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C*-CONJUGACY OF HOLOMORPHIC FLOWS

1. Introduction .............

NEAR A SINGULARITY
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1. INTRODUCTION

(x.1) Notation and definitions

Let n denote a fixed positive integer, and let d be the Lie algebra of those germs
at o € C* of holomorphic vector fields which vanish at the origin. Call two elements X
and Y of d conjugate if there exists a germ A : (C", 0) ) of a holomorphic diffeomorphism
such that #*Y = X. For each X ed, let X' stand for the linear part dX(o0) € gl(n, C)
of X.

Throughout the sequel, we denote by S a diagonalisable element of gl(n, C). An
S-vector field is an element X of d such that S is the semi-simple part of X' (thus, every
X ed is an S-vector field for a unique S). An S-normal form is an S-vector field of
the form () S 4+ N, where N is polynomial and commutes whith S in d (since S + N
is an S-vector field, the linear part N* is nilpotent and commutes with S).

(x.2) Holomorphic classification: known results and obstacles

Define S to be in the Poincaré domain when the convex hull of its spectrum in G
does not contain the origin.

Theorem (Poincaré-Dulac). — If S is in the Poincaré domain, then

(1) the centraliser of S in d s finite dimensional and consists of polynomial vector fields—in
particular, the degree of an S-normal form cannot be arbitrarily high;
(ii) every S-vector field is conjugate to an S-normal form.

The reader is referred to (5.1) below for a proof of (i). The * preparation
lemma >’ we shall state in section 2 is a natural generalisation of (ii) to all elements of d.

The Poincaré-Dulac theorem provides very good models: if S is in the Poincaré
domain, then (see (5.1))

a) every S-normal form generates a holomorphic C-action on C", given by an
explicit formula;

b) if S lies outside an explicitly known closed subset of codimension one, then the
only S-normal form is S itself (in this case, the above result is Poincaré’s linearisation
theorem).

(*) We shall not distinguish between polynomial vector fields and their germs at o.
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Ck.CONJUGACY OF HOLOMORPHIC FLOWS NEAR A SINGULARITY 145

The Siegel domain (i.e. the complementary subset of the Poincaré domain
in gl(n, C)) contains a full measure subset & with the following property: if S lies in &, then
every S-vector field is conjugate to S (this is the Siegel linearisation theorem). Here are some reasons
why this non-trivial, remarkable result is not quite as satisfactory as the previous one:

1) To show that a given S belongs to &, one should check infinitely many in-
equalities—which might take some time in general.

2) The complementary subset # of & in the Siegel domain is dense, and even
quite large. Moreover, the few known facts about the conjugacy classes of S-vector
fields with S € Z show that there is little hope for simple results in that direction:
for example, for a given S, the space of all formal conjugacy classes of S-vector fields
may be really huge (and a given formal conjugacy class may contain an infinite dimen-
sional space of conjugacy classes [MR]).

We shall prove that, most of the time (in a very simple sense), these pathological
phenomena disappear if holomorphic conjugacy is replaced by C*-conjugacy, k €N,
defined in (1.3) below. This viewpoint will prove especially useful when dealing
with families of vector fields—see our final remarks.

Our methods are based upon a rather thorough geometric understanding of the
complex flows under study (sections g and 4): even in cases when the Siegel theorem
holds true, this is an addition to our knowledge of the subject, allowing one to estimate
the extent to which two different (holomorphic) conjugacy classes are geometrically
different.

(x.3) C*-conjugacy: definitions and main results

Given X ed, recall that a representative of X is a holomorphic vector field X on
some open neighbourhood dom X of 0 in C", such that X is the germ of X at o—in
other words, germ X, viewed as a convergent power series, is the Taylor expansion
of X at 0. The foliation defined by X is the foliation of (dom X)\X~!(0) by holo-
morphic curves everywhere tangent to X. The germ of this foliation at o depends
only on X, and will be denoted by FX.

For each k e N, call two elements X and Y of d

— C*-equivalent if there exists a germ of a C*-diffeomorphism (C" 0)2) (viewing
C" as R*™) sending #X onto FY;

— Ck-conjugate if they admit representatives X and ¥ respectively with the fol-
lowing property: there exists a C*-diffeomorphism £ : dom X —>dom ¥ such that, for
every v edom X, the image koc¢ of the local integral curve ¢: (C, o) — (C", v) of X
is the local integral curve (C, 0) — (C", k(v)) of ¥ (in the language of [Ch 86] (p. 68-70),
the C-action germs generated by X and Y are C*:isomorphic).
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146 MARC CHAPERON

Clearly, conjugacy implies G*-conjugacy, which implies CG*-equivalence. Call S
— hyperbolic if its eigenvalues are simple and any two of them are R-independant;

— weakly hyperbolic if the closed line segment between two of its eigenvalues never
contains o (thus, if S is hyperbolic, or in the Poincaré domain, it is weakly hyperbolic).

In section 5, we shall state and prove a more general version of the following
result [Ch 8o]:

Theorem 1. — If S is hyperbolic, every S-vector field is CO-conjugate to S.

Now, Guckenheimer [G], Camacho, Kuiper, Palis [CKP] and Ladis [I] were
able to determine the C°-equivalence class of a hyperbolic S inside gl(n, C), hence

Corollary 1. — Let S and T be hyperbolic elements of gl(n, C), and let Spec™'S (resp.
Spec™* T) denote the set of all inverses of eigenvalues of S (resp. T).

(1) If S and T are in the Poincaré domain, then any S-vector field is CO-equivalent to any
T-vector field.
(i1) In the remaining case, the following two conditions are equivalent:
— Any S-vector field is CO-equivalent to any T-vector field.
— There exists A e GL(2, R) such that A(Spec™'S) = Spec™'T.

In the Siegel domain, this result—stated as a conjecture in [CKP]—exhibits a
rigidity phenomenon which makes Theorem 1 much more surprising than the Grobman-
Hartman linearisation theorem (see [A] or [Ch 86]), despite superficial analogy. For this
very reason, the proof of Theorem 1 is hard and uses the following complex analogue of
a theorem of Sternberg stated in (2.1) below:

Theorem 2. — If S is weakly hyperbolic, then, for every positive integer k, each S-vector
Sfield is C*-conjugate to an S-normal form (1).

This statement is not quite as simple as Theorem 1—however, se¢ Theorem 4 in
the Conclusion—but its much nicer proof is very instructive.

(1.4) Plan of the article

In section 2, the real version of Theorem 2 is used as a good introduction to the
general idea of our proofs (paragraph (2.3)), a good excuse for stating our main local
lemmas (the Isolating Block Lemma and the Extension lemma in (2.2), the Prepa-
ration Lemma in (2.3)) and a good reason for introducing the basic notion of a strongly
invariant manifold (paragraph (2.3)).

In section 3, we explain the (global) structure of the complex flow generated
by a weakly hyperbolic S, and discuss some further applications of our analysis. In

(*) The degree of which admits an upper bound depending only (and nicely) on S and %.
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Ck.CONJUGACY OF HOLOMORPHIC FLOWS NEAR A SINGULARITY 147

section 4, we show that, if S is weakly hyperbolic, an S-vector field of the form pro-
vided by the Preparation Lemma can really be considered a small perturbation of S
near o, and prove Theorem 2.
In Section 5, we state and prove the generalisation of Theorem 1 already mentioned.
In the conclusion, we discuss some related problems and results.
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2. GENERAL IDEA AND MAIN LOCAL TOOLS OF OUR PROOFS

(2. 1) Introduction: the real case

In this paragraph, we denote by R a diagonalisable (over C) element of gl(z, R).
Define a real R-vector field and a real R-normal form as in (1.1), replacing d by the Lie
algebra of those germs at o € R" of G®-vector fields which vanish at o. .

The stable subspace E* of R and its unstable subspace E~ are defined as follows:
E* is the unstable subspace of — R, and E™ is the sum of those R-invariant subspaces
of R" corresponding to eigenvalues ¢ with e ¢ > o, i.e. the set of those » e R" such
that ‘_l>ir_nw ¢®p = 0. For this last reason, a real R-normal form is tangent to E~

(and to E*) at each of its points (see [Ch 86], p. 141, Lemme—an alternative, silly
proof would follow from the calculations in (5.1) below). The following result is a
(classical) particular case of [Ch 86 (4.4.2b), Théoréme 1]:

Preparation Lemma. — For every k € N, eackh real R-vector field is C®-conjugate ( in
the usual sense) to a real R-vector field X which has k-th order contact with a real R-normal form
along E* U E~—in particular, by the above remark, X is tangent to E~ (and to Et)  at each
of its points ™,

(In fact, the result proven in [Ch 86] is that one can take the same X for every k.
The advantage of our weaker statement is that its proof can lead to effective computations.)

Call R (7real) hyperbolic if none of its eigenvalues lies on the imaginary axis,
ie. Ef®E~ = R" (thus, R need not be hyperbolic as an element of gl(r, C)). Here
comes our real version of Theorem 2:

Theorem (Sternberg). — If R is (real) hyperbolic, then, for each positive integer k, every
real R-vector field is Ck-conjugate to a real R-normal form.
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148 MARC CHAPERON

(2.2) Proof of Sternberg’s theorem
We shall first state two key lemmas, in the general form needed later on.

Notation. — Let Q denote the (riemannian) product M x E* x E~, where M
is a compact riemannian manifold and E*, E~ denote two euclidean spaces with
E* % {o}. Let W', W™ and X be the three submanifolds of Q defined by

Wt =M X E* x{0o}, W~ =M Xx{o} x E7,
S=WrnW- =M x {o}(¥).

The canonical (orthogonal) projections of Q onto E* and E~ will be denoted by x i x
and x> x_ respectively, and the euclidean norms will be written 2+ |2|. We let
(see Fig. 1)

B={xeQ:|x, |<1and |x_|< 1}

0"B={xeB:|x, |=1}, o B={xeB:|x_|=1}

Wf=W+rnB, W[ =W~ nB,
hence in particular 9B = 2" B U 9~ B. Denote the scalar products of E* and E-
by (x,7) — (x]), and the differential TQ — E* of the projection x> x,, by v v .

Isolating Block Lemma (Fig. 1). — Let £ be a smooth vector field on some open neighbourhood
of Bin Q. Assume that there exist positive constants k. and k_ such that every x € B satisfies
(1) E® 4 [ %)< — Ry |22 and  (B(x)_|2) > k_ |2_|%
Then, the flow (D) generated by & has the following properties:
(1) The two functionsr,, r_:B — [0, o] defined by

r.(x) =sup{t>0:D7*x) eB for o< s< ¢}
r_(x) =sup{t=>0:®(x) eB for o< s<t}
satisfy
ri'(o) = Wy, i) = WY
O~ (x) €0t B for x e B\W~, @-®(x) €~ B for x e B\WH.

(i1) The two smooth functions x> — r (x)/Log|x,| and xm — r_(x)/Log|x_]|,
defined on. B\(W~ U 0% B) and B\(W™* U @~ B) respectively, are bounded and have positive
lower bounds.

(i) If # is a basis for the filter of neighbourkoods of W in @+ B, then the
sets V ={®x):0<t<r_(x) and xeVIUW with VeB form a basis ﬁfor the
filter of neighbourhoods of Wi U Wi in B.

(1) Our results can be extended to the case when Q is the direct sum of two arbitrary riemannian vector
bundles W* and W~ over M.
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B

(i) et ri(z) (x)

@-)(x)

Fic. 1

Proof. — There exist positive constants K, and K_ such that, for every x e B,
the following estimates are satisfied:

{“ Ky lo P< (B4 [ 54) € — By 54 |2
o|x_|P< (B(x)- | 22) < Ko fa_[%

bl

¢ Integrating ” these inequations (se¢ [Ch 86], p. 362, Lemme), we get

(2) &t x| < |07 ()| < e x| for o< E< 7 (%)
2
&t x_| < | (x)_| < &tx_| for o< t< r_(x).

