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ON TOPOLOGICAL TITS BUILDINGS AND
THEIR CLASSIFICATION

by KEITH BURNS (1) and RALF SPATZIER (2)

Abstract

We define topological Tits buildings. If a topological building A satisfies some
technical conditions and is irreducible, compact, locally connected and satisfies the
topological equivalent of the Moufang property, then it is a building canonically
associated with a Lie group. If A satisfies all the other conditions and has rank ^ 3,
it must be topologically Moufang.

INTRODUCTION

We introduce the notion of a topological Tits building. Roughly speaking, this is
a Tits building A with a topology which makes the incidence relation closed. We will
always assume that the building is spherical, i.e. the number of chambers in an apartment
is finite. If the building is a projective space our definition agrees with the usual notion
of a topological projective space. For technical convenience we will usually consider
buildings where the topology is given by a metric.

We investigate topological buildings via their automorphism groups. To be precise,
given a topological building A we let its topological automorphism group be the group of
all homeomorphic (combinatorial) automorphisms of A. A basic tool for this paper
is the

(1) Supported in part by NSF Grant Mcs-82-04024 and MSRI, Berkeley.
(2) Supported in part by NSF Grant DMS-84-01760 and MSRI, Berkeley.
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Theorem (2.1). — If A is an irreducible compact metric building of rank at least 2 then
its topological automorphism group is locally compact in the compact open topology.

This generalises a theorem of Saizmann for projective planes [Sa 2].
If G is a connected semisimple Lie group of the noncompact type then the set

of all parabolic subgroups ofG can be given a building structure (cf. 1.2). The topology
inherited from G makes this a topological building. We call it the classical (topological}
building A(G) attached to G. The component of the identity in the topological auto-
morphism group of A(G) is G.

We characterize the classical buildings by intrinsic properties. Most important
is the topological analogue of the Moufang property: it assures that A has sufficiently many
topological automorphisms (Definition 3.1). Such a condition is necessary since there
are topological projective planes with very nice topological properties but few or even
no topological automorphisms [Sa 1, Introduction],

Main Theorem. — Let A be an infinite, irreducible, locally connected, compact, metric,
topologically Moufang building of rank at least 2. Then A is classical. More precisely, let G be
the topological automorphism group of A and G° its connected component of the identity. Then G°
is a simple noncompact real Lie group without center and A is isomorphic to A(G°) as a topological
building.

In the combinatorial theory, buildings of rank 2 are quite different from higher
rank buildings because irreducible buildings of rank at least 3 are automatically Moufang.
The same is true in the topological theory:

Theorem (5.1, 5.2). — An irreducible compact metric building of rank at least 3 is topo-
logically Moufang. Hence, if A is also locally connected and infinite, then A is classical,

These theorems generalise results of Kolmogorov and Saizmann. Using coordinate
methods, Kolomogorov showed in [K] that a connected compact projective ^-space,
for n ̂  3, is a projective space over the real or complex numbers or quaternions.
Saizmann [Sa 2] proves that a flag transitive compact connected topological projective
plane is a plane over the real, complex, quaternion or Gayley numbers. There is an
analogous conjecture describing combinatorial Moufang buildings [T2] which has been
proved in some of the most difficult special cases. The version of the Moufang property
considered in this conjecture is stronger than the direct combinatorial analogue of our
topological Moufang property. Tits has pointed out to us that the results of [T3] show
that there is no hope of classifying combinatorial Tits buildings satisfying this weaker
Moufang condition.

Let us describe one application of the above theory which also was our main
motivation to do this work:

Consider a complete Riemannian manifold M of bounded nonpositive sectional
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curvature and finite volume. For any geodesic c, let rank c be the dimension of the
space of parallel Jacobi fields along c. Let rank M be the minimum of the ranks of
all geodesies. In [BS] we attach to M a topological building A(M). It is constructed
using the Weyl chambers of M introduced in [BBS], Its rank equals rank M. Also A(M)
is compact, locally connected and topologically Moufang. Moreover A(M) is irreducible
if and only if M is locally irreducible as a Riemannian manifold. Combining this with
our Main Theorem above and a result of Gromov [BGS] we obtain the

Theorem. — Let M be a complete Riemannian manifold of bounded nonpositive sectional
curvature and finite volume. If Mis irreducible and has rank at least 2, then M is locally symmetric.

This theorem was proved by W. Ballmann in [B] using a completely different
argument. For more details of our argument we refer to [BS],

We now give a brief outline of the present paper. In Section 1 we discuss the basic
notions and elementary properties of topological buildings. For the combinatorial theory
we refer to the first three chapters of [Tl],

In Section 2 we consider irreducible compact metric buildings of rank at least 2.
We prove that their automorphism groups are locally compact. First we consider
rank 2 buildings, since they are much simpler combinatorially than those of higher
rank: the apartments are just partitions of a circle into intervals. The general claim
follows by considering the stars of faces of codimension 2, as these are buildings of
rank 2.

In Sections 3 and 4 we prove the Main Theorem in the following three steps.

Step 1 (Section 3): The topological automorphism group G is a Lie group. We
show this by applying Gleason and Yamabe's theorem on small subgroups.

Step 2 (Section 3): The connected component of the identity G° of G is a non-
compact simple Lie group and the stabiliser of a chamber in G° is a parabolic sub-
group P.

In both these steps we analyse the orbit of a normal subgroup N of G°. To illustrate
the basic idea, suppose N is normal in G. Let C be a chamber and G^ its stabiliser in G.
For simplicity, suppose further that some chamber D opposite C is in N. G. The Moufang
condition guarantees that G^,.D contains all chambers opposite C. As N is normal
in G, N.G = N.D DGc.D. It follows that N.G contains all chambers. This shows
in particular that G does not contain any small normal subgroups, since their orbits
would also be small. However, we need to work with G° rather than G and have to
elaborate this basic argument considerably.

Step 3 (Section 4): We analyse the BN-pair given by the stabilizers in G° of a
chamber C eA and an apartment containing C. In the building A of this BN-pair we
realize A as the subcomplex of all faces of certain prescribed types. In an irreducible
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building such a subcomplex is a building of rank 2 or more only if A = A. This approach
to Step 3, which supersedes an earlier more complicated version, was suggested to us
by J. Tits.

We conclude the paper in Section 5 by showing that irreducible topological
buildings of rank at least 3 are topologically Moufang. This result was inspired by its
combinatorial equivalent [T3, 3.5].

We are grateful to Professor J. Tits for his careful reading of the original manuscript
and especially for his help with Section 4. We would like to thank the Mathematical
Sciences Research Institute at Berkeley, the State University of New York at Stony
Brook and the National Science Foundation for financial support. Also the first author
is grateful for the support of the University of Maryland and the second author thanks
the Institut des Hautes fitudes Scientifiques for its hospitality.

0. Preliminaries

This section introduces some notations and combinatorial properties of Tits
buildings that will be used later. Throughout this paper, k is the rank and d the diameter
of a (spherical) Tits building A. For 0 ̂  r ̂  k, let Ay be the set of elements of A with
r vertices. Thus A^ and \ are the sets Vert A and Gham A of vertices and chambers
respectively of A. Often we will call elements of A^^ hyper faces of A. Recall that an
apartment S of A is a Coxeter complex [Tl, 3.7]. We will usually call a root in S a
half-apartment and the wall of a root an equator of S (cf. [Tl, 1.12]).

We define the length of a gallery and the distance dist(A, B) between two ele-
ments A and B of A as in [Tl, 1.3]. Note that dist(A, B) is one less than the number
of chambers in a minimal gallery from A to B.

0.1. Definition. — If A e A, Opp(A) === { B e A : B is opposite A }.
It is not difficult to establish the following criterion for two hyperfaces to be

opposite.

0.2. Lemma. — Let A, A' eA^_r Then dist(A, A') ^ d — 1 with equality if and
only if A and A' are opposite. D

Recall the notion of type [Tl, 2.5].

0.3. Definition. — The type of a gallery (Co, C^, ..., CJ is the sequence

(typ(Co n C^), typ(Ci n C^), ..., typ(G,_i n CJ).

It is easy to prove the following.

0.4. Lemma. — Suppose ^ = (Go, Ci, ..., CJ is a minimal gallery and
y = (Co, Ci, ..., GJ is a gallery with the same type as €S. Then ̂  is also minimal. D
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Finally recall [Tl, 3.19] that i f A , B e A there is a unique maximal element of
the full convex hull [Tl, 1.5, 3.18] of A and B containing A. This element is called
the projection of B onto A and is denoted by proj^ B.

Rank 2

In Section 2, we will make extensive use of some special combinatorial properties
of rank 2 buildings. For the rest of this section, we assume that A has rank 2 and dia-
meter d. It follows from Lemma 0.4 that a gallery with d or fewer chambers is minimal
if and only if it does not stammer.

0.5. Observation. — If x^y eVert A are distinct and non-opposite, there is a unique
minimal gallery with initial vertex x and final vertex y, which we denote by \x^y\. D

0.6. Corollary. — A closed gallery ^ (i.e. a gallery with the same initial and final vertices)
that has fewer than 2d chambers must stammer. Each chamber of ̂  must occur at least twice in ̂ . D

0.7. Definition. — Two vertices x, y of A are almost opposite if dist{x,jy) = d — 2.

0.8. Lemma. — If x^y e Vert A have the same type, there is z e Vert A almost opposite
both x and y.

Proof. — By [Tl, 3.30] there is a vertex z ' opposite both x andj^. Let z be the
other vertex of a chamber containing z ' . D

0.9. Lemma. — If x and y are distinct vertices of A with the same type, they are joined
by a non-stammering gallery with 2d — 2 chambers.

