
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S.

MARC CHAPERON
Ck-conjugacy of holomorphic flows near a singularity

Publications mathématiques de l’I.H.É.S., tome 64 (1986), p. 143-183
<http://www.numdam.org/item?id=PMIHES_1986__64__143_0>

© Publications mathématiques de l’I.H.É.S., 1986, tous droits réservés.

L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://
www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PMIHES_1986__64__143_0
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


C-CONJUGACY OF HOLOMORPHIC FLOWS
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i. INTRODUCTION

(1.1) Notation and definitions

Let n denote a fixed positive integer, and let d be the Lie algebra of those germs
at o e C" of holomorphic vector fields which vanish at the origin. Call two elements X
and Yofd conjugate if there exists a germ h: (C^, o) 4) of a holomorphic diffeomorphism
such that W Y = X. For each X e d, let X1 stand for the linear part rfX(o) e Ql(n, C)
ofX.

Throughout the sequel, we denote by S a diagonalisable element of Ql(n, C). An
S-vector field is an element X o f d such that S is the semi-simple part of X1 (thus, every
X ed is an S-vector field for a unique S). An S-normal form is an S-vector field of
the form (1) S + N, where N is polynomial and commutes whith S in d (since S + N
is an S-vector field, the linear part N1 is nilpotent and commutes with S).

(1.2) Holomorphic classification: known results and obstacles

Define S to be in the Poincare domain when the convex hull of its spectrum in C
does not contain the origin.

Theorem (Poincare-Dulac). — If S is in the Poincare domain, then

(i) the centraliser ofSind is finite dimensional and consists of polynomial vector fields—in
particular, the degree of an S-normal form cannot be arbitrarily high;

(ii) every S-vector field is conjugate to an S-normal form.

The reader is referred to (5.1) below for a proof of (i). The "preparation
lemma " we shall state in section 2 is a natural generalisation of (ii) to all elements ofd.

The Poincar6-Dulac theorem provides very good models: if S is in the Poincare
domain, then {see (5.1))

a) every S-normal form generates a holomorphic C-action on C^ given by an
explicit formula;

b) if S lies outside an explicitly known closed subset of codimension one, then the
only S-normal form is S itself (in this case, the above result is Poincar^'s linearisation
theorem).

(1) We shall not distinguish between polynomial vector fields and their germs at o.
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C^-CONJUGACY OF HOLOMORPHIC FLOWS NEAR A SINGULARITY 145

The Siegel domain (i.e. the complementary subset of the Poincard domain
in Ql{n, C)) contains a full measure subset y with the following property, if S lies in <^, then
every S-vectorfield is conjugate to S (this is the Siegel linearisation theorem). Here are some reasons
why this non-trivial, remarkable result is not quite as satisfactory as the previous one:

1) To show that a given S belongs to ,̂ one should check infinitely many in-
equalities—which might take some time in general.

2) The complementary subset 3i of y in the Siegel domain is dense, and even
quite large. Moreover, the few known facts about the conjugacy classes of S-vector
fields with S e St show that there is little hope for simple results in that direction:
for example, for a given S, the space of all formal conjugacy classes of S-vector fields
may be really huge (and a given formal conjugacy class may contain an infinite dimen-
sional space of conjugacy classes [MR]).

We shall prove that, most of the time (in a very simple sense), these pathological
phenomena disappear if holomorphic conjugacy is replaced by C^-conjugacy, k e N,
defined in (1.3) below. This viewpoint will prove especially useful when dealing
with families of vector fields—see our final remarks.

Our methods are based upon a rather thorough geometric understanding of the
complex flows under study (sections 3 and 4): even in cases when the Siegel theorem
holds true, this is an addition to our knowledge of the subject, allowing one to estimate
the extent to which two different (holomorphic) conjugacy classes are geometrically
different.

(1.3) O-conjugacy: definitions and main results

Given X e d, recall that a representative of X is a holomorphic vector field 5c on
some open neighbourhood dom X of o in C", such that X is the germ of 5c at o—in
other words, germ X, viewed as a convergent power series, is the Taylor expansion
of X at o. The foliation defined by X is the foliation of (dom X^X'^o) by holo-
morphic curves everywhere tangent to X. The germ of this foliation at o depends
only on X, and will be denoted by ^FX.

For each A e N, call two elements X and Y of d
— C^-equiualent if there exists a germ of a C^-diffeomorphism (C", o);) (viewing

C" as R2") sending ^X onto e^Y;
— C^conjugate if they admit representatives X and Y respectively with the fol-

lowing property: there exists a G^-diffeomorphism h: dom X -> dom ^t such that, for
every v e dom X, the image h o c of the local integral curve c : (C, o) -^ (C^ v) of X
is the local integral curve (C, o) -> (C", h(v)) of? (in the language of[Ch 86] (p. 68-70),
the C-action germs generated by X and Y are G^-isomorphic).
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146 M A R C C H A P E R O N

Clearly, conjugacy implies C^-conjugacy, which implies C^-equivalence. Call S
— hyperbolic if its eigenvalues are simple and any two of them are R-independant;
— weakly hyperbolic if the closed line segment between two of its eigenvalues never

contains o (thus, ifS is hyperbolic, or in the Poincart domain, it is weakly hyperbolic).

In section 5, we shall state and prove a more general version of the following
result [Gh8o]:

Theorem 1. — IfS is hyperbolic, every S-vector field is Cfi-conjugate to S.

Now, Guckenheimer [G], Camacho, Kuiper, Palis [CKP] and Ladis [I] were
able to determine the C°-equivalence class of a hyperbolic S inside gl(n, C), hence

Corollary 1. — Let S and T be hyperbolic elements of gl(w, C), and let Spec^S {resp.
Spec^T) denote the set of all inverses of eigenvalues of S (resp. T).

(i) If S and T are in the Poincare domain, then any ^-vector field is C^equivalent to any
T'vector field.

(ii) In the remaining case, the following two conditions are equivalent:

— Any ^-vector field is (^'equivalent to any T'-vector field.
— There exists A e GL(2, R) such that A(Spec~1 S) = Spec^T.

In the Siegel domain, this result—stated as a conjecture in [CKP]—exhibits a
rigidity phenomenon which makes Theorem i much more surprising than the Grobman-
Hartman linearisation theorem {see [A] or [Ch 86]), despite superficial analogy. For this
very reason, the proof of Theorem i is hard and uses the following complex analogue of
a theorem of Sternberg stated in (2.1) below:

Theorem 2. — If S is weakly hyperbolic, then, for every positive integer k, each ^-vector
field is G^conjugate to an S-normal form (1).

This statement is not quite as simple as Theorem i—however, see Theorem 4 in
the Conclusion—but its much nicer proof is very instructive.

(1.4) Plan of the article

In section 2, the real version of Theorem 2 is used as a good introduction to the
general idea of our proofs (paragraph (2.3)), a good excuse for stating our main local
lemmas (the Isolating Block Lemma and the Extension lemma in (2.2), the Prepa-
ration Lemma in (2.3)) and a good reason for introducing the basic notion of a strongly
invariant manifold (paragraph (2.3)).

In section 3, we explain the (global) structure of the complex flow generated
by a weakly hyperbolic S, and discuss some further applications of our analysis. In

(1) The degree of which admits an upper bound depending only (and nicely) on S and k.
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C^-CONJUGACY OF HOLOMORPHIC FLOWS NEAR A SINGULARITY 147

section 4, we show that, if S is weakly hyperbolic, an S-vector field of the form pro-
vided by the Preparation Lemma can really be considered a small perturbation of S
near o, and prove Theorem 2.

In Section 5, we state and prove the generalisation of Theorem i already mentioned.
In the conclusion, we discuss some related problems and results.
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a. GENERAL IDEA AND MAIN LOCAL TOOLS OF OUR PROOFS

(2.1) Introduction: the real case

In this paragraph, we denote by R a diagonalisable (over C) element ofgl(n, R).
Define a realR-vector field and a real R-normal form as in (1.1), replacing d by the Lie
algebra of those germs at o e R" of C°°-vector fields which vanish at o.

The stable subspace E^ of R and its unstable subspace E~ are defined as follows:
E4' is the unstable subspace of — R, and E~ is the sum of those R-invariant subspaces
of R" corresponding to eigenvalues c with 3Se c> o, i.e. the set of those v eR" such
that lim e^ v == o. For this last reason, a real R-normal form is tangent to E~

t->— 00

(and to E4') at each of its points {see [Gh86], p. 141, Lemme—an alternative, silly
proof would follow from the calculations in (5.1) below). The following result is a
(classical) particular case of [Ch 86 (4.4.2^), Thdoreme i]:

Preparation Lemma. — For every k e N, each real R-vector field is C"'-conjugate (in
the usual sense) to a real R-vector field X which has k-th order contact with a real R-normal form
along E4' u E"~—in particular, by the above remark, X is tangent to E~ (and to E4') " at each
of its points".

(In fact, the result proven in [Ch 86] is that one can take the same X for every k.
The advantage of our weaker statement is that its proof can lead to effective computations.)

Call R (real) hyperbolic if none of its eigenvalues lies on the imaginary axis,
i.e. E4' @ E~ == R" (thus, R need not be hyperbolic as an element of gl(w, C)). Here
comes our real version of Theorem 2:

Theorem (Sternberg). — If R is (real) hyperbolic, then, for each positive integer k, every
real R-vector field is C^-conjugate to a real R-normal form.
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148 M A R C C H A P E R O N

(2.2) Proof of Stemberg's theorem

We shall first state two key lemmas, in the general form needed later on.

Notation. — Let Q denote the (riemannian) product M X E4' X E~, where M
is a compact riemannian manifold and E^ E~ denote two euclidean spaces with
E4- +{o}. Let W4-, W- and S be the three submanifblds of Q defined by

W4- = M x E4- x {o}, W- == M x {0} x E-,
S == W4- nW- == M x {0} (1).

The canonical (orthogonal) projections of Q onto E4' and E~ will be denoted by x H- x^_
and x\->x_ respectively, and the euclidean norms will be written z^|y|. We let
(see Fig. i)

(B =={x eQ^: |^|^ i and |A:_|< 1 }

^B={^eB:|^ | = i}, 8 ~ B = = { ^ e B : | ^ _ | = 1 }

Wi4- == W4- n B, Wf == W- n B,

hence in particular 3B === 84' B u 9" B. Denote the scalar products of E4' and E~
by {x,y) \-> (x \y), and the differential TQ -> E^ of the projection ^ h-> ̂ , by y i-> v^.

Isolating Block Lemma (Fig. 1 ) . — Let S be a smooth vector field on some open neighbourhood
of B in Q. Assume that there exist positive constants k^. and k_ such that every x e B satisfies

(!) (SM+ i ^4-) ^ - ̂ + i^+i2 ^ aw-1 ^-) ^ ^- i^-i2.
TA^w, the/low (O*) generated by ^ has the following properties'.

(i) TA^ two functions r^, r_ : B -^ [o, oo] rf^^rf ̂

f ^W == sup {^> o : <S>~\x) e ' B for o^ s^ t}
[r^(x) = sup{^ o : O^) eB / o r o ^ j < / }

^ftj^
fr^^-wr, c^^-w^
I O-^^) e ^ B f o r x e B\W-, O^^) e 3- B for x e B\W4-.

(ii) The two smooth functions x\-> — r^.(^)/Log | x^ \ and x ̂  — r_(A:)/Log | x_ |,
rf^rf on B\(W~ u a4- B) (zwrf B\(W4' u B" B) respectively, are bounded and have positive
lower bounds.

(iii) If S8 is a basis for the filter of neighbourhoods of 8Wf in 9^ B, then the

sets V = {<S>\x) : o ̂  t^ r^x) and x e V} u W^- with V e g8 form a basis 3S for the
filter of neighbourhoods of Wf u Wf in B.

(1) Our results can be extended to the case when Q, is the direct sum of two arbitrary riemannian vector
bundles W+ and W- over M.
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^B

i49

a-B

FIG. I

Proof. — There exist positive constants K^. and K_ such that, for every x e B,
the following estimates are satisfied:

r-Kj^i^(^)j^)^ -^i^p
lM^-12^ {W_\x_)^ K_\x_\^

"Integrating" these inequations (see [Gh86], p. 362, Lemme), we get

f ^ l ^ l ^ IQ-^+I^ eK+t\x^\ for o^ t^ r^(x)
[ek-t\x_\^ \^(x)_\^ e^^x,} for o^ ̂  r_(x).