From this and the (therefore) obvious fact that each function ¢ [®~¥(x)_ |, 0 < t< 7, (%)
and ¢ |®f(x)_|, o< ¢< r_(x), is either zero, or strictly increasing, assertions (i)
and (ii) follow at once.

Assertion (iii) is obtained as follows: for each x € 8% B, the greatest distance A,
between ®(x) and Wi U W[ for o< t< r_(x) can be estimated quite easily: either
x € W;, in which case A, = o, or, by the growth properties of ¢+ |® ‘(x)_| and
g |(D‘(x)+|> ’

A, = |B(x) | = | D(x)_],

where ¢, €[o,r_(x)] is defined by this equality. Therefore, (2) yields
(5 B,< [ 0,
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150 MARC CHAPERON

Similarly, the least distance 3, between ®‘(x) and W} U W[ for o<t r_(x) is
either zero, or min{|x_|, |®™®(x) |}, hence, by (2),

4) 8, > min{|x_|[, [x_ [},

Assertion (iii) follows at once from (3) and (4). .

Note. — The name of our lemma comes from the fact that B is an isolating block for
(®") in the sense of Conley (se¢ for example [CZ]).

Notation and definition. — For each smooth vector field X on a manifold (with
corners) G, we let fyx denote the flow of X (defined on a subset dom fx of R x C),
and sometimes write fi(x) instead of fx(t, x) for (¢, x) edom fx. A subset U of C
is called X-saturated if {t:f{(x) e U} is an interval for every x e U.

Extension lemma. — For each & as in the Isolating Block Lemma and each positive integer k,
there exist an integer m > k and a Cl-neighbourhood A of £ |y in the space of smooth vector fields
on B such that the following hold true:

(1) If &y denotes the set of those X €N whickh are tangent to Wi and to W at each
of its points, then, Hypothesis (1) of the Isolating Block Lemma is satisfied (with different positive
constants) if €|y is replaced by any X e N,.

(i) Let X and Y be two arbitrary elements of /", having m-th order contact along Wi O W7,
and let h: o — o' be a C™-diffeomorphism with the following properties:

a) o s the X-saturated intersection of an open neighbourhood of T in Q and an open
neighbourhood of W{\Z in B\(W; v &~ B);

b) o' is Y-saturated, open in B, and h,(X]m) =Y|,;

c) h has m-th order contact with the identity along W* N o.

Then, the set
Q={f(x):xen, t>o0, (tx) edom fx
and (t, h(x)) € dom fy\(/fy)"'(8” B)} U W \o~ B
is an X-saturated open subset of B, and h extends to a unique C*-diffeomorphism H of Q onto the
Y-saturated open subset
Q' ={f(y):yew, t> 0, (1)) edomfy
and (¢, h~'()) e dom f\(fx)~'(2” B)} U Wi\o~ B
such that H,(X ,Q) =Y ,n' . Moreover, H has k-th order contact with the identity along W+ U W~

Proof. — (i) is clear, and so is the fact that Q\W™ (resp. Q"\W™) is an X-saturated
(resp. Y-saturated) open subset of B—whatever m may be. Moreover, still assuming
m > k arbitrary, Hln\w- is uniquely determined by the conjugacy condition,
which implies that it has to be the C™diffeomorphism onto Q"\W~ defined by
H(fi(x)) =f4(h(x)) for t>0, xew and ff(x) e Q. Therefore, uniqueness comes
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Ck.CONJUGACY OF HOLOMORPHIC FLOWS NEAR A SINGULARITY 151

from the following fact: if Q is a neighbourhood of W \d~ B in B, then, as E* is not
trivial, H IQ\W_ has at most one continuous extension to Q. Thus, we just have to prove

Lemma 1. — If m is large enough and N~ small enough, then, under the hypotheses of (ii),
there exists an open subset U of B with X C U CQ such that the mapping
Us | H(@) ifo¢W~
o v tf ve W™

15 of class C* and has k-th order contact with 1d along W~

Indeed, Lemma 1 implies our result: if its conclusion is true, then, by the analogue
of (2) for X and Y (which implies that Wy is their unstable manifold at X) and the fact
that they coincide up to order k along Wi, we shall have H(f{(v)) = ff(H(v)) for
t>o0, veU and f{(v) e B\d~ B and, by the flow-box theorem, Q will be a neigh-
bourhood of W\~ B and H will have &-th order contact with Id along W\é~ B.

We shall give a rather tricky proof of Lemma 1, again adapted from
[Ch 86] ((4.2.3), théoréme 2). Of course, we exclude the case when E~—and,
therefore, Lemma 1—is trivial. Let ue C®(R, [o, 1]) satisfy u«7'(1) = (— oo, 1/3]
and u'(0) = [2/3, ©), and let X,, X, ¥ be the smooth vector fields on Q defined by

\Xo(x) = (0, — x;,x_)
%00 =%Xo(x) + u(lx, ) (|2 ) (X(x) — Xo(e))  if x B
Xo(x) = Y(x) if x¢B
?(x) = Xo(x) + u(|x,|) w(|x_]) (Y(x) — X,(x)) if x eB.
As X, generates an R-action on Q, so do X and Y.

Step 1. — If N has been chosen small enough, then

(1) X and ¥ satisfy inequations of type (2) in the whole of Q , and have m-th order contact
along Wt U W—;

(n) let B’ —{x €eQ:|x_|<1/3 and |x+| <1/3} and o’ =B NnHY(B)\W;
then, ={ f~( ):x €ew'’ and t< 0} is an X-saturated open nezghbourhood of WH\ X
in Q_\W and Hlm extends to a unique C™-embedding H:ot > Q  such that
ﬁ:(ilw =¥ |fiw+)» having m-th order contact with 1d along WH\Z.

Step 2. — Let W, ={xeQ:|x_|<r}, r>o0, and let x> x, denote the projection
Q — M. If r is small enough, then
(1) the mapping Hy: W, N (o™ U B) — Q. defined by
( (H(oy, 00, u(t — [0, ) 0)o, H)y + ullo,) (00 — HE)),
H(o)_ +u(lo |) (oo — H(v).)) for 1/3<|o,|<2[3
v for [v,[<1/3
H@) for |o,]> 2/3

is a C"-embedding, having m-th order contact with Id along W™ U W~

S

Ho(v) =
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152 MARC CHAPERON

(ii) for r small enough, the vector field Z on W, given by
Z(v) =H;¥(0) ifveB and Z) =X,(0) ifov¢B
is of class C"~' and has (m — 1)-th order contact with X along WH U W,

Outside B, we have that H;!'oH =1Id and X = Z; therefore, replacing
(X, 37', H) by (i, Z,H;'o H), we get a more or less standard extension problem,
which we shall now solve.

Step 3 ([Ch 86], théoréme A6-5, p. 361). Define X_:Q —~E~ by X_(x) = X(x)_,
and let

~

X
(%_: (%) .y l.y)/lyl2 tx e W, ye E7\{o}
px = sup {Lz G(%) (»,0) /2 |»|*:» e T,Q\{o}, x e W*}
px = inf {Lg G(x) (5,0)/2 |»|*:» e T,Q\{o}, x e W*},

where Ly G is the Lie derivative of the riemannian metric of Q with respect to X. If we
have Ax> o0 (hence pf>o0), px<o and m>k + 1 + (pt — kux)/Ax, then, for r
small enough, the family (fyof% 'lw’),> o 15 well-defined and converges in the C* sense to an
embedding H, which has k-th order contact with 1d along Wt U W~

Ax = Inf

We can now explain how to choose m and A": m is the least integer greater
than % + 1 + (uf — kuz)/A; (we have py < o< A, because E* and E~ are non-
trivial), and A4 is such that each X eA", satisfies (i), p3x<o<Ay and
m>k+ 1+ (ux — kux)/Ax-

Then, under the above hypotheses, the definition of H, implies that
HY(Z|yw,) = X|w, and H,(s) = for |s,|>1 —by Step 1 (i) and the fact that
Z=X=2X,in {xeW,:|x,|>1}. Therefore, if D, denotes the X-saturated domain
of Hyo H, = ﬁ,, we obtain

(¥ |gm) =X

Df
xeD, and IN-I,(x) =H(x) forevery xew* with | #,. | large enough.
Thus, by Step 1 (i), we have that H, =H in W, nw*, hence in particular
U={xeW,:|x,|<r}CQ and H|y=H|,

if 7 is small enough for U and H,(U) to lie in B’ and be contained in { f(w) : ¢> 0} U W~
(which is a neighbourhood of Z in Q by the Isolating Block Lemma (iii), applied in
{x e Wg:|x,|< R} for some R< 1); indeed, by Step 1 (i) and the definition of Q,
H|ynq has to be well-defined and equal to ﬁ,|U in the whole domain of definition
of I-I,[U, i.e. U. This proves Lemma 1. m
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We shall now see how to construct C*-conjugacies using the Extension Lemma.
The ¢ Cauchy problem method ” introduced here will be omnipresent in the sequel:

Corollary 2. — Let k, m and A" be as in the Extension Lemma. If two elements X and Y
of Ny have m-th order contact along W+ U W~ then, they are C*-conjugate in a neighbourhood
of Z.  More precisely, let V be the open subset of (0 B\9~ B) X [0, ) consisting of those (x, t)
such that both f+(x) and fy(x) are well-defined and lie in B\ 8~ B, and let ¢ and ¢ denote the smooth
embeddings of V into B\0~ B given by o(x,t) = f4(x) and {(x,t) = fi(x); then, the hypo-
theses of the Extension Lemma (ii) are satisfied by o = ¢(V) and h = $oo™"

Proof. — By the Extension Lemma (i) and the Isolating Block Lemma, ¢ and ¢
are smooth embeddings of V into B\(W~ u ¢~ B), the images of which are open
neighbourhoods of W\ Z. Moreover, as X and Y have m-th order contact along W}
and are tangent to it, ¢ and ¢ have m-th order contact along ¢~ '(W*) = ¢=}(WT),
hence Corollary 2. m

Proof of Sternberg’s theorem. — Given a positive integer k and a (real) hyperbolic
R egl(n, R), with stable subspace E* and unstable subspace E~, we shall prove there
exists an integer m > k with the following property: if a real R-vector field Z has m-th order contact
with a real R-normal form R + N along Et* U E™, then Z is C*-conjugate to R + N.

This and the Preparation Lemma (2.1) clearly imply Sternberg’s theorem. Now,
there obviously exists a euclidean structure on R" for which E* and E~ are ortho-
gonal, and such that the hypotheses of the Isolating Block Lemma are satisfied with
E=R, Q=R"=E"®E " ~E" Xx E-, Wt =E*, W~ =E~ and Z ={o0}. Let
ANy, m be as in the Extension Lemma (with this choice of &), and let Z be a real
R-vector field having m-th order contact with a real R-normal form R 4 N along
E* UE-; if Z denotes a representative of Z, there exists (see the end of (4.4) below)
A €GL(n,R), with AR =R, such that X = (A*(R + N))|; and Y = (A" Z)
satisfy the hypotheses of Corollary 2, hence our result. m

B

Important remark. — In Corollary 2, we obtained a local conjugacy £ between X
and Y as the solution of the Cauchy Problem “4=1Id on 8" B\d~ B”, which was well-
posed because every flow-line of X (or Y) which lies outside W~ U (8" B n &~ B)
intersects 8* B transversally, at exactly one point. When £ is a (real) hyperbolic R,
as in Sternberg’s theorem, the essential reason for this is that the cylinder
Q ={xeQ=R":|x, | =1} is “a quotient of the fz-invariant open subset Q\ W~
by fr ”’, meaning that each flow-line of R which is not contained in W™ intersects Q'
transversally, at precisely one point. Now, such a quotient (of course diffeomorphic
to the orbit space of fg|gxqw-) can be constructed in many other ways; here is one:
for simplicity, assume that R has only real eigenvalues ¢,, ..., c,; then, there exists a
system (%, ..., x,) of real linear coordinates on R" such that R is the gradient of the
non-degenerate quadratic form F = X¢ 22 with respect to the euclidean metric X dx?,
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and Q’ can be replaced by F~'(c) for every negative c. Under the hypotheses of Corol-
lary 2 with § = R —restricting A" if necessary—, if ¢ is close enough to o for the sphere
F~'(¢c) n WT to lie in the interior of B, a local conjugacy between X and Y can be
obtained by extending to W~ the unique solution of the Cauchy problem “H = Id
in V ”, where V is a neighbourhood of F~(c) n W+ in F~%(c).