Proof. — Note firstly that any gallery joining x and y has an even number of
chambers. Since x and y lie in an apartment, they are joined by a non-stammering
gallery with at least d and at most 2d — 2 chambers. Thus it suffices to show that if x
andj^ are joined by a non-stammering gallery ^ with t chambers, where d^ t ̂  2d — 4,
then they are also joined by a non-stammering gallery with / + 2 chambers. Let z be
the first vertex of ^ that is almost opposite x. Choose chambers A e Star x and B e Star z
that are not in ^. Let a (resp. b) be the vertex of A (resp. B) that is not x (resp. z). Then
a and b are almost opposite and (A, [a, b], B, [z,y]) is our desired gallery. D

Finally it is convenient to modify Tits' definition of distance in the rank 2 case.

0.10. Definition. — Ifx.y e Vert A, D{x,y) == dist( ĵ0 + \\Sx^y and D(A:,jQ = 0
if x ==jy.

Thus 'D{x^y) is the number of chambers in a gallery stretched between x andj^.
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1. Topological Buildings

Let A be a Tits building of rank k. Fix an ordering of the k types of vertex in A.
Henceforth we identify Ay with a subset of (Vert A) r by identifying A e A y with the
sequence (^ , . . . ,A:y) such that {^ i , ..., A?,} is the set of vertices of A and
typA:i< ... < typA-y.

1.1. Definition. —A topological Tits building is a Tits building A with a Hausdorff
topology on the set Vert A = A^ of all vertices such that Ay is closed in the product
topology on (Vert A)*' for O ^ r ^ r a n k A . We give Ay the topology induced from
(Vert A)r. We say A is compact, connected, locally connected, finite, or infinite if Cham A = A^ ̂
has the appropriate property. The topological automorphism group of A is the group
Auttop(A) formed by all (combinatorial) automorphisms of A whose restrictions to
each Ay, 0^ r^ rank A, are homeomorphisms.

Topological buildings arise naturally from Lie groups.

1.2. Example. — We define the classical buildings. Let G be a connected real
semisimple Lie group and let A(G) denote the set of all parabolic subgroups of G. If
A is a maximal R-split torus of G, let S^ denote the set of all parabolic subgroups of G
containing A. We call S^ an apartment and denote the collection of all apartments S^
by ^/. If Ci, Cg e A(G), call G^ a face of Gg and write G^ < Gg if Cg D G^. This partial
order on A(G), together with ^, makes A(G) into a Tits building [Tl, 5.2].

The chambers of A(G) are the minimal parabolic subgroups of G. The group G
acts on A(G) by conjugation. Since any two minimal parabolic subgroups are conjugate,
G is transitive on GhamA(G). Therefore G is also transitive on the set of vertices of
a given type, and thus induces topologies on these sets. We topologize the set of vertices
ofA(G) by the sum of these topologies. Clearly A(G) is compact and locally connected.
Moreover G is the component of the identity in Auttop(A(G)).

We mention two other simple examples.

1.3. Example. — A finite Tits building with the discrete topology is a compact
topological Tits building.

1.4. Example. — The star of an element of a compact topological Tits building
is also a compact topological Tits building.

Henceforth in this paper, A will be a compact topological Tits building with
rank k and diameter d. We begin by observing some topological properties of the combi-
natorial structure. Note firstly that each of the spaces Ay is compact. For if {A^} c Ay
is a net, we can choose chambers G^ 3 A^; and since { G(J must accumulate, so does {A<J.
It is clear that the function dist is lower semicontinuous on each of the spaces Ay,
0< r^ k. Since C, C' e Gham A are opposite if and only ifdist(C, G') =^= d [Tl, 3.23],
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we see that{(G, G') e (Cham A)2 : G is opposite G' } is open. The corresponding result
for hyperfaces follows in the same way from Lemma 0.2. It follows easily that type
is locally constant in A^_i.

1.5. Proposition. — Type is locally constant in each Ay, 0^ r< k.

Proof. — This is trivial if r = 0 or k, so assume 1 ̂  r< k — 1. If the lemma is
false, there are A e A, and a net A^ -> A such that typ A^ is constant and is not typ A.
For each a choose a hyperface B^ e Star A so that typ B^ is constant and hyperfaces
of this type do not contain faces with the same type as A. Since Ay is compact, {B^}
subconverges to a hyperface B e Star A. By the remark preceding the lemma, B has
the same type as each B^, and so cannot contain A, which is absurd. D

1.6. Lemma. — Suppose A, A' e A are opposite. Then Opp(A') is a neighbourhood of A.

Proof. — If not, there is a net A^ -> A such that no A, is opposite A'. Choose
chambers C^ eStarA^. By passage to a subnet, we can assume that G^ -> C e Star A.
Choose C' e Gham Star A' opposite C. Then C^ is opposite G' for all large enough a.
Also, by Proposition 1.5, A^ has the opposite type to A' for all large enough a. It follows
that, for large enough a, A^ is the face of G^ opposite A', which is absurd. D

If T is the type of an element of A, there is a canonical map
TCT : Gham A -4 A e A : typ A = T }.

1.7. Proposition. — The map TT^ is surjectiue, continuous and open.

Proof. — Surjectivity is clear, since every element of A is contained in a chamber.
Continuity follows from Proposition 1.5, since a chamber contains a unique face of
type T. To prove openness, we show that if A e A, G e Cham Star A^ and { A^ } is a
net converging to A, then we can find G^ e Gham Star A^ such that G^ -> C. Choose
A' opposite A and let G' == proj^ G. By Lemma 1.6, we may assume that A^ is oppo-
site A' for all a. Choose C, = proj^ C'. Clearly dist(G^, C') == dist(G, C') for all a.
That G^ -> C follows since G (resp. CJ is the unique chamber of Star A (resp. Star AJ
closest to C'. D

1.8. Corollary. — If A is locally connected, so is each Ay, 0^ r^ k. D

Note that A^ is not connected when rank A ^ 2, even if A is connected. This is
clear from Proposition 1.5.

1.9. Proposition. — The set {(A, A') e A^ : A is opposite A' } is open for 0 < r ̂  k.

Proof. — Suppose A^ -> A and A^ ->A' with A and A' opposite each other.
Choose chambers C e Star A and G' e Star A' which are opposite. Use Proposition 1.7
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to choose chambers C^ e Star A^ and C^ e Star A, such that C^ ->C and C, -> G'.
Then, if a is large enough, C^ is opposite C^ and typ A^ = typ A is opposite
typ A^ == typ A'. Hence A^ is opposite A^ for all large enough a. D

1.10. Proposition. — Suppose the chamber C contains a face opposite A e A. If A^ ->- A
fl^rf Ga -> C, ^yi proj^ Cy. -> proj^ G.

Proo/'. — By Proposition 1.9, we can assume that each G^ contains a face oppo-
site A^. Hence dist(Ca, proj^ CJ = dist(G, proj^ C) for all a. The proposition follows,
since proj^ G is the unique chamber of Star A closest to C. D

1 .11 . Corollary. — If A is opposite A', then proj^: Star A' -> Star A is a homeo-
morphism. D

Metric Buildings

Henceforth in this paper, we will restrict attention to metric Tits buildings^ i.e. buil-
dings in which the topology on Vert A, and hence on each Ay, is given by a metric,
denoted by p. The classical buildings of Example 1.2 are metric buildings.

Rank 2

The remainder of this section contains some special properties of (compact metric)
buildings with rank 2 that are needed in Section 2. First we make two simple observations.

1.12. Lemma. — Suppose x,y e Vert A are not opposite or identical. If x^ -> x, y^ ->y
and dist(A^,j^) == dist(A:,jy) for all n, then \x^y^\ -> \x,y\. D

1.13. Lemma. — The set {{x,y) e (Vert A)2: x is almost opposite y } is open. D

1.14. Lemma. — Suppose in addition that A is infinite and irreducible. Let x e Vert A.
Then no chamber of Star x is isolated in Star x.

Proof. — We break the proof into four steps.

(1) There is a chamber of A that is not isolated in the star of one of its vertices.

Consider a fixed apartment So. Since every chamber in A is opposite some chamber
of So [Tl, 4.2], we see that there is a chamber of A contained in infinitely many apart-
ments. Hence there is a vertex XQ of A whose star contains infinitely many vertices.
Since Starve is compact, it contains a non-isolated chamber. This proves (1).

Let S and T be the two types of vertex in A. Gall a chamber S-good {T-good) if
it is not isolated in the star of its vertex of type S (type T). Because of (1), we can assume
that A contains an S-good chamber.
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(2) Let y he a vertex of type T, and suppose Starj contains a chamberG that is S-good.
Then every chamber of Starj/ is S-good.

Let G' e Gham Starj and let x ' be the other vertex ofG'. Choose z almost opposite y
so [j ,̂ z\ does not contain G or G'. By Corollary 1.11, the chamber D = proj^ G is not
isolated in Star z. Similarly G' = proj^ D is S-good.

(3) Let y and y' be vertices of type T that are joined by a gallery containing 2 chambers.
Suppose every chamber of Starj/ is S-good. Then Starj?' contains an S-good chamber.