(2)

From this and the (therefore) obvious fact that each function t [-> | O"^)^. |, o ̂  t < r^.{x)
and t\-> \^>\x)_\, o ^ t ^ r _ { x ) , is either zero, or strictly increasing, assertions (i)
and (ii) follow at once.

Assertion (iii) is obtained as follows: for each x e B^ B, the greatest distance A^
between ^(x) and W^ u Wj" for o^ ̂  r_{x) can be estimated quite easily: either
x e Wi*", in which case A^ = o, or, by the growth properties of 11-> IO'^A:).] and
^IO'MJ,

A,=|0^)J=|0^)_|,

where ^ e [o, r_(x)] is defined by this equality. Therefore, (2) yields
(3) A,< |^_|W(K.+K^

149



150 M A R C C H A P E R O N

Similarly, the least distance 8^ between 0^) and W^ u Wi~ for o< ^< r-{x) is
either zero, or min^AL. |, [^-^(A')^)}, hence, by (2),
(4) 8^min{|^|,|^|^-}.

Assertion (iii) follows at once from (3) and (4). ,

Note. — The name of our lemma comes from the fact that B is an isolating block for
(O^) in the sense of Gonley {see for example [CZ]).

Notation and definition. — For each smooth vector field X on a manifold (with
corners) C, we let^x denote the flow of X (defined on a subset dom^/x of R X C),
and sometimes write f^(x) instead of f^(t, x) for {t, x) edomf^. A subset U of C
is called ^.-saturated if {t:f^{x) eU} is an interval for every x e U.

Extension lemma. — For each $ as in the Isolating Block Lemma and each positive integer k,
there exist an integer m ̂  k and a ^-neighbourhood^ of ^ j g in the space of smooth vector fields
on B such that the following hold true:

(i) If ̂ Q denotes the set of those X e^V which are tangent to W^ and to Wf at each
of its points, then. Hypothesis (i) of the Isolating Block Lemma is satisfied (with different positive
constants) if^\^ is replaced by any X e^o*

(ii) Let X and Y be two arbitrary elements of^Q, having m-th order contact along W^ U W^",
and let h : <o -> o/ be a C^dijfeomorphism with the following properties:

a) (o is the ^-saturated intersection of an open neighbourhood of 2 in Q^ and an open
neighbourhood of W^S in B\(W;- u S- B);

b) co' is ^'saturated, open in B, and A^(X|J == Y|^;
c) h has m-th order contact with the identity along W4' n co.

Then, the set
Q = {f^(x) : x e<^, t^ o, (t,x) e dom^x

and [t, h(x)) e dom/yV/Y)"1^" B)} u Wi-\0- B

t.y flw ^-saturated open subset of B, anrf h extends to a unique C^-diffeomorphism H of ^1 onto the
^[-saturated open subset

"/ - {/^(JO ̂  e <o', ̂  o, (t^) e dom/Y
^ ̂  h-\y)) e dom/x\(/x)-1^- B)} u Wr^T B

^cA ^A^ H^(X Jo) == Y [o.. Moreover, H Aaj ̂ A or^r contact with the identity along W4' u W"~.

Proof. — (i) is clear, and so is the fact that Q\W~ (resp. Q'\W~) is an X-saturated
(resp. Y-saturated) open subset of B—whatever m may be. Moreover, still assuming
m ^ k arbitrary, HL^- is uniquely determined by the conjugacy condition,
which implies that it has to be the C^diffeomorphism onto Q'\W~ defined by
fl{f^{x)) ==f^{h{x)) for t^ o, x e co and f^{x) e Q. Therefore, uniqueness comes
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C^-CONJUGAGY OF HOLOMORPHIC FLOWS NEAR A SINGULARITY 151

from the following fact: if 0. is a neighbourhood of Wi~\^~ B inB, then, as E4' is not
trivial, HJQ^V- has at most one continuous extension to Q,. Thus, we just have to prove

Lemma 2. — Ifm is large enough and^V small enough, then, under the hypotheses of (ii),
there exists an open subset U of B with S C U C 0, such that the mapping

(H(.) ifv^-
U 3 V h->

( v tf v e W

is of class Ck and has k-th order contact with Id along W~.

Indeed, Lemma i implies our result: if its conclusion is true, then, by the analogue
of (2) for X and Y (which implies that W^" is their unstable manifold at S) and the fact
that they coincide up to order k along Wi~, we shall have H(^(y)) =^(H(^)) for
/ ^ o, v e U and f^(v) e B\^~ B and, by the flow-box theorem, Q will be a neigh-
bourhood of Wf\?~ B and H will have A-th order contact with Id along WjT\3~ B.

We shall give a rather tricky proof of Lemma i, again adapted from
[Ch 86] ((4.2.3), thtoreme 2). Of course, we exclude the case when E~—and,
therefore, Lemma i—is trivial. Let ^eC^R, [o, i]) satisfy u-1^) = (— oo, 1/3]
and ir'^o) = [2/3, oo), and let Xo, 5e, Y be the smooth vector fields on Q, defined by

lXo(;v) = (o, — x+,x_)
^ _ ^ ( XoW + t^KI) u(\x_\)(X(x) - Xo(x)) if x eB
X{x)

XoM==^W if^B
f{x) = XoW + u(\ ̂  |) u(\ x^ |) (YW - XoM) if x e B.

As XQ generates an R-action on Q, so do X and Y.

Step 1. — If ^V has been chosen small enough, then

(i) X and Y satisfy inequations of type (2) in the whole of Q, and have m-th order contact
along W4- uW-;

(ii) let B' =={^eCL: |A:_|< 1/3 and \x^\< 1/3} and co" == B' n H-^B'^W-;
^n, o4' = {/^-(A") : x e (x>" anrf ^0} is an ^-saturated open neighbourhood of W'^2
in Q\W~, and tl\^" extends to a unique ^-embedding H : co4'-> Q such that
fi,,(5cL+) = Y|g^+), having m-th order contact with Id along W^S.

Step 2, — Let W,. == {x e Q^: \ x_ \ < r}, r > o, and let x (-̂  XQ denote the projection
Q^ -> M. If r is small enough, then

(i) the mapping Ho : W, n (co4- u B) -̂  Q defined by

(H(.o, ̂  ,u{i - | ̂  |) v_),, H{v)^ + u{\ ̂  [) (^ - H(.)^),

H(.)_ + u{\v^\){v_ - H(.)_)) /.r 1 /3^ K| ̂  2/3
•"ol^ == /, . i . ,v for |y+| ^ 1/3

H(y) for 124 | ̂  2/3

^ a ^-embedding, having m-th order contact with Id fl/on^ W4' uW~;
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152 M A R C C H A P E R O N

(ii) for r small enough, the vector field Z on W,. given by

Z{v) = HS Y(y) i/ v e B W Z(y) == X^v) if v i B

î  of class C"1"1 fl̂ rf Aay (w — i)-^A or<fer contact with X flfoy^ W4' u W~.

Outside B, we have that H ^ o H ^ I d and X == Z; therefore, replacing
(X, Y, H) by (X, Z, Ho"1 o H), we get a more or less standard extension problem,
which we shall now solve.

Step 3 ([Ch 86], tUoreme A6-5, p. 361). Define X_ : Q,-> E- by X_(x) = X{x)_,
and let

( r^r \ t

^ =inf -^(x).y\y\f\^ : ^ e W4-,^ E E-\{o}

I ̂  == sup{LxGM(j^)/2 bl2^ eT,Q\{o}, x eW^

^ - inf {LS GM(^j/)/2 b|2:^ ^T,Q\{o}, ^ eW^},

where Lx G î  ^ Z^ derivative of the riemannian metric of Q, wi/A respect to X. 7/* w^
A^^ Xx > o (A^n^ {jix > o), p.x ^ ° fl^ w > A + i + ( { j i x — ^xV^x? ^^ y07" r

jwfl// enough^ the family (/^/^^w^f^o ^ well-defined and converges in the G^ sense to an
embedding Hy which has k-th order contact with Id along W4' u W~.

We can now explain how to choose m and ^: m is the least integer greater
than k + i + ((JL^ — k[^)j\ (we have ^ < o < X^ because E4' and E~ are non-
trivial), and ^F is such that each X e^o satisfies (i), p.x < o < Xx and
m>^ + i + (^x -^x)Ax-

Then, under the above hypotheses, the definition of H/ implies that
^(^H^W,)) == ^Iw, ^d ^(^ == y for 1 ^ + 1 ^ ! —^ steP J (i) and the fact that

Z == X == Xo in { ^ e Wy: | ^4. [ ^ i }. Therefore, ifD,. denotes the X-saturated domain
of Ho o Hy == Hy, we obtain

(W|H^)=X|^

[ ^" e Dy and Hy(^) = H{x) for every ^ e co4' with [ ^^. | large enough.

Thus, by Step i (i), we have that Hy == H in W^ n co"1", hence in particular

U =={x eW,: |^|< r}CQ and H|u=H, |u

ifris small enough for U and Hy(U) to lie in B' and be contained in {^(<o) : t^- 0} u W~
(which is a neighbourhood of S in Q^ by the Isolating Block Lemma (iii), applied in
{x e WR : [ ^4-1 ^ R} for some R ^ i); indeed, by Step i (i) and the definition of ^,
H j u n o has to be well-defined and equal to 'H.r\v m ^e whole domain of definition
ofHju, i.e. U. This proves Lemma i. •
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We shall now see how to construct G^-conjugacies using the Extension Lemma.
The " Gauchy problem method " introduced here will be omnipresent in the sequel:

Corollary 2. — Let A, m and ^Q be as in the Extension Lemma. If two elements X and Y
of^Q have m-th order contact along W4' u W~, then, they are ff-conjugate in a neighbourhood
ofL. More precisely^ let V be the open subset of (^+ B\^~ B) X [o, oo) consisting of those {x, t)
such that bothf^x) andf^{x) are well-defined and lie in B\^~ B, and let 9 and ̂  denote the smooth
embeddings ofV into B\B~ B given by <p(.y, t) =fi{x) and ^{x, t) ==f^(x); then, the hypo-
theses of the Extension Lemma (ii) are satisfied by <o = <p(V) and A == ^ ° 9"1'

Proof. — By the Extension Lemma (i) and the Isolating Block Lemma, 9 and ^
are smooth embeddings of V into B\(W~ u 8~'B), the images of which are open
neighbourhoods of W^\S. Moreover, as X and Y have m-th order contact along W^
and are tangent to it, <p and ^ have w-th order contact along (p'^W4') == ^(W^),
hence Corollary 2. •

Proof of Sternberg's theorem. — Given a positive integer k and a (real) hyperbolic
R e Ql{n, R), with stable subspace E4' and unstable subspace E~, we shall prove there
exists an integer m ̂  k with the following property: if a real R-vector field Z has m-th order contact
with a real Vi-normal form R + N along E4' u E~, then Z is Conjugate to R + N.