{2.3) General idea of our proofs

Here and in the sequel, we again denote by S a diagonalisable element of gl(n, C).
If we wish to prove Theorem 2 as the Sternberg theorem, we have to answer the following
two. questions:

- Question 1. — In the complex case, what would a good Preparation Lemma be—in particular,
is there any natural analogue of the stable and unstable subspaces?

Question 2. — If Question 1 admits a positive answer, can we establish Theorem 2 by a
““ Cauchy problem method > as in the proof of Corollary 2?

The answer to Question 1 is very simple: define a strongly invariant manifold (s.i.m.)
of S to be a subspace of G" which is the unstable subspace E; of aS, viewed as an element
of gl(2m, R), for some a € C —in other words, E; is the direct sum of those eigenspaces
of S associated to eigenvalues ¢ with Ze(ac) > o, which shows, in particular, that the
s.d.m.’s of S are complex vector subspaces of C" and there is but a finite number of them.
Moreover, every S-normal form is tangent to every s.i.m. W of S at each of its points (proof: if
W = E;, then, considering G" as R*", 4(S + N) is a real aS-normal form; therefore,

it is tangent to E; at each of its points, hence our result, for E; is a complex subspace).
THROUGHOUT THE SEQUEL, ¥  DENOTES THE UNION OF THE S.I.M.’S OF S.
Here comes the answer to Question 1:

Complex Preparation Lemma. — For every k € N, each S-vector field is (holomorphically)
conjugate to an S-vector field X which has k-th order contact with an S-normal form along ¥ —in
particular, by the above remark, X is tangent to every si.m. of S ““ at each of its points .

This result was announced in [Ch 85]; its detailed proof is contained in [Ch 864],
together with further information on strongly invariant manifolds.

Notice that S is in the Poincaré domain if and only if it admits C" itself as a s.i.m. Thus,

the Poincaré-Dulac theorem is a particular case of the Complex Preparation Lemma.

- It will take us the next two sections to see that the answer to Question 2 is yes.

‘The general idea is the following: if (x4, ..., x,) denotes a system of complex linear coordi-

nates on C" in which the matrix of S is diagonal, x;0S8 = ¢, 1<j< n, the role
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of the quadratic form introduced in the final remark of (2.2) will be played by the
complex function F:C" - C given by

(5) F(o) = X | 5(0) |2/a.

More precisely, we shall obtain a C*-conjugacy H between a “ prepared ” S-vector
field and the corresponding S-normal form as the solution of the Cauchy problem
“H =1Id in V” in some kind of an isolating block for the complex flow under study;
here, V denotes a suitable neighbourhood of the (compact) subset F~*(4) n ¥" in F~1(5)
for some regular value & of F.

The proof of Theorem 1 rests on the same idea, but requires a finer analysis; the
reason why Theorem 2 is obtained by softer methods is that we do not strive for normal
forms of the least possible degree—which can be obtained from Theorem 2, using
‘ explicit ” calculations as in the proof of Theorem 1 (see [Ch 86¢c]).

3. THE COMPLEX FLOW OF A WEAKLY HYPERBOLIC S

(3.1) Introduction and notation

We assume S weakly hyperbolic and denote by ¢,, ..., ¢, its eigenvalues (repeated
according to their multiplicities), and by (%, ..., x,) a system of coordinates as in (5)
above. We shall study the holomorphic flow ¢ defined by '

o(t,v) =¢%v, teC, veC"

with the help of the function F defined by (5). In the sequel, we denote by @ a complex
number such that aS € gl(2n, R) is (real) hyperbolic, and by o, the real flow f,g of aS.
We let F, be the real quadratic form v+ Ze(aF(v)).

The idea is to * split > our complex (indeed) flow into two comprehensible real
flows: the action o,, and the action of C/aR on the orbit space of ¢, (}) defined by o,
which will be studied in (3.3). Most of the proofs are straightforward and will be only
sketched, for they can be found—in a more general setting—in Section 5 of [Ch 86].

(3.2) First properties

We shall start with a collection of essentially trivial results, which remain valid when S
is not weakly hyperbolic, provided it has no zero eigemvalue (so that some aS can be (real)
hyperbolic).

(1) Restricted to the complementary subset of the unstable subspace of aS.
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Proposition 1. — The function F, is a *“ Lyapunov function  for oy: its only critical point
is 0, and, for each v € C"\{o},

(i) the function ¢,:R ) given by () = Fy(oy(s,0)) is increasing, and

(11) ¢, s bounded above (resp. below) if and only if v belongs to the stable (resp. unstable)

+ = . - = . P _l

subspace Wi = gh(‘?;@Oxj (resp. W, ae(g?»oox’ ) of aS, where Ox; ij 2 1(0).

Proof. — This is trivial, since ¢§,(f) = Ze(ac;) | €5 x,(v)[3/2 and (therefore)
Uo(t) = X(Re(ac)? | €' x(0)[2. m

Corollary 3. — For each negative real number ¢, Q , = Fy'(c) is a quotient of the c-invariant
open subset E,= C"\Wg by o, in the sense of (2.2), final remark. m

113 3

Here comes the ¢ splitting ”* of ¢ mentioned at the end of (3.1):

Corollary 4 ([Ch 86], (5.2), proposition 3). — Under the hypotheses of Corollary 3, the
mapping ¢,: Q. X R > C" given by o, (x,t) = o,(t, x) s a diffeomorphism onto E,.
For every (x,5) € Q, X R and every (s',t) e R2,

* (8 + 1) aS _ ¢ ’ ¢ u
(¢} 6 +0%%) (x,5) = (®L(x), s + 5 + [ g, 0 Di(x) du),

where the flow (®) on Q , and the function g,: Q, — R are defined as follows: if &, denotes the
infinitesimal generator of (®'), then, for each x € Q,, &,(x) = iaS(x) — g,(x) aS(x). Thus,
the flowlines of &, are precisely the intersections of Q , with the orbits of °'|ch; |

(3-3) Structure of the flow (%)

Hpypotheses and notation. — We assume S weakly hyperbolic, and endow G" with
the hermitian norm v+ |v| defined by |v|2 = X |x(v)|2. For each IC{i,...,n},

we let E; =D Ox;. We still assume ¢< o, and a is fixed as in (3.1).
i€

‘Proposition 2 (see Fig. 2). — (i) Let A~ be the set of all equivalence classes of the equiva-
lence relation ¢, € Re; between elements j, k of {1, ...,n}. Each 1 e€X determines a unique
g € R such that

aRe; = R(1 — ig;) (={u € C: Re(u(i — g1)) = 0})  for every jel.
(ii) For each Yex', let 1f and Iy be the subsets of {1,...,n} given by
I = {j: *Re(ac;(i — g1)) < 0}. Then, Eyy and Ey_ are s.i.m.’s of S.  Conversely, every s.i.m.

of S which 1s maximal for the inclusion is both of the form Ei,, 1 €™ and of the form Ej,
Jed. . m
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a(jely)

FiG. 2

We can now see how the s.i.m.’s of S appear in the structure of (®!).

Notation. — Let S, be the set of all 1 €™ with Ze(ag;) < o for some (and there-
fore every) j € I; equivalently, £, is the set of those I e such that

2:c,I = El N Q.c

is not empty—in which case it is a sphere. For each Ie.£,, let E ; (resp. Q, ;)
denote the set of those » € G" whose orthogonal projection 7; onto E; lies in E, (resp. Q ,),
and let I* ={j:*Re(ag(i — g)) <o} =TIF\I. Clearly, we can identify Q,; to
2,1 X En X E- ovia the canonical isomorphism of C" = E;® E, ® E;- onto
E; X Ep. X Er-, and the open subset E,; of C" in c-invariant. Therefore, it is easy

to check that both Q,; and Q,6NE,; are quotients of E,; by o, in the sense
of (2.2), last remark. We let

gc,[ : Q.c N Ec,I - Qc,l

denote the canonical diffeomorphism obtained by following the orbits of ;.
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?c. I(x) Zg,l

Fic. g

Proposition 3 ([Ch 86], (5.2), Proposition 6 and Théoréme 1). — For each 1€ .f,,
E, is *“ normally hyperbolic at =, |, with global stable manifold Wy = E,; N Q, N Ey and
global unstable manifold W7 =E,; nQ,NE”". More precisely, &, ;= (€,1).&
is gwen by & ;= (1—g) aS|QM; thus, if we writt Q,y as X,y X En X Er,
&, 1 splits into a vector field on X, ; (namely, Eclzm)’ a linear vector field on E. whose stable
subspace is By itself, and a linear vector field on E,- whose unstable subspace is the
whole of E;-. In particular, the hypotheses of the Isolating Block Lemma (2.2) are satisfied by
(Q..) M’ E+’ E—’ E) = (Qc,l) Zt:,I’ EI*’ EI“: Ec,I)' L

Thus, in each  chart” %, , the situation is quite simple; we shall now see how
these simple situations are glued together. Here is a first step:

Proposition. 4 ([Ch 86], (5.2), Proposition 6 and Théoréme 1). — We have that
UE, ;=E ad U WHUW)=Q,n¥. m

Ies, ° 1e s,

We can now state an analogue of Proposition 1:

Proposition 5 ([Ch 86], (5.2), Théoréme 2). — The function £,:Q,—R given
by £,(x) = Re(iaF(x)) is a < Lyapunov function > for the flow (®}): it is proper on Q, N ¥,
its critical set is X, = ij Z,1 and, for each x € Q \Z,,
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(i) the function ¢, . R defined by {, (1) = £,(Di(x)) is increasing and
(ii) ¢, is bounded from above (1esp. below) if and only if x belongs to W}, (resp. W)
Jor some TeSf,. m

- Proposition 6. — For each 1€ .#,, £,(Z, ) = {cgi} (therefore, these critical values are
distinct—see Fig. 2); moreover, we have cgy < cgy if and only if Wy 0 WH is not empty,
in which case it is contained in the (D')-invariant sphere Wg N Q.. Thus, the latter is the set
of those x € Q, for which the function {, , of Proposition 5 is bounded, and

c(w+ N Qc) = [In’ell}l cgl) max cgl]

By Proposition 4, for each 1 € #,, we have that
Wor=(Q.n EI—)\ U W and Wii=(Q,n EI:)\v,'&Jax w

Proof. — For each x € X,;, the definition of g; implies that
£.(x) = Z Re(a(i — &) ) | %(x) |¥[2 + Re(gy aF (x))
= Re(g; aF (x)) = g1 F(x) = cg;.

For the other assertions, se¢ Figure 2 and Propositions 2, 4 and 5. m

Proposition 7. — The cntzcal points qf F are those v € € with X Re+ C.  Thus,
the set of its critical values is U R, ¢. H*o

<jsn |

Corollary 5. — A real number ¢ is a regular value of £, if and only if b = (¢ — ie)/a
is a regular value ofF and Q; = F~1(b) then equals £, 1(e); if we have ¢ < min{cg;: I € £},
then

(1) the union of those s.i.m.s of S which do not intersect Q; is

¥, =Wy u U E_, and
‘ Ies, °

(i) Q; is a quotient of Q'°\1¢|;J; WI_ by (@) in the sense of (2.2), and
(iii) each Q' NEy with 1€ JZ s a compact submanifold of Q ,, and
’ _ ’ +\ ’
QyNY = Iy_" (Q N W) = ij‘ (Qh N Ey).