Suppose [j^y] = (D, D'). Choose a vertex z such that [D n D', z\ contains
d — 2 chambers and does not contain D or D' (note that d — 2 > 0, since A is irredu-
cible). Choose G e Starj/\{D} and G' e Starj?'\{D'} and let x, K ' be the other vertices
of G, G'. Then z is opposite both x and x\ Since C is S-good, it follows from Corol-
lary 1.11 that E = proj^ C is not isolated in Star z. Similarly G' = proj^ E is S-good.
This proves (3).

It follows from (2) and (3) that every chamber of A is S-good.

(4) If A contains an S-good chamber^ it also contains a T-good chamber.

Let G be an S-good chamber with vertices x andj^ of types S and T respectively.
(i) Suppose d = diam A is odd. Then any vertex z opposite x has type T. It is

clear from Corollary 1.9 that proj^ C is T-good.
(ii) Suppose d is even. Note firstly that the stars of any two vertices of type T

are homeomorphic. This is clear from Corollary 1.11, since there is always a vertex
opposite both any two given vertices with the same type. Thus if A does not contain
any T-good chamber, then the stars of all vertices of type T contain the same finite
number of chambers. The map 7^ of Proposition 1.7 is a covering, as can be seen from
Corollary 1.11. Therefore by the compactness of A, i n f{p (D,D ' ) :D ,D 'eChamA
have a common face of type T and D =(= D'} > 0. We now show that this is impossible.

Choose G' e Cham Starj/\{ C } and let x ' be the other vertex of G'. Let ^ be a
non-stammering gallery with d — 2 chambers that starts at y and does not contain G
or C'. (Note again that d — 2 > 0, since A is irreducible.) The final vertex z of ^S is
almost opposite both x and x\ Now suppose €„ -> C in Cham Star x, and letj^ be the
other vertex of C^. By Proposition 1.7, there are galleries ^ with d — 2 chambers
and initial vertex y^ such that ^ -> €S. Let z^ be the final vertex of ̂ . Each z^ has
type T and, by Lemma 1.13, z^ is almost opposite both x and x ' for all large enough n.
Let D^ = P^L x anc^ DH == P1'0]^ x / ' Then D^ =t= D^ for any w, since their projections
to y^ namely C and C', are different. But { D^ } and { D^ } both converge to the final
chamber of ^S by Lemma 1.12.

This completes the proof of (4). Interchanging the roles ofS and T in (2) and (3)
proves that every chamber of A is T-good. D



14 KEITH BURNS AND RALF SPATZIER

1.15. Lemma. — Let ^ be as in the previous lemma. For each m > 0, there is 8^ > 0
.̂ A ̂  z/ x e A! a^ GI, ..., G^ e Cham A, there is C e Gham Star x with

min(p,(C,Ci),...,p(C,GJ)>8,.

Proof. — If not, there are y e Vert A, D1, ..., D*" e Cham Starj^ and sequences
Vn ~^y ^d D^ -> D\ 1 ̂  i ̂  m, with the following property: if £„ e Gham Starj^ for
each n, then

,^(p(E,,D<J)-.0

as n -> oo. This is absurd. Indeed by the previous lemma, there is a chamber
E e Gham Starj\{ D1, ..., D"1}; and by Proposition 1.7 we can choose £„ e Gham Starj^
such that £„ -> E. D

2. Local Compactness of the Automorphism Group

This section contains the proof of

2.1. Theorem. — Let A be a compact irreducible metric Tits building with rank at least 2.
Then G == Auttop(A) is locally compact in the compact open topology.

2.2. Remark. — If A has rank 1, G is the group of homeomorphisms of Vert A.
This is not locally compact in general.

To prove the theorem we show that G, = { <p e G : p(A, <pA) ^ s for all A e A }
is compact for any small enough e > 0. This is trivial when A is finite, so we assume A
is infinite.

We consider first the case when A has rank 2. Let d = diam A. We will assume
(by virtue of Lemma 1.15) that e is so small that if A; e Vert A and C^, ..., Giood e Gham A,
then there is G e Gham Star x with p(C, C,) > 3s for 1 < i ̂  100 d. This allows us to
construct (one chamber at a time) a gallery of any reasonable length, starting from
any given vertex, whose chambers are mutually Se-separated.

By Arzela-Ascoli it is enough to prove that Gg is an equicontinuous family of
maps. This will follow if Gg is equicontinuous on Vert A. If that is not the case, there
will be sequences of vertices { x^} and [y^} converging to a common limit and a sequence
{ <?„ } c Gg such that p^ == 9^ x^ and q^ = 9^ converge to p and q respectively with
p ={= ?• Since { (p^1 } c Gg also, we see that it suffices to prove

2.3. Assertion. — Suppose {p^ }, { ̂  } c Vert A and p^->p, ?„ -> q with p 4= q.
Then {^nPn } an^ { ^n Sn } do not have a common accumulation point for any { ̂  } c Gg.

We first reduce this assertion to the case where D(j&^, yj = D(/», q) == 2 for all n
(see Definition 0.10). Suppose that { ^/^ } and { + „ ? „ } have a common accumulation
point. Since type is locally constant, typ ij^j^ = typ ^n Sn and hence typpn = typ q^
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for infinitely many n. Hence typ? == typ q. By Lemma 0.9, p and q are joined by a
non-stammering gallery ^ with 2 d — 2 chambers. Let j/ be the middle vertex of €S.
Since p and y are both almost opposite^, we see from Lemma 1.13 that, for all large
enough n, p^ and q^ are joined by a gallery ^ with 2 d — 2 chambers that passes
through y. Moreover ^ -> <S.

Since {^nPn} an(^ { ^» ?» } have a common accumulation point, there is a sub^-
sequence of { ̂  ̂  } that converges to a closed gallery J^ with 2 d — 2 chambers. By
Corollary 0.6, Jf must contain two adjacent chambers that are identical. Hence we
can choose adjacent chambers €„ and D,,; of ̂  such that { ̂  €„ } and { ̂  D^ } accu-
mulate to the same chamber. We can then pass to a subsequence so that { ̂  €„ }
and { ^^ D^ } have a common accumulation point and { C_ } and { D^ } converge
to adjacent chambers G and D of (§. Since ^ does not stammer, G =(= D. We see that
Assertion 2.3 will follow from

2.4. Assertion. — If p^->p, ?„ -> q and D(^, yj ==D{p, q) = = 2 /or fl^ w, ̂
{ ^nA»} an^ { ^n ?n } ^° ̂  ^flz^ a common accumulation point for any sequence { ^» } c Gg.

The proof of this assertion is based on

2.5. Lemma. — Suppose a^ -> a, b^->b and D(^, ij == D(a, 6) = 2 /or all n.
Then there is a neighborhood U ofa in Vert A such that if {<?„ } c Gg fl^rf { 9n ^n } ̂  { 9» ^n }
converge to a common limit x, then <?„ ̂  -> x for evety sequence {u^} c U.

Proo/' of Assertion 2.4. — We will show below that if the assertion is false, then
{ ̂  | Vert A } has a subsequence that converges uniformly to a map ^ : Vert A -> Vert A
that is locally constant. This is absurd. For ^ cannot be surjective, since Vert A is compact
and we assumed above that A and hence Vert A are infinite. But ^ must be surjective,
because each ^ | Vert A is.

We will say that a neighbourhood U of a vertex v is good if every subsequence { ̂  }
for which { ̂  v} converges is uniformly convergent to a constant function on U.
Since A is compact, it is easy to find ^ as above if every vertex of A has a good
neighbourhood.

If the assertion is false, we can pass to a subsequence so that {^nPn} anc^ {4'n ?»}
converge to a common limit. Then, by Lemma 2.5, p has a neighbourhood on which
{ ^n ) converges uniformly to a constant function. This neighbourhood is good. We now
show that if v e Vert A has a good neighbourhood U,,, then so does any w e Vert A
with D(y, w) == 1. It will then follow by induction on D(^, • ) that every vertex of A
has a good neighbourhood.

It is clear from our choice of s, Lemma 1.14 and Proposition 1.7 that we can
find a non-stammering gallery ^ = (C, D, D', C') such that

(i) v is the initial vertex of ^ and w = C n D;
(ii) p(G, D) ^ 3s;

(iii) the final vertex y' of ^ is in U,,.
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Let w' == G' n D'. We show that if { ^ w} converges, then { ^ w ' } converges to
the same limit. If not we can assume by a further passage to a subsequence that { ̂  ^ }
converges to a gallery Jf in which lim ^..D 4= lim +,,.D'. Since each A,., moves chambers

fe ->• 00 " jfc -»• 00 " ";

by at most e, lim^G + lim ^D. Also lim ^^v == lim <^y' since v ' eU,,. Hence
J^ is a closed gallery and all four of its chambers are distinct. Since A is irreducible,
this is impossible. Thus ^ w' -> lim ^ w whenever { ^ w} converges.

Since D(u/, w ' ) == 2, Lemma 2.5 shows that w has a neighbourhood U^ on which
{ ̂  } must converge uniformly to a constant if { ^ M; } and { ̂  w' } converge to a
common limit. It follows from the previous paragraph that Uy, is a good neighbourhood
of w.

Proof of Lemma 2.5. — Note that the diameter d of A is at least 3, since A is irre-
ducible. We consider two cases.

a) d is odd.