This and the Preparation Lemma (2.1) clearly imply Sternberg's theorem. Now,
there obviously exists a euclidean structure on B^ for which E4' and E~ are ortho-
gonal, and such that the hypotheses of the Isolating Block Lemma are satisfied with
S = R, Q^== R" == E^ ® E- ^ E^ X E-, W4- == E4-, W- = E- and 2 == {o}. Let
^o, m be as in the Extension Lemma (with this choice of ^), and let Z be a real
R-vector field having w-th order contact with a real R-normal form R + N along
E4' u E~; if Z denotes a representative of Z, there exists [see the end of (4.4) below)
A e GL(n, R), with A' R = R, such that X == (A'(R + N ) ) J B and Y = (A* Z)|^
satisfy the hypotheses of Corollary 2, hence our result. •

Important remark. — In Corollary 2, we obtained a local conjugacy A between X
and Y as the solution of the Gauchy Problem "^^d on ^BN^'B", which was well-
posed because every flow-line of X (or Y) which lies outside W" U (^+ B n 9~ B)
intersects 84' B transversally, at exactly one point. When ^ is a (real) hyperbolic R,
as in Sternberg's theorem, the essential reason for this is that the cylinder
QJ == [x e Q^ = Rn : | x^. | == i } is "a quotient of the /^-invariant open subset Q\W~
byj^", meaning that each flow-line of R which is not contained in W~ intersects QJ
transversally, at precisely one point. Now, such a quotient (of course diffeomorphic
to the orbit space of/R|Rx(Q\w-)) can be constructed in many other ways; here is one:
for simplicity, assume that R has only real eigenvalues q, .. ., c^\ then, there exists a
system (^, . .., x^) of real linear coordinates on R" such that R is the gradient of the
non-degenerate quadratic form F = Sf^/2 with respect to the euclidean metric ̂ dxj,
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and Q '̂ can be replaced by F~l{c) for every negative c. Under the hypotheses of Corol-
lary 2 with ^ == R —restricting ̂  if necessary—, if c is close enough to o for the sphere
P"^) n W4' to lie in the interior of B, a local conjugacy between X and Y can be
obtained by extending to W~ the unique solution of the Cauchy problem <( H == Id
in V 59, where V is a neighbourhood of F~1^) n W4' in F"1^).

{2.3) General idea of our proofs

Here and in the sequel, we again denote by S a diagonalisable element of Ql{n, C).
If we wish to prove Theorem 2 as the Sternberg theorem, we have to answer the following
two questions:

Question 1. — In the complex case^ what would a good Preparation Lemma be—in particular,
is there any natural analogue of the stable and unstable subspaces?

Qyestion 2. — If Question 1 admits a positive answer, can we establish Theorem 2 by a
1<C Cauchy problem method " as in the proof of Corollary 2?

The answer to Question i is very simple: define a strongly invariant manifold (s.i.m.)
of S to be a subspace of C" which is the unstable subspace E^" of aS, viewed as an element
of C(I(2», R), for some a e C —in other words, E^" is the direct sum of those eigenspaces
of S associated to eigenvalues c with 3te(ac} > o, which shows, in particular, that the
s.i.m/s of S sire complex vector subspaces of C" and there is but a finite number of them.
Moreover, every ^-normal form is tangent to every s.i.m. W of S at each of its points [proof", if
W == E^~, then, considering C" as R2", a{S + N) is a real aS-normal form; therefore,
it is tangent to E^" at each of its points, hence our result, for E^" is a complex subspace).

THROUGHOUT THE SEQUEL, ^r DENOTES THE UNION OF THE S.I.M.'S OF S.

Here comes the answer to Question i:

Complex Preparation Lemma. — For every k e N, each ^-vector field is (holomorphically)
conjugate to an ^-vector field X which has k-th order contact with an ^-normal form along i^—in
particular^ by the above remark, X is tangent to every s.i.m. of S (< at each of its points " .

This result was announced in [Ch 85]; its detailed proof is contained in [Ch 86a],
together with further information on strongly invariant manifolds.

Notice that S is in the Poincare domain if and only if it admits C" itself as a s.i.m. Thus,
the Poincar^-Dulac theorem is a particular case of the Complex Preparation Lemma.

It will take us the next two sections to see that the answer to Question 2 is yes.
The general idea is the following: if (^, ..., x^) denotes a system of complex linear coordi-
nates on C^ in which the matrix of S is diagonal, Xjo S == Cj x^, i ^ j < n, the role
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of the quadratic form introduced in the final remark of (2.2) will be played by the
complex function F : C" ->• C given by

(5) F(.)==S^.|^)|2/2.

More precisely, we shall obtain a C^-conjugacy H between a " prepared " S-vector
field and the corresponding S-normal form as the solution of the Cauchy problem
" H == Id in V 55 in some kind of an isolating block for the complex flow under study;.
here, V denotes a suitable neighbourhood of the (compact) subset F"^^) n ̂  in F'^A)
for some regular value b of F.

The proof of Theorem i rests on the same idea, but requires a finer analysis; the
reason why Theorem 2 is obtained by softer methods is that we do not strive for normal
forms of the least possible degree—which can be obtained from Theorem 2, using
"explicit55 calculations as in the proof of Theorem i {see [Ch86<:]).

3. THE COMPLEX FLOW OF A WEAKLY HYPERBOLIC S

(3.1) Introduction and notation

We assume S weakly hyperbolic and denote by ^, . . . , < ? „ its eigenvalues (repeated
according to their multiplicities), and by (^, . .., ̂ ) a system of coordinates as in (5)
above. We shall study the holomorphic flow a defined by

(7(^3 v) = e^ v, t e C, v e C^

with the help of the function F defined by (5). In the sequel, we denote by a a complex
number such that aS e Q\{w, R) is (real) hyperbolic, and by a^ the real flow^g of aS.
We let FI be the real quadratic form v t-> 3le{dS(v)).

The idea is to " split55 our complex (indeed) flow into two comprehensible real
flows: the action CT^, and the action of C/^R on the orbit space of a^ (1) defined by a,
which will be studied in (3.3). Most of the proofs are straightforward and will be only
sketched, for they can be found—in a more general setting—in Section 5 of [Ch 86]»

(3. a) First properties

We shall start with a collection of essentially trivial results, which remain valid when S
is not weakly hyperbolic^ provided it has no zero eigenvalue (so that some aS can be (real)
hyperbolic).

(1) Restricted to the complementary subset of the unstable subspace of aS.
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Proposition 1. — The function F^ is a " Lyapunov function " for a^: its only critical point
is o, and, for each v e C"\{o},

(i) the function ^ : R ,) given by ^y{t) == F^((T^, v)) is increasing, and

(ii) ^ is bounded above (resp. below) if and only if v belongs to the stable (resp. unstable)
subspace WJ- = © Ox, (resp. Wo" = © Ox.) of aS, where Ox, == fl ̂ (o).

' 0 ^(ocy)<0 3 ' ' ° ^(ocy)>0 ^ J ' ^ ^ fc v /

Proo/: — This is trivial, since ^(t) = ̂ e(ac^) \ e^^ x^v)\2|2 and (therefore)
^)=S(^(^,))2|^^)|2. •

Corollary 3. — For each negative real number c, Q^ == F^c) is a quotient of the a'invariant
open subset Eg = C^W'o" ^ ^ iw ̂  ^^^ o/' (2.2), final remark, •

Here comes the ( < splitting " of a mentioned at the end of (3.1):

Corollary 4 ([Ch86], (5.2), proposition S). — Under the hypotheses of Corollary 3, the
mapping <pg: Q^ X R -> C" given by (pc^ ^) === <Jl(^ x) ls a dtffeomorphism onto E^.
For every {x, s) e Q^^ X R and ewy ( '̂, t) e R2,

(9: ̂  +<<)as) (^ .) = (O^), ^ + ^' + J .̂ o 0:(^) du\

where the flow (0^) on Q^ <z^rf ̂  function g y : Q^g -^ R are defined as follows: if ̂  denotes the
infinitesimal generator of (0^), then, for each x e Q^, ^(^) == iflS(^) — g^x) aS(x). Thus,
the flowlines of ̂  are precisely the intersections of Q^ with the orbits of a \ p ̂  ̂  • •

(3.3) Structure of the flow (0^)

Hypotheses and notation. — We assume S weakly hyperbolic, and endow C" with
the hermitian norm v \-> \ v \ defined by | v |2 = S [ Xj{v) |2. For each I C { i , . . . ,%} ,
we let EI == © OXj, We still assume c < o, and a is fixed as in (3. i).

Proposition 2 (see Fig. 2). — (i) Let Jf be the set of all equivalence classes of the equiva-
lence relation ^ eRc, between elements j , k o f { i , . . . ,w} . Each I eJf determines a unique
5i e R JM^A ^Afl^

flR .̂ == R(i — ig^) (= {u G C : ̂ (^(t — ^)) = o}) /or every j e I.

(ii) For each I ejT, /^ 1^" and 1^ be the subsets of {i, ...,n} ^ty^n &>'
1^ === {j : '^SSe^acAi — g^)) < o}. rA^n, Ej+ ^znrf Ej- <zr^ s.i.m^s ofS. Conversely, every s.i.m.
of S which is maximal for the inclusion is both of the form Ei+, I ejf and of the form Ej^,
JejT.B

256



C^-CONJUGACY OF HOLOMORPHIC FLOWS NEAR A SINGULARITY i57

FIG. 2

We can now see how the s.i.m.'s of S appear in the structure of (0^).

Notation. — Let ̂  be the set of all I e Jf with 3te[ac^) < o for some (and there-
fore every) j e I; equivalently, ̂  is the set of those I e Jf* such that

Sc,i=EinQ,

is not empty—in which case it is a sphere. For each I e^, let E<; i (resp. Q^ j)
denote the set of those v e C" whose orthogonal projection ^ onto Ej lies in E^ (resp. Q^),
and let ^ = {j : ̂ (^.(i — ^)) < 0} = I^\L Clearly, we can identify Q^i to
2^ i x Ej+ X Ej- yia the canonical isomorphism of C" = Ej <9 Ei+ ® Ej- onto
Ej X Ei+ X Ei-, and the open subset E<,i of 0* in (y-invariant. Therefore, it is easy
to check that both Q, j and Q^nE^ i are quotients of E^i by ^ in the sense
of (2.2), last remark. We let

^,i:Q^E^->Q^

denote the canonical diffeomorphism obtained by following the orbits ofcr^.
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FIG. 3

Proposition 3 ([Ch86], (5.2), Proposition 6 and Theoreme 1). — For each I e^y
^ is <( normally hyperbolic at S^ i, zwA global stable manifold W^j = E^i n Q^ n E .̂ anrf
^/oW unstable manifold W^i = E^i n Q^ n E^ ". Afor<? precisely, ^,1 == (^,i)* S<-
t'j given by ^ == (i — g^) aS\^ thus, if we write Q^i as S,̂  X Ei+X EI-,
Sc,i •̂ ^ ^^ <z y^^or field on S^i {namely, Sc|s<:,i)? a ^^y vector field on Ei+ wAo^ ^te&/^
subspace is Ei+ ^{/, fl̂ f a /^^ar y^^r field on Ep- wAo^ unstable subspace is the
whole o/^Ej-. In particular, the hypotheses of the Isolating Block Lemma (2.2) are satisfied by
(Q, M, E^ E-, ^) = (Q^, S^, Ei., Ei-, ̂ i). •

Thus, in each (< chart " ̂ . i, the situation is quite simple; we shall now see how
these simple situations are glued together. Here is a first step:

Proposition 4 ([Ch86], (5.2), Proposition 6 and Theoreme 1). — We have that

U E^ = E, and U (W^ u W^) = Q, n ̂ . •
I G ^^ I G " c

We can now state an analogue of Proposition i:

Proposition 5 ([Ch86], (5.2), Theoreme 2). — The function f,: Q,, -> R given
by t,{x) == SSe{idF{x)) is a c< Lyapunov function "for the flow (0^): it is proper on Q^ n ̂

î  critical set is 2^ = U S^i <W, /or ^fl̂ A A: e Q^g\S^,
I £ ̂ c
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(i) the function ^:R;) defined by ^^(t) = {,(^{x)) is increasing and
(ii) ^^x15 bounded from above (tesp. below) if and only if x belongs to W^i (resp. W^i)

for some I e<^. •

Proposition 6. — For each I e J ,̂ f^(S, ̂ ) = {cg^} (therefore, these critical values are
distinct—see Fig. 2)\ moreover^ we have cg^ ^ cgj if and only if W^; n W^j is not empty,
in which case it is contained in the (^-invariant sphere W^ n Q^. Thus, the latter is the set
ef those x e Q^ for which the function ̂  of Proposition 5 is bounded, and

fcW n QJ = [i™j? ̂ i, ̂ ajc cg^

By Proposition 4, for each I e^, we have that

W^=(Q^nE^\^W^ and W^ = (Q^ nE^\^W^.

Proof. — For each x eS^i, the definition of g^ implies that
W = S ̂ (i - ̂ ) .,) | x^x) [2/2 + 8Se(g, dF(x))

=^e{g,aF{x)) ==^F^)==^.