Proof. — The first assertion is clear. Under the hypothesis of (i), it is easily
checked ([Ch 86], (5.1), Corollaire 2) that a s.i.m. E;of S, IC{1, ..., n}, is contained
in "//' if and only if  does not lie in E R, ¢;, hence (i) (see Fig. 2). Assertion (ii) is

a straightforward consequence of Proposmons 5 and 6. For each IeJ,, Q) NE,
is a submanifold because b is a regular value of F | g, (by Proposition 7, applied to ¢ loxg, "
instead of ¢); it is compact because fc|an1’ is proper. The last but one equality is a
consequence of (ii) and Proposition 4, and the last equality follows from it and the
inclusions W CE,CY¥’, Ief,. m
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Let us now see what Corollary 5 implies for o itself:

Corollary 6. — For every regular value b of F,

(i) there exists a € G such that aS is (real) hyperbolic, that ¢ = Re(ab) is negative
and that (choosing this a and this ¢ in the above theory) e = PRe(iab) is less than cg; for every
les, and

(ii) if ¥, denotes the (c-invariant) union of those si.m.s of S whick do not intersect
Q', = F (), then Q', is a quotient by o of the open o-invariant subset E, = C"\’Y;‘ by iR
the sense of the final remark of (2.2).

Proof. — (i) is clear, and (ii) can therefore be deduced from Corollary 5 (i), using
the o-invariance of ¥ ,, Corollaries § and 4, and the last assertion of Proposition 6 (see
[Ch 86], (5.1), Corollaire 3 for a simple direct proof). m

(3.4) Concluding remarks

With the above notation, the gradient of f, with respect to the ambiant metric
of course has roughly the same properties as £,. This can be used to study the topology
of the cone F~!(o)—and, more generally (using paragraph (5.1)) of [Ch 86] with
r = 2), of the intersection of two real projective quadrics ‘‘ in general position >’: the
advantage of this method would be to avoid the A-cobordism theorem (and its “ bad
dimensions ”’), so far necessary in the proof of such results [LM].

Going back to our subject, the advantage of replacing the whole of G" by E,
(notations of Corollary 6) is clear, since the orbit space of o] ¢ xx, 15 @ Hausdorff manifold,
diffeomorphic to Q’,, whereas the orbit space of ¢ itself is a non-Hausdorff stratified
set—the structure of which can easily be investigated via the above theory. As there

is much current interest in the ¢ quotient structures

induced by foliations or group
actions, these non-trivial examples might prove useful. Anyway, it would certainly be
interesting to use the above method in the hunting of topological invariants such as that

defined by the Camacho-Kuiper-Ladis-Palis theorem (se¢ (1.3), Corollary 1).

4. NON-LINEAR COMPLEX FLOWS
PROOF OF THEOREM 2

(4-1) Hypotheses and notation

We still assume S weakly hyperbolic, and denote by b an arbitrary regular value
of the function F introduced in (3.1); in order to avoid empty statements, we assume
that Q/, = F~'(b) is nonempty—or, equivalently, that b lies in X R, ¢ (which is
always the case when S is in the Siegel domain). The notations will be those of Sec-
tion 3, with 4, ¢ and ¢ as in Corollary 6 (i).
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As aS is (real) hyperbolic, the hypotheses of the Isolating Block Lemma (2.2)
are satisfied by (Q,E*, E7, &) = (C", W{, Wy, aS), C” being endowed with the her-
mitian metric introduced at the beginning of (3.3). Let B denote the corresponding
‘isolating block ”’; replacing b by k6 (or the hermitian norm |.| by |.|/k) for some
positive &, small enough, we may—and shall—assume that the compact (since f,|q ~y is
proper) subset ¥ N £,7([e, {lézgi cgil) lies in the interior of B; we choose a real number
e > max cgy such that the compact subset f£;!([¢,¢’]) N ¥  lies in the interior of B,
and let

L = £7([e, ¢]).

(4-2) “Isolating blocks * for the complex flow of S near the origin

Proposition 8 (see Fig. 4). — (i) For each compact tubular neighbourhood V of the compact
subset Q' N ¥ in Q, (see Corollaries 5 and 6), the set V=Ln(Uo®wV)u U W)
is a compact neighbourhood of W N Q. in Q.. ‘eR 1€

(i) Such sets A% Sorm a basis of the filter of neighbourhoods of ¥~ NL in L.

(iii) For each such V, V =B n (Wy U U ai({t} x V) is a compact neighbourhood
of 0 in C". €

£40) @

Fic. 4
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Progf. — (i) Given I € .#,, assume that V is a neighbourhood of L N ¥ \ U w;

I<h
—an induction hypothesis which is satisfied if ¢g; is minimal, by Corollary 5 (ii) and

Propositions 3-6. Then, by the last assertion of Proposition g and the Isolating Block
Lemma (2.2), V is a neighbourhood of Z,;, hence of L N 7\ l>J W;; by Pro-
’ g1>95 ?

position 4. By induction, this proves that Visa neighbourhood of L n ¥7, which
contains. Wi nQ, by Proposition 6.

To see that V is compact, we shall use

Lemma 2. — Let (a,) = (4, v,) be a sequence in G X G", such that v, converges to
a limit v and that F(c(a,)) ts bounded. Then, there is an increasing sequence (m,) in N such
that o(a,,) converges to a limit w; moreover, if (u,,) is unbounded, then v lies in ¥, and so does w
Jor a suttable choice of (m,).

Proof of Lemma 2. — If (u,) is bounded, we can extract from (a,) a conver-
gent sequence. If (4,) is not bounded, then, taking subsequences, we may assume
that |u,| > + o, that u,/|u,| >ueC and that F(o(a,) ->LeC. As S
is weakly hyperbolic, there exists u' € G such that we have %e(u'¢) <o if
and only if Ze(ug) <o, and Re(u' ¢)>o if and only if Ze(ug) > o. Now,
Re(u' F(o(a,))) = ?.@e(u’ ¢;) | %;(c(a,))|?/2, and

®) [ 50(an) [ = [ (o[ Hleml H0=elinl;

therefore, we obtain

(7) " lim %(c(a,)) =0 for Re(uc;) < o,

hence Ze(w'L) =1lim X ZRe(u'¢) | x(c(a,))|%. This proves that o(a,,) is bounded;

Re(u' cj)>0
therefore, by (6), Ze(uc;) > o implies x(») = o, hence v €¥"; moreover, we can
extract from o(a,) a convergent subsequence, the limit of which belongs to ¥~ by (%),
hence our lemma. O

Now, let ( »,) be a sequence in V. If it has infinitely many terms in the compact
subset ¥ N L, then it has a convergent subsequence with limit in ¥ N L C V. In
the remaining case, cxtracting subsequences, we may assume that every y, is of the
form ®'n(v,), alias o(4p, V), Um€V, t,€R, u,€C, and (since V is compact)
that ,, converges to some v € V. If¢, is bounded, we may assume that it converges
to some ¢, and then limy, = ®!(s) lies in L (which is closed), hence in v. 1t s
hence u,, (see Corollary 4), is unbounded, then, as F is bounded on L, the hypotheses
of Lemma 2 are satisfied by (u,,v,); therefore, extracting subsequences, we may
assume that y,, tends to some y € ¥°, which has to lie in L, hence in ¥, which is there-
fore compact.
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Proof of (ii). — We just have to show that if a sequence jy,, = ®'n(»,) in L\7,
vy € Q\Y, t,> o, is such that v, tends to ¥" N Q,, then some subsequence of ( y,,)
converges to ¥"; now, extracting subsequences, we may assume that v, converges to
some 2 € ¥ N Q) hence (ii) by Lemma 2.

Proof of (iii). — Following the orbits of 6,, we get a diffeomorphism of Q , onto
the cylinder {|x,| =1} (notations of the Isolating Block Lemma, with the above
choice of B), hence (iii), by (i) and the Isolating Block Lemma (iii). m

(4-3) “Isolating Blocks * for perturbations
of the complex flow of S near o

Hypotheses and notation. — We denote by V a fixed compact tubular neighbourhood
of ¥ nQ/, in Q’,, small enough for ¥ to lie in the interior of B. For each 1e.7,,
we endow Q, ;= X, ; X En X Ei- with the riemannian metric obtained by mul-
tiplying the ambiant hermitian norm by a positive constant «; such that, if

Bi={reQ,r:e|on|<1 and ofo-|< 1},

%.1(B, ) lies in the interior of Vin Q. (of course, the hypotheses of the Isolating Block
Lemma are satisfied by £ =§,; in B = B,; for this new metric).

Complex Isolating Block Lemma, First Part. — There exists a Cl-neighbourhood N
of aS IB in the space of smooth vector fields on B holomorphic in the interior of B such that, denoting
by Ny the set of those elements of &' which are tangent to every s.im. of S, each X e N, has
the following properties:

(1) The Hypotheses of the Isolating Block Lemma (2.2) are satisfied if EIB = X (consi-
dered as a real vector field), and the function ¥ is increasing along every nonzero real flowline of X.

(i1) Let X, denote the vector field on Q , N B obtained from X as &, was obtained from aS
in Corollary 4. Then, the set

Ve=Ln(UAKV)v U W)

1€ S,
is a compact X ~saturated neighbourhood of ¥ NL in L, contained in the interior of B.

(ii1) The set VX =Bn(W;u L‘J f,‘((\~/x)) is a compact neighbourhood of o in C".

(iv) All the properties of &, stated in Propositions 3, 5, 6 and Corollary 5 remain true if we
replace Q , by A/ E, by Xc[;,x and each W by its intersection with L, with the following
modifications:

— In Propositions 5-6, replace ““ bounded from above (resp. below) > by * bounded from
above by a real number o < ¢’ (resp. bounded from below by a real number o> e) .

— In Proposition 3, replace the assertions after * More precisely...” by the following:
“ Moreover, if Ex1:(Vx,Ze1) = (Qo1, 2. 1) 5 the local diffeomorphism which consists

163



164 MARC CHAPERON

in following the real orbits of X and if X denotes the image of X, by ¥x i, then, the image
of €x,1 contains B, 1, the hypotheses of the Isolating Block Lemma (2.2) are satisfied in B,
by (Q,M,E*,E,E) = (Q.1, Z,1, Epv, B, Xy), and Xi|p | tends to &, 1|p , in the
Cl-topology if X tends to aS|y in the C'~topology.”

Proof. — Let X be a smooth vector field on B, holomorphic in the interior of B
and tangent to every s.i.m. of S. If X is Cl-close enough to aS [ g, then, by the Extension
Lemma (i), assertion (i) is true; therefore, (iii) follows from (ii) as in the proof of Pro-
position 8 (iii). Checking (ii) and (iv) takes several steps, in which the locution *if X

is Cl-close enough to 4S |z will be implicit:

Step 1. — The second (i.e. local) part of our perturbed Proposition 3 is true. Indeed, as X
is arbitrarily Cl-close to aS[B, the image of %y ; does contain B,;; now, for each
veQ,1, Xi(v) is the image of ¢X(v) by the linear projection C" —T,Q , ; with
kernel RX(v), which proves that XIIB;,: is tangent to X, ; X En and Z,; X E- and
tends to £, ;|p,, in the C'-topology when X tends to aS|g in the C'-topology, hence
Step 1 by the Extension Lemma (i).

Step 2. — The Lie derivative Ly £, is positive outside Z,: as X, is arbitrarily CG-close

to EcIQ‘nB, this is true outside any fixed neighbourhood U of X,. To construct a

neighbourhood U of Z, in which it is also true, notice that, for each I ef, X, is

tangent to W}, and to W, hence to X, ;, and that £, can be written

f,(v) = cg; + ? Re((i — gy) ac;) | x;(v) |?/2; therefore, by Taylor’s Formula, there does
j¢I

exist a compact tubular neighbourhood U; of X, ; in Q ,, independent of X, such that
Ly, fclUx is of the form vt ¢x(v) ((x;());¢1), where ¢gx(v) denotes a quadratic form,
depending continuously on » and X (in the C-topology), and such that every ¢y () is
positive definite if X = aSIB —hence if X is Cl-close enough to aS|B.