2.6. Definition. — Let a and b be vertices of an apartment S with D(fl, b) == 2.
Let a' be the vertex of S that is almost opposite both a and 6, and let b' be the vertex
of S with D(a', 6') = 2 and D(A, b ' ) == d - 3. Suppose S = (C^, . . . , G^ C ,̂ . . . , C;)
where [a, b] = (C^^, 0^+3^) and [^/, 6'] = (C^^, 0^3^). We say that
(S, a, A) has the forcing property if each of the following sets of chambers is pairwise
3s-separated:

(I) GI, . . ., C(ct-l)f29 C!(<i+5)/2? • • - 5 C ,̂;

(II) GI, . . ., C^_^2? C!(d4-5)/2? • • - 5 C^.
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Cg, . . .}C(d«i)/2 r\' f^f
^(d+6)/2» • • •»^d

FIG. 2

Given any pair of vertices a and 6 with D(a, b) == 2, we can find an apartment S
such that (S, a, A) has the forcing property. It is clear from our choice of e that we can
choose a nonstammering gallery ̂  == (Ci, ..., G^ such that [a, b] = (C^^, G(d+3)/2)
and the chambers described in (i) above are 3s-separated. Adjoin a chamber C[ =(= G^
to the beginning of ^o- Then the ends s and ^ of the gallery ^ = (G^, C^ ..., GJ
are almost opposite. Let S be the apartment formed by ^ and [>, ̂ . Since, by
Lemma 1.14, C[ can be chosen as close to Ci as we wish, it is clear by Lemma 1.12
that we can ensure that (S, a, b) has the forcing property.

The main point of the forcing property is

2.7. Sublemma. — Suppose (S^, ̂ , 6J has the forcing property/or each n ̂  1. Let a^
be the vertex ofT.^ almost opposite both a^ and b^ and let b^ be the vertex of^L^ with D(^, b^) == 2
and D(^, &J == d — 3. If {<?„ a^} and {^ b^} converge to a common limit x, then {^ a^}
and { 9^ b^} both converge to x.

Proof. — It suffices to prove the assertion for convergent subsequences. Therefore
let us assume that 9^ a^ ->y and <?„ &„ -> z. We must show that x ==y = z. Define the
chambers ofS^, C^ and G^, 1 ̂  z < d, analogously to G, and G,' in Definition 2.6.
By a further passage to a subsequence, we can assume that there is a closed gallery
(Di, D^, ..., D«, D;, D;_,, ..., DO such that <?„ C^ -> D, and <?„ C^ ̂  D; for
l ^ i ^ r f . Since { 9n ̂  } and { 9n ̂  } both converge to x, D^+^ == D(d+3)/2 and
^ === (DI? • • - 3 D^_^2, D^ +5)/2, .. .5 Dd) is a gallery. Since each <?„ moves chambers
by at most s, we see from the forcing property that any two consecutive chambers of y
are distinct. Hence ^ is minimal. Since (D^, .. ., D^) has two more chambers than ^
and the same end vertices, it cannot be a minimal gallery. Hence D,' = D^+i for some i
with 1 ̂  t ̂  d — 1. Again since the 9^ do not move chambers by more than e, it is clear
from the forcing property that D,' =D,'4.i is possible only when i = (d + 1)/2. It
follows that y = z and ^' = (D^, ..., -D^^ D,,^ ..., D,) is a gallery. The
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galleries ^ and 3 F ' have the same length and the same initial and final vertices. Since
y is minimal and contains fewer than d + 1 chambers, we see from Observation 0.5
that y == y. Therefore x =jy = z, since x is 'D^-w n ^+6)12 3Ln<^ J == z is
D(<| - 1)/2 n D((, + 5)/2 • D

2.8. Sublemma. — Suppose (S, <?,/) Aay the forcing property and e' is the vertex of S
almost opposite both e and f. Suppose e^ -> e, /„ ->/, <?„ -> e' and D (<?„,/„) = 2 for each n.
Then, for any large enough n, there is an apartment £„ such that (S^,^,/J has the forcing
property and e^ is the vertex of £„ almost opposite both e^ andf^. Moreover £„ -> S as n -> oo.

Proof. — By Lemma 1.13, e^ is almost opposite both e^ and/„ for any large
enough n. For such n, S^ == ([>„,/„], [/„, 0, [>„, 0) is an apartment, and S^ ->• S
by Lemma 1.12. Clearly (£„, ̂ ,/J has the forcing property when it is close enough
to (S,^,/). D

Now we prove the lemma. Construct, as described above, an apartment S
containing a and b such that (S, a, b) has the forcing property. Let a' and V be as in
Definition 2.6. By Sublemma 2.8, there is, for each large enough n, an apartment £„
containing <?„, b^ and a' such that (£„, <?„, &J has the forcing property. Let a^ and &„
be the vertices of £„ analogous to a' and A' in Definition 2.6. Then a^ == a' for all n
and &„ -> &'.

Notice from the symmetry of Definition 2.6 that (S, <z', 6') also has the forcing
property. By Sublemma 2.8, there is a neighbourhood U of a and a number n^ such
that if u e U and n ̂  HQ, then there is an apartment S(^, n) containing a^, b'^ and u
such that (S(^, w), <?„, &„) has the forcing property and u is the vertex of S(M, w) almost
opposite both a^ and &„.

I f{^} c U, let S^ = S(^, w). Sublemma 2.7 applied to (S^, ̂ , ̂ ) shows that
^^a^->x and 9^->;v. Applying Sublemma 2.7 to (£„, fl^, &„) now shows that
<Pn ̂  -> x.

b) rf zj ^ZWL This case is a little more complicated. The forcing property will now
apply to closed galleries with 2 ^ + 2 chambers. The arguments are similar to those
when d is odd.

2.6'. Definition. — Suppose 9t is a closed nonstammering gallery with 2 ^ + 2 cham-
bers and a, b are vertices ofSS with D(a, b) == 2. Let a' be the vertex ofSS opposite both a
and b and let b' be the vertex of 89 such that D(a', &') == 2 and D(&', b) = d — 2.
Suppose ^ == (Ci, . . . , G^i, G^i, .. . , GQ where [a, b] = (C^+i. ^d/^) and
[a', &'] == (C^+i, C^2)+2)- Let

^ = C, n G,, y' == C, n C^, and (C,', C;', ..., C,') = [u, v'].
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We say that (^, a, b) has the forcing property if each of the following sets of chambers
is pairwise Se-separated:

(l) Ci, . . ., C^25 C^2)+83 - • • ? ^d+19
f:'\ p' p' p' p' •
W ^1 ? • - • ? ^d/2 9 ^(d/2) + 3 9 • • * 3 ^d 4-1 ?
f^^\ P" P" P" P"(111) ^2 , . . ., ̂ 2, ^(d/2)+39 • - • 5 ^d •

Any vertices a and 6 with D(fl, 6) = 2 are contained in a gallery ^ such
that (^, a, ^) has the forcing property. First choose a nonstammering gallery
^ = (G^, .. .5 C^+i) such that [fl, b] == (C^^i, C^2)+2) ^d the chambers listed
in (i) above are 3s-separated. Now adjoin C[ =t= C^ and C^i ={= C^i to the beginning
and end of ̂  to form a gallery ^. If G^ and C^i are close enough to C^ and C^^i
respectively, the ends of ^ are almost opposite and we can adjoin their convex hull
to ^i to form a closed gallery 8^ such that (^, a, b) has the forcing property.

2.7'. Sublemma. — Suppose (^, ̂ n, &„) Aa^ the forcing property for each n ̂  1. Z^ fl^
6^ ̂  y^r^ o/' St^ opposite both a^ and &„ and V^ the vertex of 39^ with D(a^, &„) = 2 flTzrf
D(i^, &„) == d — 2. Suppose {<?„ <?„ } fl̂ rf { 9^ &„ } converge to a common limit x. Then {<?„ a^ }
and {<?„ b^} both converge to x.

Proof, — It suffices to prove the assertion for convergent subsequences. Therefore
let us assume that (?„ a'^ —>y and <?„ &„ -> z. We must show that x ==jy = z. Define the
chambers C^, G^, C^ by analogy with Definition 2.6'. By another passage to a sub-
sequence, we assume that G^ ->D(, C^ ->D^ and G^ ->D^ where (D^, . . . .D^+i ,
Dj+i, . . . ,Di) is a closed gallery and (Dg', ....D^) is a gallery with initial vertex
DI n Dg and final vertex D^ o D^+r Since { <?„ <?„ } and { <?„ &„ } both converge to ^,
we have D^+i = D^^g.

We now use this fact and the argument from the proof of Sublemma 2.7 based
on how far <?„ can move chambers. First consider the closed gallery with 2 d chambers
(D2,...,D,,D^,D^,D,',D^...,D2 /). Since D^)+I == D^)+2, we see that
D^2)+i == D('d/2)+2 ^d then that D< = D(' for 2 < i^ rf/2 and (rf/2) + 3 < i< d + 1.
It follows that (DI, ..., Dj, D^, ..., D^) is a closed gallery with 2 rf chambers. Since
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O^+i == D^+2 we see from this gallery that D(^)+I == D(d/2)+2 and then that

D, = D; for 1 < i < dft and (J/2) + 3 ̂  i < rf. Hence x ==y == z. D

2.8'. Sublemma. — Suppose {S9, e,f) has the forcing property and e' is the vertex of 31
opposite both e andf. Suppose e^ ->• e,f^ ->f, e^ -> e' and D(^,/J = 2 for each n. Then there
are galleries 3t^-> Si such that for any large enough n, (^, ̂ /J has the forcing property and
e^ is the vertex of ̂  opposite both e^ and f^.