For the other assertions, .$w Figure 2 and Propositions 2, 4 and 5. •

Proposition 7. — The critical points of F are those v e C* z^A S Re, 4= C. Thus,
the set of its critical values is U R-L c.. • a;J v

l^j^n '• 3

Corollary 5. — A real number e is a regular value of t^ if and only if b = (c — ie)/a
is a regular value of"F, and Q^ = P""^) then equals f^"1^); ifwehave e< min{cg^ : I e^},
then

(i) ^ ^m'OTi o/' those s.i.m^s of S wA^A do not intersect Q^ £y

^=Wo- u U E^, fl̂
I G •̂ <? °

(ii) Q^ ij fl quotient of Q \̂ U Wf by (0^) m ̂  ĵ ^ of (2.2), fl̂ rf
16 •^ff

(iii) ^fl^A ^ n E^ w^A I e ̂  u a compact submanifold of Q^, arorf

Q.'̂  ̂  = U (Q:, n W^) = U (Q:, n Ei,).i £ *^ i £ ̂ ^

Proq/'. — The first assertion is clear. Under the hypothesis of (i), it is easily
checked ([Ch 86], (5.1), Corollaire 2) that a s.i.m. Ej of S, I C { i , ..., n}, is contained
in y^ if and only if b does not lie in S R^. c^, hence (i) (see Fig. 2). Assertion (ii) is

a straightforward consequence of Propositions 5 and 6. For each I e^, Q ,̂ n Ej+
is a submanifold because 6 is a regular value ofF ̂  (by Proposition 7, applied to < y [ c x E +
instead of or); it is compact because fjo ^y is proper. The last but one equality is a
consequence of (ii) and Proposition 4, and the last equality follows from it and the
inclusions Wf1' C E^ C Y^ I e ̂ . •
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Let us now see what Corollary 5 implies for a itself:

Corollary 6. — For every regular value b of F,

(i) there exists a e C such that aS is (real) hyperbolic, that c == SHe(ab) is negative
and that (choosing this a and this c in the above theory) e == SHe(iab) is less than cg^ for every
I e^, and

(ii) if y^\ denotes the {^'invariant) union of those s.i.m.^s of S which do not intersect
Q^ == F"1^), then Q ,̂ is a quotient by a of the open a-invariant subset E^ == Cn\ir^^ iw
^ j^tt^ of the final remark of (2.2).

Proof, — (i) is clear, and (ii) can therefore be deduced from Corollary 5 (i), using
the (T-invariance of ̂ , Corollaries 3 and 4, and the last assertion of Proposition 6 [see
[Gh86], (5.1), Corollaire 3 for a simple direct proof). •

(34) Concluding remarks

With the above notation, the gradient of fp with respect to the ambiant metric
of course has roughly the same properties as ^. This can be used to study the topology
of the cone F'^o)—and, more generally (using paragraph (5.1)) of [Ch 86] with
r == 2), of the intersection of two real projective quadrics " in general position ": the
advantage of this method would be to avoid the A-cobordism theorem (and its " bad
dimensions 5?), so far necessary in the proof of such results [LM].

Going back to our subject, the advantage of replacing the whole of C" by E^
(notations of Corollary 6) is clear, since the orbit space o f ( T ) c x E ^ i s a Hausdorff manifold,
diffeomorphic to Q^,, whereas the orbit space of a itself is a non-Hausdorff stratified
set—the structure of which can easily be investigated via the above theory. As there
is much current interest in the (< quotient structures " induced by foliations or group
actions, these non-trivial examples might prove useful. Anyway, it would certainly be
interesting to use the above method in the hunting of topological invariants such as that
defined by the Camacho-Kuiper-Ladis-Palis theorem (see (1.3), Corollary i).

4. NON-LINEAR COMPLEX FLOWS
PROOF OF THEOREM 2

(4.1) Hypotheses and notation

We still assume S weakly hyperbolic, and denote by b an arbitrary regular value
of the function F introduced in (3.1); in order to avoid empty statements, we assume
that Q^ = F"^) is nonempty—or, equivalently, that b lies in SR+^ (which is
always the case when S is in the Siegel domain). The notations will be those of Sec-
tion 3, with a, c and e as in Corollary 6 (i).
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As flS is (real) hyperbolic, the hypotheses of the Isolating Block Lemma (2.2)
are satisfied by (0, E\ E-, ^) = (C", Wo-, Wo-, flS), C1 being endowed with the her-
mitian metric introduced at the beginning of (3.3). Let B denote the corresponding
"isolating block"; replacing b by kb (or the hermitian norm |.| by |.|/A) for some
positive A, small enough, we may—and shall—assume that the compact (since f^n^r is
proper) subset ^ n fc"1^ maxc^]) lies in the interior o/B; we choose a real number

I £ " c
e'> max^i such that the compact subset t^(\e, <]) n i^ lies in the interior of B,

IG ^c
and let

L^fr^^^']).

(4.2) 6< Isolating blocks M for the complex flow of S near the origin

Proposition 8 (see Fig. 4). — (i) For each compact tubular neighbourhood V of the compact

subset Q;6 n -T in Q^ (see Corollaries 5 and 6), the set V = L n (^U^(V) u ̂  W,-i)
is a compact neighbourhood of Wo" n Q^ m Q^c.

(ii) Such sets ^ form a basis of the filter of neighbourhoods of ^ n L in L.

(iii) For each such V, ^ = B n (Wo- u U ^({Q X ^)) ^ a ^m^ neighbourhood
f 6 B

^/ o m C".

fr1^)
FIG. 4
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Proof. — (i) Given I e J^, assume that 'V is a neighbourhood of L n i^\ U W^j
^j^i c*

—an induction hypothesis which is satisfied if cgj, is minimal, by Corollary 5 (ii) and
Propositions 3-6. Then, by the last assertion of Proposition 3 and the Isolating Block
Lemma (2.2), V is a neighbourhood of S^ i, hence of L n Y^\ (J W^j by Pro-

^ gl>gj

position 3. By induction, this proves that V is a neighbourhood of L n ̂ , which
contains W^ n Q^ by Proposition 6.

/^/
To see that V is compact, we shall use

Lemma 2. — Let (a^) = (^, z/J be a sequence in C x C", such that v^ converges to
a limit v and that F((r(a^)) is bounded. Then, there is an increasing sequence (m^) in N such
that CT(^) converges to a limit w\ moreover^ if {u^) is unbounded, then v lies in ̂ , and so does w
for a suitable choice of (m^).

Proof of Lemma 2. — If (^) is bounded, we can extract from (a^) a conver-
gent sequence. If (u^) is not bounded, then, taking subsequences, we may assume
that \u^\ -> + oo, that uj\u^\ -> u e C and that F(o(flJ) -> L e C. As S
is weakly hyperbolic, there exists u' e C such that we have 3ie{y! c.) < o if
and only if 89e{uc^) < o, and Sfe(u' Cj) > o if and only if Ste{uc^ ^ o. Now,
^'F^J)) -S^^^I^^J)]^, and

(6) I^^J)!2^!^^!2^^!^-^^!))^

therefore, we obtain

(7) lim^(o(^)) == o for ^e(uc^ < o,

hence £%e{u' L) = lim S 3ie(u' c) \ ^(o-(aj)|2. This proves that a{a^) is bounded;
Sfe{u'Cj)>0

therefore, by (6), 3te{uc^ > o implies x^(v) = o, hence v e Y^; moreover, we can
extract from or(^) a convergent subsequence, the limit of which belongs to i^ by (7)3
hence our lemma. D

Now, let (j/J be a sequence in V. If it has infinitely many terms in the compact
subset ^ n L, then it has a convergent subsequence with limit in Y^ n L C \?. In
the remaining case, extracting subsequences, we may assume that every ̂  is of the
form OHyj, alias c{u^ yj, z^eV, ^eR, u^ e C, and (since V is compact)
that v^ converges to some v e V. If t^ is bounded, we may assume that it converges
to some t, and then limj^ == O^^) lies in L (which is closed), hence in V. If ^,
hence u^ (see Corollary 4)3 is unbounded, then, as F is bounded on L, the hypotheses
of Lemma 2 are satisfied by (^, y^); therefore, extracting subsequences, we may
assume thatj/^ tends to some y e ̂ , which has to lie in L, hence in ^, which is there-
fore compact.
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Proof of (ii). — We just have to show that if a sequence y^ = O^(^) in L\Y^
vm e Q^A^? ^ ̂  °5 ls !such ihat ̂  tends to ^ n Q^, then some subsequence of (j/J
converges to Y^; now, extracting subsequences, we may assume that v^ converges to
some v e i^ n Q^, hence (ii) by Lemma 2.

Proof of (iii). — Following the orbits of c^, we get a diffeomorphism of Q^ onto
the cylinder { | x^. \ = i} (notations of the Isolating Block Lemma, with the above
choice of B), hence (iii), by (i) and the Isolating Block Lemma (iii). •

(4.3) "Isolating Blocks" for perturbations
of the complex flow of S near o

Hypotheses and notation. — We denote by V a fixed compact tubular neighbourhood
of Y^ n Q^ in Q^, small enough for V to lie in the interior of B. For each I e ^ ̂
we endow Q,c,i === ^c,i x ^+ x EI- with the riemannian metric obtained by mul-
tiplying the ambiant hermitian norm by a positive constant aj such that, if

KC,! = { ^ ^^i^il^l^ 1 ^d a i l^ i -1^ i},

^K^c,i) ^les m tne interior ofV in Q^ (of course, the hypotheses of the Isolating Block
Lemma are satisfied by ^ = ̂  i in B == B^ i for this new metric).

Complex Isolating Block Lemma, First Part. — There exists a C^-neighbourhood ̂ f

of flSJfi m the space of smooth vector fields on B holomorphic in the interior ofK such that, denoting
by ^Q the set of those elements of ̂ rt which are tangent to every s.i.m. of S, each X e^To ^as

the following properties:

(i) The Hypotheses of the Isolating Block Lemma (2.2) are satisfied if ^ ]g = X (consi-
dered as a real vector field), and the function F^ is increasing along every nonzero real fiowline o/^X.

(ii) Let X^ denote the vector field on Q^ n B obtained from X as ̂  was obtained from aS
in Corollary 4. Then, the set

Vx = L n ( U /x (V) u U W,-i)
t^o c ' ie^c

is a compact ^-saturated neighbourhood of V n L m L, contained in the interior of B./M
(iii) The set Vx == B n (W^ u U/x^x)) is a compact neighbourhood of o in C .̂

(iv) All the properties of ̂  stated in Propositions 3, 5, 6 and Corollary 5 remain true if we
replace Q^ by Vx, Sc ky ^-c|vx an^ eac^ ^?i ^ tts intersection with L, with the following
modifications:

— In Propositions 5-6, replace < ( bounded from above (resp. below) 9? by <( bounded from
above by a real number a < e ' (resp. bounded from below by a real number a > e) ".

— In Proposition 3, replace the assertions after " More precisely... " by the following'.
^Moreover, if ^x,i: (Vx? S^i) -> (Q^,i? ^c,i) ts ^l€ ^oca^ dijfeomorphism which consists
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in following the real orbits of X and if Xj denotes the image of Xg by %x D ^^5 ^u i^^
of %x i contains Bg;, ̂  hypotheses of the Isolating Block Lemma (2.2) are satisfied in B^ j
^ (Q,, M, E^ E-, ^) = (Q^i, S^, Ei., Ei-, Xi), and X^ tends to Sc.ik, in the
C^topology if X tends to aS\^ in the G^topology. "

Proof. — Let X be a smooth vector field on B, holomorphic in the interior of B
and tangent to every s.i.m. ofS. IfX is C^-close enough to ^Sjg , then, by the Extension
Lemma (i), assertion (i) is true; therefore, (iii) follows from (ii) as in the proof of Pro-
position 8 (iii). Checking (ii) and (iv) takes several steps, in which the locution " ifX
is G^close enough to aSL" will be implicit:

Step 7. — The second (i.e. local) part of our perturbed Proposition 3 is true. Indeed, as X
is arbitrarily G^close to aSk? the image of ^x,i does contain Bg i; now, for each
y e Q ^ i , Xi(^) is the image of iX{v) by the linear projection C"-^ T,, Q^ j with
kernel RX(y), which proves that Xi|^ is tangent to S^j X Ei+ and S^i X Ej- and
tends to ^ i L in the G^topology when X tends to aS [ g in the C^-topology, hence
Step i by the Extension Lemma (i).

