows that
S"1 H°(X, L) -> H°(X, L"1) is surjective.

To simplify the writing out of the proof we introduce the following notation. Let
V == H°(X, L), ̂  == V® ... ® V, m factors and W^ = H°(X, L"1). We have the
natural multiplication ^: V"1 -> W^. Let

y,=^®idv^:VW==V i®VW~ i^W,®VW - i , 0^ i< m.

Note that 9^ = idym and 9^ = (JL^. We claim

(*) ker9,+, = ker <p, + V^1® K^V^-1-1
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where K is the kernel of pig: V2 -> W^. Since 9^1 == (Jt,+i ® idym-t-i we have
ker (p,.^ = (ker (Jt,+i) 0VW-<~1. Therefore to prove (*) it is enough to prove
(**) ker^i === (kerpi,)®V +V i- l®K.

Consider the commutative diagram

A »idw,^<8)H2^W^i ® Wg ̂ f i

W,.i®V®V ———————2———————^ W.+,
B s= ma ® idv w,®v

where the maps are all obvious multiplication maps. Note that (A^i = YB(^»-i X idy ^ v)-
Therefore

(1) ker^, = (^®id^v)-1 Bakery).

We will now find ker y. Since B is surjective (by Proposition 2.2) and a = yB
we have ker y = B(ker a). By Proposition 2.6 above ker a = ker A + ker B. There-
fore ker Y == B(ker A). Since A == id^._^ ® ^2? ker A = W,_i ® K. Thus we have
kery = B(W,^0K.). Using this in (1) we get

(2) ker^,== (^^-i®idv^v)~1 (ker B + W,_, ® K).

Since B(pi,_i®idv0v) === ^i®idy we have
(^OOid^-^kerB) = ker(^®id^).

Using this in (2) we get ker ^,4.1 == (ker (xj ® V + V1"1 ® K which proves (**) and
hence (*).

v / i

Using (*) inductively it follows that k e r < p , , i == S V^~1 ® KOV"1"3"1. From
^'-i

this it is clear that K generates the kernel of (B S^^X, L) -> © H°(X, L"1) as an ideal.

2.8. Remark. — Proposition 2.7 says that a projective variety X satisfying the
conditions of the proposition is defined by quadrics in any projective embedding given
by an ample line bundle (from Z). In fact it says that even the cone over X is defined
scheme theoretically by quadrics (not as a complete intersection, of course). It can
happen that the zero quadric is the only one vanishing on X. For e.g. X = P" and
L == ^(1).

Before stating the next result we give some definitions and lemmas.

2.9. Definition (Kempf [6], p. 567). — Let^: X ->Y be a morphism of schemes.
We call / trivial if the natural map (Py ->/* ^x ls surjective and the higher direct
images R1/, 0^ vanish for i > 0. The image of a trivial morphism / is the closed sub-
scheme of Y having /» ^x as structure sheaf. We denote the image scheme by/(X).
It is the scheme theoretic image ofy.
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2.10. Lemma. — Letf: X -> Y be a morphism of the prqjective varieties X and Y. Iff
is trivial then for any locally free sheaf L on Y, H^X,/* L) = H^Y, L).

Proof. — This follows from the Leray spectral sequence for f and the projection
formula.

The following basic lemma is due to Kempf. We will need it only in the next
section.

2.11. Lemma (Kempf). — Let f: X ->Y be a proper morphism of algebraic schemes
and X' C X a closed subschema. Let Y' C Y he the scheme theoretic image of X' and L an ample
line bundle on Y. Suppose that the following conditions hold'.

a)/^x=^Y.
b) IP(X,/* L") = 0 = H^X',/* I/*) == Ofor q> 0, n > 0 and
c) H°(X,/* L^ -^H°(XV L") is surjective for n > 0. Then f is trivial with image Y W

^ restriction f : X' -> Y of f to X' is also trivial with image Y'.

Proof. — This follows from the Leray spectral sequence for/ (see [3] 3 Proposition 2
in § 5).

2.12. Lemma. — Letf: X -> X be a proper, trivial morphism of the algebraic varieties X, X
with image X. Let Y be a closed subvariety of X with ideal sheaf I C O^, Thenf^ I is the ideal
sheaf1 of all functions vanishing on the image f(Y) == Y. Further f\ Y : Y ->-X is trivial with
image Y if and only if R1/ T = 0 for i > 0.

Proof. — / T = I follows from / 0^ == ̂  ^d the definition of direct image
(Gf. [12], Lemma 2). The last assertion follows from the long exact sequence obtained
by applying/, to 0 -^T -> 0^ -> 0^ -> 0. (Of. [16], Lemma 4.)

2.13. Lemma. — Letf: X ->• X be a proper, trivial morphism with image X. Let Y^, Yg
be closed subvarieties </X such that the restriction offto ?i, Y^ an(^ ̂  scheme theoretic intersection
1^ n ̂ 2 are also trivial with images, respectively, Y^, Yg and Y^ n Yg. Then f\ ?i u Yg is
trivial with image Y^ u Yg.