Step 3. — For each 12, WH nL (resp. W nL) is the global stable (resp.
unstable) manifold of X |gny at Z,;: indeed, given ve L N WSy, every fx (v) lies
in W (since it belongs to E+ by Proposition 2 (ii) and our hypothesis on X, this is
deduced from the last equality of Proposition 6, using induction on the value of cgj).
Moreover, fy (v) exists and lies in L. N W for every t > o, since it can escape from the
compact subset L " #” N B neither through dB—which L N ¥” does not intersect—, nor
through £;!({e, ¢'})—because of Step 2 and the inequality

(8) e< min f£,(W; ;) = cg; = max £, (W) <¢, JeSs,
obvious from Propositions 3-6. Now, for each positive &< ﬂl% |cgy — cgx|/2, the
last equalities of Proposition 6 and (8) imply that Zf; = £ (cg; — ) N Wy (resp.
.y =1£7"cgy +¢) " W,,) is the compact submanifold £, '(cgy —¢) N Eg (resp.
£, '(cg; + ¢) N Ey) for every J e#,. Moreover, as

Wy 0 £ (cgy) = Zo 5 = Wiy 0 £, (egy),
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again by (8), we can choose ¢ so small that £ and Z_; lie in the interior of ¥x (B, ;)
for every J. Then, by Steps 1-2 and the Isolating Block Lemma, the interior of
each €x5(B,;) in Q, contains a compact neighbourhood Cy ; of Z, ;, of the form
(see Fig. 5 below)

Cx ;= £ ([cgs — & e85+ ¢€]) 0 (W7 ;U lyoféc(KJ))

for some compact tubular neighbourhood K; of £f; in £, %(cg; —¢). By Step 2,
Ly f, is bounded from below by a positive constant in ¥" N L\LJ] Cy, ;> where f5 (v)
can therefore spend only a finite amount of non-negative time. Moreover, for every
J €S,, each flowline of X, which does not lie in W{; and enters Cx ; clearly has to
leave it through £ (cg; + €)—hence forever, by Step 2—after a finite time. There-

fore, fx (v) has to be in Cy  for every large enough ¢, hence our result by Step 1 (the
case of W} is of course entirely analogous).

Step 4. — End of the proof: let 9V denote the boundary of our tube Vin Q’,. As X,
is arbitrarily C!-close to QQ]QmB , £, takes every value between ¢ and ¢ on each flowline

of X, through 4V, and anl>Jo f)‘{‘(aV) is arbitrarily Cl-close to L n'LJo@i(aV)-
Let Vy denote the “box” in Q,, bounded laterally by Ln‘l>Jo Jx,(9V), at one of

its ends by V, and at its other end by the perturbed version of fc‘l(e’)n\~/ (i.e. the
submanifold of £, 1(¢’) with boundary f; 1(¢’) N tléJo f)‘(t(aV) which contains ¥" N £,71(¢’)).
We may assume that the compact subset ¥ contains every ¥x1(B, ), and our problem
is to show that T"X does admit the definition given in (ii), which is easy: given compact
subsets Cx 1, I €.£,, as in Step 3, Steps 1-3 imply that, for each » €V and each
I e f,, either v belongs to Wy, or there exists a real number #(v) > o such that f5 (v)
lies outside Cyx; for ¢> #(v). Now, f,‘(‘(v) can leave \~/X for t> o only through
£ 1(¢'), and has to leave \7X if v does not belong to liJW,jr 1» for Ly £, is bounded from

below by a positive constant in VX\lIJ Cx,1, where f§ (v) lies for ¢> max t,(v). This
proves what we wished. m

We can now give a complex analogue of the Isolating Block Lemma (i)-(ii); the
estimates in (vii) will not be needed before Section 5:

Complex Isolating Block Lemma, Second Part. — With the notation of the Complex Isolating
Block Lemma, First Part, if we choose "' small enough, then there exists a positive constant C
such that every X €Ny has the following properties:

(v) XI%X defines a global complex floww Ry on VX, which means the following: if U,

and U, are connected 2-dimensional submanifolds with corners of G, containing o, if v;: U; — VX,
J = 1,2, denote two smooth mappings which are holomorphic and satisfy ~;(u) = X(¥;(u))
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inside U; and if, moreover, v,(0) = v,(0) =ve VX , then, y,(u) = vo(u) = Rx(u, v) = R%(v)
(which is thus defined) for every u € Uy N U,.

(vi) For each v eV, the set of those ueC for which R%(v) € Vy is defined
(in the sense of (1)) is a connected 2-dimensional submanifold with corners of C, which is
compact if and only if v does not lie in ¥". More precisely, let oy be the diffeomorphism of
Q ={(x,t) e Vy x R:fi(x) eV} onto V\W; given by ox(x, t) =fi(x), and let
gx: Ve SR be the smooth function defined by iX(x) = X,(x) + gx(x) X(x), x e V.
Then, for every (x,s) € Qx and every (s',t) e R%

() RY *(px(x, ) = ox( /40, s + 5 + [, ax o f(¥) du),

meaning in particular that both sides have the same definition domain.
(vii) One defines a smooth map 1y : Vx\~/? , =~ G, anabtic (*) off B, by
Ry ™®(y) e V.
For each v e VX\V; s> let yx , be the path from o to ry(v) in G such that (for some parametris-
ation of vx,) the path s> Rx™(0) consists in following first the (real) orbit {f¥(v)}

Sfrom v to its intersection x with V., and then the orbit { JR,(%) } from x to its intersection Ry ™= (v)
with V; then, denoting by d the hermitian distance in G, we have

(10) | Yx.»(5)| < C Log 2 — Jor every s and every v € Y\,
’ d(l}, Vb)

Proof. — Assertions (v)-(vi) follow from the definition of Vx . Under the hypotheses

and with the notation of (vii), let sy : \fo\wo— - R and ¥: VX\“ﬁ ,» — R Dbe defined
(see (i)-(vi)) by fx ™ (v) €eQ, and fr™(x) € Q). As X (resp. X,) is transversal
to Q. (resp. Q) at every point of \7X (resp. V), these two functions are smooth, and
analytic off éB. Since (9) yields

rx(v) = sx(v) + jo— ) o S (%) du + ity (x), where x = fi (1)

o [ 10,0(5) | < sx(6)] + 11(9)| (¢ + max |gx(5)])  for every s,

rx is smooth, and analytic off 8B. We shall now prove (10):

Step 1. — Restricting N if necessary, there exists a positive constant k such that, for X € A4,
we have d(f'(v), V) = e d(v,¥,), teR, veB, and d(fl(x), V) = e Hd(x, V),
x € \7X, 0< t< ty(x) :leth: Q, — [0, 1] be smooth, compactly supported, equal to 1
in a neighbourhood of ¥, let Y = %X, and let ky = max {{dY(x)|:x€Q,} IfXis

(Y) Analytic means real analytic.
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Cl-close enough to 4S, then, for x e V; and o< t< ty(x), we have fy'(x) =fy'(x)
and, for every smooth path y: [o, 1] - Q, from fi'(x) to v,nQ,,

% [(fEoy) ) =2((fzo) () [ dY(f7ov(s))- (fYo1)'(s)
< 2kg [(fyoy)' ()% o<u<y,

hence, by integration, J.ol [(foy) (s)] ds< &=t f: [Y'(s)| ds. Let d, denote the geodesic
distance on Q,; as fioy is a path from x to ¥, N Q,,, we get

d(x, ¥y 0 Q,) < & d(fl(x), ¥y 0 QL);

now, Ry depends continuously on X in the C!-topology, and, on the compact subset 2~ 1(1),
the distances d and d, are equivalent. This proves that—restricting .4 if necessary—our
second inequality holds for some positive constant k; modifying the latter, the same
argument yields our first inequality.

Step 2. — Reduction of the problem: clearly, for each X e A7), sx is bounded below,
and its minimum depends continuously on X; moreover, sx is bounded above by the
function r,_ associated to &= X by the Isolating Block Lemma, which proves

(Lo [

lating Block Lemma, My depends continuously on X, and we can therefore choose
A" so that M = max{My: X e} is finite. As |o,|=d(, W) > d(v, ¥,), we

that v has a finite supremum My; by the proof of the Iso-

get |sx(v)] < MLog—Qr— hence, by Step 1, d(fx ™" (v), ) > 2™ d(p, ,,)"“"M
d(v, V),

for each v € \NIX\WO‘ . Therefore, by (11), we just have to prove

Step 3. — The non-negative function x> — tyx(x)/Log d(x, ¥,) is bounded on VX\‘VA~ 5>
and its supremum depends continuously on X e Ny in the Cl-topology: let the compact subsets
Cx 1, IeS,, be asin Step 3 of the proof of the Complex Isolating Block Lemma,
First Part. Let the elements I, ..., I, of #, be so ordered as to satlsfy cgy; > 8y,
for j<k; for o<j<m, let pf ’1’1+1 Vx\”/” —>VX and £, 67, VX\V —>R
be defined inductively as follows (see Fig. 5):

tg (%) =0,  fpya(%) = tx(%)

{t:fx'(x) € Cg 1.} if non-empty
for o<j<m, [ (%), ()] = % () € Gay P

{t"4(x)} in the remaining case

for o <j<m, p(x) =f59() and  p, =L ).
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=py
LA
] b= /
I _
+ ’ ”)
v = pE(") = pS(v")
\) K/ Cx_x,

Fic. 5

As Ly f, has a positive lower bound on vx\LlJCx,x and f,|, is bounded,

(12) the length of [o, &(x)]\U [£ (x), £ (x)] is uniformly bounded with
i
respect to x and (choosing A4~ small enough) X.

Therefore, by Step 1, x> — #(x)/Log d(x, ¥,) is bounded on V,\#,, uniformly with
respect to X. Let us make the induction hypothesis that so is x — — £ (x)/Log d(x, ¥
for some j< m; then by Step 1, there is a positive constant o such that we have
d(py (%), V) > d(x, 7%, xe V\Fy, X ey Thus, as d(p}(x), Wiy, 0 Cx ) is
not less than d(p; (x), 7;) and, on Cy, the distance induced by that of Q,
via by, 5 is equivalent to d, it follows from the Extension Lemma (i)—applied to XI
in B, ——that — " (x)[Log d(x, 2 ) is bounded in VX\V s umformly with respect
to X thercfore by (12) and Step 1, so is — £ ,(x)/Log d(x, ¥,), hence our lemma. m

(4-4) Conjugacy results; proof of Theorem 2

Notation. — We assume 4" small enough for every X eA", to satisfy properties
(i)=(vii) of the Complex Isolating Block Lemma. For each X eA7;, we let

={x evx £ (x)<e'}
and Vi = ({2 € VAW; : 03 1(s) € Vi x R} U W )\3B.
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We shall construct conjugacies as in Corollary 2; here is the easy part:

Proposition 9. — (i) For each X €A, the set wx of those (x,u) €V X G such
that R% (x) is well-defined and lies in Vy is an open subset of V x (R + iR +), and the mapping
Dy 0y — Vx\“f » given by Dy(x,u) = R%(x) s an analytic diffeomorphism, the inverse
of which is v > (RZ™(v), r(v)).