Step 2. — The Lie derivative Lx fg is positive outside S^: as X^ is arbitrarily C^-close
to S c l o n B ? fhis is true outside any fixed neighbourhood U of 2^. To construct a
neighbourhood U of Sg in which it is also true, notice that, for each I e^, X^ is
tangent to W^j and to W^i, hence to 2^i, and that fg can be written
f^u) == cg^ + S Q9e{(t — g^) aCj) \Xj(v) p/2; therefore, by Taylor's Formula, there does

^
exist a compact tubular neighbourhood Uj of S^i in Q^, independent ofX, such that
Lx fjui ls of the form u i-> q^(v) {[x^v))^^, where q^{v) denotes a quadratic form,
depending continuously on v and X (in the CMopology), and such that every q^{v) is
positive definite if X = f lS jg —hence if X is G^close enough to aS\y.

Step 3. — For each I e J^, W^i n L {resp. W^i n L) is the global stable (resp.
unstable) manifold of XjgnL at ^c,^ indeed, given v e L n W^i, every f^u) lies
in W^i (since it belongs to Ej+ by Proposition 2 (ii) and our hypothesis on X, this is
deduced from the last equality of Proposition 6, using induction on the value of cgj).
Moreover, f^(v) exists and lies in L n W^i for every t ^ o, since it can escape from the
compact subset L n ̂  n B neither through BB—which L n ̂  does not intersect—, nor
through {^{{e.e'})—because of Step 2 and the inequality
(8) e < min f,(W^j) = eg, = max f,(W^) < e\ J e ̂ ,
obvious from Propositions 3-6. Now, for each positive e < min \cgj — cg^\J2^ the

u ̂  K

last equalities of Proposition 6 and (8) imply that S^j == ^{cg, — e) n W^j (resp.
S^j == {c~l(cgJ + s) n W^j) is the compact submanifold f^^^j — e) n E^ (resp.
fc~l{cgJ + e) n EI-) for every J e^g. Moreover, as

W,fj n f^(^) = S^j = W,-j n f,-1^),
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again by (8), we can choose e so small that 2^j and S^j lie in the interior of ^x^Bc j)
for every J. Then, by Steps 1-2 and the Isolating Block Lemma, the interior of
each ^x,^(Bc,j) m Q^ contains a compact neighbourhood Cx,j of 2g j, of the form
{see Fig. 5 below)

Gx,j == t^{[cgj - ̂  eg, + s]) n (W^ u ̂ U^(Kj))

for some compact tubular neighbourhood Kj of S^j in {^"^{cgj — s). By Step 2,
L^ f^ is bounded from below by a positive constant in V^n L\U C^j, where ./̂  (zQ

can therefore spend only a finite amount of non-negative time. Moreover, for every
J e^, each flowline of X^ which does not lie in W^j and enters Cx j clearly has to
leave it through fc~l(cgJ+ e)—hence forever, by Step 2—after a finite time. There-
fore,/^(y) has to be in Cx^i for every large enough t, hence our result by Step i (the
case of Wgj is of course entirely analogous).

Step 4. — End of the proof: let 8V denote the boundary of our tube V in Q^. As X<;
is arbitrarily C^-close to Sc|(^nB? ^c takes every value between e and e ' on each flowline
of X, through BV, and Ln U A (BV) is arbitrarily G^close to L n U °^V)-<^o c t^o
Let ^x denote the "box" in Q^, bounded laterally by Ln U A (^V), at one of

t^O

its ends by V, and at its other end by the perturbed version of f^1^)^^/ (i.e. the
submanifoldoff,-1^') with boundary f,-1^') n U /^(BV) which contains Vn f.-V)).

We may assume that the compact subset Vx contains every ^x^^c 1)5 and our problem
is to show that Vx does admit the definition given in (ii), which is easy: given compact
subsets Cx^i, I e^c? as in Step 3, Steps 1-3 imply that, for each v eV and each
I e ̂ , either v belongs to Wgj, or there exists a real number t^{v) ^ o such thaty^ {v)
lies outside Cxj for t> t^{u). Now, f^ {v) can leave Vx for t> o only through
f^^'), and has to leave Vx i fy does not belong to U W^j, for Lx f^ is bounded from

below by a positive constant in Vx\U Cx^i, where f^ {v) lies for t> max t^{v). This
proves what we wished. •

We can now give a complex analogue of the Isolating Block Lemma (i)-(ii); the
estimates in (vii) will not be needed before Section 5:

Complex Isolating Block Lemma, Second Part. — With the notation of the Complex Isolating
Block Lemma, First Part, if we choose ^V' small enough, then there exists a positive constant G
such that every X e^To has the following properties'.

/^
(v) X|^ defines a global complex flow Rx on Vx, which means the following', if U^

/^i
and Ug are connected 2-dimensional submanifolds with corners of C, containing o, if Yj ^ U, -> Vx,
j •== 1 ,2 , denote two smooth mappings which are holomorphic and satisfy yj(^) === ^(Tj(^))
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/%/

t^<fe U, and if, moreover, y^o) = ̂ {o) = y e Vx, ̂ , yi(^) = Y2W = Rx(^ zQ = R )̂
(which is thus defined) for every u e U^ n Ug.

% ^
(vi) For ^A y e V x , ^ j^ o/ those ueC for which R^{v) e Vx is defined

(in the sense of (i)} is a connected 2-dimensional submanifold with corners of C, which is
compact if and only if v does not lie in "T. More precisely, let 9x be the diffeomorphism of

/^ /•S/

"x^{M eVx X R:/xW ^Vx} onto Vx\Wo- given by ^{x, t) ==/xW, ^ ^
<?x ̂ x ^R ^ ^ smooth function defined by iX(x) = X,(x) + g^{x) X{x), x eVx.
Then, for every (x, s) e £1^ and every {s', t) e R2,

(9) Rx^(9x(^ ̂ ) = 9x(AW, s + s' + J^x ofW du^

meaning in particular that both sides have the same definition domain.
<^/

(vii) One defines a smooth map r^: ̂ xV^ -> C, analytic (1) off 8Q, by

Rx^(y) eV.

For each v e Vx\^, let Yx,v ^^ the path from o to r^(v) in C such that {for some parametris-
ation of ̂ ) the path s [-> Rx^'^zQ consists in following first the (real) orbit {/xW
from v to its intersection x with ̂ , and then the orbit {fx,W}from x to its intersection R^^^v)
with V; then, denoting by d the hermitian distance in C^, we have

0 t^

(10) I Yx^M I ̂  G Log ———^— for every s and every v e VA^.
^ ̂ )

Proof. — Assertions (v)-(vi) follow from the definition of Vx. Under the hypotheses
/•»>/

and with the notation of (vii), let s^ : VX\WQ- -> R and t^: ̂ ^6 -> R be defined
{see (i)-(vi)) by /x8^^) e Q.c and^ /x/^W eQ:&. As X (resp. XJ is transversal
to Q.c (f^P- %) at ^^y point ofVx (resp. V), these two functions are smooth, and
analytic off 8S. Since (9) yields

(ii)
^) - ̂ (v) + ̂  ̂ g^ of^x) du + it^x), where x =f^s^v\v)

lTx,.M| ̂  l^xWI + l^xWI (i + majc |^x(^)|) for every s,
yevx

rx is smooth, and analytic off 8K. We shall now prove (10):

Step 1. — Restricting^' if necessary, there exists a positive constant k such that, for X e ̂ '^
we h^ve d^^v),^,) ̂  e-^ d^v,^), t eR, v eB, and d{f^\x}, ̂ ) ^ e-^ d{x, ̂ ),
^ e Vx, o ̂  ̂  ^xW : let ft: Q^c -> C0? i] be smooth, compactly supported, equal to i
in a neighbourhood of \^, let Y = hX,, and let k^ = max{| rfY(^) | : x e CLJ. If X is

(1) Analytic means real analytic.
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C^close enough to aS, then, for x e Vx and o^ t^ ^(^ we have f^\x) =f^\x)
and, for every smooth path Y : E0? I] "̂  Q.c fromfxt{x) to ^b n Q-c?

^ I (Y? o Y)' (.) p == 2((y? o Y)'M I ̂ Y(y? o vM). (y? o Y)'(.))
< ^x|(^oY)'M|2, o<^^,

hence, by integration, f \{f^ o ^ ) ' ( s ) \ d s ̂  ̂  \ I Y ' O ^ I ds. Let dy denote the geodesicJo J o
distance on Q^; as f^ o y is a path from x to ^ n Q^, we get

d^ ̂  n QJ ^ ̂  ̂ (/^W, ̂  ̂  Qc);

now, Ax depends continuously on X in the GMopology, and, on the compact subset h~l(l),
the distances d and dy are equivalent. This proves that—restricting ̂ f if necessary—our
second inequality holds for some positive constant k; modifying the latter, the same
argument yields our first inequality.

Step 2. — Reduction of the problem: clearly, for each X e^o? -^x ls bounded below,
and its minimum depends continuously on X; moreover, s^ is bounded above by the
function r^. associated to S == X by the Isolating Block Lemma, which proves

g
that v\-> s^{v)[Log-——. has a finite supremum MX; by the proof of the Iso-

\ 7f . \
P+

lating Block Lemma, MX depends continuously on X, and we can therefore choose
^T so that M == max {Mx : X e^} is finite. As 124 | == d(v, WQ-) ^ d{v, ̂ ), we

get |̂ ) | ^ M Log ————- hence, by Step i, d{f^\v), ̂ ,) ^ 2-^ d(y, ̂ ^
"(^ ^hh

for each v e^x\^(T- Therefore, by (11), we just have to prove

Step 3. — The non-negative function x\-> — ^xW/Log d(x, ̂ ) is bounded on ^xV^
and its supremum depends continuously on X e^To in the C^topology: let the compact subsets
Cx i, I e-^c? ^e as m S^P 3 °^ the proof of the Complex Isolating Block Lemma,
First Part. Let the elements I^, . .., 1̂  of ^ be so ordered as to satisfy cg^.> cg^
for j<k; for o^m, let p^,p^i: ̂ x\^ ^^x and ^+, ̂  : \^x\^ ̂  R^
be defined inductively as follows (see Fig. 5):

^W-o, ^+iW==^W
, , {^ ^/x;'^) e ̂ .i,} if non-empty

for o <j^ m, k-(A: , ̂ -(A: ] == ' '
»/ ' L J \ / / J \ / - 1 / ' - 1 - / \ ' ^ * 1 • •{y-iW} m ^e remaining case

for o ̂  m, ^W ^/x;^^) and j&^i ^/x^^W-
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PW)-P^v")

FIG. 5

As Lx te has a positive lower bound on Vx\UC^i and fjvx ls bounded,

(12) the length of [o, ^xWAU [C(^)? ^{x)~\ is uniformly bounded with

respect to x and (choosing ^f small enough) X.