Proof. — Let E (resp. F) be the chamber of Sit that contains e (resp./) and does
not belong to [e,f]. By Proposition 1.7, there are chambers £„ e Star e^ and F^ e Star/,,
converging to E and F respectively. Let g^ (resp. AJ be the other vertex ofE^ (resp. FJ.
If n is large enough, e^ is almost opposite both g^ and /?„. We take

^ = (E^, K,/J, F^ [^, <], K, ̂ ]). D

Lemma 2.5 now follows from the two sublemmas in the same way as it did when
d was odd. D

This completes the proof that Gg is compact for any small enough e > 0 in the
case when A has rank 2. Now we consider the case when rank A ^ 3.

2.9. Assertion. — If e is small enough^ any sequence {<?„ } c Gg has a subsequence that
converges in the compact-open topology.

The compactness of Gg follows easily from this assertion. Suppose { ^n } c Gg.
Then { ̂ 1} c Ge and there is a subsequence { ^ } such that { ̂  } and { 4'n^1} both
converge in the compact-open topology. It is easy to see that lim ^^ e Gg and has
inverse lim ^~1

jc-^oo^k

To prove Assertion 2.9, fix an apartment S of A. For 0 ̂  i ̂  diam S, let
S* == { A e A : there are G e Cham Star A, D e Cham S with dist(G, D) ^ i }. We will
use the rank 2 case of the theorem to show that { <?„ } has a subsequence that converges
uniformly on S1. Then we show inductively that this subsequence converges uniformly
on S2, ..., ̂ iam^ == A, and thus converges in the compact-open topology.

Gall A,B eA S-opposite if every A' eA^^ with p(A', A) < 8 is opposite every
B' eA^^g with p(B', B) < 8. Since every element of A is opposite some element of S
by [Tl, 4.2], it follows from the compactness of A that if s is small enough, then every
A e A is 2e-opposite some B e S. We assume henceforth that s has this property.

Clearly we can pass to a subsequence so that { 9n } converges on S. Now suppose
A is a codimension 2 face ofS whose star is irreducible. Let B be the face ofS opposite A.
Note that B is 2e-opposite A and also has an irreducible star. By the rank 2 case of the
theorem, there is (3 > 0 such that Hp = { 6 e Auttop(Star B) : p(A:, Qx) ̂  p for all x e Star B }
is compact. It is clear from Propositions 1.9 and 1.10 that if s is small enough and
^ e Gg, then ^ == projg o ^ o proj^ | Star B is a continuous automorphism of Star B. It
follows that if e is small enough, ^ eH^ for every ^ e G,.
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By passing to a subsequence, we can assume that { $„ } converges in the compact-
open topology on Hp and thus converges uniformly on Gham Star B. Now, if
G e Gham Star A, 9^ C == proj^^ o ̂  o projg C. Since { 9^ A } converges, we see from
Proposition 1.10 that { <?„ } converges uniformly on Cham Star A.

By iterating the above argument, we see that if e is small enough we can make
successive passages to a subsequence so that { 9^} converges uniformly on S and
Gham Star A for every codimension 2 face A of S whose star is irreducible. Since the
Coxeter diagram for S is connected, every hyperface of 2 contains a face with codi-
mension 2 in S whose star is irreducible. Thus { 9^ } converges uniformly on Cham S1

and hence on S1.
Assume now that { 9^ } converges uniformly on S1. To show that { 9^ } converges

uniformly on S^^ it suffices to prove uniform convergence on GhamS^1. We use
the same general idea as [Tl, 4.1.1].

Firstly we show that if C eGhamS^1, then { 9^ G } converges. Let A be a
hyperface along which C is adjacent to a chamber of S1 and choose a face B of S that
is 2s-opposite A. Note that 9^ A is opposite 9^ B for all n and, if projp C = D, then
9n G = proj^(9^ D). Since A and D are both in S1, { 9^ A } and { 9^ D } converge.
It follows from Proposition 1.10 that { 9^ C } converges.

Secondly we show that { 9 ^ } converges uniformly on GhamS14'1. Suppose
{ € „ } ̂  GhamS14'1 is a convergent sequence. Note that G = lim G is a chamber

n -> oo
of S14'1, since S14'1 is closed. We show that 9.. C. -> lim 9,, C. For each n, let A_ bel 7 * " n -> oo ' " "

a hyperface of C^ which is in S\ By passing to a subsequence, we can assume that { A^ }
converges to a hyperface A of C, which is in S\ since S1 is closed. We can also assume
that p(A^, A) < e for all n. Choose a face B of S that is 2e-opposite A. Then 9^ A^ is
opposite 9^ B for all TZ, and

PnOn =Proj<p„A„(<PnDn)

where D^ = projg C^. Clearly D^ e 21' for all n, and D^ -> D = projg C by Propo-
sition 1.10. Since { 9^ } converges uniformly on S1, 9^ A^ -> lim 9., A = A' and

n -> oo
9^ D^ -^ lim 9^ D = D'. It follows from Proposition 1.10 that

Hrn^ 9^ C^ = proj^ D' == Hrn^ 9^ G

as required.
Thus { 9^} converges uniformly on Gham S14"1 and hence on S14'1. This completes

the proof of Assertion 2.9. D

3. Topological Moufang Buildings And Their Automorphism Groups

We define a topological analogue of a Moufang building. This means that there
are many topological automorphisms. Most of this section is devoted to proving the
following:
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Let A be an irreducible, compact, metric, locally connected, topologically Moufang building
of rank at least 2. Then the topological automorphism group G o/'A is a finite extension of a connected,
simple, noncompact Lie group. Furthermore the stabiliser of a chamber in A in the connected component
of the identity G° of G is a parabolic subgroup of G°.

If A is finite dimensional instead of Moufang, we also show that G is a Lie group.
In fact this is much easier. However, we need the machinery of the Moufang case and
the Moufang condition itself to show the other properties of G. Our tools are Gleason
and Yamabe's famous theorem on small subgroups and Furstenberg's characterization
of parabolic subgroups in terms of proximal actions.

Let A be an irreducible topological building of rank at least 2. We will always
denote its topological automorphism group by G. Furthermore, if A C A is a half-
apartment, we let U^ be the group of all g e G that fix all the chambers in A.

3.1. Definition. — A subgroup HC G is called Moufang [for A) if for any half-
apartment A the group H n U^ acts transitively on all the apartments containing A.
We call A a topologically Moufang building if G itself is Moufang.

Since we will only deal with topologically Moufang buildings in this paper, we
will often refer to them simply as Moufang buildings. Note that our Moufang condition
is slightly weaker than the combinatorial one [Tl, Addendum], since an element ofU^
does not have to fix all the stars of all hyperfaces in A\3A.

3.2. Lemma. — IfHis Moufang for A and 2, 2' are two apartments, then there is h e H
such that A(S) = S' and h fixes every chamber of S n S'.
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Proof. — Recall that the number L of chambers in a half-apartment of A does
not depend on the half-apartment in question. Let t be the number of chambers in
S n S'. We argue by a descending induction on i. By [Tl, 2.19] either S = S' or
S n S' is an intersection of half-apartments. Hence i f^>L, then S = S' and the lemma
is obvious. If t == L then S n S' is a half-apartment. Since H is Moufang, the lemma
follows. Suppose 0 < i < L. Then there is a chamber C in S\S' such that C n S n S'
is a hyperface of G. Let A be a half-apartment of 5V such that A D S n S' but
C^A. By [Tl, 3.27] the convex hull of A and C is an apartment S". Since
S n S" 3 (S n S') u { G } there is h^ e H such that h^ S == S" and h^ fixes every element
of S n S". Since 2V n S" C A, there is Ag e H such that Ag S" == S' and Ag fixes all
elements of A. Clearly h^ o Ai(S) = S' and ^ o h^ fixes all elements of S n S'.

Finally suppose /' == 0. Let D be a chamber in S'. By [Tl, 4.2], D is opposite
a chamber G in S. Let S" be the apartment containing G and D. By the above, there
is A! e H with Ai S == S" and Ag e H with ̂  S" == S'. Then A = Ag o Ai maps S to S'. D

3.3. Corollary. — If H is Moufang on A, then H ̂  transitive on Cham A.

Proof. — By [Tl, 3.31] there is a chamber E opposite any two given chambers C
and D. Let S, S' be the apartments through G, E and D, E respectively. By Lemma 3.2,
there is an A e H that maps S to S' and fixes E. Clearly A(G) = D. D

3.4. Corollary. — Let T be the type of a minimal gallery. For all C e Cham A, the
stabilizer H ,̂ of C in H is transitive on T(C) = { D e Cham A : D can be joined to C by a
gallery of type T }.

Proof. — This is obvious, since any apartment that contains C contains a unique
chamber in T(C). D

3.5. Lemma. — Let A be a locally connected, infinite, irreducible, compact, metric building.
Then the star of any hyperface of A is connected. Moreover A itself is connected.