Proof. — Let Ii, la be the ideal sheaves ofY^, Yg respectively. We have the Mayer-
Vietoris sequence

0 -.TI nTa -^©Ls -.YI +l2 —0-

The lemma follows from the long exact sequence obtained by applying/ to this and
Lemma 2.12.

2.14. Lemma. — Let R be a noetherian ring and I an ideal in R. Let J = Ra be the
principal ideal generated by a non-zero-divisor a e R such that a does not belong to any associated
prime of I. Then the natural multiplication map I ®J ->I nj is an isomorphism.
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Proof. — It follows easily that under these assumptions IJ = I nj. Since J is a
free R-module tensoring I ->R by J gives an injection I®J ->J with image IJ.

2.15. Lemma. — Let Y^ Yg, ¥3 be closed subschemes of X such that Y^CYg and the
scheme theoretic intersections (given by the sum of the corresponding ideal sheaves) Y^ n Yg and
YI n Yg are equal. Let L be a line bundle on X. If the restriction H°(Y3, L) —H^Yg, L) is
surjective then the restriction H°(Yi u Yg, L) -> H°(Yi u Y^, L) is surjective (where the unions
are given by the intersection of the corresponding ideals).

Proof. — If 1 ,̂ Ig are ideals in a ring R we have the Mayer-Vietoris exact sequence
0 -> R/II n la -> R/II C R/Iss -> R/(Ii + 12) -> 0

where fl -> (fl, — fl) and (a, b) -> a + b.
This globalises to give an exact sequence

0 -> ̂ UY. -^ ^Y, ® ^Y. -^ ̂ HY. -^ 0

and a similar one for Y^ and Yg. Tensoring these with L and taking sections we get the
following commutative diagram with exact rows

0 ———«. HO(Y,uY3.L) ———^ HO(Yi,L)©IP(Y3,L) ———^ H<>(Y,nY3,L)

^ i i"
0 ———^ HO(YI u Y,, L) ———^ HO(YI, L) © W(Y,, L) ———^ HO(Y, n Y,, L)

where the vertical maps are given by restriction from Yg to Yg. The lemma follows
immediately from this diagram.

2.16. Lemma. — Let Y be a closed subscheme of X with ideal sheaf I and L a line bundle
on X. Then the restriction map H°(X, L) -> H°(Y, L) is surjective if H^X, I ® L) =0.
If H^X, L) === 0 then conversely the surjectivity of H°(X, L) -> H°(Y, L) implies that
IP(X, I ® L) == 0.

Prooy. — Tensoring 0 ->I -> 0^ -> 0^ ->0 with L and taking cohomology we
get the exact sequence H°(X, L) -^H°(Y, L) -^H^X, I®L) -^H^X, L) from which
the lemma follows.

2.17. Definition. — Let Y C X be a codimension 1 closed subvariety. We say that
Y C X admits a trivial resolution if there exist a proper morphism/: X -> X with X smooth
and a smooth closed subvariety ^ C 5c of codimension 1 such that a) f is trivial with
image X and b) f\V is trivial with image Y.

2.18. Definition. — Let Y C X be a closed subvariety and L a line bundle on X.
We say that Y is linearly defined in X with respect to L if the natural restriction map

00 00

© H°(X, L"1) -> © H°(Y, L"1) is surjective and its kernel is generated as an ideal

Sy °the kernel of H°(X, L) -> H°(Y, L).
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2.19. Proposition. — Let X be embedded as a closed subvariety in a projective variety Z.
Let Y be a closed subvariety of codimension 1 in X. Let L be an ample line bundle on Z. Suppose that

a) YC X admits a trivial resolution (see Definition 2 .17^
b) Y is compatibly split in X and X is compatibly split in Z and
c) the subvarieties A = { (^ x) e Z x Z | x e X } and Y X Z ar<? simultaneously compatibly

split in Z x Z.

TA^z Y ^ linearly defined in X wz^A r^w^ ^? L ̂  Definition 2.18J.

Proo/'. — Since Y is compatibly split in X and L is ample on X the surjectivity
of © H°(X, 1̂ ) -> © H°(Y, L^) follows from Proposition 1.13 (i).

Let K^ be the kernel of H°(X, L"1) -^H°(Y, L"1). By induction we assume that
K^i is in the ideal generated by K^. It is then enough to prove that the natural
multiplication map H°(X, L"1-1) ®H°(X, L) -> H°(X, L"1) maps K^_i®H°(X,L)
surjectively onto K^.

Let / :X-^X, ?CX be a trivial resolution for Y C X . By Lemma 2.10
H°(X, L"1) = H°(X, L"1) and H°(Y, L"1) = H°(?, L"1) where we have denoted/' L^ again
by L"1. Therefore K^ is also the kernel of the restriction map H°(X, L"1) ->H°(^, V).
Since Y is a divisor in the smooth variety X the ideal sheaf of ^ in X is the line
bundle ^x(— Y) and we have the exact sequence 0-> 0^—^)-> (!)^-> Q^->Q.
Tensoring this with L"1 and taking global sections we see that K^ = H°(X, L"^— ^)).