Therefore, by Step i, x (->• — ^(^)/Log rf(^, ̂ ) is bounded on Vx\^b, uniformly with
respect to X. Let us make the induction hypothesis that so is x -> — tj~{x)l'Log d{x, ̂ )
for some j^ m\ then by Step i, there is a positive constant a such that we have
W^), ̂ ) ^ d(x, -r,Y^ x e \?x\^, X e ̂ . Thus, as d{p]-(x), W,-̂ . n Gx.z? is
not less than d{pj~(x), ̂ ) and, on Cx,i., the distance induced by that of Q,c,i.
via ^x,i- ls equivalent to d, it follows from the Extension Lemma (i)—applied to X^.
in Bpj.—that — ^'(^)/Log d{x, ̂ ) is bounded in ^xV^? uniformly with respect
to X; therefore, by (12) and Step i, so is — ^.^(^)/Log d{x, ^5)5 hence our lemma. •

(4-4) Conjugacy results; proof of Theorem 2

Notation. — We assume ^ ' small enough for every X e*/To to satisfy properties
(i)-(vii) of the Complex Isolating Block Lemma. For each X e^o, we let

and

168
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We shall construct conjugacies as in Corollary 2$ here is the easy part:

Proposition 9. — (i) For each X e^To, the set <*)x of those {x, u) e V X C such

that R^(A:) is well-defined and lies in Vx is an open subset of V X (R + iR+), and the mapping

Ox : ̂ x "-> ̂ x\^& ^y^ ^b ^x^ u) == RSK )̂ ZJ fl7z analytic dijfeomorphism, the inverse
of which is v H> (Rx^W, ̂ (y))-

(ii) Given X flnrf Y in ̂ Q , ̂  mapping h: == Oy ° ̂ x1 : ̂ x (^x n ̂ y) -> ̂ Y^X n ̂ y)
^ fl̂  analytic dijfeomorphism, sending the restriction of ̂ X onto that of z^i for every z e C, a^rf,

^ (i).
(13) h(v) == R?^ o Rx^^) ^ A-^y) = R^ o Ry^y). •

We can now prove a complex analogue of Corollary 2:

Complex Extension Lemma. — For every positive integer k, there exist an integer p ^ k
and a C^-neighbourhood^" o/^SL in^' such that, if two elements X, Y of ̂ " C\^Q have p-th
order contact along i^ n B, then, with the notation of Proposition 9,

(i) the sets U = ̂ x^x n ̂ y) u (Vx ^ '^ft) and V = OY(()>)Y n ̂ x) u (Vy ̂  ̂ 6)

are open neighbourhoods of V^ n Vx == Y^ n Vy î  Vx and Vy respectively, and
(ii) ^ mapping H : U -̂  U', ^^a/ to A q^^ ^^</ to Id on ̂ , ^ fl C^dtffeomorphism,

such that H^(2'X|u) == -2'Y[u/ for every z e C.

Proof. — Let 8 > o be small enough for cr([o, S] X V) to lie in the interior ofB,
let T = R/8Z, and let q : Q^ X R -> ̂  X T denote the canonical projection.
For every X e^o? close enough to flS^, we have Vx X [o, 8] C (px^BN^B); thus,
as [X, t'X] = o, there is a unique analytic vector field X^ on Vx X T such that
q* X^ == yx^Xj^vwo)? t^le ^ow of which is given by

(^ fx, ° ?(^ s) == 9 (fW. s + So^ °fW du)^

meaning in particular that both sides of this identity are defined in the same domain
(recall that the definition domain of^x ls Vx).

In the rest of the proof, we assume X, Y e^o close enough to aS L. The general
idea is as follows: using the <c charts " <px anc^ PY) we transform our initial complex
conjugacy problem into another one, concerning real flows (Steps i and 2). We can
then use the Extension Lemma (2.2) to solve this reduced problem (Step 3); this is
why we have introduced T and q, as a more direct approach would make use of a less
simple tool.

Step 1. — Let U^ == U\^, V[ == U'\^, let d^ be the set of those x eVx such
that, with the notation of (n), f^ o/x^W ls defined and lies in Vy, and let
ho: do X T -> Vy X T and q* ho: do X R -> Vy X R be given by

h^.Q) =fwof^x\x,Q) and q-h,{x, s) =f^ of^x, s).

169
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Then, U, = <px(^x ^ (?* Ao)-1^)) ^

(15) ^(pyo^^ocpx 1!^-

This is obvious from (9)3 (n) and (13), since

/^ s) = (/^), . + J^x o/^W ^). D

Step 2. — Let m ̂  k and ^Q be as in the Extension Lemma with S == ^S; assume thai

(i) X flnrf Y belong to ̂ o and have m-th order contact along Y^,
(ii) Do == dQ u (Y^ n Vx) is an open neighbourhood of ^ n Vx in Vx, a^rf
(iii) AQ extends to a C^-embedding Ho : Do X T -> Vy X T, having m'th order contact

with the identity along (^ n Vx) X T.

Then^ the conclusion of the Complex Extension Lemma is satisfied.

Indeed, q* h^ clearly extends to a C^embedding ^Ho : Do X R-^Vy X R,
having w-th order contact with Id along (Y^ n Vx) X R; as X and Y have w-th order
contact along every s.i.m. of S and are tangent to it, it follows that

(16) U, := U\Wo- == <px("x ^ (^ Ho)-^^))

is an open neighbourhood of Vx n ^\\VQ' in Vx, and that H[u^ = <py o {q* Ho) o (px^u,
is a C^-diffeomorphism onto U'\Wo', having w-th order contact with Id along

Vx n^YWo", hence in particular along W^\{o}. As Up is X-saturated by (16)3
o

we can apply the Extension Lemma (2.2) with (<o, A) = (Up,H[g) ; since the set Q,
provided by the Extension Lemma clearly satisfies Q\Wo" = U^, this prove Step 2. D

For each I e^, let q^: Q^i X R -^CL,i X T = Q,^i be the canonical
projection, and let < p ^ i : Q ^ i X R - > E ^ i be defined by 9c,i(^<y) = ^(^, x).
As [aS, iaS] == o, there exists a unique analytic vector field ^ i on Q,c,i X T suc!1

that q\ ?c,i = 9c+,I(^s). g^011 ^ ^,i(^ e) === (?c,iW. ,?i); therefore, setting
Bg i == Bg i X T and Sg i == 2^ i x T, the hypotheses of the Isolating Block Lemma
(2.2) are satisfied by (Q, B, S) = (Q.c,i? ̂ i? Sc,i)- Here is our last !steP:

Step 3. — Let the elements I^, . . ., 1̂  of ̂  be so numbered as to satisfy cg^.< cg^.,
for j<j\ and let the integers m = m^^^ m^ . . . ^ m^ be defined as follows:
m is the same as in Step 2 and, for i ^ j ̂  /', m, is the integer m associated to
(B, ^, S, k) == (B^ i., ^ i., S^i., ^-+1) ^ ̂  Extension Lemma (2.2). TA^, ^ hypotheses
of Step 2 are satisfied if X and Y A^ w^A order contact along i^.

no
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The proof is by induction. As above, set %, == Q^ x T, do = d^ X T, etc.
Let L == L\f,-1^'), let HO:DQ-^VY equal Ao off ̂  and Id on Y^, and let
^.== L n V^\ U.W^,, i ^-< i + i. We shall establish that, for i ^ j^ f + i,

/ ^ ^o u^ is an open neighbourhood ofi^^ in L, and H o L ^ y . is of class G^
J W has m^th order contact with Id along T .̂.

This will imply our result for j = t + i, since m^^==m and ^4.1 ==^ n L.
Notice that (14) and the Complex Isolating Block Lemma (iv) yield (17)1; indeed,

V is a quotient of Vx\^\ (resp. VyV^) by f^ (resp. /^), and Ao is that conjugacy
between X^ and Y^ which is the <( maximal " solution of the Cauchy problem (< Ao == Id
on V " with domain in Vx and range in Vy; therefore, since each Vff n L is the stable
manifold at S^j of both X^ and ¥„, which have m^-th order contact along it, (17)1
is true.

Let us make the induction hypothesis that so is (17). for some j ̂  t. Using the
Extension Lemma (2.2), we shall prove that </o uirj+l is a neighbourhood of
^j u sc,Iy in L and that? near S^ ^, Ho has w^-th order contact with Id along W^j..
Since W^^. n L is the global unstable manifold at S^i. of both X^ and ¥„, which
have w^i-th order contact along it, this will imply (17)^4.1, as Ho is a conjugacy between
X, and Y, on and off i^.

Let <Px,j : (Q-c,iy X R, \^. X R) -> E^^. be the local diffeomorphism
(^^)^/^W. let ^x,,:(Q^S^.) -^(Q.c.iy.^i? be the local "chart" such that
^iy ° ?xJ ° 9x = ^x,; ° 9? and let ^Y,j be associated to Y in the same fashion.
By the perturbed version of Proposition 3 in the Complex Isolating Block
Lemma (iv), B, .̂ lies in the interior of the images of %x,;r and ^YJ? moreover,
X,,, = (%x,,)*Xj^ and Y^, = (^LYJ^. are C^small perturbations of ^,i^,,,
having m^th order contact along the image of W^i. U W^j. by ^xj and %'y ., i.e.
along S^i^ X (Ejj U EI-). Therefore, we can apply part (ii) of the Extension
Lemma (2.2) with

(B, ̂  X, Y, A, m, <o, A) = (B,̂ ., ̂  X .̂, Y .̂, m^,, ̂ , ̂ ., h,.),

where h, == ^Y,j0 (Hol^uar? o ^xjlo*, and o^ is defined as follows: given C^j.
and GY .̂ as in Step 3 of the proof of the Complex Isolating Block Lemma, First Part,
cô . is the (X, ̂ .-saturated) set of those x in the interior of C^i. such that h^.(x) lies in
the interior of Cy^i.. As the set Q provided by the Extension Lemma in this situation
clearly satisfies ^xj^^IV we conclude that Do and Ho have the required pro-
perties near Sg j.. •

Corollary 7. — Theorem 2 is true.

Proof. — Let k be a positive integer, and let p ^ k be as in the Complex Extension
Lemma. By the Complex Preparation Lemma (2.3), we just have to prove the fol-
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lowing: if an S-vector field has p-th order contact with an S-normal form S + N along Y^,
then Z is C^-conjugate to S + N. This will be a consequence of the Complex Extension
Lemma if we can prove that there exists A e GL{n, C), with A* S === S, such that—given
a representative Z of Z— aA*Z\^ and aA*{S + N ) [ g are well-defined and lie in

A/*lt ^ A/*f^r"n^-
Now, this is quite easy: for each X in the spectrum A of S, let d(\) be the dimension

of the corresponding eigenspace E(X) of S, and let (x{)^^^ be a system of complex
linear coordinates on E(X) in which the nilpotent endomorphism N^Em has an upper
triangular matrix. If d = max d{\), define Ag, s > o, by

A, E(X) = E(X) and x{ o A|^) = s^^L i < J < W ^ A.

For every small enough s, A = Ag fulfils our requirements. Indeed, Ag pre-
serves S and (therefore) each one of its s.i.m.s9, and both A^ 2 and A^(S + N) tend
to S on B in the C^-topology when e tends to o. •

5. PROOF OF THEOREM i

(5.1) Algebraic background: normal forms and their formal flows

Hypotheses and notations. — Given a (not necessarily weakly hyperbolic) S, we let a
and ^, x^ i < j ̂  n, be as in (3. i), and ^{v) == c{u, u). For each p e N", we denote
by Pi, .. .,A» lts coordinates, and let \p\ == S .̂ and ^ = x^ ... ^n. For each
X e d, we denote by Rx the Taylor expansion of its complex flow at (o, o), viewed as
a convergent power series in the variables u, x^ . . ., x^ where u is the (complex) para-
meter of the flow; we let dom Rx be the strict convergence domain of R^—if
RX == Sfl^y u^ ^p, recall that dom Rx is the (open) set of those (u\ v ' } e C x C"
such that, for some (u, v) e C X C^ with \u\ > \u'\ and \x^v)\ > \x^)\ for
every j, the set {a^pi^^(zQ} is bounded; for each {u, v) edomRx, we shall write
Rx(t/,y) ==Rx(^^), . . . ,^(y)) =^m,p^^)—which is well-defined, by AbePs
lemma.