(i) GivenX and Y in Ny, the mapping h:= Oy o D' : Oy(wx N wy) = Dy(wx N wy)
is an analytic diffeomorphism, sending the restriction of zX onto that of zY for every z € G, and,
by (1),

(13) h(v) = RFY o Rz™ ()  and k™ '(v) = RF® o R7™0(2). m

We can now prove a complex analogue of Corollary 2:

Complex Extension Lemma. — For every positive integer k, there exist an integer p > k
and a Cl-neighbourhood /™'’ of aS | g A" such that, if two elements X, Y of /"' A"y have p-th
order contact along ¥~ N B, then, with the notation of Proposition 9,

(i) the sets U = Oy(og Nwy) U (Vx N ¥,) and U’ = Oy(ey N ay) U (Vy A7)
are open neighbourhoods of ¥ \Vy = ¥ N Vy in Vi and Vy respectively, and

(ii) the mapping H:U — U’ equal to h off ¥, and to Id on ¥, is a C¥-diffeomorphism,
such that H,(zX|U) = 2Y |y for every z € C.

Progf. — Let 8> o be small enough for ¢([o, 3] X V) to lie in the interior of B,
let T=R/3Z, and let ¢:Q, X R —>Q, X T denote the canonical projection.
For every X e, close enough to aS|z, we have ¥ x [o, 8] E ox (B\@B); thus,
as [X,:X] = o, there is a unique analytic vector field X, on Vy X T such that
q" X, = ¢x(1X|§aw;)> the flow of which is given by

(14) S0 d(ns) = (S, s + [, ax o S (%) d),

meaning in particular that both sides of this identity are defined in the same domain
(recall that the definition domain of gy is \~fx).

In the rest of the proof, we assume X, Y €47 close enough to aS|z. The general
idea is as follows: using the ‘“ charts ” ¢y and ¢y, we transform our initial complex
conjugacy problem into another one, concerning real flows (Steps 1 and 2). We can
then use the Extension Lemma (2.2) to solve this reduced problem (Step 3); this is
why we have introduced T and ¢, as a more direct approach would make use of a less
simple tool.

Step 1. — Let Uy = U\’Y?b, U, = U'\“/7b, let dy be the set of those x € Vy such
that, with the notation of (11), f¥®of ™= (x) s defined and lies in Vy, and let
ho:dy X T >Vy X T and ¢ hy:dy x R > Vy X R be given by

ho(x, 0) =i o f5, ") (x,0)  and ¢ ho(x, 5) = S o fr i (x, 9).
169
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Then, Uy = ox(Qx N (¢ ko) ™'(Qy)) and

(15) h = gy o (g ho) o 9|y,
This 1s obvious from (g), (11) and (13), since

Fim e s) = (F0 5 + [ exo i) ). O

Step 2. — Let m>k and A be as in the Extension Lemma with & = aS; assume that

(1) X and Y belong to Ny and have m-th order contact along ¥,

(i) Dy =dy U (¥, N Vy) is an open neighbourhood of ¥ NVy in Vi, and

(iii) hqy extends to a C™-embedding Hy:Dy X T — Vy X T, having m-th order contact
with the identity along (¥ N Vy) x T. :

Then, the conclusion of the Complex Extension Lemma is satisfied.

Indeed, ¢k, clearly extends to a C™embedding ¢ H,:Dy X R —Vy X R,
having m-th order contact with Id along (¥ n V) x R; as X and Y have m-th order
contact along every s.i.m. of S and are tangent to it, it follows that

(16)  Us=U\Wy =ox(@x (¢ Hy)~'(Qy))

is an open neighbourhood of \:lx N ¥ \Wy in \:/'x, and that HIU = @y o (¢" Hy) o 9% IU
1s a C" dlffeomorphlsm onto U’\W;, having m-th order contact with Id along
Vx Ny \W0 , hence in particular along W{\{o}. As U, is X-saturated by (16),

we can apply the Extension Lemma (2.2) with (e, 4) = (IOJ,,, HI(,‘); since the set Q
provided by the Extension Lemma clearly satisfies Q\Wg = U,, this prove Step 2. O

For each Ief, let ¢:Q,; XR—->Q, ;xXxT=Q,; be the canonical
projection, and let ¢,;:Q,; X R—E ; be defined by ¢, (x,5) = ay(s, ).
As [aS, iaS] = o, there exists a unique analytic vector field §,; on Q ,; X T such
that ¢; &, | = ¢; ;(iaS), given by E (x,0) = (§,1(x), g); therefore, setting
B,,=B,;XT and Z,; =X, ; X T, the hypotheses of the Isolating Block Lemma
(2.2) are satisfied by (Q,B,&) = (Q,,B, 1, &, 1). Here is our last step:

[

Step 3. — Let the elements 1, ..., 1, of £, be so numbered as to satisfy cg1j< 8y
Jor j<j', and let the integers m=m, < m< ...<my be defined as follows:
m is the same as in Step 2 and, for 1<j<{, m; is the integer m associated to
(B, & X, k) = (B, 1, &, 1> Ze, 15 M; +1) by the Extension Lemma (2.2). Then, the hypotheses
of Step 2 are satuﬁed if X and Y have my-th order contact along V.

170



Ck.CONJUGACY OF HOLOMORPHIC FLOWS NEAR A SINGULARITY 171

The proof is by induction. As above, set Q, =Q , X T, dy =4dy, X T, etc.

Let L =L\f !(¢), let Hy:Dy—>Vy equal k, off ¥, and Id on ¥,, and let

#i=Loay\UW;,, 1<j<t+1. We shall establish that, for 1<j<?+1,
32

dy UW; is an open neighbourhood of W'; in L, and H0|dou,]. is éf class C™

(17); and has my-th order contact with Id along W';.

This will imply our result for j =/ + 1, since my , =m and #,, ,= 7" N L.

Notice that (14) and the Complex Isolating Block Lemma (iv) yield (17),; indeed,
V is a quotient of \N’X\”/;' » (resp. {,’Y\‘/} ») by fx, (resp. fy), and h, is that conjugacy
between X, and Y, which is the ¢ maximal ** solution of the Cauchy problem ‘4, = Id
on V”’ with domain in \"X and range in VY ; therefore, since each W{" N L is the stable
manifold at Z,; of both X, and Y,, which have m,-th order contact along it, (17),
is true.

Let us make the induction hypothesis that so is (17); for some j< /. Using the
Extension Lemma (2.2), we shall prove that d, U#7,, is a neighbourhood of
W; VI, L in L and that, near zZ, 1 H, has m; , ,-th order contact with Id along W’ ;-
Since. W N L is the global unstable manifold at Z,, of both X, and Y,, which
have m; , ,-th order contact along it, this will imply (17);,,, as Hy is a conjugacy between
X, and Y, on and off 7.

Let ox;:(Q, y X R, Zc,x,- X R) - Ec,lj be the Ilocal diffeomorphism
(x,8) > fx(x), let €x;:(Q,.,Z, Ij) - (Q oL B, Ij) be the local ““chart” such that
qy; 0 pxjopx = €xjoq, and let €y, be associated to Y in the same fashion.
By the perturbed version of Proposition g in the Complex Isolating Block
Lemma (iv), B, I lies in the interior of the images of €x; and €y ;; moreover,
X, = (€x). Xcle,- and Y, = (€y,). Yc|3mj are Cl-small perturbations of §, I,-lej’
having m,-th order contact along the image of W, ;Y W;:Ij by €x; and @€y ;, i.c.
along Z,; X (E]; v EI;). Therefore, we can apply part (ii) of the Extension
Lemma (2.2) with

(Ba &, X>Y’ k,m, o, h) = (Bc,lj> gc,lj’ X, Y mjiq, My, Wy, h)),

6,jd Tej?
where h; = €y ;o (Ho‘douf]-) ° Q?,‘{,ij and w; is defined as follows: given Cy ;
and Cy ;; as in Step 3 of the proof of the Complex Isolating Block Lemma, First Part,
w; is the (X, ;-saturated) set of those x in the interior of CX’I], such that h;(x) lies in
the interior of Cy . As the set Q provided by the Extension Lemma in this situation

clearly satisfies €x3}(Q)C D,, we conclude that D, and H, have the required pro-
perties near X, ;- W

Corollary 7. — Theorem 2 is true.

Proof. — Let k be a positive integer, and let p > £ be as in the Complex Extension
Lemma. By the Complex Preparation Lemma (2.3), we just have to prove the fol-
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lowing: if an S-vector field has p-th order contact with an S-normal form S + N along ¥,
then Z is C*-conjugate to S + N. This will be a consequence of the Complex Extension
Lemma if we can prove that there exists A € GL(n, C), with A*S = S, such that—given
a representative Z of Z— aA*Z IB and @A*(S + N) lB are well-defined and lie in
VAV 4%

Now, this is quite easy: for each A in the spectrum A of S, let d(A) be the dimension
of the corresponding eigenspace E(A) of S, and let (x{), < j<ap D€ a system of complex
linear coordinates on E(A) in which the nilpotent endomorphism NIIE(M has an upper
triangular matrix. If d = maxd(}), define A,, €> o, by

A,EQ) =E(}) and oAl =¢"%4, 1<j<d), AreA.

For every small enough ¢, A = A, fulfils our requirements. Indeed, A, pre-
serves S and (therefore) each one of its s.i.m.s’, and both A:Z and A%S + N) tend
to S on B in the Cl-topology when ¢ tends to 0. m

5. PROOF OF THEOREM 1

(5.1) Algebraic background: normal forms and their formal flows

Hypotheses and notations. — Given a (not necessarily weakly hyperbolic) S, we let ¢
and ¢, x;, 1< j< n, beasin (3.1), and ¢%) = o(u,v). For each p e N", we denote
by py, ..., P, its coor:iinates, and let |p| =2Xp, and xP =x1...a%. For each
X ed, we denote by Ry the Taylor expansion of its complex flow at (o, 0), viewed as
a convergent power series in the variables u, x,, ..., x,, where « is the (complex) para-
meter of the flow; we let dom Ry be the strict convergence domain of Ry—if
Ry = Zam’p u™ x?, recall that dom Ry is the (open) set of those (u/,2') e G x C*
such that, for some (u,v) €e C X CG* with |u| > |4'| and IxJ/gv)l > |%(2')| for
every j, the set {a, ,u™x"(v)} is bounded; for each (u,v) €edom Ry, we shall write
Ry(u, v) = Ry(y, 2,(0), ..., %,(0)) = 2a,, , u" x*(v)—which is well-defined, by Abel’s

lemma.

Proposition 10. — For every S-normal form S + N,

t/
(i) the polynomial vector field N — N' is a linear combination of the monomials xP P
peP,={peNr:|p|>1 and Zp,c, =}, 1<j<n, %
(ii) if we view Ry and Ry as elements of C{u}[[xy, ..., %,]]", then

X0 Ry — Ry) =p§PjaN,p(u) x*  for 1<5<n,
where each ay ,: G) is polynomial; moreover, seeting RY(v) = Ry(u, ), we have
f{'§+N =c*oR% =R% oo for each u, and
(ili) #f N = o, then the degree of each ay , is less than |p|.
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Proof. — Since [S,N —N!'] =0 and S = chxjai, (i) is clear. To prove
X
J

the rest, we shall use a linear representation: denote by & the complex algebra of all
germs at o €C" of holomorphic complex functions, by m its maximal ideal
{fe&:f(o) =0} and by &, the finite dimensional algebra &/m**' for each non-
negative integer k. Each X ed defines the derivation X*:fb Ly f of &, hence
a derivation X} of &,. Denoting by J* the canonical projection of & onto &,, we clearly
have that J*(x; o R%) = ¢MNi(J*x) for every (j,k u) (1). Now, as N' is nilpotent,
so is Nj for each k; therefore, each u> J¥x 0 R’{q is polynomial, and its degree is less
than k if N! = o (because this means that N*m? C m?*! for every positive integer q).
From this and the fact that each f{’l‘q preserves S, assertions (ii)-(iii) follow at once. m
The following obvious result ([Ch 86], (4.3.2), Lemme 4) will be useful:

Proposition 11. — Let N™ be equipped with the ordering < defined by ““ p < q if and only
if p;< q; for every j 75 then, for each A CN", the minimal set min A of A is finite, and every
p €A satisfies p> q for some g e min A. Therefore, if Py, = {p e N"\{o}: Xp, ¢, = 0}
and if Py, ..., P, are as in Proposition 10, then, for 0< j< n, each element of P; can be
written—in a non-unique fashion in general—as the sum of one element of min P; and finitely many
elements of min Py. m '

These two results yield the easy part of the Poincaré-Dulac theorem:

Corollary 8. — If P, is emply—uwhich of course is the case when S is in the Poincaré
domain—then
(i) each P; is finite, and, for every X ed with [S,X] =0, X — X1 is a linear
0
combination of the monomials x”é— pel, 1<j<n, and

% ’
]

(ii) every S-normal form S + N generates a global holomorphic action of G on G*; more
precisely, by Proposition 10 (ii), the complex flow of N is an algebraic C-action on C". m

We shall now see what happens if Py is nonempty. For simplicity, we consider
only special S-normal forms, in the following sense: call an S-vector field special if X! = S
(of course, such an X has nothing special in the ¢ generic > case when S has only simple
eigenvalues!).