As explained in § 2 . 1 the multiplication map H°(X, l^-1)® H°(X, L) -> H°(X, L^)
is the same as the restriction map H°(X X X, L"1"1 X L) ->H°(A, L"1"1 X L) where/^/ ^>^
A C X X X is the diagonal. Hence we have a commutative diagram

K,,.,®H°(X,L) ————————^ K,i i
H°(X x X, L"*-^- ?) x L) —————>. H°(2:, L-C- ?))

Therefore it is enough to show that the restriction map
H°(X x X, L"-^- Y) x L) -^H°(A, L^- ̂ ))

is surjective. By Lemma 2.16, we need H^X X X, 1^® (L^-^—?) x L)) = 0.
Now L^^- ^) x L = (L"1-1 x L) (- ? x X) and by Lemma 2.14 I^(- ̂  x X)
is the product IA • Iy x x which is the ideal sheaf J of S u ? X X in X X X. Therefore
we are reduced to proving H^X X X,]®^-1 x L)) ==0. Since L"1-1 x L is
ample on the split variety X x X IP(X X X, L^-1 X L) = H^X x X, L"1-1 X L) == 0.
Therefore by Lemma 2.16 it is enough to prove that

H°(X x X, L—1 x L) ->H°(A u Y x X, L"1-1 x L)

is surjective. By Lemma 2 . 1 3 / x / j A u ^ x X is trivial with image A u Y x X
where A is the diagonal in X X X. (Note that since ?, X are smooth the scheme theoretic



80 A. RAMANATHAN

intersection S n I? x X is the diagonal i n 1 ? x ^ C X x X with reduced structure.)
Therefore by Lemma 2.10 we have only to prove that

H°(X x X, L^1 x L) -> H°(A u Y x X, L^-1 x L)

is surjective.
Having made this reduction we go over to Z. We have the commutative diagram

of restriction maps

H°(Z x Z, L"1-1 x L) ————is> H°(A u Y x Z, I/'1-1 x L)i i
H°(X x X, I/1-1 x L) ——————^ H°(A u Y x X, L"1-1 x L)

Since by assumption (c) (and Proposition 1.9) A u Y x Z is compatibly split
in Z X Z the top horizontal arrow is surjective. Hence it is enough to prove that
H°(A u Y x Z, L"1-1 x L) ->H°(A u Y x X, L771-1 x L) is surjective. But this last
map is surjective by Lemma 2.15 since A n Y x Z = A n Y x X = A y , the diagonal
of Y. This completes the proof of the proposition.

2.20. Lemma. — Let Y, C Yg be closed subvarieties of the projective variety X and L a
line bundle on X. Then

(i) IfYi is linearly defined in Y^ and Y^ is linearly defined in X with respect to L then so is Y^ in X.
(ii) If YI and Y^ are linearly defined in X with respect to L then Y^ is linearly defined in Yg with

respect to L.

Proof. — We have a commutative diagram of restriction maps

©H^X,!^) ———2———„ ©H^,!-)

©.H^Y,,!^)

(i) Since a and y are surjective (B is surjective. Let/e ker p. Since Y^ is linearly
defined in Y2 we can write a(/) == Sa(^) a(^) where ^ eH°(X, L) with a(/,) eker p.
Therefore / == S^ ̂  + g with g e ker a. Since Y^ is linearly defined g == S .̂ m, where
m, e H°(X, L) n ker a. Therefore /= Sa,^ + SA, 7^.. Since ^ e H°(X, L) n ker a also
this shows Y^ is linearly defined in X.

(ii) Since (B is surjective so is y Let fe ker y. Since a is surjective we can
find / such that a(/) =f. Then /eker p. Since Y^ is linearly defined in X we
can write /= 2^^, ^ eH°(X, L) n ker (3. Applying a gives /= Sa(^) a(^). Since
a(^) eH°(Y2, L) n ker p this shows that Y^ is linearly defined in Yg.
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3. Frobenius splitting of diagonals for Schubert varieties

3.1. Let G be a connected simply connected semisimple algebraic group over an
algebraically closed field of arbitrary characteristic. Let T be a maximal torus, B D T a
Borel subgroup, Q, 3 B a parabolic subgroup and W == N(T)/T the Weyl group.

The homogeneous space G/Q^is a projective variety. There are only finitely many
B-orbits in G/Q. The closure of a B-orbit in G/Q^ is called a Schubert variety in G/Q;
Note that G/Q^ itself is a Schubert variety since there is a dense B-orbit in G/Q. When
G = SL(w) and Q^ is a maximal parabolic subgroup this notion coincides with that of
the classical Schubert varieties in Grassmannians.

We have a bijection of W with the set of Schubert varieties in G/B given by
o) ̂  X^ == BcoB.

An excellent source for basic facts about the geometry of Schubert varieties is
Kempf's paper [7].

3.2. We recall from Kempt [6] the construction of standard resolutions for X^ (see
also [3], [16]).

Let co = s^ ... ^a be a reduced expression for co, where s^. is the reflection with
respect to a simple root a,. Let <o, == s^ ... s^., 1 < z^ r, and X, = X^.. Since ^(c^),
the length of c«^, is i we have dim X^ = i. Since ^(<o, j^-) = ^(^i) — 1, X,_^ is of codi-
mension 1 in X^ and under the map TT^ : G/B -> G/P^. (where P = B u B^. B is the
minimal parabolic subgroup corresponding to a,) X^ is saturated and X^_i maps
birationally onto TC^(X,_^) = T^(X^). (See [6] and [16], Section 1.)