Proposition 10. — For every ^-normal form S + N,
o

(i) the polynomial vector field N — N1 is a linear combination of the monomials y^ —,
p€^={pEVln:\p\> i and^p,c^=c^ i ^ j ^ n , ^

(ii) if we view R^ and R î as elements of C{u}\\x^ ..., A-JF, then

^ ° (^N - RN.) = S a^ (u) ^ for i < j < n,
PGPy

where each a^p : C ^ is polynomial; moreover, seeling R^(^) = RN(^, y), we have
R^ = o" o R^ = R^ o ̂  /or ^A u, and

(iii) t/' N1 = o, then the degree of each a^ p ^ ̂  ̂ % \p\.
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Proof. — Since [S, N — N1] = o and S = ̂ c.x.—, (i) is clear. To prove'^/
the rest, we shall use a linear representation: denote by € the complex algebra of all
germs at o e C^ of holomorphic complex functions, by m its maximal ideal
{feS:f(o) =0} and by <^ the finite dimensional algebra ^'/m^1 for each non-
negative integer k. Each X e d defines the derivation X* :f\-> ̂ xf °f ^? hence
a derivation X^ of <^. Denoting by J^ the canonical projection of € onto <?^, we clearly
have that J .̂ o R^) ^^(J^) for every [j.k.u) (1). Now, as N1 is nilpotent,
so is N^ for each k\ therefore, each u^fxj o R^ is polynomial, and its degree is less
than k if N1 = o (because this means that N* m3 C m94'1 for every positive integer q).
From this and the fact that each R^ preserves S, assertions (ii)-(iii) follow at once. •

The following obvious result ([Gh 86], (4.3.2), Lemme 4) will be useful:

Proposition 11. — Let N'1 be equipped with the ordering < defined by (< p ^ q if and only
if p. ̂  q. for every j 59; then, for each A C NP1, the minimal set mm A of A is finite, and every
p e A satisfies p ^ q for some q e min A. Therefore, if Po = [p e N^{0} : S^ ̂  == 0}
and if P^, . . . ,?„ are as in Proposition 10, then, for o^ j^ n, each element of Py can be
written—in a non-unique fashion in general—as the sum of one element of mm Pj and finitely many
elements of mm Pg. •

These two results yield the easy part of the Poincar^-Dulac theorem:

Corollary 8, — If Po is empty—which of course is the case when S is in the Poincare
domain—then

(i) each Pj is finite, and, for every X e d with [S, X] = o, X — X1 is a linear
a

combination of the monomials x^—, p ePy, i ^ j ^ n , and
ox^

(ii) every ^-normal form S + N generates a global holomorphic action of C on C"; more
precisely, by Proposition 10 (ii), the complex flow of N is an algebraic C-action on C". •

We shall now see what happens if Po is nonempty. For simplicity, we consider
only special S-normal forms, in the following sense: call an S-vector field special if X1 = S
(of course, such an X has nothing special in the " generic " case when S has only simple
eigenvalues!).

Corollary 9. — There exists a positive integer k such that, if z : C" -> C"1"11*0 and
w : C X C" -> C^ " - k } xminpo are given by

( z[v) = (^(y))pgnnnPo and z? = xp^ P e min ̂

I W{U, V) = (W^(U, y))i^^,pemmPo> where w^ == um ̂

(1) Viewing R^ as a germ at o e C" of a holomorphic diffeomorphism.
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the following hold: for each special ^-normal form S + N, there are polynomial functions
MN p : C ^ and convergent power series R^ p at o e C"11"1*0 x C^ • • • ' f c } ><minpo, /» e U min P.,
such that ) J>0 J

(18) ^-(RN^ y) - v) == S (̂ M^M + RN,̂ ^), ̂ , ̂ ))) ̂ ),
p G min I" ^

I ^ J ^ ^
and

(19) RN,P=O ^ C1111"110 X {o } .

Identity (18) wc?^ ^ particular that we have (u, v) e dom R^ i/' and only if {z{v), w(u, v})
lies in the strict convergence domain dom R^ „ for every p.

Proof.— By Proposition 10 (ii)-(iii), x^oR^=x.+ Z; ^^m^, i^j^n.
pePy,0<m<b| '"

Now, by Proposition n, there does exist a positive integer k such that each u^ ̂
pe U P^\mmP, and o< m< \p\, can be written ^'P^^P^W, with Q^) e U minP.

j>o • j>o ^
and |L(w,^) |>o. We shall stick to the following

Rule. — Choose exactly one such mapping (m,p) -> (K(w,^), L{m,p), Q^{P)).

Clearly, J is injective. Therefore, if we set &, ̂  == a^ if (r ,^,y) =J(w,j&) and
b, f g = o in the remaining case, our corollary follows at the formal level, with
u^pW == S a^ ̂  and R^p(^, ̂ ) == S &^^ ^r ̂ .

0<w<|p| r,f '
Now, given (^, v) and («', y') in C x C^
fl; the set {a^p u^ x^^}} is bounded if and only if so is {^g ^(y) ^(^ ^) -^(y)},

and
b ) the inequalities | ^ |< |^ | and \Xj(v') | < |^.(^) | for every j imply

I ^(y/) I < I ^W I and I ^^(^'^ v/)\< \ w^(u, v) | for every (w, j&); this and a) show that
(^', y') dom RN implies (^(o'), w(K', v ' ) ) e dom R^p for every p;

c ) conversely, if we have | z^v') | < [ ̂ (v) \ and | w^(u\ v')\<\ w^{u, v)\ for
every (w,^), then, assuming that{Z>,^ ^ ^(z/) ^((/, y)} is bounded for every q, we get the
following: as (1/3 v) l-> (2;(»), M/(M, v)) is continuous, there exists («", y") e C x C"
with | u" | > | ̂  | and | x^v") \ > | x^v') \ for every j, satisfying [ z^v") \ < | z^v) \
and I wm,p("'^ z/") I < I ^m,p(^ ^) I for every (w, ^). In other words, by a),
{z(v'), w(u', y')) e dom R^p for every p implies (u\ v ' ) e dom R^. •

Corollary 10. — If S + N W S + N' ^ two special S-normal forms, then,
there are polynomial functions Q^N'^G^ ^d convergent power series T^'^p at
o^C^9 x C^'"^^^^ ^eUminP^ such that, for i ^ j ^ n,

(20) ^(R^N' o R^N^)) == W' o WV))

=== X^V) + S (̂ N,N',p )̂ + TN,N (̂̂  ^(^ ^)) ^(^
pGminPy
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and

(21) T^=o onC^xW.

Identity (20) means inparticular that, if we have (— u, v) edom R^ and {u, R^u{v)) e dom R^ ,
then {z(v), w(u, v)) belongs to domT^' ,p ./or ^^ p.

Proof. — Since N and N' lie in the centraliser of S, R^+N' o Rg^ = RSr 0 RN"-
Now, Proposition 10 (ii)-(iii) and straightforward calculations yield

x, o R^ o R^ = ,̂ + S ^,p(^) ̂
pepj

where each b ^ ^ , p : C ~ ) is polynomial, of degree less than \p\, and vanishes at o.
We conclude as in the proof of Corollary 9. •

(5.2) A generalisation of Theorem i

If S is weakly hyperbolic, call an S-normal form S + N reduced if N is a linear
8

combination of monomials xp—, p e Pp i ^j< n, such that every Cj, with p^ 4= o
ox^

lies in R^. In particular, if S is hyperbolic, the only reduced S-normal form is S
itself—and, of course, every S-normal form is special. Therefore, Theorem i is a par-
ticular case of

Theorem 3. — If S is weakly hyperbolic, then every special S-vector field is C°~conjugate
to a reduced special ^-normal form,

Before proving this result, let us explain why it provides <c good " normal forms:

Proposition 12, — If S is weakly hyperbolic, then every reduced S-normal form S + N
generates a holomorphic C-action RS+N °f ̂  f0™ ^+N == ̂  ° Gu == au ° RS) where R^
is the algebraic C-action (u, v) \-> R^zQ, u e C, v e C ,̂ generated by N. More precisely,

denoting by Vj the canonical projection of v e C" = (D Ej onto Ej, J e Jf, the hypothesis
I G Jr

that S + N is reduced means that N(y) == S N(^) for each v e C"; for every I, Nj = Nj^
1 c «?r

•aW Sj = SJE; a^ vector fields on Ej, fl^rf Sj ^ t'w ̂  Poincare domain. Therefore, by Corol-
lary 8, the flow RN; of each Nj is an algebraic action, and the actions R^ and Rg+N " ̂ ^ "
us follows: for each v e (y,

^{u,v) === S R^(^yi),
le^r

A^ RI^(,) = ̂ R^ o R^(^) = ^^RS, o R|̂ ).

Proo/1 — For each I £jf, S and N are tangent to each of the two s.i.m. Er+ and
Ej- of S, hence to their intersection Ej. As every Sj is in the Poincard domain bv weak
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hyper bolicity, one just has to check our characterisation of reduced S-normal forms,
which is easy. •

Remark. — When S in only weakly hyperbolic^ a reduced special ^-normal form S + N
0

may be CP-unequivalent to S: for example, if n = 2, c^== i, c^ == 2 and N = ^—,
0X9

then every leaf of the foliation defined by S (see the beginning of (i .3)) is a punctured
complex line with puncture at o e C2, whereas the leaves of the foliation defined by
S + N are injectively immersed complex lines, with the sole exception of Q^\{o}.

(5.3) Proof of Theorem 3

Still assuming S weakly hyperbolic, we shall establish

Lemma 3. — For each regular value b off, every special ^-normal form S + No is C°-con-
jugate to the (special) ^-normal form S + N^ obtained from S + No by cancelling the coef-

n
ficient of every monomial x1^—, p e P , such that b e S R.. ̂ .

OXj pjfc+O

This implies Theorem 3: by Theorem 2, every special S-vector field is G^conjugate
to a special S-normal form S + N (to see that it is indeed special, just notice that the
conjugacies constructed in the proofs of the Complex Preparation Lemma [Ch 86a]
and of Corollary 7 are tangent to the identity at o). Now, N is a linear combination of

a
monomials xp—, p e Pp i <j^ n, and, for each such monomial, Proposition 7 yields

BXj
the following: either S R+ c^ is a half-line, or it contains a regular value of F. There-

pjfc+O

fore, applying Lemma 3 finitely many times, we obtain that S + N is C°-conjugate
Q

to S + N', where N' is obtained from N by cancelling the coefficients of those x13 —

such that S R+ c^ is not a half-line, hence Theorem 3 by weak hyperbolicity. D
PA+O

Proof of Lemma 3. — We may assume b e SR^-, as No = N^ if this is not the case.
Our other hypotheses and notations will be those of (4.1).

Step 1. — For each p e N^ we have b e S R+ c^ if and only tf x19 vanishes identically
^+ 0

on y^. Indeed, a s.i.m. Ej of S, I C { i , . . . ,%} , is contained in ̂  if and only if
b ^ S R+ c.. Therefore, we have b e S R^. c^ if and only if, for every such I,

je i pk + o
there exists k ^ I with p^ 4= o, hence our result.
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Hypotheses and notation. — For each e > o, let '? == e Id e GL{n, C). In
the sequel, we let N == ̂  No, N '= ?* N^, X = fl^(S + No)|B = ^(S + N)|B,
Y = ae^S + N^IB = fl(S + N')|B, and the locution <( for every small enough e 9?

is implicit. When s tends to o, so do N and N' in the C^topology. Therefore, we
may (and shall) assume that X and Y belong to the set ̂ ^ defined in the Complex Isolating
Block Lemma. To simplify notations, we assume a = i, which of course is no res-
triction.

We shall prove that the mapping h associated to X, Y by Proposition 9 (ii) fulfils condi-
tions (i)-(ii) of the Complex Extension Lemma with k == o.

This extension problem will be solved using Corollaries 9-10, which will allow us
to obtain our conjugacy as the sum of a convergent power series in variables which are
continuous functions. More precisely, we shall see that the mapping obtained by
replacing Rx and Ry by fi.x : dom Rx -> C" and Ry : dom Ry -> C" in Proposi-
tion 9 (13) can be extended continuously by Id on ^ n Vx and coincides with h
near V nVx.

Step 2. — For each {m,p) e N x N", if xp vanishes identically on ̂ , then

r^A ..• ^7 h^^x^v) ifv^,(i) the mapping Vx 3 v h> {
I o if v e ̂

is uniformly bounded with respect to s and (small enough) e, and

(r^v^x^v) if v i-T./ • • \ -it- *-^ • l —•• ' ' ' J °(n) the mapping v \-> (
[ o if v e ̂

^ continuous on Vx.
î /

Indeed, for every v e^xV^fe? our hypothesis on ^ yields 1^(^)1 < d{v, Y^),
hence (i) and—since fx is continuous—(ii), by the Complex Isolating Block Lemma (vii).

^ f (^), w(r^(v),v)) ifvi^^
n, * 0 / • \ 'T f . . • y» | \ \ / / \ A . \ / / / / ^ r 0&tep J. — (i) me mapping Vx 3 ^ l-> {

I (o, o) if v E V^
is continuous.

(ii) M^A^ (-rx(z0,y) edomRN r̂f RS+TW = ̂ x^W for each ye^x\^.