Proof. — (1) Suppose A has rank 2 and let x e Vert A. We show that Star^ is
connected. Let C^, €3 e Cham Star x, and letj, be the other vertex of G,, i == 1, 2.
By Lemma 1.14, there is D, e Cham Starj^\{ C,} as close to C, as we wish. Let x^ be
the other vertex ofD,. Note that x^ and x^ are close to x. For each i construct a minimal
gallery ̂  starting from ^ and ending at a vertex ^ almost opposite x^. We can assume,
by Lemma 1.13, that ^ and ^ are almost opposite x. The space (9 of vertices almost
opposite x is open (Lemma 1.13) and hence locally connected. Thus ifD, is close enough
to G, and ^ close enough to ^g? ^en 2^ and ^ w1^ ^le m ^le same component of 0.
Since C, == proj^ ^ and proj^ | 0 is continuous, it follows that G^ and Cg are in the
same component of Cham Star x.

(2) Suppose rank A > 2. We show first that if a chamber G has a hyperface A
whose star is not discrete, then the star of any hyperface of C is connected.
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Let x be the vertex of C that is not in A. Letj/ be a vertex in A adjacent to x in
the Goxeter diagram. Let/be the codimension 2 face in C that contains neither x norj/.
By [Tl, 3.12], Star/is irreducible. Clearly Star/is not discrete. Let A' be the hyperface
of G that misses y. Then Star A' is the star of x in Star/. From (1) we see that Star A'
is connected. In particular, Star A' is not discrete. Since the Goxeter diagram for A is
connected, the claim follows.

Since A is infinite there is a least one such chamber G. Since we can connect any
hyperface to C by a gallery, it follows from the above that the star of any hyperface
is connected, and also that A itself is connected. D

3.6. Lemma. — Let T be the type of a minimal gallery and let G e Gham A. Define T(G)
as in Corollary 3.4. Then T(C) is locally connected.

Proof. — Let Do e T(C) and let ^o be the gallery of type T from C to Do. Extend ^o
to a minimal gallery ^o frem G to some chamber Eg opposite C. Let U be a connected
neighborhood of EQ in Opp C. If E 6 U, let S(E) be the apartment determined by G
and E. Let D(E) be the unique chamber ofS(E) in T(G). Clearly the map E ->D(E)
is continuous and V == { D(E) : E e U } is a connected neighborhood of Do in T(C). D

The following sequence of technical lemmata will lead up to the proof that G is
a Lie group (Theorem 3 ,.12). Unless otherwise stated we will assume henceforth that
A is infinite, irreducible, compact, metric, locally connected, topologically Moufang
and has rank at least 2. Let G° be the component of the identity of G. If C e Cham A,
set Pc< = Go n G°, where G^ is the stabilizer of C in G. Note that G° is type-preserving.

3.7. Lemma. — The action of G on Cham A is open and Cham A is a topological
homogeneous space of G.

Proof. — Since Gham A is compact metric, it is second countable. Hence G is
second countable by the definition of the compact-open topology. Therefore G is
separable. If G'C G is any open subgroup, then G/G' is countable. By [MZ, 2.3.1],
G has an open subgroup G' such that G'/G0 is compact. By [MZ, 2.13] and Corol-
lary 3.3, Cham A is homeomorphic to G/G(^ where G^ is the stabiliser of a chamber
C e Gham A. Clearly the action of G is open. D

3.8. Lemma. — The action of G° on Gham A is transitive.

Proof. — Let G e Cham A. We first show that G°.C 3 Opp G.
By Lemmata 3.5 and 3.7, Gham A is a connected homogeneous space of G.

By [Bou, III, § 4, no. 6, cor. 3], G°.C is dense in Gham A. Hence there is go e G° such
that go C e Opp G. Let E e Opp C. By Corollary 3.4 there is g e G^ such that E = ggo C.
Now ^ == ggog~1 gC = ggog~1 C eG°.C since G° is normal in G. Therefore
G°.G30ppC.
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Let G' e Cham A. By [Tl, 3.30] there is a chamber G" opposite both C and C'.
Then G' e Opp G"C G°.G" == G°.G since G" £ Opp GC G°.G. D

3.9. Lemma. — Let N be a normal subgroup ofG° and T the type of a minimal gallery.

Then N.G n T(G) is open and closed in T(C) for all C e Cham A.

proof. — Clearly N~C n T(C) is closed in T(G). Let D e N . G n T ( G ) . By
Lemma 3.6 there is a connected open neighborhood UofDinT(G) . By Corollary 3.4,
U is a connected subset of a homogeneous space of G^. By [Bou, III, § 4, no. 6, cor. 3],
(Gc)°.D and hence P^.D are dense in U. Since N is normal in G° we have PC. DC N.G.
Hence N^G D U. D

3.10. Lemma. — If'N is a normal subgroup of G° and 0 is an N-orbit in Gham A, then
(9 contains the convex hull of 0.

Proof. — We need the following fact.

IfY is a connected, locally connected, Hausdorjf topological space and p e Y, then p lies
in the closure of every connected component of Y\{j&}.

Let G e Cham A, D e N.G and let ^ == (G, C^, ..., C^_i, D) be a minimal
gallery from G to D. By [Tl, 2.23] it suffices to prove that ^C N.G. Let T be the type
of ^ and let h = C^ n D. Observe that T(G) n Star h = StarA\{G^}. Let Z be
the connected component of D in this set. By Lemma 3.9, ZC N.G. By Lemma 3.5
and the above fact, G ^ _ i e Z C N . C . By an induction we see that ^CN.C. D

3.11. Lemma. — The connected component of the identity G° of G is a Lie group.

Proof. — By a theorem of Gleason and Yamabe [Gle, Ya, Theorem 4] it suffices
to prove that there is a neighborhood of the identity that does not contain any nontrivial
normal subgroup of G°.

Let G e Cham A. Let U be a compact neighborhood of the identity in G° such
that U. G does not contain the star of any hyperface of G. Suppose U contains a non-
trivial normal subgroup N of G°. Since U is compact, we may assume that N is compact.

Suppose N fixes G. Since N is normal in G°, N fixes every chamber in G°.C. By
Lemma 3.8, N fixes all elements of Cham A. Then N is trivial.

Hence N . G = t = { G } . As N.G is compact, it is convex by Lemma 3.10. Hence
there is a hyperface h of G and G =(= D e Cham A such that D eN.G n Star A. By
Lemma 3.9, N. G = N. D intersects in open subsets with both Star h\{ C} and Star h\{ D }.
Hence N. G n Star h is open and clearly also closed. By Lemma 3.5, N.CD Star h.
This contradicts the choice of U. D
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3.12. Theorem. — If A is an irreducible, locally connected, compact, metric, topologically
Moufang building of rank at least 2, then its topological automorphism group G is a Lie group.

Proof. — Clearly we may also assume that A is infinite. Let C e Cham A. By
Lemma 3.8, Cham A == G°/Pc. Hence Cham A is a manifold by Lemma 3.11.
If geG, there are ^ e G° and g^ e G^ such that g = g^g^. For any go e G°,
ggo c = <?i g2 go c = gi{g2 go g2 ̂  g2G == gi{g2 go g2 ^ G- Hence ^ acts on Gham A via
the automorphism x t-> g^ xg^1 and the translation g^ e G°. As all continuous auto-
morphisms of Lie groups are smooth, it is clear that g is a G^diffeomorphism of Cham A.
By [MZ, V, Thm. 2], G is a Lie group. D

Let us point out a direct generalization of a theorem on projective planes [Sa 2].
It does not require that A be topologically Moufang.

3.13. Theorem. — If A is an irreducible, finite dimensional, compact, connected building
and its automorphism group G acts transitively on Cham A, then G is a Lie group.

Proof. — By [MZ, p. 238], G has an open subgroup H3G° that is a projective
limit of Lie groups. More precisely, we may assume that H satisfies condition A of
[MZ, p. 237]. Since A is connected, H acts transitively on Cham A. By [MZ, 6.3 Corol-
lary] H and therefore G are Lie groups. D

For the remainder of this section recall our assumption that unless otherwise
stated A is an infinite, irreducible, compact, metric, locally connected, topologically
Moufang building of rank at least 2. First a sequence of lemmata will prove that G is
a finite extension of a simple Lie group.

3.14. Lemma. — Suppose a Lie group H acts transitively on a connected, locally compact,
Hausdorjf space M. Then the connected component of the identity H° of H acts transitively on M.

Proof. — By [MZ, 2.13], M is a homogeneous space ofH. Since H° is open in H,
all H°-orbits are open. Hence they are also closed. D

3.15. Lemma. — The group G° is Moufang for A.

Proof. — Let A be a half-apartment. Let G e A be a chamber intersecting 8A in
a hyperface. Let / be the opposite hyperface in A. Let D be the unique chamber in
Star/n A. Note that the set of all apartments S that contain A is in 1 — 1 corres-
pondence with Star/\{D}. Hence it suffices to prove that U^ n G° is transitive on
Star/\{ D}. Since G is Moufang for A, Star/ is an orbit of Gy and hence a compact
manifold. It follows by Lemma 3.5 that Star/\{D} is a connected manifold. Since G
is Moufang for A, Star/\{D} is an orbit of U^. By Lemma 3.14, Star/\{D} is an
orbit of the connected component U^ which is contained in G°. D
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3.16. Lemma. — Any nontrivial normal subgroup N of G° acts transitively on Cham A.

Proof. — (1) Let h be a hyper face of a chamber G. Suppose G =1= D e Star h n N.G.
Then Star A C N.G.