The standard resolution ^ : Z^ -> X^ is defined inductively. Let Zg = X^, a point
and ^Q: ZQ -> XQ the identity. Then 4', is defined by the pull back diagram

7 _______^t______. vZ^ ——————————.———^ At

°.t|^ l"i

Z(_^ ——^ ^i-i ———^ ^(X^i)
Vt-l "I

Since TC^ : X^ ->TC,(X,_i) == ^(X,) is a P^bundle so is f^. The section (T, is defined
by the inclusion X, _ ^ C X^.

3.3. It is easy to see that the relative canonical bundle KZ,/Z_ ls

^z.(— ^(Z,_i)) ® (L~~10f^ a^ L) where L is any line bundle on Z, with degree 1
along the fibres off^ ([16], Lemma 3, Section 1). Using this inductively it follows that
the canonical bundle K^. of Z, is (P^,{— ^)®^Lp"1 where ffL^ is the divisor (with

i

normal crossings) 2 Z,p Z .̂ =y,~1 .. .y^\((j^.(Z^._^)) and Lp is the line bundle
3=1

^B(3(G/B)) corresponding to the divisor 3(G/B) which is the sum of all Schubert
varieties of codimension 1 in G/B ([16], Proposition 2, Section 1).

n
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3.4. For any parabolic subgroup Q^DT we denote by ^ the opposite parabolic
subgroup <o^ Q^N^ where co^ is the element of maximal length in W. Let UQ be the
unipotent radical of Qand UQ that ofQ,. The orbit map UQ -> G/Qgiven by u H- MCO^ Q
identifies UQ as an open subset of G/Q; The complement G/Q — UQ is an ample
divisor DQ whose components are the codimension 1 Schubert varieties in G/Q^. Similarly
UQ -> G/Q,? Vv-> VQ^, is an isomorphism onto its image and G/Q,— UQ is the divisor BQ
which is the translate (O^DO. Since G is a rational variety BQ is linearly equivalent
to DQ. We denote Dg, Dg, Us and Ug by D, D, U and U for simplicity of notation.

Parts (ii) and (iii) of the following theorem are the main results on Frobenius
splitting for Schubert varieties in this paper. Part (i) is proved in [12], [15] and [16].

3.5. Theorem. — Let the base field k be of characteristic p> 0. Let the notation be as
above (§ 3.4).

(i) The homogeneous space G/Q^ over k is Frobenius {p — 1) (DQ + D^-split. All
Schubert varieties in GjQ^are simultaneously compatibly {p — 1) D^-split in G/Q.

(ii) The diagonal A in G/Q^ x G/Q is compatibly (p - 1) (̂ -1 DQ + q^ D^-split
where q^ are the projections. The diagonal A, all the subvarieties of the form X x G/Q where
X is a Schubert variety inGfO^ and A(X) = { {x, x) e G/Q^ x G/Q, | x e X} are simultaneously
compatibly {p — 1) q^-1 D^split in G/Q x G/Q.

(iii) The partial diagonals A^ = A x G/Q and A^ == G/Q X A are simultaneously
compatibly {p - 1) (̂ -1 DQ + q^ D^-split in G/Q X G/Q x G/Q,. All the subvarieties of
the form X x G/Q, x G/Q, X C G/Q, a Schubert variety,

Aia(X) == { (^ x, z) e G/Q, x G/Q, x G/Q, | x e X, z e G/QJ,

A2s(X) = { (^ z, z) e G/Q x G/Q, x G/QJ x e X, z e G/QJ,

and A^ and Ag3 are simultaneously compatibly {p — 1) y^-1 D^-split in G/Q^ x G/Q. x G/Q.

Proof. — Consider the map n: G/B -> G/Q,. If X is a Schubert variety in G/Q
then TT-^X) is a Schubert variety in G/B. Moreover 7^~1DQ< D and 7c- lDQ< D.
Therefore by Remark 1.3 (ii) and Proposition 1.8 it follows that if we prove the theorem
for B then by taking the direct image under n the theorem follows for Q^. Hence we
assume Q, = B in what follows.