Corollary 9. — There exists a positive integer k such that, if z:GC" — C™2P and
w:C X C" - G-k xminPo grp giyon by

z(v) = (zp(v))peminl’. and 2y = x?, p e min P,

w(u’ l)) = (wm,p(u) v))lSmSk,peminP,’ where wm,p =u" zp’

(*) Viewing ﬁ',: as a germ at o € " of a holomorphic diffeomorphism.
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the following hold: for each special S-normal form S + N, there are polynomial functions

My, : C 2 and convergent power series Ry , at 0 € C®inPe x Gib--kdxminks -y o 'L>Jo min P;,
such that !

(18) %(Ry(%, ) — ) =pe§mpj (uMy,, () + Ry ,(2(2), w(y, ))) ¥*(v),
ISj<n

and

(19) Ry, =0 on C""F x {o}.

Identity (18) means in particular that we have (u,v) € dom Ry if and only if (2(v), w(u, v))
lies in the strict convergence domain dom Ry ,, for every p. ‘

Proof. — By Proposition 10 (ii)-(iii), x;o Ry= x + 2z a, u"x?, 1<j< n.
PEP;,0<m<|p|
Now, by Proposition 11, there does exist a positive integer % such that each u™ x?,

p€ U P\minP; and o< m<|p|, can be written 25™?) ™2 29 with Q(p)e U minP;
i>0 : i>0

and |L(m,p)|> o. We shall stick to the following
Rule. — Choose exactly one such mapping (m, p) 5 (K(m, p), L(m, p), Q(p)).

Clearly, J is injective. Therefore, if we set b, ,, =a,, if (4, q) =J(m,p) and

b,;,= 0 in the remaining case, our corollary follows at the formal level, with
M = X ™ and R ,w) = b "o,
uMy ,(u) R ay U™ an N,p(% W) 2 rtpd W

Now, given (u,v) and (¢,2') in C x C",

a) the set {a, ,u™ xP(v)} is bounded if and only if so is {4, , , 2"(?) W' (u, v) K(v)},
and

b) the inequalities [u'|<|u| and |x()|<|x(»)| for every j imply
| 2,(0") | < |zp£v)| and |, (¢, ") | < |w, ,(u,v)| for every (m, p); this and a) show that
(«',0") dom Ry implies (z(v"), w(u’,v")) edom Ry, for every p;

¢) conversely, if we have |z,(2')|<|z,(v)| and |w, («,2")]| < |uw,,(4,v)| for
every (m, p), then, assuming that {6, , , 2"(2) w!(u, v)} is bounded for every ¢, we get the
following: as (u, v) > (2(v), w(u, v)) is continuous, there exists (x’,2"") e C x C"
with |u"”|> |u'| and |x(2”)|> |%(v")| for every j, satisfying |z,(v")|<|z,(2)]
and |w, (u",")| < |w,,(u,v)| for every (m,p). In other words, by a),
(2(v), w(u’, v')) edom Ry, for every p implies (u’,v") € dom Ry. m

Corollary 10. — If S+ N and S + N’ are two special S-normal forms, then,
there are polynomial functions Qy . ,:CQJ and convergent power series Ty, at

0 € CminPe 5 CfL--ok} xminPs 4 o ‘l>JOmin P;, such that, for 1< j< m,
i

(20) xj(ﬁ'é-f-N' ° ﬁgiN(”)) = xj(ﬁ'ﬁ' o RE“(”))
= x(v) + pEE‘inP_ (uQxw,p(#) + Tyw ,(2(0), w(y, v))) x*(v)
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and
(21) Tyx,=0 on C"P x {o}.

Identity (20) means in particular that, if we have (— u, v) edom Ry and (u, R5*(v)) e dom Ry,
then (z(v), w(u, v)) belongs to dom Ty y. , for each p.

Proof. — Since N and N’ lie in the centraliser of S, R%. v o Ry Uy = R o Ry™
Now, Proposition 10 (ii)-(iii) and straightforward calculations yield

%o RE o Ry =%+ X byy ,(u) 27,
PEP;

where each by y ,: G is polynomial, of degree less than |p|, and vanishes at o.
We conclude as in the proof of Corollary 9. m

(5-2) A generalisation of Theorem 1 .

If S is weakly hyperbolic, call an S-normal form S + N reduced if N is a linear

: . 0 . .
combination of monomials x"a—, peP;, 1<j< n, such that every ¢ with p, + o
X
J
lies in R¢;. In particular, if S is hyperbolic, the only reduced S-normal form is S
itself—and, of course, every S-normal form is special. Therefore, Theorem 1 is a par-

ticular case of

Theorem 3. — If S is weakly hyperbolic, then every special S-vector field is CO-conjugate
to a reduced special S-normal form.

Before proving this result, let us explain why it provides “ good > normal forms:

Proposition 12. — If S is weakly hyperbolic, then every reduced S-normal form S + N
generates a holomorphic C-action Ry y of the form RY§, x = Rf oo = 6o R, where Ry
is the algebraic C-action (u,v) > Ry(v), u€C, veC", generated by N. More precisely,
denoting by vy the canonical projection of v e C" = I?f E;, onto E;, J e, the hypothesis
that S + N is reduced means that N(v) = X N(v;) for each v € C*; for every I, N; = N‘E,

lex
and S; = SlEI are vector fields on E;, and S; ts in the Poincaré domain. Therefore, by Corol-
lary 8, the flow Ry, of each Ny is an algebraic action, and the actions Ry and Ry  split”
as follows: for each v e C",

Ry(u, v) = IEZX RN,(”> ),

hence Ri,n(@®) = 2 Ry oRy(r) = 2 Ry oRY(2).
Iex

lex

Proof. — For each I €X', S and N are tangent to each of the two s.i.m. E. and
E;. of S, hence to their intersection E;. As every S; is in the Poincaré domain by weak
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hyperbolicity, one just has to check our characterisation of reduced S-normal forms,
which is easy. m

Remark. — When S in only weakly hyperbolic, a reduced special S-normal form S + N
/]
a;a
then every leaf of the foliation defined by S (see the beginning of (1.3)) is a punctured
complex line with puncture at o € G2, whereas the leaves of the foliation defined by

S + N are injectively immersed complex lines, with the sole exception of Oy\{o}.

may be Cl-unequivalent to S: for example, if n =12, ¢ =1, ¢, =2 and N =i}

(5.3) Proof of Theorem 3

Still assuming S weakly hyperbolic, we shall establish

Lemma 3. — For each regular value b of F, every special S-normal form S + N, is COcon-
jugate to the (special) S-normal form S + N, obtained from S + N, by cancelling the coef-

. . 0
ficient of every monomial x”g—, peP,, such that be X R, .
X PE*0

This implies Theorem 3: by Theorem 2, every special S-vector field is Cl-conjugate
to a special S-normal form S 4+ N (to see that it is indeed special, just notice that the
conjugacies constructed in the proofs of the Complex Preparation Lemma [Ch 864]
and of Corollary 7 are tangent to the identity at o). Now, N is a linear combination of
0

monomials x? P p €P;, 1<j< n, and, for each such monomial, Proposition 7 yields
X .

J

the following: either X R, ¢, is a half-line, or it contains a regular value of F. There-
P *0

fore, applying Lemma g finitely many times, we obtain that S 4+ N is C°-conjugate

0
to S + N’, where N’ is obtained from N by cancelling the coefficients of those x”—a——
i

such that 2 R, ¢, is not a half-line, hence Theorem 3 by weak hyperbolicity. O
Pk +0

Proof of Lemma 3. — We may assume b € ZRe¢;, as N, = N, if this is not the case.
Our other hypotheses and notations will be those of (4.1).

Step 1. — For each p e N", we have b € X R_ ¢, if and only if x” vanishes identically
Pk *0

on ¥,. Indeed, a sim. E; of S, 1C{1,...,n}, is contained in ¥, if and only if

b¢ X R, ¢;. Therefore, we have b€ 2 R ¢, if and only if, for every such I,
jel pr*0

there exists 2 ¢1 with p, + o, hence our result.
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Hypotheses and notation. — For each e> o0, let T =¢eld e GL(n, C). In
the sequel, we let N =7%"N,, N' =%'N,;, X =428 + Ny)|z = a(S + N)|,
Y = 4a%(S + Ny)|g = a(S + N')|, and the locution *for every small enough &
is implicit. When ¢ tends to o, so do N and N’ in the Cl-topology. Therefore, we
may (and shall) assume that X and Y belong to the set /" defined in the Complex Isolating
Block Lemma. To simplify notations, we assume a = 1, which of course is no res-
triction,

We shall prove that the mapping h associated to X, Y by Proposition 9 (ii) fulfils condi-
tions (i)-(ii) of the Complex Extension Lemma with k = o.

This extension problem will be solved using Corollaries g-10, which will allow us
to obtain our conjugacy as the sum of a convergent power series in variables which are
continuous functions. More precisely, we shall see that the mapping obtained by
replacing Ry and Ry by Ry:dom Ry -~ C" and Ry:dom Ry - C" in Proposi-
tion g (13) can be extended continuously by Id on ¥, N Vy and coincides with &
near ¥ N VX

Step 2. — For each (m, p) € N x N", if x? vanishes identically on ¥, , then

P~ Tx o) #7(0) v ¢ Py
i) the mapping Vxsov>{ o
(i) pping Vx {0 ifoe?,

is uniformly bounded with respect to s and (small enough) e, and
()"0  if v ¢ 7,

(ii) the mapping v > “
ifve?,

~
. . &4
ts continuous on Vy.

Indeed, for every 2 € Vx\7,, our hypothesis on p yields |%°(z)|< d(z, ¥,
hence (i) and—since ry is continuous—(ii), by the Complex Isolating Block Lemma (vii).

~ ) ) , 17‘
Step 3. — (i) The mapping V50 H{ E(z)fv())) w(rx(0), v)) Zi : in/;:

is conlinuous.

(ii) We have (— ry(v),) edom Ry and R5 X (0) = Rx™(v) for each v eV \¥,.

Indeed, by Step 1, each x? with p € P, vanishes identically on ¥, (as Zp; ¢; = o,
the origin lies in the convex hull of {¢;:p; + 0}, hence in its interior by weak hyper-
bolicity), and thus Step 2 (ii) yields (i). Moreover, by Step 2 (i), the mapping
v+ (2(9), w(— Yx (), 2)) is uniformly bounded on Vx\f » with respect to s and
(small enough) . Now, we have dom Ry ,D e 'dom Ry, , for each p € U min P;

>0
177
23
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therefore, if ¢ is small enough, Corollary g implies (— vy ,(s), ) € dom Ry for every

2eV\7, and every s. This proves (ii), for both Ry™® (v) and Ry;™®(p) are
obtained by ‘“ integrating S 4 N along the path — vy ,”

Step 4. — (i) For each v evx\‘ﬁb, we have (r¢(v), Rx™¥(v)) e dom Ry..