Indeed, by Step i, each y^ with p e Po vanishes identically on V^ (as S .̂ <: == o,
the origin lies in the convex hull of {Cj :pj 4= o}, hence in its interior by weak hyper-
bolicity), and thus Step 2 (ii) yields (i). Moreover, by Step 2 (i), the mapping

/N/

v^-t [z{v), w{— YX,!/^ v)) is uniformly bounded on "V^^ with respect to s and
(small enough) s. Now, we have domR^p^ s^domR^,? for each p e (J min P.;

j>o

177
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therefore, if e is small enough, Corollary 9 implies (- YX,.(^) e dom R^ for every

z/eVx\y^ and every j. This proves (ii), for both R^'{v) and Rx^^) are
obtained by " integrating S + N along the path -- yx „ '^ D

/•^
^ 4. — (i) For each v 6\?x\^, ^ Aaw (rx(o), RX^)) edomR^.

^(ii) The mapping H : Vx -^ C", cyMa/ to Id <w ̂  anrf to v^ RA o R^Wf^
./r ^/^ * .* &+^i A \ /

W ' » » " continuous.

Indeed, for each q e min P, and each v e^xV^t,

^(Rx^)) = ^(Rs-;t>(.)) = ^(R^^'(o))

by Step (ii) and Proposition 10 (ii); now, Corollary 9 (18) implies that z (Ry"(v)) is
a polynomial in the variables R^(z{v), w{u,»)) and uM^(u), all of whose coefficients
are of the form Zy.{v), p 'e Pg; moreover, the coefficients of each M,, p tend to o with e
and so does each sup \R^{z(v), w(-r^v), v))\. Therefore, we obtain (i) as
Step 3 (ii). ^e^

By Step 3 (ii) and Proposition 10 (ii),

H(.)=R^,oR^(.)=R^)oR^)(p) .

off V7'̂  hence, for i < y < n,

(22) ^.o A(.) = x,(v) +^^ (rx(.) Q.^,MV)) + T^W, w(r^v), v))) ̂ v)

by Corollary 10 (20). Therefore, by Step 2 (ii) and Corollary 10 (21), we just have to
prove that Q .̂N'̂ = o if x9 does not vanish identically on ̂ , which is clear: for
each s.i.m. W C ̂  of S, we have indeed

^W ° RN"(») - v) = S yQLN.N- „(") x"(v) = o
peminPy,a;^|w+0

for i < j < n and v e W, since N = N' on W. D

Step 5. — The connected component Uo of o in H-^Vy) contains ^ n Vx and
is contained in U (notation of the Complex Extension Lemma). For every v e Uo\̂ ,
ry(H(o)) == rx(o), and fi(o) = h{v) (notation of Proposition 9).

Indeed, ^ n Vx = -T, n Vy = T, n L, hence (as X = Y on T,)
o .̂ ^ * 0/

^& n Yx = ^6 n VY; since this is a connected set containing o, on which ft = Id,
it lies in Uo.

By the same argument as in the proof of Step 4 (i), (22) yields

(- ̂ M. H(y)) e dom R^ and RY^I^)) = Rx^^), y e Uo\^.
77<$
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Moreover, replacing X by Y in Step 3, we get

(- r^(H(v)), H(y)) edom R^, and Ry^^I^)) - RY^^H^)),

^eUoV^

Thus, if we can show that r^ = ry o ft in UoV^, we shall have that
Ry^)(ft(z0) = Rx^0^), hence H{v) == R?^ o R^^v), for each v e UoV^.
By Proposition 9, this will prove our result. Now, both r^ and ry ofi are analytic in
the connected set Uo\^, and they clearly coincide—because so do h and ft—in a
neighbourhood ofV (the inclusion V C VQ comes from the fact V and Vx n i^ = Vy n V^
are connected); therefore, r^ === fy o ft in Uo\^. D

With the notation of the Complex Extension Lemma, we have proved that U

is an open neighbourhood of ^\Yx m Yx an(^ ^^ t^ mapping H : U -> C^*, equal
to Id on ̂  and to A off Y^,, is continuous, hence a homeomorphism onto its image.
Now, we have that H*{zY) = zX for every 2: e C, on and off Y^: this is true off ^\
by Proposition 9, and on ̂  because Xj^y == Y|^ is tangent to W for every s.i.m.
WC ̂  of S, and H[^ == Idj^y. Therefore, the germ of H at o is a G°-conjugacy
between X and Y, hence Lemma 3. •

6. CONCLUDING REMARKS

(6.1) CMinearisations

The following result is stated as Theorem B in [DR]:

Theorem 4. — For each positive integer ky there is an open and dense subset V^ of Ql(^, C),
the complementary subset of which has codimension one, such that every S-vector field with S e V^
is ff-conjugate to S.

Proof. — If SQ e Ql{n, C) is weakly hyperbolic and has only simple eigenvalues,
then ([Ch 86flj), for every k e N, there exist an integer i ^ k and a neighbourhood U^
ofSo in gl(w, C) such that, for every S e U^, the S-normal forms in the Complex Prepa-
ration Lemma (2.3) can be chosen of degree i\ now, the set U^ of those S e U^ such
that the only S-normal form of degree i is S itself has a closed, one-codimensional
complementary subset in U^—see (5.1).

Given a positive integer k, let a e C and p ^ k be as in the Complex Extension
Lemma (4.4) with S = So. As the eigenvalues, eigenspaces and maximal s.i.m/s
of T e gl(n, C) depend analytically on T near So, there is an open neighbourhood U"
ofSo in gl(w, C) such that, for each T e U" 0 Up and each T-vector field Z, having p-th
order contact with T along its s.i.m.'s we have the following: given a representative Z
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of Z, there exists an A e GL(^, C) such that the hypotheses of the Complex Extension
Lemma are fulfiled by Y == aA*ZL and X == aA*T|j3; thus, every T-vector field
with T e U" n Up is C^-conjugate to T, hence Theorem 4. •

Although the set V^ we obtain in this fashion is larger than that of [DR], it is still
rather " small ", and its definition is not really simple; the purpose of [Ch 86c] is to
construct a much more reasonable V^.

(6.2) Families

Given a diagonalisable S e gl(7z, C), an (S, p)-unfolding is a germ X at
(o, o) e C" X Cy of a holomorphic vector field of the form (x, u) \-> (X^{x), o), where
each X^ is a local holomorphic vector field on C", such that Xo(o) == o and that S is
the semi-simple part of</Xo(o). Ifo is not an eigenvalue of S, an (S,p)-normal form is
an {S,p) -unfolding having a representative {x, u) \-> (Sx + Ny(^), o) such that each Ny
is polynomial and commutes with S, and S + No is an S-normal form. An {S,p)-
unfolding and a (T, p) -unfolding are C^conjugate, k e N, when there exists a C^-conjugacy
h: (C" X (y, (o, o)) ^ between them (in the sense of (i .3)) admitting a representative
of the form (x, u) h-> (Ay (A:,) u). The above methods yield the following result [Ch 86b]:

Theorem 5. — {i) If S is weakly hyperbolic, then, for each pair {k,p) of positive integers,
every {S,p)-unfolding is C1^conjugate to an (S, p)-normal form.

(ii) Let (^i, . . ., -zj be the canonical coordinate system on C". If S is hyperbolic, then,
for each ? e N5 every (S, p) -unfolding is Cy-conjugate to a normal form represented by
{x, u) i-> ((^(^) ^W)i^j<n3 °)? where c^, . . ., ̂  : (C^ o) -> C are local holomorphic functions.

(iii) For each pair {k, p) of positive integers and each S in the set V^ of Theorem 4, every
(S, p)-unfolding is ff-conjugate to a normal form of the same type as in (ii).

Of course, (i), (ii) and (iii) are generalisations of Theorems 2, i and 4 respectively.
In [Gh 86^], we prove (iii) for k == i and a reasonable V\; as the germs of c^, .. .5 c^
are G^conjugacy invariants, this provides universal unfoldings ([A]) for C^-conjugacy.
Noticing that, as in the proof of Theorem 4, the degree of the (S,p} -normal forms
in (i) with respect to the C^-variable has a bound which depends only on S, we obtain
versal unfoldings for C^-conjugacy, under the sole weak hyperbolicity hypothesis. The
problem of finding universal unfoldings in this general case seems very difficult—see [Ch 86^].

If we replace G^-conjugacy by (holomorphic) conjugacy, (i) and (iii) are true in
the Poincare domain, where the set which corresponds to V^ is simply the set of those S
which have only simple eigenvalues and for which P^, . . . , P^ are empty—see [A],
§ 36, C. In the Siegel domain, there is no hope for such results—which are false even
at the formal level; this is why Theorem 5 is interesting.
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(6.3) Historical and technical comments

The proof of Theorem 2 originated in an attempt to understand and generalise
the excellent—and curiously underrated—work of Dumortier and Roussarie (fDRJ).
My main contributions are the Complex Preparation Lemma—which would have
simplified their proof of Theorem 4—the weakening of Hyperbolicity, and the statement
and proof of a general normal form theorem instead of a linearisation result. The
<( Lyapunov function " F, introduced in [C], is not really necessary here (it is not used
in [DR]), but—besides being crucial in the proof of Theorem i—it makes everything
twork just as well for general smooth germs of Z^ x Reactions, yielding the genera-
lisation of [DR] I was aiming for (see Chapter 3 of [Gh 86] and [Gh 86d]).

The Complex Preparation Lemma (2.3) and the Extension Lemma (2.2) came
from a geometric reading of Nelson's nice (almost) proof of Sternberg's theorem ([N]).
A difference with [N] is that I localise everything in (c isolating blocks ", which makes
the situation geometrically clearer—but technically worse, due to problems of definition
domains; this formulation allowed the direct study of holomorphic flows in Sec-
ion 4—otherwise, they should have been extended to global smooth Reactions (as in
Section 6 of [Ch 86]).

The author is entirely responsible for the rather simple-minded proof of Theorem i.
In [Ch 86c], similarly, C^conjugacies are constructed as the sums of convergent power
series in variables which are functions of class G1.
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Vx, Vx
<ox, ^x, h, ̂ '/, U, U',
RX, dom T (strict convergence

domain of a power series T), Pj (5.1) 172
PO, minP^, z, w, MN, p
^P
Q.N,N',p» TN.N'.P

Section Page

(4-3) 163

— 163

p^(165
- 165

(4.4) i68
H (4.4) 169

—— 173

— i74
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DEFINITIONS AND MAIN RESULTS

Definitions

conjugate
C^-conjugate
Corollary i

— 2
— 3
— 4
— 5
— 6
— 7
- 8-9
—— 10

C^-equivalent
(weakly) hyperbolic
Lemmas:

Preparation Lemma
Isolating Block —
Extension —
Complex Preparation —

Complex Isolating Block —

Complex Extension —
Poincare domain
Proposition i

— 2

— 3-4-5

Section

(1.1)
(1.3)
—
(2.2)

(3-2)
—

(3.3)
—
(4.4)
(5.1)
—
(1.3)
—

(2.1)

(2.2)

——

(2.3)

(4-3)

(4.4)
(1.2)

(3.2)

(3.3)
——

Page

144
145
146
'53
156
156
159
i6o -
171
173
174
145
146

147
148
150
154

R63
(165

169
144
i56
156
i58

Definitions

Proposition 6-7
— 8
-- 9
—— 10

— ii
— 12

quotient
reduced S-normal form
S-vector field \
S-normal form I
X-saturated
Siegel domain
special S-vector field
stable subspace
strict convergence domain
strongly invariant manifold
Theorems:

Poincare-Dulac Theorem
Siegel linearisation —
Theorems 1-2
Stemberg*s Theorem
Theorem 3

— 4
— 5

unstable subspace

Section

(3.3)
(4.2)
(4.4)
(5-i)
—
(5.2)
(2.2)
(5.2)

( I . I )

(2.2)

(1.2)

(5.1)
(2.1)

(5.1)
(2.3)

(1.2)
(1.2)

(1.3)
(2.1)
(5-2)
(6.1)
(6.2)

(2.1)

Page

i59
i6i
169
172
173
175
153
^5

144

150
145
173
147
172
154

144
145
146
147
175
179
i8o
147
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