Part (i) is proved in [12], [15] and [16]. We will give here a proof which will
also be needed for the other parts. Let o^ == s^ ... s^ be a reduced expression for the
longest element of W. Then for the standard resolution ^ : Z -. G/B, where Z = Z^
and X^ = G/B in the notation of § 3.2, we have K^1 = fl^Z) ® ̂  ̂ (B)- There-
fore BZ + ^(D) is the divisor of a section s of K.z1. Now BZ == Z^ + ... + Z^ is
a divisor with normal crossings and ^(Z^ n ... n Z^) = X^, the point Schubert
variety B e G/B. Since Xo ^ D we have Z^ n ... n Z^ ^ Supp ^-'(D). Therefore by
Proposition 1.17 cr = s9-1 eH°(Z, K^-^) gives a simultaneous compatible ^(D)-
splitting of Z^, ..., Z^ in Z. Now the differential of ^ gives a map K^1-^ K^g.
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Composing this with s gives a section of y K^g. By the projection formula
^^K^B==K(^, since +«^z == ^G/B? G/B being smooth. Thus the section s of
y KQ/B gives a section 7 of K^p. Since ^ is an isomorphism from Z — 8Z onto G/B — D
([16], Proposition 1, Section 1) 7 has zeroes on 6 and other possible zeroes only on the
components of D. But K^g = 0^ (D + B) and the components of D have linearly
independent divisor classes. Therefore the divisor 7 has to be D + £). Therefore a = P~1

gives a {p — 1) (D + D)-splitting of G/B by Proposition 1.20. It is easy to see that for
i > 1 a Schubert variety of codimension i is an irreducible component of the set theoretic
intersection of a suitable set of codimension i — 1 Schubert varieties. It follows then by
induction on codimension and Corollary 1.11 that 5 gives a simultaneous {p — 1) £)-
splitting of all Schubert varieties in G/B.

To prove (ii) we first remark that the product splitting a x a of G/B X G/B gives
a compatible splitting of the factor G/B x 0 where 0 is the point Schubert variety in G/B
since 5 splits 0 in G/B. If there existed an automorphism of G/B x G/B which pulls
the factor into the diagonal we would be through. But such an automorphism may not
exist. However on the open subset U C G/B (§3.4 above) we can find such an auto-
morphism by exploiting the group structure ofU. Let a : LJ X 0 ->LJ X LJ be defined
by { x ^ y ) = [x^y~1 x). Then clearly a maps the diagonal o f U x L J onto the factor U X 0.
Therefore the pull back section a* (7 X 7) of K^1^ gives rise to a compatible splitting
of the diagonal in U X U. Therefore if we can show that the rational section a* (7 X 7)
of KQ/B ̂  Q/B defined on U X U is actually a regular section on the whole of G/B X G/B
then it will follow by Proposition 1.8 that it gives rise to a splitting of the diagonal
in G/B x G/B.

For this purpose let us compute the zeroes and poles of the rational section a* (7 X 7)
in G/B x G/B. Since the only zeroes of 7 X 7in U x U are D n U x U + U x D n U
those of a*(7x 7) with support not contained in the complement of U X U are
D X G/B + E where E is the closure of E == { {x,y) \ x e U,y1 x e D n LJ }.

We will now find the linear equivalence class of E in G/B X G/B. Any line bundle
on G/B X G/B is of the form L.i X Lg, L, line bundle on G/B. Putting y == e, the identity
in U, we see that the first factor of the line bundle corresponding to E must be C^g (D).
Similarly putting x == e the second factor must be ^/B^"1) where D~1 = closure
^{d-^deV nD}.

We now claim that D~1 = D. Since all the components ofD interset U nontrivially
andj/h^"1 is an automorphism of U it is enough to prove that this automorphism
leaves U -- D invariant. Now u \-> uw^ B identifies U with G/B — D (see § 3.4). Thus
y e LJ is in LJ — Dif and only if there are u, u^ e U such that un = Vu^ where n e N(T)
represents co^ e W. Rearranging we get u^ n~1 = V~1 u. Since c*)^1 = <o^ this shows that
ff~1 also fulfils the condition for belonging to U — D. Thus we have proved D~1 = D.

It follows that the line bundle corresponding to E is ^0/3 (D) X ^G/B(D). Therefore
the zeroes of a* (7 X 7) not supported on the components of

G/B x G/B - U x U = D x G/B u G/B x D
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form the divisor D X G/B + E linearly equivalent to 2(D X G/B) + G/B x D. Now
^/BXG/B corresponds to the divisor class of 2(D X G/B) + 2 (G/B X D), D is linearly
equivalent to D and the divisor classes of the components of £) x G/B + G/B x £)
are linearly independent. It follows that a* (7 x .F) cannot have any poles and its zeroes
outside U X U are precisely on G/B x D.

Thus we have proved that o^r X 7) is a regular section with divisor
D X G/B + E + G/B x D. This proves, as we have remarked earlier, that the diagonal A
in G/B x G/B is compatibly {p - 1){ D X G/B + G/B x D}-split by oc*(7 x T)^-1 (see
also the remark preceding Proposition 1.17). By Proposition 1.20 the zeroes of a* (7 x 7)
on D X G/B give that, for codimension 1 Schubert varieties X in G/B, X x G/B is
split by a* (7 x JY~1. By Corollary 1.11 and induction on codimension as done above
in the proof of part (i) a* (7 x F^-1 gives a compatible G/B x D-splitting of X X G/B
for any Schubert variety in X in G/B. The compatible splitting of A(X) follows since
A(X) = A n X x G/B. This completes the proof of part (ii).

Finally part (iii) can be proved by similar arguments using the automorphism
{x,y, z) -^ {x,y-1 x, z-1^) of U x U X U. We omit the details.