(ii) The mapping H : VX — C", equal to Id on ¥, and to vt—»Rs+N o Rx ™) ()
off ¥ bs 1S continuous.

Indeed, for each ¢ e min P, and each eV \¥,,
L(RX00) = 2,R5 100) = 2,R5™90)

by Step (ii) and Proposition 10 (ii); now, Corollary g (18) implies that zq(ﬁgu(v)) is
a polynomial in the variables Ry ,(2(v), w(4,v)) and uMy ,(u), all of whose coefficients
are of the form 2, (v), p ‘e Py; moreover, the coefficients of each My , tend to o with e,
and so does each sup |Ry ,(2(2), w(— %(v), »))|. Therefore, we obtain (i) as
Step 3 (ii). zeVx

By Step g (ii) and Proposition 10 (ii),

P

H(o) = REfh o ReIP(2) = REW o Ry™9()
off "/7,,, hence, for 1< j< n,

(22) xR =x0) + B (1(0) Quuplrx(o)) + T,y (2(2), wx(2),0))) #°()

by Corollary 10 (20). Therefore, by Step 2 (ii) and Corollary 10 (21), we just have to
prove that Qy v, = o if x” does not vanish identically on ¥°,, which is clear: for
each s.im. WC ¥, of S, we have indeed

%(RY o R3¥(v) — 0) = = 4Q x xv, () 27 (v) = 0

pEminPj,z”|w#0

for 1<j<n and veW, since N=N'onW. O

Step 5. — The connected component Uy of o in I:I“(\:’Y) contains ¥, O VX and
is contained in U (notation of the Complex Extension Lemma). For every v e Uo\’f 5>
ro(H(2)) = rx(v), and H(v) = h(v) (notation of Proposition 9).

Indeed, fanx=“l?anY=“/;me',, hence (as X =Y on ‘/7,,)

7, N Vy = ¥, N Vy; since this is a connected set containing o, on which H =14,
it lies in U,.
By the same argument as in the proof of Step 4 (i), (22) yields _
(—re(0),H() edomRy and R3™™(H()) =Rz™(2), ve U\Y,.
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Moreover, replacing X by Y in Step 3, we get
(—n(H(), H(z) edom Ry, and Ry~F)(H () = Ry~ (H (),
2 € U\Y .

Thus, if we can show that ry=ryoH in Uo\"/7' »s we shall have that
Ry™=?(H(s)) = Rx™"(s), hence H(r) = RFY o R{™¥(s), for each »e U\Y,.
By Proposition g, this will prove our result. Now, both 7 and 7,0 H are analytic in
the connected set Ug\¥,, and they clearly coincide—because so do # and H—in a
neighbourhood of V (the inclusion V C U, comesfrom thefact Vand Vy n ¥ =V, n¥"
are connected); therefore, 7, = ry0o H in Uo\‘/; O

With the notation of the Complex Extension Lemma, we have proved that U

is an open nelghbourhood of ¥ b\V in VX and that the mapping H: U — C*, cqual
to Id on ¥, and to & off ¥,, is continuous, hence a homeomorphlsm onto its 1magc
Now, we have that H*(2Y) = zX for every z € C, on and off ¥ ,: »: this is true off ‘/f
by Proposmon 9, and on "//' because Xlw = Y[W is tangent to W for every s.i.m.
WC ¥, of S, and H|y = Id]W Therefore, the germ of H at o is a Co-conjugacy
between X and Y, hence Lemma 3. m

6. CONCLUDING REMARKS

(6.1) C*linearisations

The following result is stated as Theorem B in [DR]:

Theorem 4. — For each positive integer k, there is an open and dense subset V, of gl(n, C),
the complementary subset of which has codimension one, such that every S-vector field with S € V,
is Ck-conjugate to S.

Proof. — If S, € gl(n, C) is weakly hyperbolic and has only simple eigenvalues,
then ([Ch 864]), for every k € N, there exist an integer / > £ and a neighbourhood U,
of S, in gl(n, C) such that, for every S € U,, the S-normal forms in the Complex Prepa-
ration Lemma (2.3) can be chosen of degree ¢; now, the set U, of those S € U, such
that the only S-normal form of degree ¢ is S itself has a closed, one-codimensional
complementary subset in U,—see (5.1).

Given a positive integer %, let 2 e C and p > & be as in the Complex Extension
Lemma (4.4) with S =3S§,. As the eigenvalues, eigenspaces and maximal s.i.m.’s
of T egl(n, C) depend analytically on T near S,, there is an open neighbourhood U”
of S, in gl(n, C) such that, for each T € U” n U, and each T-vector field Z, having p-tb
order contact with T along its s.i.m.’s we have the following: given a representative Z
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of Z, there exists an A € GL(n, G) such that the hypotheses of the Complex Extension
Lemma are fulfiled by Y = aA*zI g and X = gA* T|B; thus, every T-vector field
with T e U” n U, is C*-conjugate to T, hence Theorem 4. m

Although the set V, we obtain in this fashion is larger than that of [DR], it is still
rather ‘“small ”, and its definition is not really simple; the purpose of [Ch 86¢] is to
construct a much more reasonable V;.

(6.2) Families

Given a diagonalisable S e gl(n, C), an (S, p)-unfolding is a germ X at
(0,0) € G* X C? of a holomorphic vector field of the form (x, u) — (X,(x), 0), where
each X, is a local holomorphic vector field on C" such that X (o) = o and that S is
the semi-simple part of dX(0). If o is not an eigenvalue of S, an (S, p)-normal form is
an (S, p)-unfolding having a representative (x, u) — (Sx 4+ N,(x), o) such that each N,
is polynomial and commutes with S, and S 4+ N, is an S-normal form. An (S, p)-
unfolding and a (T, p)-unfolding are C*-conjugate, k¥ € N, when there exists a C*-conjugacy
h:(C" x C? (0,0)) ) between them (in the sense of (1.3)) admitting a representative
of the form (x, u) i (h,(x,) ). The above methods yield the following result [Ch 865]:

Theorem 5. — (1) If S is weakly hyperbolic, then, for each pair (R, p) of positive integers,
every (S, p)-unfolding is C*-conjugate to an (S, p)-normal form.

(i1) Let (24, - .., 2,) be the canonical coordinate system on C". If S is hyperbolic, then,
Jor each p €N, every (S, p)-unfolding is CO-conjugate to a normal form represented by
(%, u) > ((¢;() %(%))1<j<ns O)> where ¢y, ..., ¢,: (CF, 0) — C are local holomorphic functions.

(iii) For eack pair (k, p) of positive integers and each S in the set 'V, of Theorem 4, every
(S, p)-unfolding is CF-conjugate to a normal form of the same type as in (ii).

Of course, (i), (ii) and (iii) are generalisations of Theorems 2, 1 and 4 respectively.
In [Ch 86¢], we prove (iii) for £ =1 and a reasonable V,; as the germs of ¢, ..., ¢,
are Cl-conjugacy invariants, this provides universal unfoldings ([A]) for C!-conjugacy.
Noticing that, as in the proof of Theorem 4, the degree of the (S, p)-normal forms
in (i) with respect to the G"-variable has a bound which depends only on S, we obtain
versal unfoldings for C*-conjugacy, under the sole weak hyperbolicity hypothesis. The
problem of finding universal unfoldings in this general case seems very difficult—see [Ch 86¢].

If we replace Ct-conjugacy by (holomorphic) conjugacy, (i) and (iii) are true in
the Poincaré domain, where the set which corresponds to V, is simply the set of those S
which have only simple eigenvalues and for which Py, ..., P, are empty—see [A],
§ 36, C. In the Siegel domain, there is no hope for such results—which are false even
at the formal level; this is why Theorem 5 is interesting.
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(6.3) Historical and technical comments

The proof of Theorem 2 originated in an attempt to understand and generalise
the excellent—and curiously underrated—work of Dumortier and Roussarie ([DR]).
My main contributions are the Complex Preparation Lemma—which would have
simplified their proof of Theorem 4—the weakening of Hyperbolicity, and the statement
and proof of a general normal form theorem instead of a linearisation result. The
¢ Lyapunov function ” F, introduced in [C], is not really necessary here (it is not used
in [DR]), but—besides being crucial in the proof of Theorem 1—it makes everything
twork just as well for general smooth germs of Z*¥ x R™-actions, yielding the genera-
lisation of [DR] I was aiming for (se¢e Chapter g of [Ch 86] and [Ch 864]).

The Complex Preparation Lemma (2.3) and the Extension Lemma (2.2) came
from a geometric reading of Nelson’s nice (almost) proof of Sternberg’s theorem ([N]).
A difference with [N] is that I localise everything in *isolating blocks’’, which makes
the situation geometrically clearer—but technically worse, due to problems of definition
domains; this formulation allowed the direct study of holomorphic flows in Sec-
ion g—otherwise, they should have been extended to global smooth R2-actions (as in
Section 6 of [Ch 86]).

The author is entirely responsible for the rather simple-minded proof of Theorem 1.
In [Ch 86¢], similarly, C!-conjugacies are constructed as the sums of convergent power
series in variables which are functions of class C!.

MAIN NOTATION

Notation Section Page Notation Section Page
d, S, X! (linear part of X) (1.1) 144 V, Bg,1 (4-3) 163
fx, f% (real flow of X) (2.2) 150 X,, Vx, Vx, x.1, X1 _ 163
v (2.3) 154 Lx (Lie derivative), Cx, g — 165
F — 155 , , 163
cjy x5 (1< j< n) (3.1) 155 A Ho - { 165
o, a, 61, F; — 155 C, Rx — 165
Wé‘:, Oxj’ ch Ec (3'2) I56 ?X, QX’ 88X, X5 YX,v» SX} _ 166
90> D6, 2o Eo (3.2) 156 x
I”I: E1, X, g1, If)h: Fe 6- VX, VX (4.4) 168
+ (3-3) 1567 . ,
Ze, 15 Ee,15 Qe,15 v, 1 ox, Ox, b, /7, U, U, H (4-4) 169
€e, 15 ngls e, 15 fe, Ze - 157-8 T{X, dom T (strict convergence
Qs 7, b — 159 domain of a power series T), P; (5.1) 172
Ey - 160 Py, min P;, z, w, MN,P} . I
B, L (4.1) 161 Ry, , 3
v,V (4.2) 161 QNN 9 TN — 174
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DEFINITIONS AND MAIN RESULTS
Definitions Section Page Definitions Section Page
conjugate (1.1) 144 Proposition 6-7 (3-3) 159
Ck-conjugate (1.3) 145 — 8 (4.2) 161
Corollary 1 — 146 — 9 (4-4) 169
— 2 (2.2) 153 — 10 (5.1) 172
— 3 (3.2) 156 — 11 — 173
— 4 — 156 — 12 (5.2) 175
— 5 (3-3) 159 quotient (2.2) 153
— 6 — 160 . reduced S-normal form (5.2) 175
— i (4-4) 171 S-vector field
— 8-9 (5.1) 173 S-normal form (x.1) 44
— 10 — 174 X-saturated (2.2) 150
Ck-equivalent (1.3) 145 Siegel domain (1.2) 145
(weakly) hyperbolic — 146 special S-vector field (5.1) 173
Lemmas: stable subspace (2.1) 147
Preparation Lemma (2.1) 147 strict convergence domain (5.1) 172
Isolating Block — (2.2) 148 strongly invariant manifold (2.3) 154
Extension — —_ 150 Theorems:
Complex Preparation — (2-3) 154 Poincaré-Dulac Theorem (1.2) 144
Complex Isolating Block — (4-3) { igi ’il;gce)icl;l:a::atlon E: ;; ::2
Complex Extension — (4-4) 169 Sternberg’s Theorem (2.1) 147
Poincaré domain (1.2) 144 Theorem 3 (5.2) 175
Proposition 1 (3.2) 156 - 4 (6.1) 179
—_ 2 (3-3) 156 — 5 (6.2) 180
— 3-4-5 — 158 unstable subspace (2.1) 147
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