By Lemma 3.15 and Corollary 3.4, we have Star A\{C}C P^.D. Since N is
normal in G°, we get StarA\{G}CPc.DCN.C.

(2) Let G e Cham A. Then N.C is convex.

Let D eN.C and let ^ == (G, Gi, ..., G^_i, D) be a minimal gallery from G
to D. Let T be the type of ^. By Lemma 3.15 and Corollary 3.4, P ,̂ is transitive on T(G).
Also Star(G^_i n D)\{C^i}C T(G). Let E e Star(G^ n D)\{C^, D}. Then
E e PC.D. Hence E e N.C = N.D, since N is normal in G°. By (1) applied to D and E,
Star(G^_3 n D) C N.G. Hence G^_i eN.G. By an induction, ^C N.C. By [Tl, 2.23],
N.C is convex.

(3) We prove that N.G is not contained in Star x for any vertex x.

Suppose N.GC Star A? for some vertex x. Then N fixes x. Lemma 3.8 shows that
G° is transitive on the set V of all vertices of the same type as x. Since N is normal in G°,
it follows that N fixes V elementwise. Since A is irreducible, the convex hull of V is all
of A. Hence N fixes A elementwise. Therefore N is trivial, in contradiction to the
hypothesis.

(4) Let G e Gham A and let h be any hyperface of G. Then Star AC N.C.

Let x be the vertex opposite h in G. By (2) and (3) (applied to this x ) there is a
hyperface h' of the same type as h whose star contains two chambers D and E in N.G.
By (1), Star A'C N.D == N.C. Note that A' eN.A since D eN.C. Hence StarAC N.G.

(5) Finally we show that N.G == Gham A.

Let D e Cham A and let (C, G^ ..., G^.i, D) be a gallery from G to D. By (4)
we have G^^ eN.C, and hence D eN.G. D

3.17. Lemma. — The component of the identity G° of G is semisimple without center.

proof. — Let N be the nilradical ofG° and Z(N) and Z(G°) the centers ofN and G°
respectively. Set Z == Z(N) .Z(G°). By structure theory, it suffices to show that N = { 1 }
and Z(G°) = = { ! } . Suppose the contrary. Then Z + { 1}. Note that Z is normal in G°,
since conjugation by any g e G° induces an automorphism, which leaves N and therefore
Z invariant. By Lemma 3.16, Z acts transitively on Cham A. Let G and D be distinct
chambers with a common face /. Then there is a z e Z such that zC = D. Hence
zf=f. Since Z acts transitively on Gham A, it also acts transitively on the set of faces
of type/. Since z commutes with Z, z fixes all faces of type/. Since A is irreducible, the
convex hull of the faces of type/is all of A. Hence z = 1 in contradiction to G + D. D



28 KEITH BURNS AND RALF SPATZIER

3.18. Theorem. — If A is an irreducible, compact, metric, locally connected, topologically
Moufang building of rank at least 2, then its topological automorphism group G is a finite extension
of its connected component of the identity G°. Furthermore G° is a simple Lie group.

Remark. — This theorem applies to both finite and infinite buildings. Since the
finite case is trivial, we continue in the proof with our standing assumption that A is
infinite.

Proof. — We first prove that G° is simple. Suppose the contrary. Since G° is semi-
simple and does not have center, G° == G^ X Gg for some nontrivial subgroups G^
and Gg of G°. By Lemma 3.16, both G^ and Gg are transitive on Cham A. Let G and D
be two chambers in the star of some vertex x. Then D = g^C for some g^ e G^. Hence
g^ x == x. Since Gg commutes with g^ and is transitive on Cham A, g^ fixes all vertices
of the same type as x. Since A is irreducible, g^ = 1 and hence C = D. This is a
contradiction.

Now suppose g e G commutes with G°. We will show that g == 1.
Suppose there is a chamber G with gC =t= C. Let ^ == (C, Ci, ..., C^^gC)

be a minimal gallery from G to gC. Set/= G^_i n gC. Then

Star/\{ G,_i}C P^G == gP^.C ={gC}.

This is a contradiction.
It follows that G embeds into the automorphism group Aut G° of G°. Since G°

is simple with trivial center, it is well known that Aut G°/Int G° is finite, where
Int G° denotes the group of inner automorphisms of G° [Mu, § 1, Corollary 2]. Since
G° == Int G°, G is a finite extension of G°. D

Finally we investigate the stabiliser of a chamber. We recall some generalities on
proximal actions [G].

Let a group H act on a topological space X. We call x,y e X proximal if there
exists a net { A,} C H such that lim A, x = lim h^y. We call the action proximal if all
pairs of elements x,y e X are proximal.

3.19. Lemma. — The action of G° on Gham A is proximal. Hence G° is noncompact.

Proof. — Let G, D e Cham A be arbitrary. We show by an induction on dist(C, D)
that C e PC.D. Let (G, G^, ..., G^_i, D) be a minimal gallery from C to D. By the
inductive hypothesis we may assume that GeP^.C^.^. Let A = = G ^ _ ^ n D . Then
Star A \ { G ^ _ i } C P^.D by Lemma 3.15 and Corollary 3.4. Hence G^_i eP^.D and
therefore G eP^.D. D

Gall an action of a group H on a topological space X projective if there is a repre-
sentation of H into PGL(w, R) and a continuous injection of X into P^'^R) such
that the action of H on X is the restriction of the action of PGL(m, R) on P^^R).
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3.20. Lemma. — Let p be the Lie algebra of P = P .̂ for some chamber G. Then P is
the normaliser of p and the action of G° on Cham A is projective.

Proof. — Let g e G° normalise p under the adjoint action. Then g normalises P°.
Hence P° fixes D = gC. Let T be the type of a minimal gallery from C to D. Then P° is
transitive on T(G) by Lemma 3.15 and Corollary 3.4. This implies that C == D. Hence
g e P and P contains the normaliser of p in G°. That P normalises p is a general fact.

Let k = dim p. It is standard that G°/P embeds into the projectivised k-th exterior
product P(Afc Q) of the Lie algebra g of G. Moreover G° acts on P(Afc g) via the adjoint
action. D

3.21. Theorem. — The stabiliser P in G° of a chamber is a parabolic subgroup of G°.

proof. — It follows from Lemmata 3.19 and 3.20 that Cham A = G°/P is a
projective proximal G°-space. As G° is transitive on Cham A by Lemma 3.15 and
Corollary 3.3 we see that G° is transitive on Gham A. By Proposition 4.3 of [F], Gham A
is a G°-equivariant image of the boundary of G°. The stabiliser of a point in the boundary
of G° is a minimal parabolic subgroup of G°. Hence P contains a minimal parabolic
subgroup and thus P is a parabolic subgroup. D

We will see in the next section that P is in fact minimal.

4. Classification

Consider an infinite, irreducible, locally connected, compact, metric, topologically
Moufang building A of rank at least 2. We know from the last section that G°, the
connected component of the identity of the topological automorphism group G, is a
noncompact simple Lie group. As explained in the Introduction, the set of parabolic

/^
subgroups of G° forms a topological building A. In this section we will prove the Main

r^f

Theorem of the Introduction, namely that A and A are isomorphic as topological
buildings.

4.1. Lemma. — Let ^ he the set of pairs (C, S) consisting of an apartment S in A and
a chamber G e S. Then G° acts transitively on ^. Furthermore G° is a group of special auto-
morphisms of A.

proof. — Let (G, S) and (G', 2') be in ^. By [Tl, 3.31] there is a chamber D
opposite both G and G'. Let 2;i and Sg be the apartments determined by D, G and D, G'
respectively. By Lemmata 3.2 and 3.15 there are g, e G°, i = 1, 2, 3, such that
^(G, S) == (C, Si),^(D, S^) == (D, S^) and^C', Sg) == (C\ S'). Moreover ̂ (C) = C\
Hence G° is transitive on y .
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By Proposition 1.5 every connected component of Vert A is contained in the
vertices of a given type. Thus G° preserves type. D

We need two purely combinatorial propositions which are due to J. Tits.

4.2. Proposition. — Let A be a building and y as in Lemma 4.1. If L is a group of

special automorphisms of A which acts transitively on ^, then A is isomorphic with the set A of
all subgroups of L conjugate to a subgroup containing the stabiliser of a given chamber, ordered
by the inverse of the inclusion relation.

Proof. — Fix (G, S) e y. Let B (respectively N) be the stabiliser of G (respec-
tively S). By [Tl, 3.11], (B, N) is a saturated BN-pair in L whose Weyl group W is
the Weyl group of 2. By [Tl, 3.2.6], A is a building. By the proof of [Tl, 3.11], the
distinguished generating set Y of W determined by (B, N) [Tl, 3.2.1] is given by the
reflections of S in the hyperfaces of C. Recall [Tl, 3.2.2] that any subgroup B'DB
of L is generated by B and a subset © C Y. Thus B' is the stabiliser of a face of C. There-

/^
fore the map sending A e A to its stabiliser is an isomorphism of A with A mapping
apartments to apartments. D

4.3. Proposition. — Let A be a building, let I be the set of types of vertices (identified with
the set of vertices of the Coxeter graph), and let J be a subset of I. Assume that all entries in the
Coxeter matrix are finite. Then the set A' of all faces of A whose type is contained in] is a building
if and only if every connected component of I (in the Coxeter graph) either is entirely contained in J
or has at most one element in J.