3.6. Remark. — Since Z — 8Z ^ G/B — D ^ U

o c : U x U - ^ U x U , a(^,j/) = {x,y-1 x)

gives a rational map of Z X Z. But in this case cx*(s x s) has poles as can be seen by
an argument similar to the one used in the above proof. Thus this method does not
give anything for the diagonal in Z x Z. Regarding Schubert varieties, if one wants
to prove results for line bundles on Schubert varieties which extend to G/B it is not
necessary to know whether the diagonal of the Schubert variety X is split in X x X
itself, thanks to the slight generalisation to the case of X embedded in Z in Propo-
sitions 2.7 and 2.19. So we have ignored, for now, the question whether for a Schubert
variety X the diagonal is split in X x X. However, it seems certain that the methods
of this paper will give a solution to this.

We will put together the above theorem on Frobenius splitting and the results
of the previous section to get results on the defining equations for Schubert varieties.
Before doing that we need a few more results.

First we recall the following theorem which is proved in [12] for ample line bundles
and in [15] in general.

3.7. Theorem ([15], Theorem 2). — Let the base field be of arbitrary characteristic. Let
L be a line bundle on G^such that H°(G/Q, L) + 0 and X a Schubert variety in G/Q. Then
(i) H^G/Q, L) == H^X, L) = 0 for i > 0 and (ii) H°(G/Q, L) -> H°(X, L) is surjective.

Proof. — If the base field is of characteristic p > 0 this follows at once from
Theorem 3.6 (i) and Proposition 1.13 (ii). Since we can construct G/Q^, X and L flat
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over Z (see [12], Lemma 3 and [17]), characteristic zero case follows by semiconti-
naity [13], § 5.

Remark. — For G/B we can prove slightly more by using the (p — 1) (D + £))-
i

splitting in Theorem 3.5 (i). Any line bundle on G/B is of the form 0 TC* L '̂ where
i== 1

L, is the ample line bundle on G/P, generating Pic G/P,, TT, : G/B -> G/P,, P, maximal

parabolic. Suppose L = 0 Ly with n^ — \ then H'(G/B, L) == 0 for i ̂  1 and if

any one n, == — 1 then H^G/B, L) = 0 for i ̂  0. This follows from Proposition 1.12 (i)
/

since G/B is (p - 1) (D + D)-split and ^(D + D) = ® .̂ L2,.

3.8. Theorem (^[15], Section 3). — Let the base field be of arbitrary characteristic. Let
7i: G/B -> G/Q, be the natural projection and X a Schubert variety in G/B. Then n is trivial
with image G/Q^ and n | X : X -> G/Q is trivial with image the Schubert variety TC(X) and we
have for any locally free sheaf L on G/Q, H^X, ̂  L) == H^T^X), L).

Proof. — This is an immediate consequence of Theorem 3.7 above and Lemmas 2.11,
2.10.

3.9. Theorem ^[16], Theorem 4). — Any standard resolution ^: Z ->X of a Schubert
variety X in G/B is a trivial morphism. In fact it is a rational resolution.

Proof. — This is proved by induction on dimension using Theorem 3.7 and
Lemma 2.11. See [16] for details. (Rational resolution means that^ is proper birational,
trivial and R1 ̂  K^ == 0 for i > 0.)

3.10. Lemma. — Let X C G/Q be a Schubert variety. Then we can find a sequence of
Schubert varieties X == X^C X^ .. . C X,. == G/Q such that the codimension of X, in X^^
is 1 and X^C X^i admits a trivial resolution (see Definition 2.17^.

Proof. — Given X =|= G/Q^it is enough to find such a X^. We can then use induction.
Let n: G/B -> G/Qbe the natural projection. Then X == TC'^X) is a Schubert variety
in G/B.

Since X + G/Q, X 4= G/B. If X = X^, o> e W we can then find a simple root a
such that /'(cojj ==/'((*)) + 1. Let Xi = X^ and Xi == -n:(Xi). As part of the ladder
of standard resolutions for X^ we then also get a trivial resolution

Z ——————^ Zii i
X —————> X,
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of 5C C Xi (§ 3.2 and Theorem 3.9). Composing with n then Z C Z^ is also a trivial
resolution for X C X^ since by the Grothendick spectral sequence the composite of
surjective trivial morphisms is a trivial morphism.

The following is the main theorem of this paper on the equations defining Schubert
varieties.

3.11. Theorem. — Let the base field k be of arbitrary characteristic. Let Y c X c G/Q
be Schubert varieties in G/Q and L a line bundle on G/Q with H°(G/Q^ L) 4= 0. Then

00 00

(i) The natural multiplication map of graded algebras ® S^H^X, L) -> © H°(X, L"*)
«»=0 TO=0

is surjective and its kernel is generated as an ideal by the kernel of S2HO(X5 L) -^H^X, L2).
(i.e. L is normally presented, in the terminology of [14], p. 39, Definition).

00 00

(ii) The natural restriction map of graded algebras © H°(X, L"1) -> © H°(Y, L"1)
w==0 w=0

is surjective and its kernel is generated as an ideal by the kernel (/H°(X, L) -> H°(Y, L) (i.e. Y is
linearly defined in X with respect to L, see Definition 2 .18 above).

Proof. — First we show that it is enough to prove the theorem when the base field
is of characteristic p > 0. We know that Y, X, G/Q and L come by base change from
flat schemes 3£ -> Spec Zy == U etc. (where Z^ is the localisation of Z with respect to
a suitable/ e Z. In fact one can take/ = 1, see [17]). See [12], Lemma 3. 'Letp e Spec Z^.
We will work with the discrete valuation ring Z^. Because of the vanishing theorem
and the semicontinuity theorem [13], § 5 it follows that a^fl"* and (B,-G"1, where
a : 3£ -> Spec Z^ and (B : 9) -> Spec Z(yp are free Z^-modules such that the base change
to the generic and special fibres give the global sections on X and Y in characteristic
zero and characteristic p respectively. Hence if we have proved the surjectivity of the
restriction a^ fl -> p, -8 modulo p then the surjectivity in characteristic 0 follows. A
similar argument gives the surjectivity in part (i) for characteristic 0 if one knows it
for characteristic p.

For the kernel in part (i) let a^, .. ., a^ e ker S2 a^ fl ->- a^ fi2 be such that modulo p
they generate the kernel of S"1 a, fi -> a, Q"*. Then clearly they generate it in charac-
teristic 0 also. Again a similar argument takes care of part (ii).

We now make one more reduction to the case L ample. Since H°(G/Q^, L) =1= 0
there is a parabolic subgroup Q '̂ 5 Q^ and an ample line bundle L' on G/Q '̂ such that
L = TT* L' where TT : G/Q^ -> G/Q '̂ (Q' is the intersection of all the maximal parabolic
subgroups corresponding to those fundamental weights which occur with a nonzero
coefficient in the character of Q^ which gives L as the associated bundle of the Q^-bundle
G-^G/0). Since H^X, L) = H^X), L') and H^Y, L) = H^Y), L') by Theo-
rem 3.8 we can replace X, Y and G/Qwith TT;(X), 7r(Y) and G/Q'. In other words we
can assume that L is ample.

So from now on for the proof of the theorem we will assume that the characteristic
of the base field k is p > 0 and that L is ample.
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Consider the commutative diagram

S- H°(G/Q, L) ——————i> H°(G/Ct, L-)

I i
S^H^X,!.) ————————^ H^X,!/*)

Since X is split in G/Qby Theorem 3.5 (i) H°(G/Q, 1̂ ) -> H°(X, L^) is surjective. Hence
if S^H^G/Q^L) -^H^G/Q,!^) is surjective then so is S^^L) ^H^X,!^)
by the commutativity of the diagram. The map for G/Q is surjective by Proposition 2.2 (i)
since by Theorem 3.5 (ii) the diagonal is split in G/Q, X G/Q,.

The kernel of the map in Part (i) is generated by degree 2 elements by Theorem 3.5
and Proposition 2.7.

Part (ii) says that Y is linearly defined in X with respect to L (Definition 2.18).
We will first prove that X is linearly defined in G/Q,. By Lemma 3.10 we can find a
sequence of Schubert varieties X = XgC X^ . . . C X, = G/Q such that X,C X^i
admits a trivial resolution (Definition 2.17). We will apply Proposition 2.19 with
X = X,^, Y == X, and Z = G/Q to prove that X, is linearly defined in X^. By
Theorem 3.5 (i) X,, X,+i are simultaneously split G/Q. Hence clearly X, is split
in X,+i.

This is condition (b) of Proposition 2.19. The condition (c) there is guaranteed
by Theorem 3.5 (ii).

Hence we conclude that X, is linearly defined in X,_n. Now applying
Lemma 2.20 (i) successively we conclude that X is linearly defined in G/Q. Similarly
Y is linearly defined in G/Q. Lemma 2.20 (ii) then gives that Y is linearly defined in X.
This completes the proof of Theorem 3.11.

3.12. Remark. — In informal terms Theorem 3.11 says that whenever a Schubert
variety X C G/Q (in particular the homogeneous space G/Q) is embedded in a projective
space P" by an ample line bundle on G/Q it is defined there by quadrics. In fact the
affine cone over X is also defined scheme theoretically by quadrics. Moreover if Y is
a Schubert subvariety of X then Y is the scheme theoretic intersection of X and all
the hyperplanes of P" passing through Y.

4. Remarks on the singularities of Schubert varieties and Demazure's work

The following theorem is proved in [15].

4.1. Theorem ("[15], Theorem 3). — Let the base field be of arbitrary characteristic. Let
L, M be line bundles on G/Q and X C G/Q a Schubert variety. Then

(i) Any Schubert variety is normal.
(ii) 7/'H°(G/Q,L)+0^rfH°(G/Q,M)4=0 then H°(X, L) ®H°(X, M) ^H°(X,L®M)

is surjective.
(iii) If L is ample on G/Q then in the projective embedding given by L, X is projectively normal.
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Proof. — We sketch the proof from [15]. We can assume X == X^CG/B. Find
a simple root a such that ^(ojj = ^((0) — 1- Then X^ C X^ and TT : G/B -> G/P^
maps X^, birationally onto 7r(XJ over which X^ is a P^bundle. By induction X^, is
normal and since TT, fi^ === ^(x ) (Theorem 3.8), Tr(X^) is normal and hence so is X^.