Remark. — The assumption that the entries in the Coxeter matrix are finite is

. / ! 3 °°\necessary. The proposition fails if the Goxeter matrix of A is ( 3 1 3 j. Such a Tits
building is constructed in [MT], v °° /

We need three lemmas before we prove this proposition. The first is a special
case of Lemma 3 of [T3]; we reprove it for the convenience of the reader.

4.4. Lemma. — If ̂  is an irreducible Coxeter complex with rank at least 2, then every
root 0 contains a chamber that does not intersect SO.

Proof. — Use induction on rank S. The lemma is obvious when rank S == 2. If
rank S > 2, there is a vertex t whose star is contained in 0. Let

S == { E e Star t: E n SO + 0 }.

Then S is convex, since S = { E e Star t: E n 0 4= 0 }, where 0 is the opposite root
of 0. Moreover S 4= Star t, for otherwise S would be reducible. Hence S lies in a root
of Star t and the inductive hypothesis shows that Star t contains a chamber that is not
in S. D
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4.5. Definition. — If A is an element of a chamber complex, Star' A will denote
the chamber complex formed by the faces complementary to A of the elements of Star A,
together with the inclusion relation induced from Star A.

4.6. Lemma. — Let p, q and r be the vertices of a chamber in a Coxeter complex of rank 3,
and let 0 be a root with y, r e 80. Assume Star r is irreducible. Then q is the only vertex of its
type in 80 n Star' p.

Proof. — Since 80 n Star' p is convex and contains a chamber in Star' p, it can
contain two vertices of type q only if it contains three consecutive vertices q, r* and f
of Star' p. But then y, p and q* would be three consecutive vertices of Star' r* with q
and (f both in the root wall 80 n Star' r* of Star' r*. This would imply reducibility of
Star' r* and hence of Star r. D

4.7. Lemma. — Let S be an irreducible Coxeter complex with rank at least 3. Let i and j
be distinct types of vertex in S. Assume that the ij-th entry m^ of the Coxeter matrix is finite. Let
r be the graph formed by the elements ofZ whose types are contained in { i , j } . Then the maximum
distance of two vertices in F is greater than m^.

Proof. — First assume that m^ = 2. If the lemma were false, each vertex of type i
would be adjacent in F to every vertex of type j. Choose a pair, 0 andO, of opposite roots
in 2. By Lemma 4.4, there are chambers C e 0 and G e 0 with C n 0 = 0 = C n 80.
The vertex of type i in G is not adjacent in F to the vertex of type j in G because any
path joining them contains a vertex of 80.

Now assume that m^ ^ 3. By renaming i andj if necessary, we may assume that
j is adjacent in the Coxeter graph to k ^{ i,j}. Choose A e S with type complementary
to { z,j, k}. Let I\ be the graph formed by the elements of Star' A with type contained
in { i,j }. Ifp and q are vertices of I\, their distance in I\ is the same as in F. For it is
clear that distp (^, q) ^ distpQS?, q). On the other hand, since Star A is convex and
contains a chamber, it is the image of an idempotent type-preserving morphism <p of S,
see [Tl, 2.19, 2.20]. The image under 9 of a path joining^ and q in F is a path of the
same length joining them in I\.

Henceforth we work in Star'A. Fix a vertex c of type k. Since Stare is convex
and contains a chamber, the argument used above shows that the distance in I\ between
two vertices of Star' c is realized by a path in Star' c. Choose a e Star' c with type i.
Since m^ is finite there is a vertex a opposite a in Star' c. Clearly distr^(fl, a) == m^.
Since Star' a is irreducible, it contains at least three vertices of type j. Exactly two of
these, b and V say, lie in Star' c. Thus there is a vertex V of type j such that b" e Star' a
and b" ff: Star' c.

We show that distp^(6", a) > m^. Note that Star'A is irreducible, since j is
adjacent in the Goxeter graph to both i and k. By Lemma 4.4, there is a root 0 of Star' A
such that a u c c 0 and (a u c) n 80 = 0. It is clear that A", a eO and distr^i", a)



32 KEITH BURNS AND RALF SPATZIER

is realized by a path in I\ n 0. Since Star^ is irreducible, Lemma 4.6 shows that b"
does not lie in either of the root walls in Star' A defined by b u c and V u c. It follows
that b" and a lie on opposite sides of each of the m^ — 1 root-walls that pass through c
and do not contain a and a. Any path from b" to a in I\ n 0 contains at least one vertex
from each of these root-walls. The only vertex of 0 that two of these root-walls can have
in common is c, and c ^ I\. Hence distr^(6", a) ^ m^.. Since b" is adjacent in I\ to a,
it follows that distrJA", f l ) ^ w .̂ + 1. D

Proof of Proposition 4.3. — Clearly we can assume that A is irreducible.

(i) It is clear that A' is a building if cardj =1 or J = I.
(ii) Assume 2 = cardj< card I. Let 2 be an apartment of A. Since S is the

image of an idempotent type-preserving morphism of A [Tl, 3.3], the distance in A'
between two vertices of A' n 2 is realized by a path in S. It follows from Lemma 4.7
that diam A' > m^. On the other hand, i f A e A has type I\J, Star' A is a non-stammering
closed gallery in A' with 2m^ chambers, and so diam A' ̂  w,j. by Corollary 0.6. Thus
A' cannot be a Tits building.

(iii) Assume 3 ̂  cardj < card I. Choose J' CJ with cardj' = 2. Fix b e A with
tyP6 J\J'- ^ A/ ls a Tlts building, so is Star^, B. But this would contradict (ii), since
Star^ B = { E e Star^ B : type E c J' }. n

4.8. Proof of the Main Theorem. — Let A, G, G° and A(G°) be as in the Main
Theorem. Let P be the stabiliser in G°ofa chamber of A. By Lemma 4.1, Proposition 4.2
and Theorem 3.2.1, A is isomorphic with the building of all parabolic subgroups of G°
containing a conjugate of P. Since G° is simple by Theorem 3.18, the Coxeter graph
of A(G°) is connected. Applying Proposition 4.3 to A(G°) with J = { P'C G° | P' is a
maximal parabolic subgroup, P' 3 P }, shows that either A = A(G°) or P is a maximal
parabolic subgroup. Since rank A ^ 2, A = A(G°). D

5. Topological Buildings of Rank Greater Than 2

We show that irreducible topological buildings of rank greater than 2 are topo-
logically Moufang. This is the topological analogue of Satz 1 of [T3].

5.1. Proposition. — If A is an irreducible, compact, metric building of rank at least 3,
then A is topologically Moufang.

Proof. — Let H be a half-apartment contained in two apartments S and S'. Let
a: S ->S' be an isomorphism that fixes every element of H. By Lemma 4.4 there is
a chamber G e H that does not intersect 8H. Let E^(C) == { D : D n C has codimension
at most i}. By [Tl, 4.16, 4.1.1] there is a unique isomorphism (B : A -> A that extends a
and is the identity on ^{C). We have to show that (3 is continuous. First we use the
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technique of [Tl, 4.1.1] to show that (3 is continuous on the stars of all hyperfaces.
We show by induction on dist(C', C) that (B [ Ei(C') is continuous for all C' e Cham A.
This is clear when dis^G', G) = 0, so assume that dist(C, G') > 0 and (B | E^G') is
continuous. Let C" e Gham A be adjacent to G' with dist(C, G") == dist(C, C') — 1.
By [Tl, 4.2] there is E e S opposite C' n C". By [Tl, 3.31] there is a chamber
D e Star E opposite both G' and G". Let B' be a hyperface of C'. Denote by B the face
of D opposite B' and let B" be the face of C" opposite B. By the inductive hypothesis,
[B | Star B" is continuous. Since (B commutes with the projections from. Star B" to Star B
and from Star B to Star B' respectively, it is clear that (B | Star B' is continuous.

Finally we show that (B is continuous by an inductive argument similar to the
proof of Assertion 2.9. For 0 ̂  i ̂  diam A, let If == { X e A : there are Y e Cham Star X
and Z e Cham S with dist(Y, Z) ^ i}. We have shown above that (B is continuous on S1.
We now show that (B is continuous on S14'1, assuming it is continuous on S\ It suffices
to prove that (B is continuous on ChamS1"1"1. If not, there are CeChamS14"1 and
{C.} c Cham S14-1 such that lim G. == C and lim (BG,, + (BC. For each n, let A. be a
' " / n->oo n n->oo1 n * 3 n

hyperface of €„ that is in S\ By passage to a subsequence, we can assume that { A^ }
converges to a hyperface A of C. Note that A e S\ since S1 is closed, and hence
pA^ -> (BA. By [Tl, 4.2], there is a hyperface A' of 2 opposite A. By Proposition 1.9,
we can assume that each A^ is opposite A'. Let €„ == proj^ €„ and C' = proj^ C.
Then C^ -> G' by Proposition 1.10. Since G^, G' e 21, (BG;, -> (BC'. Now

(BG, == (B(proj^ C;) == proj^((BC;)

since (B is a combinatorial morphism of A. Moreover (BA' is opposite (BA and each (BA^.
It follows from Proposition 1.10 that (BC^ -> proj^ G' = C, contrary to the choice
of { G^ } and C. D

5.2. Corollary. — An infinite, irreducible, locally connected, compact, metric building of
rank at least 3 is classical. D

These results constitute the last theorem of the Introduction.
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