(ii) and (iii) The proof of these in [15] uses some results on Steinberg modules. The
methods of this paper on the Frobenius splitting of the diagonal (Theorem 3.5) give
an alternative proof. See Theorem 3.11 (ii) and Corollary 2.3. (One goes to charac-
teristic p by semicontinuity.)

In characteristic zero any proper birational trivial map ^ '" Z -> X with Z smooth
automatically satisfies R1 ̂  K^ == 0, i > 0 by a theorem of Grauert-Riemenschneider.
Hence X is then Cohen-Macaulay by a result ofKempf ([16], Proposition 4). Therefore
since any Schubert variety X C G/B admits a trivial resolution (Theorem 3.9) this gives
a proof for the Gohen-Macaulayness of any Schubert variety in characteristic zero.
This remark should be attributed to Kempf, see Demazure [3], § 5, Corollary 2. (Thus
the first proof of the Cohen-Macaulayness for Schubert varieties in characteristic zero
comes from the result of [12] and [18], see Remark 4.5 below.) For arbitrary charac-
teristic we have the following result.

4.2. Theorem (Cf. [16], Theorem 5). — Let the base field be of arbitrary characteristic.

(i) Any Schubert variety is Cohen-Macaulay.
(ii) In any Rrojective embedding given by an ample line bundle on G/Q any Schubert variety is

arithmetically Cohen-Macaulay.
(iii) The canonical sheaf of a Schubert variety X C G/B is Igx® ^x("~~ D n X) where Igx is

the ideal sheaf in X of ^X = union of all the codimension 1 Schubert subvarieties of X and
D n X is the divisor cut out on X by the divisor D in G/B (see § 3.4).

Proof. — For the proof of (i) and (ii) see [16]. The assertion (iii) follows from the
proof of Theorem 4 [16] by looking at the kernel of ^f* 0^— SZ,) -> ̂  <r, ^(— ffL!)
in the notation of that paper.

We take this opportunity to point out that for the proof the claim A, ̂ . i in the
course of the proof of Theorem 4 in [16] we use by induction not only A^ but also B,.
Unfortunately this is not made clear there, causing some obscurity.

The result (iii) will probably help one towards a combinatorial criterion for a
Schubert variety to be Gorenstein.

4.3. Remark. — Instead of working with the split exact sequence
0-^o/B^F^G/B-^C-^O

one could tensor it with suitable line bundles and taking global sections one could work
with the resulting sequences of G-modules (or B-modules). This way it is possible to
work out proofs for all the results stated in this paper in a language which is less geo-
metric and more suited to representation theory.
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4.4. Remarks. — Using the inductive machinary of standard resolutions it is not
difficult to see the following implications. These remarks are essentially due to Seshadri.
See [17], [18], [19]. Let X C G/B be a Schubert variety over a given field k.

(i) Normality of Schubert varieties is equivalent to the validity of the character formula
of Demazure for large powers of an ample line bundle.

(ii) The result H^X, L) == 0, i > 0 and H°(G/B, L) -> H°(X, L) surjective for ample L
and the normality of Schubert varieties together imply the same results for effective L
and Demazure's character formula.

(iii) H^X, L) =0, i > 0, H°(G/B, L) -> H°(X, L) surjective for effective L => Nor-
mality of Schubert varieties and Demazure's character formula.

Joseph proved Demazure's character formula when char k •== 0. (Demazure's proof
in [3] contains an error (Proposition 11) as pointed out by V. Kac.) Therefore by (i)
this implies the normality of Schubert varieties in characteristic 0.

Seshadri ([18], [19]) proved the normality of Schubert varieties in arbitrary
characteristic. Hence by (ii) the results of [12] together with this give Demazure's
character formula for arbitrary base fields and prove his conjecture. This is the first
proof of Demazure's conjecture and justification of his work over arbitrary fields.

In [15] the result H^X, L) = 0, H°(G/B, L) -> H°(X, L) surjective for effective L
is proved. By (iii) this again gives a simple and complete justification of Demazure's
work and his conjecture over arbitrary fields.

In addition the Frobenius method gives the projective normality [15] and arith-
metic Gohen-Macaulay property [16] of Schubert varieties and the results of the present
paper.

Andersen in his preprint [I], which is later than [18] but earlier than [15],
claimed a proof of the normality of Schubert varieties and Demazure's character
formula. But in his proof he assumed without proof (see page 9, line 3 of [1]),
that H^X^L) =H^(7^:(X),L) where TC:G/Q,->G/Q; and X a Schubert variety
(Theorem 3.8 above). As is evident this is far from being an obvious fact; in fact one
can quickly deduce normality etc. from this.

But this problem with [1] does not affect his paper [2] because the key point of [2],
namely the splitting map 6 of the lemma of § 2 in [2], is not in [1]: Andersen was
influenced by the paper [15] of Ramanan and Ramanathan.
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